EigenCircuit: Divergent Synthetic Benchmark
Generation for Hardware Security Using
PCA and Linear Programming

Sarah Amir and Domenic Forte, Senior Member, IEEE

Abstract—Benchmarks are the standards by which technolo-
gies can be evaluated and fairly compared. In the field of
digital circuits, benchmarks were critical for the development
of CAD and FPGA tools decades ago. Hardware security is
an emerging field of research where new techniques of security
and vulnerability of hardware designs are being proposed in
higher volume each year. Using decade-old VLSI/CAD oriented
benchmarks for analyzing the techniques has many issues as
these benchmarks were not developed for security research.
Additionally, the rise of statistical analysis or machine learning
to model vulnerabilities and solve security issues demands a very
large set of samples for training purposes. Since the number of
available VLSI/CAD benchmarks is limited, such volume can
only be obtained through synthetic benchmark generation tools.
To accommodate both of these needs, the first hardware security
oriented synthetic circuit benchmark generation framework is
developed in this paper. With the use of principal component
analysis (PCA) and linear optimization tool, the benchmarks
generated by the proposed framework are “divergent”, that is
having maximum variation in structures from each other. By
accommodating user inputs for desired features, the framework
offers customization for generating richer and more challenging
benchmarks for data-driven hardware security. With thorough
experimentation, we demonstrate our framework’s scalability,
the structural and functional variations in the generated bench-
marks, and the advantage of structurally variant synthetic
benchmarks in hardware security applications.

Index Terms—benchmark testing, hardware, security, tools,
optimization

I. INTRODUCTION

YBERSECURITY aims to protect Internet-connected

systems from attacks and has become one of the most
important fields of research. While the significance of soft-
ware security was realized decades ago, it cannot provide
reliable protection without trustworthy hardware. However,
globalization of the electronics supply chain has resulted in
untrusted entities handling sensitive intellectual property (IP),
fabricating integrated circuits (ICs), and testing ICs. Thus,
even when the software is trusted and verified, weaknesses
in untrusted hardware can circumvent it. Researchers in hard-
ware security are therefore addressing threats that were not
considered before. The various topics in hardware security
research include hardware Trojan detection and avoidance [1],
hardware obfuscation [2, 3], fault injection[4], etc. Hardware
Trojan research focuses on detecting or preventing malicious
additions or modifications made by an adversary during de-
sign, integration, or fabrication. The resulting threats includes
leakage of information, intentional malfunction, or kill switch

trigger. Hardware obfuscation consists of modifying an IC
design to intentionally conceal its functionality, which makes it
more difficult to reverse engineer or use without permission. In
pre-silicon phase, it makes the circuit unintelligible, protecting
against IP infringement, malicious modifications and other
threats. In post-silicon phase, locks introduced by obfuscation
are used for access control, thus preventing IC overproduction.

Because of the high impact of these issues, research in hard-
ware security has become a hot topic in academia, industry,
and government. Identification of new threats and development
of countermeasures are resulting in a large volume of research
publications every year. In order to fairly evaluate these newly
proposed methods and compare them with existing ones,
researchers need standardized benchmarks. Using arbitrary
benchmarks makes it hard to have a wholesome idea of
their effectiveness and almost impossible to reciprocate the
results. Unfortunately, the benchmarks currently being used
by the hardware security community are CAD/ VLSI-oriented
benchmarks, mostly developed decades ago. For example, we
looked into the highly cited hardware obfuscation schemes and
attacks on them that were published between 2008 and 2020.
The findings are presented in Fig. 1. More than 70% of those
evaluated their works using ISCAS’85 [5], ISCAS’89 [6],
MCNC’91 [7] benchmarks which were already more than two
decade old. Whereas the usage of well-known benchmarks can
help better understand-ability of the schemes, concerns with
using such benchmarks for hardware security include:

o Size: Design complexity in number of transistor in com-
mercial ICs is increasing exponentially according to
Moore’s law [8]. While a thousands gate design repre-
sented real world ICs decades ago, present day designs
hold millions of gates. The smaller benchmarks devel-
oped earlier were sufficient for the CAD development
at that time, but they are not enough to evaluate tech-
nology developed today. Often the new proposals using
traditional benchmarks report higher percentile overhead
and appear infeasible, but could have very low overhead
when applied on a large industrial design. Vice versa is
true as well. This questions the interpret-ability and fair
comparison of such overhead analyses.

o Function: Another issue of using traditional CAD bench-
marks is function of each of the benchmark is well known
to everyone. From a hardware security standpoint, this
can bias the research results as well as the directions taken
by researchers. It is often easier to visualize, extract and

remove security schemes embedded in them than it might
be for a arbitrary ASIC design.

e Objective: The fact that CAD-oriented benchmarks were
not originally designed for security research, they often
lacks the criteria significant for such analysis. For exam-
ple, a benchmark for Trojan insertion should have many
low observable nodes [9, 10, 11], while a benchmark
for obfuscation, side channel analysis or fault analysis
should have assets/IP worth protecting [12]. While these
benchmarks performed excellently for CAD development
works, which they were designed for, they hardly can
offer sufficient usability for such security research. There
have been some good works in [9, 10, 11, 12] that
modifies the benchmarks to include Trojans and locking
mechanisms, but these works too were limited by the
original benchmarks that they modify.

e Quantity: A trending topic in nearly every analytical
field these days is machine learning (ML) and artificial
intelligence (AI). In hardware security, new ML/Al-based
security scheme and attacks are just now being introduced
for Trojan detection [13], obfuscation [14, 15], and side
channel attacks [16]. However, to properly train and
evaluate such approaches, especially when deep learn-
ing is involved, a very large number of benchmarks is
necessary. Even thousands of samples are way too few
and the hardware security community is only relying on
a few hundred. When more benchmarks are generated
by slightly modifying the existing ones, they do not
provide enough structural and functional variation for
ML/AI to explore. While one could argue that industry
and government have access to large numbers of past
designs, these are often proprietary or classified and thus
cannot be shared with researchers.

Synthetic benchmark generation is the best way to address
these limitations because it allows one to obtain a large sample
set which varies in size, function, structure and objective.
In [17], we introduced a linear programming (LP) formulation
for generating “divergent” combinational circuit benchmarks
and demonstrated them in hardware security applications.
Here, we dramatically improve not only the scalability of our
original approach but also the divergence of the benchmarks
it generates. To be more specific, our main contributions can
be summarized as follows:

« We introduce a novel alternative way to expedite the opti-
mization process that uses Principal Component Analysis
(PCA). Our new framework is thus called EigenCircuit as
it performs eigendecomposition of circuit.

« We implement and compare EigenCircuit to our previous
framework [17] and show that it not only preserves the
quality of the generated benchmarks, but offers better
scalability with thousand times faster execution time.

« We also experimentally show the additional challenges
provided by our synthetic benchmarks compared to the
existing reference benchmarks for logic locking and hard-
ware Trojan research.

The rest of the paper is organized as follows - Section II
summarizes the existing works in related field and the works

40 BN 2008 [2017

N 2012 [2018
-0 2015 [2019
e 20 N 2016 [2020

RIIIC IR N L
S <O S <2
\soP\ \SOP‘ \\G$ \ \ﬁ\’ 09

51] &
'ZQQ ??\,Q/Q’\ o«‘%
<

Fig. 1: A summary of the benchmarks used in hardware
obfuscation techniques and attacks from 2008-2020.

used in our framework. Section III describes the idea and the-
oretical and mathematical details of our proposed framework.
In Section IV, we focus on experimentally demonstrating
the proposed approach and analyzing its results. Section V
concludes the paper with a summary and future directions.

II. RELATED WORKS AND PRELIMINARIES
A. Synthetic Benchmark Generation

Generation of benchmarks synthetically was introduced in
the 1990s, to support the development and evaluation of
CAD/EDA tools. The initial works were done as logic graph
modification [18] and circuits were processed as graphs [19].
A more detailed generation process that investigated the idea
of representing circuit as mathematical array of numbers was
presented in [20]. The structural information of a reference
design was extracted with Corre tool [21], which returns
arrays of numbers in a statistical file which can sufficiently
represent the tree-like structure of a combinational design. The
details of the representation can be found in Section III-B,
as it contains close relation with our work. The tool Corgre
accompanied another tool, named Cg gy [21] which can read
the statistical file and generate a new circuit from scratch. In
step-by-step generation process, gates and input-outputs were
assigned in levels, and then the wires were placed to complete
the design. Though the Cggn tool generates a new circuit
from scratch, it highly depends on the data in statistical file.
The arrays of numbers referring to simple structural infor-
mation can be modified to ensure the generation be different
than the reference, but the accompanying detailed data of
the structure in the file, which are not manually calculable,
makes the possibility of proper alteration very minimal. As
a result, the generated circuit cannot be too different from
the original reference. However, it nevertheless shines light
on how to properly represent a circuit with mathematical
arrays and reconstruct circuit from such data. The benchmarks
acquired with this method would alleviate the problem of
limited number of available benchmarks, but it still lacks in
the variance and customization. In many advanced research,
detailed in Section III-A, the variance of features are critically
important for proper performance.

In our work, we ensured the variance of features along with
enabling customization of basic circuit size and dimension of
external connectivity. The benchmarks suite obtained with our
method would not just offer unlimited quantity, but also ensure
quality by having large spectrum of structural and functional
divergence in the features. Fig. 2 offers a simplified overview

Reference

Benchmarks User Input
| —> Ccirc ElgenC1rFu1t
1 Analysis

Logic Synthetic
4 Benchmark
Custom
Integer Linear Generation > E E@
Optimization tool :

Fig. 2: Simplified overview of the proposed flow.

of our framework. It takes reference benchmarks as input along
with other user input and incorporates the works of [22, 21]
and linear programming to achieve all these qualities.

B. Hardware Security Benchmarks

In previous works, significant contribution has been done to
customize existing benchmarks to make them more suitable
for hardware security researches [9, 10, 11, 12]. Trust-HUB
holds a repository of specialized benchmarks [23]. Authors
of [9, 10, 11] published benchmarks specifically for hardware
Trojan research, where they introduced small to large Trojans
into designs that can offer a spectrum of challenges for
Trojan detection algorithms. Works on secured or locked
electronic design benchmarks for the purpose of hardware
obfuscation study have been introduced in [12]. In this work,
existing benchmarks were modified to include logic locking
schemes that can work as protection for the IP. However, there
are limitations such as (1) the benchmarks can be used to
evaluate attacks and threats, but not new locking techniques,
(2) few hundred benchmarks were published, so it’s not
sufficient for any method requiring larger sample set, and (3)
the benchmarks are modified versions of previously existing
benchmarks, and the physical features of new benchmarks vary
only little from the existing ones. All these insufficiency of
existing work drives as a motivation for the work presented in
this literature.

Above mentioned hardware security topics would benefit
from benchmarks with special characteristics. For example,
for a hardware Trojan to be stealthy, it is expected that
the benchmark used in experimentation have low value of
observability, hiding the signals from getting detected easily.
Detection of Trojans in such benchmarks would be more
challenging for any detection algorithm. Thus, ensuring that
the detection algorithms can be improved and more reliably
detect similar malicious modifications in real circuits.

Looking closely into the hardware obfuscation techniques,
it is apparent that they are closely related to various features
of designs. For example, fault analysis based obfuscation [24]
places locking gates in places where the output corruption
would be highest, and corruption is estimated by fault analysis.
To test how this methods works against various designs, one
needs a large amount of benchmarks, that vary in size and
in features such as controllability and observability. Neither
is satisfied with existing suite of benchmarks. Further, as
mentioned earlier, machine learning based attacks [14, 15]
need to be trained with millions of sample obfuscated bench-
marks in order to work properly. Otherwise the claim of
effectiveness of such algorithm becomes questionable. Our

proposed benchmark generation framework is designed with
these requirements in mind.

Apart from controllability and observability, other features
that are often useful for security research are number of
clause, reconvergence, delay, design size etc. For generated
benchmarks to be useful for security research, it is desirable
that the framework offers customization or prioritization of
these features. Our proposed methodology is capable of di-
rectly set value for features like delay or size. Number of
clauses can be varied by varying size of design. Controllability
and observability can be changed by varying size, changing
depth for a fixed size design or the logic gates used in the
design. Reconvergence can be altered with maximum fanin-
fanout values. More concise control over indirect parameters
are still an ongoing work. If the complex relation between
attack resiliency and these features can be formulated, it can be
used to optimize the benchmark generation to produce either
highly resilient or vulnerable designs. Such relationships can
be discovered using AI/ML as long as a large and divergent
number of circuit samples are available. This is the purpose of
the objective functions in Section III-E where new benchmarks
that are structurally different from prior ones are generated.

C. Linear Programming (LP)

An important feature of our proposed framework is utilizing
linear optimization techniques to determine the structure of
synthetic benchmark and to integrate security features in the
process. LP is a powerful way to determine an optimal solution
for a linear problem under linear constraints. An integer LP
optimization technique [25] finds the minimum of a problem
specified using the following formulation

Ax <b
Acqg = beg
Ib<xz; <ubVi
T; €LV

min fTz subject to
xr

where f, x, b, bey, Ib, and ub are vectors. f(x) is the term
needs to be minimized, A and A., are matrices that represents
the coefficients of z in linear inequality and equality con-
straints, respectively. The third and fourth relations restrict the
range of each feature z; to [Ib, ub] and to integers, respectively.

D. Principal Component Analysis (PCA)

Principal component analysis or PCA is a well-known linear
projection operator that we use in our framework. PCA maps
a variable from one coordinate system to a new coordinate

Hypothetical n-dimensional plane

® Existing benchmarks

hd # Synthetic benchmarks

[) . ‘

Parameter 3
N N
o o

o

0 o 10

Parameter 2 Parameter 1

Fig. 3: A hypothetical n = 3 dimensional plane showing the
structural parameter distribution of existing (blue) vs. ideal
synthetic benchmarks (orange).

frame where the axes represent maximal variability [26, 27].
With PCA, an input data matrix X is transformed back and
forth to an output matrix Y through the transformations:

Y =XP)
X =Py (2)

where P is the projection matrix and each column of P is a
principal component. A truncated P maps each point of X to
a low-dimensional space. C'is the covariance matrix of X that
is used to find P. It is given by

1 N

C =5 D (@n—man—p)" 3)

n=1

where p is the mean, defined with

1 N
u=N;xn @)

Performing eigendecomposition, the covariance matrix C' can
be expressed with the projection matrix P as

C = PAPT (3)

where A is a diagonal matrix with elements A1, Ao, ..., A\p and
A1 > A2 > ... > Ap. Here each)\, corresponding to each
column of principal component in P, indicates the variance
explained by projecting the data onto that component. P; is
the eigenvector and)\; is the eigenvalue, where i refers to the
column number of P [27].

III. PROPOSED SYNTHETIC BENCHMARK FRAMEWORK
A. Hypothesis and Goal

Let’s consider a multidimensional space, like the one shown
in Fig. 3, where each axis represents a unique structural
feature of circuit designs. We hypothesize that almost all
existing circuit benchmarks as well as those generated by
minor perturbations or mutations of them would fall in a
close concentrated cluster (represented by blue dots in in
Fig. 3). If one wants a design that lies far from the cluster,
the horizon for the parameters must be extended. The goal of
the proposed approach is just that — fo create combinational
circuit benchmarks with structural parameters that are very
different than the existing benchmarks. In other words, we
want to create new benchmarks outside of the cluster like those
represented by orange dots in Fig. 3.

There are multiple reasons why this goal is valuable
as previously mentioned. Most notably, data-driven methods
based on ML/AI need such “diverse” samples to form accu-
rate predictions and avoid over-fitting. For hardware security
topics discussed earlier, AI/ML could be used to optimize
countermeasures, e.g., insertion of obfuscation/locking gates.
There are many different attacks against obfuscation and logic
locking that might be difficult to analytically model. By using
a large set of diverse obfuscated samples and applying attacks
against them, ML/AI can better learn how to perform attack-
resistant logic locking. As another example, many weaknesses
and vulnerabilities in hardware security, like the more general
cybersecurity, are “unknown unknowns”. That is, they are
unforeseeable situations which pose a potentially greater risk
simply because they cannot be anticipated. By attempting to
cover the entire “space” of circuits, it is more feasible to
identify such patterns and challenging corner cases where
unknown unknowns might occur.

B. Mathematical Representation of Circuit

In order to run optimization methods such as LP for
generation of valid digital circuits', the first requirement is to
represent a design mathematically with quantifiable variables.
These variables necessarily would represent the entire structure
sufficiently. Both the constraints and objective could then be
defined using those variables. In our work, we have developed
a modified version of the structural representation used in [20]
for these variables. Figure 4 shows the variables in [20] which
are explained below.

1) Circuit depth (n): The maximum depth of a circuit is
the length of the longest path from the primary input
to the primary output in terms of number of gates
in the path. Each structural parameter extracted from
circuits are arrays of length n where n represents the
maximum logical depth. For optimization, we denote n
as the desired maximum depth or delay for the synthetic
benchmark. All reference benchmarks are adjusted to this
length for our optimization flow. Depth is denoted on the
first column in the table of Fig. 4a.

2) Node distribution (/N): Node refers to a logic gate in
this representation. Node distribution is defined as the
number of gates in each depth. Primary inputs are placed
in the first level (i.e., at depth of 1), and their quantity is
considered as Ny. N; is the number of gates that are on
1 — 1 delay from the input (see Fig. 4a).

3) Internal inputs distribution (/): This is the number of
internal inputs at each depth. In our notation, I; represents
this variable for depth i. As no internal inputs go to
primary inputs, I; = 0 (see Fig. 4a).

4) Internal outputs distribution (O): This is an array of
number of internal outputs drawn from each depth, where
O, refers to number of internal outputs coming from the
nodes in depth ¢. The last depth n does not have any
internal outputs, so O,, = 0 (see Fig. 4a).

'Valid means that circuit does not consist of floating nets, nets driven by
multiple nodes, etc.

Int. Int. Prim.

Reth lece Input Output Out.

1 10 0 12 0

2 4 8 5 0

(a) Depth(n), N, I, O, PO

(b) Edge (c) Fanout

Fig. 4: Example of structural features from the graph representation of a circuit. The diamonds on top and bottom represent
primary inputs and outputs respectively. The circles represent gates.

5) Primary outputs distribution (PO): This array represents
the number of primary outputs drawn from each depth.
Alternatively, PO; would refer to number of primary
outputs that have a delay of ¢ —1 from the primary inputs,
or primary outputs that are drawn from nodes placed in
depth ¢ (see Fig. 4a).

6) Wire length or edge distribution (F): This is an array that
contains the number of wires (i.e., edges that connects
nodes) of each length in the entire circuit. Here, length is
the difference in depth level between the nodes that are
connected with that wire or edge. E; represents the total
number of wires in the design that has length ¢ — 1 (see
Fig. 4b).

7) Fanout distribution (F): This array contains the number
of gates with specific fanout size in the entire circuit.
F;; refer to total number of gates in the design that has
fanout of ¢. This fanout is the number of nodes to which
each node output is directly connected to. In a typical
reference design, F; is found to be the largest number,
followed by F5 (see Fig. 4c).

In our framework, we also incorporated more detailed vari-
ables which breaks down edges (F) into edges per depth level
and fanout (F') into fanout per depth level. The elaboration
helps in both defining the structure and translating it into a gate
level netlist. Both of these are represented as two-dimensional
arrays or matrices.

1) Edges per depth level (E'd): Two dimensional array that
contains number of wires of each length in each depth.

2) Fanout per depth level (F'd): Two dimensional array of
gates with each possible fanout starting from each depth.

The vectors N, I, O, PO, E, and F' contain n elements. Ed
and F'd contain n? elements and, for simplicity, are converted
to one dimensional arrays by concatenating rows back to
back. We construct the optimization variable vector x as the
concatenation of vectors N, I, O, PO, E, F, Ed, and Fd,
thus consisting of 2n? + 6n structural parameters.

x=I[N,I,0,PO,E,F,Ed, Fd]
As will be discussed in Section III-D , the designer has

the opportunity to influence these parameters through the
framework’s user-defined inputs.

C. Problem Formation Options

Though it seems easy to determine an array of data that is
most different from some reference array of data using basic
optimization techniques, the process gets complicated when
the resultant data must be meaningful and refer to realistic
circuit. A constrained optimization approach is critical to
enforce the rules for validity where the objective function of
optimization is utilized to implement the preferences. As the
circuit parameters are real integer numbers, we found integer
linear programming to be the most appropriate choice.

D. LP Constraints

The constraints are mathematical representations of physical
limitations of a real world circuit. In this work, we imple-
mented more than two dozen such mathematical constraint
types that ensure the synthetic benchmark structure refers to
a valid circuit. For example, a three input gate cannot have
more than three different input signals. If we examine common
technologies, we can see, logic units may have up to four
inputs. Another example of a constraint can be maximum
fanout constraint of a design. In this case, designer selects
a number which refers to the maximum allowable loading of
output of any gate. In other words, it indicates how many
other gates can be driven by the output of a single gate. Some
additional constraints were also employed to capture user-
defined data to customize the resultant benchmark. Provided
in a optimization tool, even without any specific objective,
these constraints are enough to generate random synthetic
benchmarks.

For brevity, we only cover a few simple constraints here:

(1) User defines certain data for the desired synthetic bench-
mark. These are number of gates in the design (95),
primary inputs (PI), primary outputs (PO) and depth
(n — 1). As discussed in Section III-B, the nodes in first
depth are primary inputs, and in depth 2 to n are logic
gates, the constraints to enforce these user-defined inputs

are -
PI =N, (6)
S=>Y_N; 7
=2

PO = i: PO, ®)

i=1

(i) Maximum fanin (mFI) and fanout (mFQO) are also
parameters defined by the designer. These are constraints
for each node. These links number of internal inputs (I;)
and outputs (O;) in each depth to the number of nodes
in that depth (V;) with-

N, <I;, <N;xmFIVi C))
N; <0;+PO; <N; xmFOV1 (10)

(iii)) Nodes at any depth [V; should not be more than the
maximum possible internal inputs and POs available to
take in the output of this depth and should not be more
than maximum possible internal outputs that can feed this
depth. This can be defined as constraints with:

N; <mFIx Y Nj+ Y. PO;Vi
j=i+l Jj=i+1
i—1

N; <mFOx Y N;Vi

j=1

Y

12)

There are dozens more constraints which we withheld
from here for brevity and are as vital as these to impose
correctness of the structure sufficiently. Only with the proper
constraints, the optimizer can determine the optimum value
for the objective function that refers a structure that is not
just unique and significant, but can also be translated into a
working circuit.

E. LP Objective Functions

The objective function helps to prioritize the features that
result in the random synthetic benchmark structure. Along
with a set of valid constraints, the objective gives the control
over choosing more desirable circuit according to the need
of the designer. This can prioritize one criteria or feature over
another when generating a circuit. In this paper, we present two
objectives, both of which is developed to acquire a diversified
synthetic benchmark suite. While one objective (from [17]) is
more detailed and resource-heavy, the other one (EigenCircuit)
is faster and more convenient. The workflow illustrated in
Fig. 5 highlights the different paths for two objectives.

1) Objective 1: Maximize distance from all references:
This objective is based on the concept of finding the most
distant point in a p * n dimensional space. Each axes in that
space represent one structural parameter at one specific depth.
As mentioned earlier, these structural parameters or variables
are nodes, inputs, outputs, primary outputs, edges, and fanout
arrays (per depth), each being an array of length n. So, for p
parameters and n depth, the total number of axes are p * n.
The distance between reference and resultant ILP benchmark
are measured in all axes independently. The objective is to
maximize the total distance between reference and resultant,

summed up for all axes. So, the linear optimization problem
for this objective can be defined as follows

max f (x) where
x

filz) = ZZ |xl — x;]

1=1 j=1 (13)
Constraints
subject to Bounds
x €7t

where ¢ corresponds to a single depth level for each structural
feature, = is concatenated parameters per depth, r is the
number of reference designs. z; ; is the ith feature from
the jth reference benchmark, and x; is optimal ith feature
for the synthetic benchmark that can later be translated to a
circuit in netlist form. Optimization constraints have already
been discussed in detail in Section III-D. Bounds for variables
are used to ensure efficiency of the optimization. Setting the
highest and lowest possible value as upper and lower bounds
respectively reduces the optimization time by reducing range
of sweep for each variable.

With this objective, the first resultant benchmark is placed
in a position which causes the summation of distances for
reference benchmarks maximum [17]. For generation of later
benchmarks, this newly generated structure can be considered
as another reference point. The distance from original refer-
ences and from already synthesized benchmarks are both con-
sidered for the placing of next benchmark. Hence, consecutive
generations place benchmarks in different positions, both from
original references and from each other.

For this formulation, the depth of each reference must be the
same. Since many of the references may have different depth,
adjustment is done to equalize them to the resultant. This is
done by either adding buffer layers in a uniform fashion or
truncating the circuit.

Fig. 5 with the blue hyphenated path shows the simplified
flow for this objective function. The reference benchmarks
are processed using Ccirc tool [21] to generate statistical
data file in stats format. These files contains all necessary
information about the structure of the designs (nodes, inputs,
etc.) where the circuit structure is represented mathematically
with numeric arrays as explained in Section III-B. This data
along with user inputs are fed into linear optimization tool.
The objective in the optimization is set as Equation (13) [17].
The resultant structural data is then translated into a gate
level netlist by a custom tool. This tool determines the logic
according to user choice (see Section III-F).

This objective is variation oriented and results in a diverse
set of benchmarks. The only drawback is, the optimization
may take a long time. The number of variables and equations
for the optimization increases with number of references and
depth. For the optimizer, number of variables is 3n? + (31 +
18m)n and number of constraint equations is 17n+25mn+3,
where n is the depth of resultant benchmark and m is the
number of reference benchmarks. It is more applicable for a
system where a small set of more diversified benchmarks are
desired.

Reference

Stats files Normalization with . PCA

N each ref. size -

Reference Benchmarks : EIgEH CII‘ cuit
| v
1 Denorma- PCA Maximum

: lization with |[€== . <+ variation point
I desired si Reversion sdleaiion
Max Depth H | = . h 4 esired size
%%

| Integer B

= Linear Optimized Stats file

__ *g Optimization > Custom

= Generation [+

(@]

Previously [== S :5 tool .
Synthesized Heuristically 4|3 BSyn’ﬁletlck
benchmarks 1 NAND only 4|5 enchmar

o
1 LUT hER
(o]

Fig. 5: Flow chart of the framework in version 1 with objective 1 (blue path) and version 2 with objective 2 (green path).

(a) Parametric space «101% (b) PCA space <1014 (c) PCA‘space
< o 2 (=}
[<H] 0.1 ~ e 54 ™~ e N
B 0.05 o0 y o~ 0 W X
2 0 ﬁ Y 3 * % , Q 2 e ,
05 570 05 N 0 35 0 9 N 0 35 o ;
Node, Node, x10Pc221 pC222x1071% x107Pc221 PC222x10
(d) Parametric space (e) Parametric space 5 (f) PCA space
<+ N 0 ®
g %l O 20
0.05 3 }
20 %"48 .
- 05 55, 05 S 720 407y 20
Node, Node, Node, Node, log(PC221) log(PC222
| »% Original Reference Synthetic Reference 4 Hypothetical ® Resultant\

Fig. 6: Determining the position of hypothetical point. Details are in section III-E2.

2) Objective 2: Minimizing the distance from hypothetical
maximum distant point (derived in PCA space): The second
version of the framework has been developed with a new
objective. In order to expedite the time taken for optimization,
other than handling each reference separately, a wholesome
technique is applied. In this version, the reference designs de-
fined in original axes of structural features are processed with
PCA. As new axes of PCA holds the information of variations
between designs, a hypothetical point that lies most distant
contains most difference. Instead of calculating distance from
every reference due to unavailability of boundary conditions
and to reduce time and complexity, we selected a hypothetical
point which is equal to the maximum data for each axis
independently among the reference points. A hypothetical
point that has maximum value along all PCA axes might not
refer to a real circuit. Once this hypothetical point is reverted
back to original physical parametric space, it might contain
unrealistic negative values for circuit structural features like
number of gate or input per depth. Even though this point is
unrealistic, this holds the most difference, so the objective is
to get a valid circuit structure as close to the hypothetical
point as possible. Hence, in this objective, the optimizer tries

to minimize the distance between the hypothetical point and
the resultant solution, i.e.,

min f (z) where

fao(z) = Z |Zi — Thypo,il
i=1 (14)

Constraints

Bounds

x e 70

subject to

where x,,,,0,; denotes a hypothetical maximum point at corre-
sponding to this axis for the structure and the remaining terms,
constraints, etc. are the same as Equation (13).

The framework displayed in Fig. 5 highlights the difference
of steps in the second version with green paths and box.
Additionally, the status of analysis in internal steps, marked
with a — e, are elaborated in Fig. 6 for a better understanding.

« In Fig. 6a, the references are placed in original parametric

space, where the axes are defined as distribution of struc-
tural parameters like nodes each depth, internal inputs in
each depth and so on. For visualization, only first three
elements of = are shown here.

« In Fig. 6b, reference benchmarks are transformed to the
PCA space using Equation (1). In the presented plot,
the axis are chosen to be a least significant principal
components, referencing to the components of reference
benchmarks that are having least variation in values. Our
objective is to maximize the variation in all axes. We
are displaying the effect in places where the variation are
least in existing references.

o In Fig. 6¢, a hypothetical point (magenta diamond) is
chosen in the PCA space. The hypothetical point is the
maximum value of references on each axis, for all axes.
(It can be multiplied with any number to intensify the
difference if the designer desires.)

« In Fig. 6d, the references, along with the hypothetical
point, are transformed back to parametric space using
Equation (2). Note that, in this state, the hypothetical
point might not represent a valid design, hence may
include negative values on any parametric axis.

« In Fig. 6e, the optimizer determines the closest bench-
mark to hypothetical point that satisfies all constraints
(hence refers to a valid circuit). This optimum point is
represented with red dot.

« In Fig. 6f, the position of the optimum selected position,
along with references and hypothetical point are shown in
a PCA space. Logarithmic scale had to chosen to clearly
capture the distance. This farthest placement of optimum
resultant indicates that it holds a large variation even at
the axes where the variation was small originally.

In this EigenCircuit version, for the optimizer, number of
variables is 3n2 + 49n and number of constraint equations
is 42n + 3, where n is the depth of resultant benchmark. The
complexity does not vary with the number of references. So the
optimization is fast, and the number of reference can be very
large. This aids in generating larger benchmarks and larger
number of benchmarks more quickly as compared to [17].

F. Logic Assignment

The optimization determines the best and most different
graph-like structure. But the structure does not contain in-
formation about the logic the nodes would hold, i.e., the
functionality is not optimized. The structure is more like
a LUT-based netlist on which any logic can be assigned.
The exact output of the optimizer is a statistical file, where
the structural parameters are mathematically represented with
arrays of numbers. This file is then translated to a workable
library dependent or independent Verilog netlist by the our
Custom Generation tool (see Fig. 5). This tool translates the
mathematically represented tree structure into a netlist by
introducing the functionality of each node. Now, depending on
the objective of the designer, this functionality determination
can have different assignment.

o In random selection, a set of logic gates or a library
is provided to the generation tool. From the optimum
structure, the generation tool determines the number of
input for a specific gate, and randomly selects logic gate
from available options that matches the structure. All

available gates with same number of inputs have same
rate of occurrence.

o In heuristically driven selection, certain functionality can
be selected to be maximized. For example, to increase
controllability or observability, following the findings of
[28], the logic choices can be chronologically sorted
for preference. As ‘AND’ / ‘NAND’ gates have larger
value for controllability or observability, selecting only
to maximize these parameters results in every gate in
the design to be ‘AND’ / ‘NAND’. Such structure may
seem be reduced to a smaller one as many parts of
the design would have no controllability at all. But, if
only a certain imbalance is maintained in the equalized
distribution of random logic assignment, in a way that
would help increasing certain feature like controllability
or observability, like increasing the rate occurrence for
‘AND’/*NAND’ logic over that for ‘OR’/‘NOR’ logic,
the resultant benchmark would be more reliable. Demon-
stration of this phenomena is included in Section IV-C3.

o A lookup table (LUT) based translation is also possible.
The structure is only interpreted into a netlist with LUTs
which can be defined later with logic on a FPGA board.

IV. EXPERIMENTAL RESULTS

The theoretical details explained in the previous section has
been verified and implemented. Both objective functions were
utilized to generate two benchmarks suites. The generated
designs are inspected, tested and analyzed to ensure the
optimization is enhancing the divergence in features as it
is designed to do theoretically. This section discusses the
experimental findings in detail.

The synthetic generation and result analysis are performed
in a Linux operated server machine. As samples, we have
generated 12 benchmarks with objective 1: Direct Distance
optimization (referencing 10 ISCAS benchmarks) and 61
benchmarks with objective 2: EigenCircuit (referencing 186
benchmarks from ISCAS, MCNC and EPFL suites). The sizes
of the benchmarks, both synthetic and references are presented
in Fig. 7. In this chart, red, orange and yellow bars represent
the sizes of reference combinational benchmarks, respectively
from ISCAS, MCNC and EPFL suites. The green and blue
bars are for synthetic benchmarks with objective 1 and 2. As
the designer can select the size of synthetic benchmark when
generating, these synthetic benchmark sizes are arbitrarily set.
But it is apparent here that even if reference benchmarks are
small in size, the synthetic benchmarks can be generated as
large as required.

Along with the generations, we have farther experimented
on the benchmarks to evaluate them. We executed exper-
iments to verify the variance in both structural and func-
tional features on the generated synthetic benchmarks and
compared with the references. The findings are explained
in Sections IV-A and IV-B. We also ran experiments with
the generated benchmarks on security research topics and
analyzed the difference of their applicability with existing
reference benchmarks in Section IV-C. We also analyzed the
scalability of the framework against the feature size of the
generations in Section IV-D.

Sizes of benchmarks

10000 —

I (SCAS MCNC

5000

Number of gates
in benchmarks

T T
EPFL NN Synthv]l NN SynthV2

ISCAS MCNC

EPFL Synthv1l Synthv2

Fig. 7: The sizes of reference and synthesized benchmarks.

Reference Node Reference Input Reference Output

Reference PO 0 Reference Edge Reference Fanout
00

21
2 = 1 3
100 529 2 200 o'y s g
© 50 2100 5 a 5 = ©
S ~ 0 S o 0 B 0 © o
123456789101 1234567891011 1234567891011 1234567891011 2 123456789101 1234567891011
depth depth depth depth wire length Fanout
New Node New Input New Output New PO =10 New Edge New Fanout
0 . 200 5 10 [o 900
3 100 =] 8200 S 5 5
T 50 g—100 5 a 5 = T
O 7 =~ 0 O o =l 5 © ylm m |
123456789101 1234567891011 1234567891011 1234567891011 2 123456789101 123456789101

depth depth depth

depth wire length Fanout

Fig. 8: Distribution of structural features where (top row) represents the average distribution for the reference designs and
(bottom row) represents the distribution for a synthetic benchmarks generated by the proposed flow using objective 1 (Direct

Distance optimization

Avg. Ref. Node Avg. Ref. Input 400Avg. Ref. Output ’ Avg. Ref. PO 10Avg. Ref. Edge Avg. Ref. Fanout
m 2000
9100 +~ 200 5 [0] %]
L 2 o = L
T 50 2100 200 €05 N 5 1000
o = o) = o
0 0 0 0 o 0 0
0 20 40 0 20 40 0 20 40 0 20 40 = 0 20 40 0 20 40
depth depth depth depth wire length Fanout
Hypothetical Node Hypothetical Input Hypothetical Output Hypothetical PO Hypothetical Edge Hypathetical Fanout
,, 2000 200 __ 10000 1000 210 4
9] = 3 0 = 9]
ks Okvvv'ﬂ]‘rrLr g 0 £ 50000 .| & 1000 g5 52
-2000 2000 o T 2000 5 o 0
0 20 40 0 20 40 0 20 40 0 20 40 = 0 20 40 0 20 40
depth depth depth depth wire length Fanout
New Node New Input 150 New Output | New PO New Edge 400 New Fanout
= o5
8 ;51100 3 100 10 o 8 200
o g 50 S 50 5 S s
[0} = o S 0}
0 0 0 1t = o0 0
0 20 40 0 20 40 0 20 40 0 20 40 - 0 20 40 0 20 40
depth depth depth depth wire length Fanout

Fig. 9: Distribution of structural features where top row represents the average distribution for the reference designs, middle
row refers to hypothetical target point (containing unreal negative values) and bottom row represents the distribution for a
synthetic benchmarks generated by the proposed flow using objective 2 (EigenCircuit).

A. Structural Variance

The optimizer compares the structure and maximizes the
differences in them. The representation of the structure of
a reference circuit can be visualized in Fig. 8 top row.
The plots displays the distribution of parameters discussed
in Section III-B (nodes, internal inputs, etc.) per depth. For
displaying, we plot the average values of each bar for all
references. The bottom row is the same plots for the generated
benchmark using objective 1 (Direct Distance optimization).
For simplicity, if we consider there is only one reference, the
optimizer tries to maximize the difference between the bar
heights between top and bottom plots for each of the depth in
horizontal axis, individually for each parameter.

Fig. 9 shows a similar comparison plot for generation with
EigenCircuit framework. Other than maximizing difference
from references, the framework chooses a hypothetical distant

most point, which is represented with the middle row. As
this point is a theoretical point only, it contains negative
values for parameters like node per depth. In this framework,
the optimizer tries to find a realistic solution (presented in
bottom row) that minimizes the differences between middle
and bottom row. So, the synthetic benchmark is as similar as
realistically possible to the hypothetical point. The obvious
structural variation between this synthesized one with the
reference benchmarks in top row (averaged) is visible in the
plots.

B. Feature Divergence Comparison

The structural variance ensured in optimization results
in functional variation in the circuits too. To measure this
variation, we collected functional parameters of benchmarks,
like controllability, observability (evaluated with Synopsis

Obj.1 & Obj.2

Observability Controllability

(a)

PCA of Obj.1 & Obj.2

Refl
Ref2
SynthObj1
SynthObj2

*oA K .

x10%

Fig. 10: Comparing existing and synthetic benchmarks on the basis of structural parameters. Benchmarks are compared based
on (a) controllability, observability and number of CNF clauses; and (b) three principal components of PCA performed on
multiple analyzed structural parameters. Pentagrams are for synthetic benchmarks generated with objective 1 and hexagrams
are for synthetic benchmarks generated with objective 2. Dots and asterisks are for references that were used for generation

with objective 1 and 2 respectively.

CPU times in SAT attack

1
I (SCAS

T
EPFL

100 MCNC
£ N Synthvl N Synthv2
T 10
£
'_
0 | |
ISCAS MCNC EPFL Synthvl Synthv2
(a) Execution time of SAT attack (in seconds) on obfuscated benchmarks.
Percentage of key detected in KSA
 100% : 9 y :
*8 I SCAS MCNC EPFL I SynthV1l I Synthv2
L
S 50% i
wv
>
Q
é 0% 1 | alin II
© ISCAS MCNC EPFL Synthvl Synthv2

(b) Percentage of keys retrieved by key sensitization attack on obfuscated benchmarks (without brute force attack).

Fig. 11: Performance of benchmarks against logic locking attacks.

TetraMAX [29]), number of conjunctive normal form (CNF)
clauses (calculated with ABC tool [30]) and many other direct
and indirect features. For comparative observation, we placed
benchmarks along these parameters as axes in Fig. 10a where
dots and asterisks represents existing CAD reference bench-
marks, pentagrams are for synthetic benchmarks generated
with objective 1 and hexagrams are for synthetic benchmarks
generated with objective 2. To summarize the variations in
all parameters we have measured, we performed a PCA on
the resultant data set. The three most significant primary
components holds the maximum variations in all benchmarks,
regardless of which suite they belong to. In Fig. 10b, we placed
the same benchmarks, represented with similar marker coding
as before, along the three most significant primary compo-
nents. Both the original parametric and PCA plots shows that
synthetic benchmark markers are spread out on more space
in the 3D planes than the reference markers. This indicated
that the divergence of features in synthetic benchmarks are
more widely dispersed than the existing benchmarks. Also,
from comparing markers for synthetic benchmarks of both
objectives, it is apparent that even though the second objective
is faster in optimization, it does not deteriorate the benchmark
quality as it presents the same type of variance in the features
as the first objective. Note that, with the generation of more
synthetic benchmarks, more divergence can be obtained than

the ones shown here.

C. Demonstration of Synthetic Benchmarks in Hardware Se-
curity Applications

To verify the usage of the synthesized benchmarks in
hardware security research and explore the difference of
characteristics these possess in contrast to the existing ref-
erence benchmarks, we performed some hardware security
assessments.

1) Attacks on Obfuscation: Firstly, the benchmarks are
obfuscated randomly with 128-bit key. Two popular attacks
on logic locking are applied to break the obfuscation. To
minimize the effect of randomness of key placement, the tests
were repeated ten times and average of attack results has been
reported for each benchmark.

In the satisfiability or SAT attack [31], the CPU times
in seconds to break the locking are compared in Fig. 1la.
Note that, random obfuscation method is not resilient to SAT
attack, hence the attack can almost always break the locking
scheme unless the circuit has some inherent qualities that can
restrict the attack. The timeout was set as 12 hours. From
the results, we could identify that synthetic benchmarks are
showing more resiliency in general. Without farther analysis
of features, it is not possible to comment on the reasons behind

the resiliency. However, for the use of these benchmarks,
it can be said that for a thorough analysis, for example, to
model the circuit characteristics and resiliency with Al tools,
the generated synthetic benchmarks are offering much more
qualitative variations than the existing ones can.

A second attack on logic locking, named as key sensitization
attack [32] has also been applied on the locked benchmarks.
This attack tries to isolate the effect of each key and propagate
it to the primary outputs. Fig. 11b displays the percentage of
keys that could be broken with the attack without performing
the brute force attack at the end. In this attack, the synthetic
benchmarks offered less resiliency than reference benchmarks.
This attack is a functional attack. Hence, the distinction in
performances of attack with synthetic and existing benchmarks
suit is another demonstration that — synthetic benchmarks
have variation in functional behavior too though the optimiza-
tion have been designed to maximize structural variance.

2) Hardware Trojan detection: We have tested hardware
Trojan stealthiness using reference and synthetic benchmarks.
We designed small Trojans which are triggered by the rarest
signals in the designs. The rare signal triggers are sourced
from nodes with highest or lowest static probability of either
binary values in the entire unit under test. The payloads
are XOR gates as that would ensure equal probability of
alteration as the trigger. These payloads are placed randomly
in the original design. Chronologically lesser rare triggers
are used to insert more Trojans sequentially. Because of the
fact that the exact number of Trojan payload XOR gates
are same in reference and synthetic benchmarks, we found
side channel based detection schemes are not beneficial in
comparative analysis. So, for detecting the existence of Tro-
jans, we ventured two simulation based techniques. First, we
ran functional simulation of Trojan infested design using ten
thousand random patterns and compared with golden output
patterns. Second, we generated test patterns for fault detection
for all nodes in the golden design using an ATPG tool. We
used these patterns to run functional simulation and compare
with golden output patterns like the first technique.

The detection rates for both techniques and types of bench-
marks are shown in Fig. 12. The number of Trojans inserted
are represented as the percentage of design size in term of
logic gates. The bars shows average rate of output alteration
in simulation for different amount of Trojans. Blue and orange
bars refer to results with existing CAD benchmarks (ISCAS,
MCNC and EPFL) in ATPG based and random pattern test-
benches respectively. The yellow and purple bars refer to
SynthGen and EigenCircuit synthetic benchmarks for similar
testbenches. The success rate is defined as the percentage of
bits that flips or detects the presence of Trojans. ATPG based
detection scheme is more successful in detecting the Trojans.
Yet none of the techniques was much successful in detecting
Trojans in synthetic benchmarks. Trojans appear better hidden
or stealthy in these benchmarks compared to the common
reference benchmarks. As the optimization sets higher rate
of gate with three or more inputs, synthetic benchmarks have
more interconnection between gates, hence, more nestedness.
That in turn lowers the controllability and results in lesser
chance of Trojan detection. This is a demonstration that this

Trojan detection simulation result

o 5 20% | [—efATPG
g a;—‘; 15% I Ref:Rnd
25 E Synth:ATPG
o 3 ¥ 10%| | Synth:Rnd
hd % €

e 2 5%

0%

1% 2% 3% 4% 5% 6% 7% 8% 9%
Percentage of hardware Trojans

10%

Fig. 12: Success rate of triggering and observing randomly
placed hardware Trojans by simulation with random test-
benches and ATPG-derived fault analysis based testbenches.

5,
=
15 ¢
S Z14r
» =13}
g5l
1t
o co530f
>-§)¥
55t
FoF 0t

e\ N v %
NOR/NAND ratio

Fig. 13: Variation of controllability, observability and re-
siliency against Key sensitization attack with NOR/NAND
ratio of synthetic benchmarks.

synthetic benchmark suite offers more challenge for functional
Trojan detection schemes. They would therefore make excel-
lent samples for future AI/ML methods to learn from.

3) Logic ratio alteration: One of the major benefits of
application of synthetic benchmarks in hardware security
research is the opportunity to customize features. For example,
varying controllability and observability of designs to change
resiliency against attacks that observes outputs changes. We
have found the distribution of logic gates relates to con-
trollability and observability. Since our framework has the
flexibility to control the logic gates and their distribution,
we have provided an experiment to highlight the usage of
the generation scheme in hardware security. The default
generation tool selects logic functions to fit in the optimal
structure pseudo-randomly, with equal probability of NAND
and NOR gates. We varied the probability of NOR-to-NAND
logic when constructing designs from the optimized structure.
We collected the controllability and observability values from
the benchmarks, obfuscated and ran key sensitization attack
(KSA), which depends on those values, and compared the
findings with equal NOR-to-NAND ratio design. Fig. 13
presents the relation we found with the same sample optimized
structures we used in other experiments in this paper. There
is a clear correlation between KSA resiliency and controlla-
bilty/observability. This flexibility to control logic and vary
features is exclusive to the synthetic generation scheme. The

@ V1fgates=200
==@==\/1#gates=500
= @ = Vi#gates=1000
—@— \/1#gates=2000
@ e V2#gates=200
= === V2#gates=500
= @ = \V2#gates=1000
)= \/2#gates=2000

Fig. 14: Optimization time taken with objective 1 (blue) and
objective 2 (green) with increasing depth of resultant design.

controlled variation of resiliency against the attack, as shown
in the bottom plot, proves the unique applicability of our
approach in hardware security research.

The experiments of hardware security on the benchmarks
presents two findings. First, the generated benchmarks are
sound and workable; they can be used in research for security
analysis. Second, synthetic generation can offer benchmarks
that are different than existing ones to the study and evaluation
of security features. Along with the fact that researchers
can generate as many benchmarks they need, this synthetic
benchmark generation framework can be highly valuable to
be used in evaluation and Al modelling of many hardware
security theories.

D. Scalability

With the Direct Distance objective, both the number of
variables and equations for the optimizer to consider increases
with the number of references as we have discussed in Sec-
tion III-E1. The algorithm of linear programming is solvable in
polynomial time, which means it takes very large time when
the inputs are large. The dominating input parameter is the
depth, as that defines the number of variables. As a result, time
to reach a solution with this framework can get larger with a
lot of references. In experiments we referenced only ISCAS
suite with 10 benchmarks, and still the generations took large
times as shown with blue lines in Fig. 14. The EigenCircuit
framework, on the other hand, solves the scalability issue by
making the number of optimization variables and equations
independent of number of reference. With the EigenCircuit
analysis in first part, a single hypothetical point is determined.
For optimization, this works as a single reference point,
reducing the complexity greatly as explained in Section III-E2.
As a result of the complexity simplification, the optimization
runs up to thousands times faster, as shown with green lines
in Fig. 14, without compromising the quality of the generation
as highlighted in other part of the experimentation.

V. CONCLUSION AND FUTURE WORK

The relation between circuit structure and vulnerability or
attack resiliency is complex. It is not a direct one-to-one
situations that one can easily prove or formulate analytically.
Machine intelligence is the best way to derive such complex
relations. A synthetic benchmark generation framework is not
just the backbone needed for training the machine, it is the
platform to incorporate the derived relation in future. The

optimization to ensure the diversity of generated benchmark
is essential to cover the boundary condition and issues in
such learning algorithms. The contributions of this paper
both help innovative techniques to demonstrate effectiveness
with numerous sample benchmarks and provide the means
to properly utilize machine intelligence towards determining
structural aspects of mitigating vulnerability.

Specifically, in this paper, we have provided comprehensive
details on the synthetic benchmark generation frameworks. We
proposed EigenCircuit, a major upgrade from our previous
work [17] with different objective function. We presented
theoretical details and experimental results of features and
scalability of both versions. The experimental results com-
pared the resultant synthetic benchmarks with existing CAD
benchmarks structurally and functionally. We also presented
the experimental findings on the applicability of the proposed
method. We have published both versions of the framework as
open-source in Trust-Hub website for researchers to use. Also,
from the analysis of performance of generated benchmarks
against security researches, we plan to publish the benchmarks
that are on the extreme ends on the feature spectrum, i.e.,
showed best and worst resiliency against attacks and so on.
As a continuation, we are investigating the effect of varying
circuit structure on attack resiliency, and training ML tool with
numerous generated synthetic benchmark to predict vulnera-
bility. This can lead to Al to detect and mitigate vulnerability
in designs. Along with that, in future, we would extend the
work to generate sequential circuit benchmarks with state
elements and feedback loops. We would also like to focus on
co-optimization of structure and functionality in one platform.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1651701. The authors
would also like to acknowledge the Python parts of EigenCir-
cuit and Custom Generation tool performed by Daniel Capecci
and Princess Lyons.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hard-
ware trojan taxonomy and detection,” IEEE design & test
of computers, vol. 27, no. 1, pp. 10-25, 2010.

[2] D. Forte, S. Bhunia, and M. M. Tehranipoor, Hardware
protection through obfuscation. Springer, 2017.

[3] M. Yasin, J. J. Rajendran, and O. Sinanoglu, Trustworthy
Hardware Design: Combinational Logic Locking Tech-
niques. Springer, 2020.

[4] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache,
“Fault injection attacks on cryptographic devices: Theory,
practice, and countermeasures,”’ Proceedings of the IEEE,
vol. 100, no. 11, pp. 3056-3076, 2012.

[5] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Com-
binational Benchmark Circuits and a Target Translator in
Fortran,” in Proceedings of IEEE Int’l Symposium Cir-
cuits and Systems (ISCAS 85). 1EEE Press, Piscataway,
N.J., 1985, pp. 677-692.

[6] F. Brglez, D. Bryan, and K. Kozminski, “Combinational
profiles of sequential benchmark circuits,” in Circuits and
Systems, 1989., IEEE International Symposium on, May
1989, pp. 1929-1934 vol.3.

[7] K. Kozminski, “Benchmarks for layout
synthesis—evolution and current status,” in Proceedings
of the 28th ACM/IEEE Design Automation Conference,
1991, pp. 265-270.

[8] R. R. Schaller, “Moore’s law: past, present and future,”
IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.

[9] H. Salmani, M. Tehranipoor, and R. Karri, “On design

vulnerability analysis and trust benchmarks develop-

ment,” in 2013 IEEE 3lst international conference on

computer design (ICCD). 1EEE, 2013, pp. 471-474.

S. Wei, K. Li, F. Koushanfar, and M. Potkonjak, “Hard-

ware trojan horse benchmark via optimal creation and

placement of malicious circuitry,” in Proceedings of the
49th Annual Design Automation Conference, 2012, pp.

90-95.

[11] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and

M. Tehranipoor, “Benchmarking of hardware trojans and

maliciously affected circuits,” Journal of Hardware and

Systems Security, vol. 1, no. 1, pp. 85-102, 2017.

S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehra-

nipoor, and D. Forte, “Development and evaluation of

hardware obfuscation benchmarks,” Journal of Hardware

and Systems Security, vol. 2, no. 2, pp. 142-161, 2018.

[13] K. G. Liakos, G. K. Georgakilas, S. Moustakidis,
P. Karlsson, and F. C. Plessas, “Machine learning for
hardware trojan detection: A review,” in 2019 Panhel-
lenic Conference on Electronics & Telecommunications
(PACET). 1EEE, 2019, pp. 1-6.

[14] P. Chakraborty, J. Cruz, and S. Bhunia, “Sail: Machine
learning guided structural analysis attack on hardware
obfuscation,” in 2018 Asian Hardware Oriented Security
and Trust Symposium (AsianHOST). 1EEE, 2018, pp.
56-61.

[15] L. Alrahis, S. Patnaik, F. Khalid, M. A. Hanif, H. Saleh,
M. Shafique, and O. Sinanoglu, “Gnnunlock: Graph
neural networks-based oracle-less unlocking scheme
for provably secure logic locking,” arXiv preprint
arXiv:2012.05948, 2020.

[16] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking

cryptographic implementations using deep learning tech-

niques,” in International Conference on Security, Privacy,

and Applied Cryptography Engineering. Springer, 2016,

pp. 3-26.

S. Amir and D. Forte, “Adaptable and divergent syn-

thetic benchmark generation for hardware security,” in

Proceedings of the 39th International Conference on

Computer-Aided Design, 2020, pp. 1-9.

[18] B. S. Landman and R. L. Russo, “On a pin versus
block relationship for partitions of logic graphs,” IEEE
Transactions on computers, vol. 100, no. 12, pp. 1469—
1479, 1971.

[19] H. Van Marck, D. Stroobandt, and J. Van Campenhout,
“Towards an extension of rent’s rule for describing local
variations in interconnection complexity,” in Proc. 4th

[10]

[12]

[17]

Intl. Conf. for Young Computer Scientists, 1995, pp. 136—
141.

[20] M. Hutton, J. P. Grossman, J. Rose, and D. Corneil,

“Characterization and parameterized random generation

of digital circuits,” in Proceedings of the 33rd annual

Design Automation Conference. ACM, 1996, pp. 94—

99.

M. Hutton, J. Rose, and D. Corneil, “Clustered And

Iterative Synthetic Circuit Generation,” 2003. [Online].

Available: http://www.eecg.toronto.edu/~jayar/software/

Cgen/Cgen.html

M. D. Hutton, J. Rose, J. P. Grossman, and D. G.

Corneil, “Characterization and parameterized generation

of synthetic combinational benchmark circuits,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 17, no. 10, pp. 985-996, 1998.

(2017) Trust-hub website. [Online]. Available: https:

/Iwww.trust-hub.org

[24] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic
encryption: A fault analysis perspective,” in DATE 2012,
Dresden, Germany, 2012, 2012, pp. 953-958.

[25] D. G. Luenberger, Y. Ye et al., Linear and nonlinear

programming. Springer, 1984, vol. 2.

C. M. Bishop, Pattern recognition and machine learning.

springer, 2006.

[27] J. Shlens, “A tutorial on principal component analysis,”
2014.

[28] L. Goldstein, “Controllability/observability analysis of

digital circuits,” IEEE Transactions on Circuits and Sys-

tems, vol. 26, no. 9, pp. 685-693, 1979.

S. U. Manual, “TetraMAX ATPG user guide,” Version

X-2005.09, pp. 249-264, 2005.

Berkeley Logic Synthesis and Verification Group, “ABC:

A system for sequential synthesis and verification,”

2004. [Online]. Available: http://www.eecs.berkeley.edu/

~alanmi/abc/

P. Subramanyan, S. Ray, and S. Malik, “Evaluating the

security of logic encryption algorithms,” in IEEE Intl.

Symposium on HOST 2015, Washington, DC, USA, 2015,

2015, pp. 137-143.

[32] M. Yasin, J. J. V. Rajendran, O. Sinanoglu, and R. Karri,
“On improving the security of logic locking,” IEEE
Trans. on CAD of Integrated Circuits and Systems,
vol. 35, no. 9, pp. 1411-1424, 2016.

[21]

[23]

[26]

[29]

[30]

