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Dynamic Antenna Array Design for Scene
Classification Through Fourier-Domain Filtering

Daniel Chen
and Jeffrey A. Nanzer

Abstract— We present a new approach to the classification
of scenes in the microwave and millimeter-wave bands that
leverages a novel dynamic antenna array concept to capture
distinct features in the spatial frequency information of the
scene. The spatial frequency information of a scene is obtained
through its Fourier transform, and by sampling a subset of
this information, key features can be extracted and used for
image classification. We demonstrate that a dynamic antenna
array can synthesize spatial frequency filters, and that scene
classification can be accomplished using the filtered signals
without full image reconstruction. We develop a new dynamic
antenna array concept using only two antennas to generate a
ring-shaped spatial frequency filter and explore the use of this
concept for the classification of ground scenes. Natural ground
scenes tend to have smoother spatial frequency signals, while,
in contrast, features such as buildings and roadways result in
sharp broadband spatial frequency responses. Using this design,
we demonstrate the ability to classify between two classes of
ground scenes: those with man-made structures (buildings, roads,
etc.) and those without (natural scenes). We demonstrate the
ability of the spatial filters synthesized by the proposed dynamic
antenna array to achieve a classification accuracy of 0.971 with
an empirical true positive rate of 0.982. The method is broadly
applicable to microwave and millimeter-wave sensing at any
range.

Index  Terms— Classification, interferometric  imaging,

microwave imaging, radar imaging, sparse arrays, spatial
frequency.

I. INTRODUCTION

LASSIFICATION of scenes and images is important for
Ca broad range of commercial, industrial, and scientific
applications. Such images are obtained through various sens-
ing mechanisms, most of them being electromagnetic imag-
ing systems [1], [2]. Among the potential frequency bands,
microwave and millimeter-wave frequencies are often utilized
for sensing. Signals in the microwave and millimeter-wave fre-
quency bands can easily penetrate through smoke, fog, cloth-
ing, and many building materials to detect objects, whereas
signals in optical and infrared wavelengths are significantly
attenuated when propagating through these media [3], [4].
These aspects have contributed to the growing interest in using
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microwave and millimeter-wave systems for imaging [5], [6]
and remote sensing [7]-[9]. For numerous sensing appli-
cations, including sensing of the Earth surface from aerial
vehicles, or remote imaging of people for security purposes,
differentiating between natural and man-made objects is of
critical importance [10]-[14].

Differentiation of objects in a scene is typically accom-
plished through image classification, which requires measure-
ment of the scene, processing to form an image, and processing
to classify the image information. All of these stages can be
costly in terms of hardware and computational complexity.
Images also often contain redundant information, leading to
unnecessary collection and processing of redundant data. Both
aspects lead to designs with measurements (both hardware
and measurement time) and processing that are unnecessary,
leading to greater system complexity and cost. Recent devel-
opments in computational microwave imaging have shown the
potential for reducing hardware requirements by using, e.g.,
metasurface apertures, while also keeping the data acquisition
time shorter than scanning techniques [15], [16]. However,
such systems trade these benefits for greatly increased com-
putational cost, as image reconstruction involves solving an
inverse problem [17]. Furthermore, computational imaging
approaches require exact knowledge of the transmitted signal
across space and time, which can be restricting for many
applications. Hardware burdens can also be reduced by using
interferometric imaging techniques, which eliminates electrical
and/or mechanical scanning by realizing larger synthesized
apertures with comparably fewer antenna elements to those of
traditional phased arrays and/or focal-plane arrays [18]-[24].
Interferometric imaging samples information in the spatial
frequency domain, or Fourier domain of the scene, and relies
only on Fourier transforms for image reconstruction, greatly
reducing the computational burden compared to other compu-
tational imaging approaches.

We propose a new dynamic antenna array concept that
uses rotational spatiotemporal dynamics to measure filtered
Fourier-domain information that can be used to classify scenes,
without full image reconstruction, using only two antennas.
The dynamic motion of the antennas creates a spatial fre-
quency filter that captures the features particular to man-made
shapes in scenes, and can thus support differentiation between
natural and man-made objects in scenes without processing
full image data, and with significantly less hardware than
current imaging approaches. Previously, we investigated the
features presented in the spatial frequency domain captured
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Far-field grating lobe pattern

Interferometer radiation pattern

Fig. 1. Interferometer radiation pattern and projected pattern in the far-field.
The sinusoidal pattern maps to a specific spatial frequency.

by a ring-shaped sampling function [25]; here, we propose
a dynamic array implementation and investigate its use in
ground scene classification. In addition to using far less
hardware, when implemented with fast dynamics the proposed
method can alleviate challenges that are encountered in other
sensing modalities like synthetic aperture radar (SAR) imag-
ing, such as blurring due to moving objects on the ground. We
explore the use of filtered Fourier-domain image classification
on existing sets of measured microwave radar imagery, demon-
strating the ability to classify scenes that include man-made
structures (buildings, roads, etc.) and scenes that are natural
(e.g., forests) using a notional millimeter-wave two-element
sensing system. Beyond remote sensing, the concept can be
applied more broadly to applications including contraband
detection and other short-range sensing applications.

This article is organized as follows. In Section II,
the dynamic array scene classification concept is described
in more detail, along with a discussion on Fourier-domain
image formation and the unique spatial frequency domain
features that manifest from different spatial domain scenes.
The design of dynamic antenna arrays for spatial frequency
domain filtering is presented in Section III, along with a
discussion of spatial frequency filter design considerations.
Specific sampling functions in the spatial frequency domain
are proposed, and we present millimeter-wave antenna designs
amenable to implementation on aerial platforms with rotating
blades. In Section IV, we present a classification analysis based
on the array designed in Section III operating on a set of
radar images of ground scenes. We demonstrate the ability to
classify natural scenes and scenes with man-made structures
such as roads and buildings with high accuracy, demonstrating
the capability of a dynamic antenna array to classify scenes
without the need for image reconstruction.

II. IMAGE RECONSTRUCTION AND SPATIAL FREQUENCY
DOMAIN FEATURES IN FOURIER-DOMAIN IMAGING

Interferometric imaging is a sparse array technique that
was initially developed as an alternative to real aperture
measurements for achieving high-resolution imagery in radio
astronomy and remote sensing [18], [26]. Signals are received
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Fig. 2. As the two-element dynamic antenna array rotates, the measured
spatial frequency also rotates. This is demonstrated with four different time
instances where fy corresponds to initial position, f; corresponds to 30°, #,
corresponds to 90°, and #3 corresponds to 120° counterclockwise rotation from
the initial position.

at multiple antennas and cross-correlated to generate samples
of the Fourier-domain information. As shown in Fig. 1,
an interferometric antenna pair generates a grating lobe pattern
that matches to a specific spatial frequency in the far-field.
Antenna array apertures can thus be designed to capture
specific spatial frequencies of interest, a key concept in our
dynamic antenna array approach. The signals received by the
interferometer may be intrinsically generated by the scene,
as is the case in passive imagers, or actively transmitted by
the imaging system if the transmitted signals are spatiotem-
porally uncorrelated. Both passive [26]-[29] and active [30]—
[32] interferometric techniques have been implemented in
various applications ranging from space-borne remote sensors
to contraband detection.

The proposed approach to microwave and millimeter-wave
scene classification combines interferometric imaging and
a novel dynamic antenna array concept to sample sparse
Fourier-domain information through dynamic spatiotemporal
modulation using only two antenna elements, providing scene
classification with only two antenna elements. The concept
is shown in Fig. 2. As the dynamic array rotates, the inter-
ference pattern corresponding to a specific spatial frequency
sample rotates in the Fourier (spatial frequency) domain. The
ring-shaped filter produced by the dynamic rotation can thus
capture unique features in the spatial frequency spectrum. The
dynamic antenna array is a key component of the concept and
is designed to generate a specific spatial frequency filter to
select key features in the spatial frequency domain that can be
used for image classification, without actually reconstructing
the entire image, thus leading to a lower hardware burden. Fur-
thermore, the spatial frequency samples are obtained through
Fourier transform, leading to low computational complexity.

A. Interferometric Fourier-Domain Imaging

Interferometric imagers sample the scene in the Fourier
transform domain of the scene intensity, yielding information
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in the spatial frequency domain, which is referred to as
the visibility V (u,v), where u and v correspond to the two
spatial frequency dimensions. The visibility is the 2-D Fourier
transform of the spatial scene intensity I (a, ) where a and f§
represent the direction cosines, defined as a = sin 6 cos ¢ and
f = sinfsin¢. The intensity is proportional to the power
of the signals from the scene, which may be intrinsically
generated in the scene by thermal means [33] or may be repre-
sentative of a reflected signal from an active transmitter [30].
The relationship between visibility and spatial scene intensity
is given by

V(u,v):/oo /OOI(a,ﬁ)eﬂ”("“*“/’)dadﬁ. (1)

Once the visibility is measured, the reconstructed scene
intensity is then given by

I,(a,ﬂ):/oo /OO V(u,0)Su, v)e /@B audy. (2)

In practice, the visibility is typically sampled discretely,
as opposed to the continuous formulation above. With a sparse
array of antenna elements, the cross correlation of the received
signals at an antenna pair with baseline separation D repre-
sents a sample of the visibility. Providing the received radiation
is spatially and temporally incoherent, a sufficient number
of visibility samples will then enable image reconstruction
through inverse Fourier transform, per the Van Cittert-Zernike
theorem [34], albeit with the requisite sampling theorem
nonidealities such as spatial ambiguities. The complete set of
all acquired discrete 2-D spatial frequencies is referred to as
the sampling function which is given by

N M
Su,v) = > > 0 = u)d® — vu), 3)

where the product of N and M denotes the maximum number
of spatial frequencies that the receiving array can acquire. The
sampled visibility V(u,v) = V(u,v) - S(u, v) is the product
between the scene visibility and the sampling function, from
which the reconstructed image I, can be found by

N M
L(a, B) = D D" Vttn, vy)e 2 taetonh), @
n m

Typically, the reconstructed image intensity I, is then
inputted into a classification algorithm. In contrast, here
we explore the potential for image classification using only
the sampled visibility V,, without full image reconstruction.
In particular, we are interested in the potential for scene
classification with a minimal subset of information in the
spatial frequency domain that can be efficiently sampled with
a dynamic antenna array. While interferometric arrays use
far fewer antenna elements than traditional phased arrays,
appropriately designing array dynamics can further reduce
hardware requirements by dynamically moving antennas to
synthesize a larger physical array over time. This aspect
is exploited in radio astronomy arrays, where the rotation
of the Earth is leveraged to change the apparent baselines
relative to a given celestial direction, over time filling in a
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more dense sampling function than the array obtains stati-
cally [18]. However, Earth rotation dynamics are slow, and
nonetheless inapplicable outside of astronomical observation.
In contrast, recent work by the authors has demonstrated
the capabilities of relatively faster platform dynamics in
distributed arrays to improve array performance, such as
reducing radiation pattern sidelobes [35], [36]. Furthermore,
the rotation concept has also been used in imaging techniques
using linear arrays and Radon transform-based tomographic
reconstruction [37].

B. Scene-Related Features in the Fourier Domain

To explore the feasibility of filtered Fourier-domain image
classification, we consider aerial images of ground scenes
obtained with microwave radar, to classify between nat-
ural scenes (NSs) with no man-made structures, and non-
natural scenes (NNSs) containing man-made structures such
as buildings and/or roadways. The proposed application is
applicable to a broader set of microwave and millimeter-wave
applications; however, we choose microwave ground images
for the following reasons: First, large data sets of ground
scenes captured with SAR are available, providing enough
data to perform rigorous statistical classification analysis of
the proposed filtered Fourier-domain classification approach;
in this work we selected radar images from [38] which have
been processed to establish a common resolution of 1 m/pixel.
Second, the approach is proposed for implementation at
millimeter-wave frequencies, and microwave radar ground
images provide resolutions and reflectivity closer to the ones
obtained at low millimeter-wave frequencies (e.g. 40 GHz)
than optical or infrared images. Finally, a practical system
implementation of a 40 GHz two-element antenna array with
spatiotemporal dynamics providing image resolution and field-
of-view commensurate with the chosen data set is explored for
ground-based scene classification; the proposed system could
be implemented in passive or active interferometric modes.
We note that while the use of measured SAR data sets may
not provide a precise model of the proposed implementation,
we contend that the presented approach is the most reasonable
for exploring the feasibility of the proposed sparse Fourier-
domain scene classification method.

Sparse Fourier-domain scene classification is based on the
prominence of spatial frequency domain features that are
present in NNSs and absent in NSs. In particular, scenes with
sharp edges, common with man-made objects but infrequent in
NSs, generate strong discrete directional signals in the spatial
frequency domain, while such discrete directional components
are generally absent in NSs. We consider examples of a NS
image represented by region of vegetation and a NNS image
represented by highway and building clusters that have a
spatial field of view of 1000 m x 1000 m in Fig. 3(a) and (b)
together with their corresponding visibility in Fig. 3(c) and (d).
The NS visibility shows smoother spatial frequency content,
while the NNS visibility presents strong discrete directional
components; these signals are oriented orthogonal to the
direction of sharp edges in the spatial domain scene. The fact
that these signals manifest in discrete and highly directional
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Fig. 3. Microwave radar images of (a) a natural scene (NS) of a vegetation
region of Campo Grande, Brazil and (b) a non-natural scene (NNS) of highway
and building cluster from region of Port Hedland, Western Australia with their
corresponding visibility in (c) and (d), respectively (data from [38]).

orientations enables relatively simple methods of detection
based on only a small subset of visibility data. In the next
section, we describe the design of a dynamic antenna array
to sample the visibility in a ring in the #-v domain at a
given radius, providing detectability of the discrete changes
in visibility as a function of spatial frequency domain angle
present in NNS data and absent in NS data.

IIT. DYNAMIC ANTENNA ARRAY DESIGN FOR SPARSE
FOURIER-DOMAIN SAMPLING

A visibility sample is obtained by cross-correlating the
received signals captured by two antennas separated by a
baseline D. In the two-dimensional (2-D) Fourier space, the 2-
D spatial frequency at which the visibility is captured is given
by the separations in the x and y dimensions, i.e., u =
D,/% rad™! and v = D,/ rad~!'. The spatial frequency
of a 2-D array sampling function can thus be populated
by designing a static set of multiple antennas, the outputs
of which are cross-correlated pairwise; by using only two
antennas and dynamically moving one or both to build up
the sampling function over time; or a combination of the two.
In contrast to traditional interferometric imaging approaches,
in this work we are interested in sampling only a specific
subset of the Fourier-domain information, in particular a
subset that enables the detection of the directional components
manifesting from sharp edges in the image. This can be
accomplished most effectively with a ring-shaped sampling
function [39], as shown in Fig. 4(a).

A ring-shaped sampling function can be obtained by placing
an antenna at the center of a semicircle with additional
antennas throughout the arc of the same semicircle where the
radius is the physical separation matching the center spatial
frequency of the spatial-spectral bandwidth of the ring filter.
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Fig. 4.  (a) Proposed ring-shaped sampling function. (b) Discrete array

formation of 30 antennas (left) and its corresponding discrete synthesized
ring-shaped sampling function (right). The double arrow annotation on the
array formation denotes the physical separation or baseline between the
two antennas. The corresponding portion of the resulting sampling func-
tion is annotated by the green arrow. The thickness of the ring-shaped
sampling function on the uv-plane comes from both the center frequency
and the bandwidth of antennas and is denoted by solid and dashed lines,
respectively.

By implementing cross correlation between the ring elements
and the center element, a sample of the ring-shaped sampling
function can be obtained. However, this sampling function
only collects information at discrete spatial frequencies; spatial
bandwidth can be added to the sampling function by imparting
a (temporal) frequency bandwidth on the receiver system.
Since the spatial frequency is defined in terms of both the
antenna separation and the wavelength, adding bandwidth
effectively modulates the spatial frequency at which the infor-
mation is captured. This conceptual array formation and its
corresponding sampling function are shown in Fig. 4(b). Each
segment within the sampling function includes the contribution
due to physical separation/center frequency, and the temporal
bandwidth. As observed, the median radius of the sampling
function is dependent on the physical separation and the center
frequency and the effective spatial bandwidth of the ring is
proportional to the frequency bandwidth. We note that since
the 2-D spatial frequency domain is conjugate symmetric
for image intensities, which have real amplitudes, sampling
is only required to be implemented over half of the spatial
domain. This also implies that the angular position of ¢
in the spatial domain corresponds to both ¢ and ¢ + 180°
of the ring-shaped sampling function being formed in the
spatial frequency domain, thus a 180° rotation between the two
antennas will yield a full circle of the proposed ring-shaped
sampling function. Thus, the effective sampling function can
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Fig. 5. Formation of the sampling function using two antennas with the first element fixed at the center of a semicircle and the second element moving along
the semicircular path. (a)—(d) Representation of the elapsed array formations over a full semicircular path at four different times with (e)—(h) representing the

corresponding elapsed sampling functions.

be represented by
$o-+180°
Sking (0, 0) = D 3 — D; cos$)d(v — D;sing), (5)
d=do
where D, is the separation between the two antennas, ¢ is the
rotation angle, and ¢y is a nominal initial angle.

A. Spatial Frequency Filter Design Considerations

The design of the spatial frequency bandwidth of the ring
filter will, in general, depend on the application. The filter
should be selected within a region where discrete, broadband
spatial-spectral signals have good signal strength compared
to the surrounding visibility data. Typical scenes contain a
significant amount of information at low spatial frequencies,
resulting in strong visibility content near (1 = 0,0 = 0),
as can be seen in Fig. 3(c), thus it is beneficial to generate
the ring filter with a radius beyond the strong low-frequency
content, but sufficiently close-in that the strong discrete signals
are not low in signal strength. In the application example in
this article, the visibility data in Fig. 3(d) suggests a ring filter
covering a spatial spectral bandwidth near 700-800 rad~'.
We determined heuristically that the discrete spectral signals
have a good signal strength compared to the surrounding vis-
ibility near 761 rad~!, as discussed in the following dynamic
antenna design. Applications with different scenes will result
in different visibility distributions; as such, the spatial-spectral
bandwidth of the ring filter, and the dynamic antenna fre-
quency and baseline, may need to be designed for the specific
application.

Implementing a ring-shaped sampling function with a sta-
tionary array requires the use of fewer antenna elements than a
traditional phased array imaging system; however, the number
of elements necessary can be further reduced by a significant

Fig. 6. Illustration of a notional dynamic array implementation using the
concept shown in Fig. 7 on a platform with rotors.

margin through array dynamics. By moving antennas in space,
a range of spatial frequencies can be implemented with only
a few elements, as shown in Fig. 5 where the progression of
an antenna moving in an arc and the corresponding sampling
function at specific instances of the rotation period are shown.
It can be seen that a counterclockwise rotational movement
on the xy-plane corresponds to counterclockwise rotational
course on the uv-plane. Since this particular concept uses one
stationary element and one dynamic element, co-polarization
must be maintained, for which circularly polarized antennas
could be implemented [40], [41]. This concept requires no
reset of the position, i.e. continuing rotation on the comple-
menting semicircular path will generate the same sampling
function thus each successful revolution of the dynamic array
corresponds to two revolutions of the dynamic sampling func-
tion. Building on this dynamic movement concept, a simple
dynamic array can be designed with two elements on a rotating
platform, as shown in Fig. 6. Two antenna elements located
on, for example, the rotor blades of a vehicle, would provide
sufficient spatial coverage for the desired ring-shaped sampling
function. The construction of the sampling function using
such a dynamic antenna array is shown in Fig. 7. In such
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Fig. 7. Array dynamics and sampling function formation of the implemen-
tation in Fig. 6. (a) Dynamic array formation due to the movement of two
antennas. (b) Corresponding elapsed sampling function.
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Fig. 8.  Illustration of a multi-platform concept to acquire the sampling
function shown in Fig. 4(a). Each platform noted by 1, 2, and 3 consists
of one integrated antenna. Platform 1 holds stationary, while 2 and 3 move
around the segmented semicircular path with respect to platform 1.

a configuration the antennas remain co-polarized, enabling
appropriate sampling of the received signals in either active
or passive interferometric imaging approaches as described
earlier. Such an implementation can also be achieved on
platforms with fast enough rotations to support imaging while
in motion.

Multi-platform concepts are also feasible. Prior work has
shown the potential for multi-platform distributed array con-
cepts to mitigate sidelobes [35], [36], and the ability to
wirelessly coordinate the operations of sensors on distributed
platforms is becoming increasingly feasible [42]-[44]. Three
separate platforms moving dynamically relative to one another
can be used to obtain the ring-shaped sampling function
that leverages the relative motions from multiple platforms.
This can be accomplished with one stationary platform and
a second platform that moves along the semicircular path with
respect to the stationary platform (Fig. 5); a three platform
concept (Fig. 8) has the potential to acquire the same sampling
function in half the time. While platform 1 in Fig. 8 is
holding stationary, platform 2 and 3 each complete half of
the semicircular path as shown in Fig. 9(a) and (c) that
will generate the corresponding sampling function as shown
in Fig. 9(b) and (d), respectively.

B. 40 GHz Dynamic Array Design on Rotating Blades

We refine the two-element dynamic array concept by con-
sidering a millimeter-wave array amenable to implementation
on the rotors of a small aerial vehicle. We consider a center
frequency of 40 GHz, a bandwidth of 3%, and antennas
with a half-power beamwidth 6y of 60°, commensurate
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Fig. 9. Formation of the sampling function with three antennas integrated
separately on three platforms as shown in Fig. 8. (a) Dynamic array formation
with counterclockwise platform (Ant2) movement in the first quadrant on
the xy-plane and (b) corresponding dynamic sampling function formed
in counterclockwise direction in the first and third quadrant on the wuv-
plane. (c) Dynamic array formation with counterclockwise platform (Ant3)
movement in the second quadrant on the xy-plane and, (d) the corresponding
dynamic sampling function formed in counterclockwise direction in the sec-
ond and fourth quadrant on the uv-plane.

with the beamwidth of a planar patch antenna that could
reasonably be implemented conformally on the underside of
the rotors [45]-[47]. While considerations must be made to
obtain the desired signal-to-noise ratio (SNR), recent devel-
opments in active interferometric imaging lend feasibility to
achieving an appropriate SNR [30], [31]. Given the above
parameters, we consider a design procedure that balances
feasible antenna separation and platform altitude to maintain
a ground resolution of 1 m, which is commensurate with the
resolution of the analyzed data set from [38] (although the
radar data in [38] was measured at X -band, the common image
resolution of 1 m in the data and the proposed design supports
a feasible comparison).

For a single antenna system, the one-dimensional (1-D)
spatial resolution, A8, can be expressed in terms of the antenna
beamwidth as

tan (Opw)

=—, (6)
R

where R is the distance between the antenna and point of
interest, which is the altitude in the present analysis. For a
two-element sparse or distributed array, the spatial resolution
is governed by its maximum antenna baseline D,,,, and
wavelength 4 using [3]

AO

A
AO ~ 0.88 - . (7)

The relationships between altitude, baseline and antenna
beamwidth is shown in Fig. 10, obtained from applying
(6) and (7). Using the stated assumptions above, the calcu-
lated altitude is approximately 886 m, the calculated baseline
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Fig. 10. (a) Calculated altitude versus antenna beamwidth, with markers

indicating beamwidth values between 50° and 60°, matching that of a feasible
patch antenna. (b) Calculated altitude versus maximum system baseline for
center frequency of 10, 20, 30, 40, and 50 GHz.

TABLE I
DYNAMIC ARRAY DESIGN PARAMETERS

Bandwidth | Frequency | Wavelength | Baseline
—1.5% 39.4 GHz 7.6 mm 751 A
+0% 40.0 GHz 7.5 mm 761 A
+1.5% 40.6 GHz 7.4 mm 771 A

is approximately 761 A (equivalent to 761 rad™' in the
spatial frequency domain), which translates to a physical
separation of 5.7 m. For a single platform implementation,
the calculated altitude and required physical separation match
the typical specification of a medium-sized unmanned aerial
vehicle (UAV) as discussed in [48] where the average end
to end rotor blade length or wingspan is 5-10 m. The
proposed concept is thus amenable to being implemented on
research/industrial-grade UAV helicopters such as the StarLite-
2A [49]. With a physical separation fixed at 5.7 m, the 3%
bandwidth of the antenna will contribute to a range of base-
lines approximately between 751 4 and 771 4 (see Table I).

IV. ANALYSIS OF GROUND SCENE CLASSIFICATION
USING DYNAMIC ARRAY SPATIAL FREQUENCY FILTER

We explore the application of the spatial frequency ring
filter to the classification of ground scenes. The objective is
to demonstrate the ability to classify between NSs, which
lack strong broad spatial spectral responses [Fig. 3(c)], and
NNSs including man-made structures that generate such fea-
tures [Fig. 3(d)]. In doing so, we demonstrate that the broad
spatial spectral responses of man-made objects are sufficiently
persistent in a large set of real data that a dynamic antenna
array can be designed that captures such information for
direct classification. We calculate a 1-D signal that is the
average of the sampled visibility at every rotation angle
within the output of the ring filter, providing a measure of
the intensity of the radial spatial frequency within the filter
bandwidth as a function of angle in the uv-plane. Generally,
NS images demonstrate fewer variations as a function of angle
than NNS images. The data set described in Section II was
divided into training and evaluation subsets. Standard metrics
were calculated based on a set of statistical measures of the
resultant signals from the training subset. These metrics are
used to determine features that provide reasonable separation
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between the probability distributions of the two classes; the
larger the separation, the better the potential for classification.
From a set of the most prominent features we determined
analytical threshold values. As a comparison, these thresholds
are compared to an “ideal” threshold calculated empirically
by evaluating all thresholds over the entire data set.

To evaluate the performance of the proposed classification
objectives, we evaluate a standard set of metrics, including
the true positive rate (TPR), which indicates actual positives
that are correctly identified; the true negative rate (TNR),
which indicates actual negatives that are correctly identified;
the positive predictive value (PPV), which indicates actual
positives in proportion to all identified positives; the negative
predictive value (NPV), which indicates actual negatives in
proportion to all identified negatives; the accuracy (ACC),
which provides insight to the measure of all the correctly
identified cases; and the F1 Score (F1), which is the harmonic
mean between PPV and TPR that gives a better measure of
the incorrectly classified cases than ACC [50], [51].

The proposed classification method depends on deriving
useful statistics from the sampled visibility after applying the
ring-shaped sampling function. The filtered spatial frequencies
can be transformed to a 1-D vector S; by calculating the
average response at each angle that spans the complete 360°
with respect to the center of the uv-plane, given by

5.(y) = ey vs<rNco_s(L ). 7sin(y))

where y represents the angle with respect to the positive u-
axis, V represents the sampled visibility, r represents the
radius of the ring-shaped sampling function, N represents the
distance between the furthest uo pair sampled from the center
of the uv-plane which is due to the antenna’s upper bandwidth
limit; and M represents the distance between the closest uv
pair sampled from the center of the uv-plane which is due
to the antenna’s lower bandwidth limit. An example of S; is
shown in Fig. 11(a). While apparent differences in S can exist
between of NS and NNS, the first derivative of the ring-filtered
sampled visibility

; )

d
S0) = 2-8.0) ©)

an example of which is shown in Fig. 11(b), is preferable
for two reasons: the first derivative puts more weight on
the change of S; due to the discrete nature of a NNS and
less on the smoother responses from a NS; and variations
in the magnitude of the responses, which may fluctuate as
different regions and/or operating conditions are encountered,
are mitigated.

A set of 2076 images from [38], including 1038 NS and
1038 NNS images, were processed with the sampling function
based on the dynamic array design and the corresponding
Si(y) vectors were computed. From these, the mean value
as a function of angle

pS; = mean{S;(y)}

was calculated for each data set. We define a classification
threshold based on the maximum and minimum values of all

(10)
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Fig. 11. (a) Visualization of the transformed 1-D sampled visibility

vector (Ss) of NS and NNS from Fig. 3(a) and (b) by averaging the response
at each angle with respect to the center of the uv-plane. (b) Corresponding
first derivatives (S)).

u S, values from a training set by

T= %(maX{NS#s;} + mln{NNs,uS:}) (1 1)

Scenes from the testing set with xS, < T are classified
as NS, whereas scenes with xS, > T are classified as NNS.
To avoid potential bias by unintentionally selecting the best
or worst-case scenario as a result of using specific train-
ing and testing group combinations, we leverage the Monte
Carlo method [52] by repeating the following three steps
1000000 times.

1) Of the selected 1038 NS images and 1038 NNS images,
727 images (X~70%) from each image type are uni-
formly selected at random to form the training group
for threshold calculation and the remaining 313 images
(m30%) from each image type form the testing group
for classification.

2) The threshold is calculated using the maximum and
minimum xS, values from the training group using (11).

3) The calculated threshold is applied to the testing group
for classification and the classification metrics noted
previously are calculated.

In practical applications, classifier thresholds are determined
as above, using a training and testing set. To compare the
threshold above, we determined an ideal threshold value from
the full data set. This provides the best possible classifica-
tion results, but is specifically tuned to the entire data set,
and thus is useful mainly for comparison of the analytical
threshold above. The range of the threshold is bounded by
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TABLE 11
METRIC INTERDEPENDENCY USING EMPIRICAL THRESHOLD

TPR TNR PPV NPV ACC F1
=1.000 | =1.000 | =1.000 | =1.000 | =0.979 | =0.979
TPR - 0.922 0.922 1.000 0.968 0.968
TNR 0.334 - 1.000 0.334 0.990 0.990
PPV 0.600 1.000 - 0.600 0.990 0.990
NPV 1.000 0.928 0.928 - 0.969 0.969
ACC 0.667 0.961 0.961 0.667 - 0.979
F1 0.750 0.959 0.959 0.750 0.979 -
Threshold
(N.U.) 0.139 0.177 0.177 0.139 0.163 0.163
TABLE III
CLASSIFICATION RESULTS USING EMPIRICAL
AND ANALYTICAL THRESHOLDS
[[ Empirical Value | Mean Analytical Value [[ % Error
T (N.U.) 0.163 0.158 3.1
ACC 0.979 0.971 0.9
F1 0.979 0.971 0.8
TPR 0.968 0.982 1.4
TNR 0.990 0.960 3.1
PPV 0.990 0.961 3.0
NPV 0.969 0.981 1.3

the lowest and highest value from the computed means of
the S; vectors which are from the selected 1038 NS images
and 1038 NNS images. 1000 equally spaced steps between
the upper- and lower-bound are generated and applied to all
2076 images for classification with the classification metrics
noted previously recorded. The results are shown in Table II
where each column represents the highest achievable value
of the specific classification metric with its associated values
on other classification metrics and the normalized threshold.
For applications requiring guaranteed classification of NNS
(i.e. TPR = 1.000), the associated trade off is a lower ACC
of 0.667 and F1 of 0.750. Similarly, for applications requiring
guaranteed classification of NS (i.e. TNR = 1.000), the out-
come will have an associated ACC of 0.961 and F1 of 0.959.
Of the various thresholds, a value of 0.163 N.U. provided the
best overall performance among the various metrics.

Table III presents a comparison of the threshold resulting
from the analytical approach and that of the ideal threshold.
The mean analytical threshold value of 0.158 N.U. is very
close to the ideal threshold value of 0.163 N.U. obtained
using the entire data set, indicating that setting the classifier
threshold using the analytical approach can be expected to
provide close to optimal results. Fig. 12 shows the probability
density functions of the two data subsets (NS and NNS)
as a function of uS;. There is a clear null point between
the distributions, indicating a desirable point at which to
choose the threshold. The empirical ideal value, along with the
analytical value, closely matches this null point, indicating that
the analytical approach can be expected to produce a desirable
threshold value. The classification metrics using the analytical
threshold are furthermore within 3% of the ideal values.
Thus, scene classification is obtained with high classification
metrics using only a very sparse set of Fourier-domain scene
information.
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Fig. 12. Probability density function of NS, s (shown in red) and NNS &/
(shown in green) with the empirical and mean analytical threshold value
shown in solid- and dashed-blue lines, respectively.

V. CONCLUSION

In this work, we aim to provide a framework for
microwave scene classification based on a small subset of
the information captured using a dynamic antenna array.
Ring-shaped spatial frequency filters were shown to capture
useful spatial frequency domain information that can be used
to differentiate between scenes with structured, man-made
objects such as roadways and buildings, and those without.
Furthermore, through the use of a novel dynamic antenna
array concept, the spatial frequency ring filter was shown to
be feasible to implement in millimeter-wave hardware with
only two receiving antenna elements, enabling information
collection with significantly less hardware than typical imag-
ing systems. Classification results were presented for a set of
microwave ground images with resolution commensurate with
that possible in a millimeter-wave aerial implementation using
analytical thresholds. While the presented work used ground
scenes as a working example, the overall concept may be
applied to microwave and millimeter-wave image classification
problems in general.
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