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Abstract

Adversarial attacks pose a substantial threat to com-
puter vision system security, but the social media indus-
try constantly faces another form of “adversarial attack”
in which the hackers attempt to upload inappropriate im-
ages and fool the automated screening systems by adding
artificial graphics patterns. In this paper, we formulate the
defense against such attacks as an artificial graphics pat-
tern segmentation problem. We evaluate the efficacy of sev-
eral segmentation algorithms and, based on observation of
their performance, propose a new method tailored to this
specific problem. Extensive experiments show that the pro-
posed method outperforms the baselines and has a promis-
ing generalization capability, which is the most crucial as-
pect in segmenting artificial graphics patterns.

1. Introduction
Social media enables people to share their lives with the

world through images and videos. However, some people
use these platforms for more sinister purposes: spreading
illegal content, selling drugs, and making illicit advertise-
ments [35,36,55] as shown in Figure 1. Most of today’s so-
cial media platforms use automated screening systems for
filtering these inappropriate contents by using a variety of
computer vision tools [22, 50]. However, these automated
screening systems are not robust as the offenders have man-
aged to breach them by altering the policy-violating con-
tent. Their approaches are sometimes simple, e.g, drawing
patterns or adding texts. Although not as powerful as adver-
sarial attacks in terms of minimizing the visual difference
between the original and the altered images, adding artifi-
cial graphics patterns is easily doable by a layperson and
these simple artificial graphics patterns can be effective. As
a simple toy example, we conducted an experiments on Im-
ageNet with pre-trained ResNet-101 and Mobilenet-v3large
provided by PyTorch. The accuracy of each classifier drops
from 76.9% to 54.6% and 72.1% to 41.8% respectively, al-
though the randomly added graphics patterns occupy less
than 4% of the image area.

(a) cigar Ad (b) illicit medicine Ad

Figure 1. [Top row] Example unlawful/policy-violating advertise-
ment images with adversarially added graphics patterns for by-
passing screening systems2. [Bottom row] The masks generated
by the proposed method. We use one network for all these types
of perturbations. Detailed results can be found in the experiment
section.

At the first glance, adversarial training would seem be to
an effective solution. However, considering the set of all
possible graphics patterns, deploying adversarial training
at a large-scale is challenging. Inspired by [16], in which
the authors show that a classifier can be trained and per-
forms equally well during testing even if large connected
regions are masked, we argue that a more practical solu-
tion is to disentangle the task of identifying added graphics
patterns and the task of screening. This way, all screen-
ing classifiers can be trained on fixed masked images and
one only needs to re-train or fine-tune the graphics pattern
detector whenever a novel adversarial pattern appears. In
this paper, we focus on detecting and segmenting adver-
sarially added artificial graphics patterns, as illustrated in
Figure 1. Given the context of the problem, we limit the
scope of artificial graphics patterns to any relatively simple
patterns that are drawn using computer graphics software
(e.g. Adobe Photoshop, Microsoft Paint), such as stickers,

2Due to privacy of the real data, the examples shown here are created
by the authors using Photoshop for illustration purposes only.
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text, lines, shapes, etc. As we show in our experiments,
by leveraging multi-scale modeling and mining hard sam-
ples (i.e. more complicated patterns with less foreground-
background visual difference), models can generalize well
to out-of-distribution samples even if the training set is tiny
and the variety of patterns in the training set is limited.

Our contribution is summarized as following:

• We take a novel perspective in handling adversarial at-
tacks by artificial graphics patterns that are prevalent
in industry and establish baseline results for various
SOTA segmentation systems.

• We propose a data synthesis scheme to systematically
simulate training images. Our synthesis method ad-
justs the adversarial patterns so that the visual features
are similar to the local neighborhood and enables hard
sample mining.

• We demonstrate that utilization of multi-scale informa-
tion and lower level features is crucial for generaliz-
ing to out-of-distribution patterns. Based on our ob-
servations, we propose a novel cascade network with
custom training policy and show that it achieves better
generalization to unseen patterns and more consistent
performance across pattern size.

2. Related Work
The problem studied in this paper is about segmenting

patterns created by human using computer graphics soft-
ware. To our knowledge, previous literature does not have
a solution to this specific problem. Subjects such as image
forensics [2, 4, 20, 39, 42, 44] are traditionally framed un-
der unsupervised learning or single-class classification set-
tings. Splice detection methods such as [12] focus on de-
tecting splicing between two natural images and therefore
have a different data domain. Watermark and logo detec-
tion [13, 46] are related tasks but SOTA solutions that gen-
erate segmentation masks are similar to those in saliency
detection and semantic segmentation.

2.1. Semantic Segmentation and Saliency Detection

Since the goal of this paper is about segmentation, the
most natural comparisons would be semantic segmentation
and saliency detection, summarized as follows.

Semantic segmentation. Semantic segmentation aims
at giving each pixel a categorical label. Traditional ap-
proaches focus on using hierarchical graph models of super-
pixels [3, 25, 27]. Convolutional networks outperform these
methods [45]. However, early works usually have high
model capacity, only produce low-resolution output due to
large receptive field, and do not use multi-scale information
well. Improvements have been proposed by, for example,
Farabet et al. [15], Chen et al. [5], Zhao et al. [58], and Ron-

neberger et al. [41]. Recent works leverage a combination
of these improved techniques [6–8, 24, 31, 32, 37, 54, 56].

While semantic segmentation can be considered as a par-
ent task of our problem, the diversity of the data domain
makes our problem different. In general, data from the
same class in a traditional semantic segmentation task (e.g.
scene parsing and face parsing) share a common global con-
text (e.g. shape) and have a relatively fixed feature-to-scale
correspondence. Our problem does not share these char-
acteristics, and therefore many generic semantic segmen-
tation methods fail. In the experiment section, we will use
DeepLabv3 (DLV3) [6] and UNet [41] as baselines for com-
parison with our proposed method.

Saliency detection. The goal of saliency detection is to
locate the most informative region in a natural image. Ar-
guably, one can translate the problem to ours by declaring
that an artificial pattern region is important and natural re-
gions are not. However, when framed in this context, to
our knowledge, there is no off-the-shelf solution presented,
although many lessons in saliency detection can be learned.

Existing saliency detection methods range from using
hand-crafted features and graphical models [10, 14, 21] to
the recent deep learning approaches [17, 19, 26, 28, 33,
34, 40, 51, 53, 57, 59, 60]. For example, modeling local
and global context by a two-stream network [59], exploit-
ing both pixel-level prediction and region-level informa-
tion [28], making a coarse prediction and then gradually
refine the prediction with recurrent network [33]. Recent
works focus on combining hand-crafted features with deep
network [26], better multi-scale and multi-level joint model-
ing [19,28,34,57,60], or more accurate segmentation along
boundaries [40, 51, 53]. In the experiment section, we will
compare with the BASNet [40] and PFANet [60], which are
state-of-the-art saliency detection methods.

2.2. Cascade Models

The backbone of our proposed solution is a cascade net-
work. This idea is inspired by the Viola-Jones detection
framework [49]. In Viola-Jones, cascading is used for com-
putational efficiency. In our case, we use cascading to in-
duce implicit attention and save the model capacity to re-
solve regions that cannot be resolved at shallower layers.
Previous CNN based works have explored similar ideas in
other areas of computer vision such as face landmark pre-
diction [47], pose estimation [48], face detection [29], clas-
sification [38], and perceptual edge detection [18]. For im-
age segmentation, there are attempts for coarse-to-fine class
segmentation [11], multi-stream fusion [61], and class-
agnostic segmentation refinement [9]. Finally, our proposed
method shares some common ideas with a work earlier by
Li et al. [30]. The main differences are twofold: (1) our pro-
posed architecture operates on multi-scale input with multi-
ple entry points and is different from theirs. (2) We train our
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(a) Proposed data synthesis pipeline (b) Empirical distribution of sizes

Figure 2. (a) The proposed data synthesis pipeline: We first draw random images and artificial patterns from their respective datasets. For
each random location we choose, we adjust the pattern until the attributes match with those in the local neighborhood. JPEG compression
is added to improve robustness against compression artifacts. (b) Empirical distributions of the sizes of the artificial patterns in a dataset
containing 100 images downloaded from popular social media websites. Following this analysis, we configure the size of our synthesized
pattern to approximately 0.1%-25% of the image.

multi-scale cascade network bottom-up at multiple stages
so that coarser-scale network guide the training of the finer-
scale network, rather than training all sub-networks jointly
in two stages.

2.3. Multi-scale Methods

The proposed method uses a multi-scale framework to
model and extract features across scale variations. While
this idea has been used in many prior work, e.g., [7, 15, 17,
24, 32, 37, 59], the specific usage of the scale information
is quite different when we compare the two perspectives in
Table 1: 1) At which stage is multi-scale modeling con-
structed: explicitly extract features from image at different
scales (explicit) or treat feature maps from different levels
of a network as multi-scale (implicit). 2) How information
from different scales is used to generate final predictions:
aggregate features or aggregate predictions.

feature aggreg. prediction aggreg.
explicit [17, 32, 37, 59] [7, 15], ours
implicit [28, 34, 58, 60] [19, 24, 57]

[33, 40, 54]
Table 1. Taxonomy of multi-scale modeling by semantic segmen-
tation and saliency detection methods

Most of prediction aggregation methods in the segmen-
tation literature take the weight average of the predictions
from multiple scales as the final prediction, where the
weighting is implemented as a learn-able layer. In con-
trast, our model takes the conjunction of predictions from
different scales for each pixel. This will be illustrated in
the experiment section when we compare with the panoptic
feature pyramid network (SFPN) by Kirillov et al. [24].

3. Method

We discuss the three ideas of this paper: a data synthesis
pipeline, a multi-scale network, and a training scheme.

3.1. Data Synthesis

Since the actual process of adding artificial patterns is
relatively simple to emulate, we synthesize the data during
training on-the-fly.

Procedure for synthesizing training data. Our data
generation pipeline is as illustrated in Figure 2(a). We
identify four categories of artificial content: stickers (e.g.
emoji), text, lines/stripes, and digital logos. We construct
a set A of these canonical patterns, which consists of 381
samples of high-resolution patterns. The size of these added
patterns consumes approximately from 0.1% to 25% of the
size of the images, with a higher concentration in the bot-
tom quantile. Figure 2(b) shows an empirical distribution
of 100 randomly downloaded images from the internet.

Given an input image X ∈ RH×W×3 drawn from a
dataset X of natural images, we randomly draw K artifi-
cial patterns A1, ..., AK from the canonical pattern set A.
We resize these K patterns so that the sum of the area of all
K patterns reach a target proportion, e.g., 10% of the image
size. For each pattern Ak (k = 1, . . . ,K), we randomly
put it at a location in the image X . Afterward, we perform
JPEG compression with a random quality factor between 70
and 100 to the resulting image. This step is to ensure that
any compression artifacts are learned.

In order to make sure that the manipulated image does
not have obvious features for saliency detection (so that
the training data is not too easy), each pattern Ak is pre-
processed before added to the image. This observation is
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Figure 3. The proposed multi-scale cascade network. In our model, we use a cascade of L levels of sub-networks. The goal of each sub-
network is to segment the graphics patterns in their respective scales. Information at the current level is propagated to the next level, so that
we can accumulate the prediction results. Under such a design, the final mask is generated by taking the intersection of the patterns of all
the scales. Note how prediction from each sub-network complement each other and allows false positive predictions in other sub-networks

confirmed by Jiang et al. [14, 21] who showed that bright-
ness, local and global contrast, hue, color saturation are
important cues for saliency detection. Our pre-processing
involves comparing these attributes (brightness, local and
global contrast, hue, color saturation) of artificial patterns
with the neighbors at the target location ofX . We randomly
adjust the attributes of the added patterns so they match or
mis-match with those of the neighbors.

3.2. Multi-scale Cascade Network

Proposed architecture. We propose a multi-scale cas-
cade network to encourage generalization to unseen patterns
and explicitly handle the huge size variation across the pat-
terns. The overall network is shown in Figure 3. The net-
work consists of multiple sub-networks that operate on in-
puts at different scales. Each sub-network consists of two
elements:

• Backbone for extracting features: Each backbone sub-
network is composed of 1 convolution layer with C
3-by-3 kernels that transforms the input feature to a C-
channel feature, and 4 basic blocks from the Resnet.

• Regression head for generating segmentation mask:
The regression head of each sub-network is composed
of 1 convolution layer with 3-by-3 kernels that reduce
the number of channels by half, 1 convolution layer
with a 1-by-1 kernel that collapses channel number to
1, and a sigmoid function that normalizes the score
map to the range [0, 1].

We denote ` ∈ {0, 1, ..., L} as the scale indices from

coarse to fine. Let f`, g` be the backbone and regres-
sion head at scale `, respectively. Given an input image
X ∈ RH×W×3, we low-pass filter it and down-sample it to
obtain coarser scale images X` ∈ R

H
σ`
×Wσ`×3, where σ`’s

are the scale factors (e.g., σ` =
√

2). Features extracted at
the `-th layer are denoted as V`’s.

At the coarsest scale ` = 0, the sub-network at that scale
extracts features and makes a prediction

M`︸ ︷︷ ︸
mask

= g`︸︷︷︸
regression

( f`(X`)︸ ︷︷ ︸
feature extract

), for ` = 0 only, (1)

where M` ∈ R
H
σ`
×Wσ`×3 is the predicted mask by the `-th

sub-network.
In our proposed network, high-level features extracted

from the coarser levels are re-used at the finer scales as
a global context, and the predicted mask from the coarser
scale is used to filter out regions that are difficult to make
a correct prediction based on local context and features at
the fine scale. Therefore, at scales ` = 1, . . . , L, the sub-
network leverages extracted high-level features from the
previous scale as well as the image at that scale

M` = g`

(
f`

( concatenation of
image and feature︷ ︸︸ ︷
X` ⊕

upsample of
(`− 1)th feature︷ ︸︸ ︷[
V`−1

]
↑∆`

))
, (2)

where ⊕ denotes concatenation of along channel dimen-
sion, [ · ]↑∆ denotes the bi-linear upsampling with a factor
of ∆. In our problem, ∆` = σ`/σ`−1.
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The stage-wise output mask M̃` ∈ RH×W×3 is the in-
tersection of the previous stage masks. It is defined as the
pixel-wise multiplication from all scales below `

M̃` =
∏̀
i=0︸︷︷︸

intersection
of all stages

[
Mi

]
↑σi︸ ︷︷ ︸

upsample of
previous masks

. (3)

Our cascade scheme allows sub-networks to complement
each other and therefore, each sub-network is encouraged
to be ”forgiving”; a sub-network can make false positive
predictions at regions that are rejected by other networks.

3.3. Customized Stage-wise Training

Training of the proposed multi-scale cascade network re-
quires a stage-wise training scheme. The training strategy
is illustrated in Figure 4. We discuss the rationale and the
procedure as follows.

Figure 4. Multi-stage training for the proposed network. We train
the sub-networks sequentially by initializing with the previous
stage outputs.

Why stage-wise training? A stage-wise training strat-
egy for the proposed architecture has two advantages:

(i) It allows us to explicitly specify the minimum preci-
sion ratio and the desired recall ratio for each cascad-
ing level. See our optimization below.

(ii) The learned coarser scale sub-networks can guide the
finer scale networks to focus on regions where posi-
tive samples might exist, and neglect regions that are
already considered as hard negative (gradient to finer
scale networks is masked). This encourages fine-scale
classifiers to look at different features.

If the entire network is trained jointly, the benefit of coarse-
scale sub-network guidance is invalid, since the mask from

a lower scale is not meaningful at that stage. We show
the ablation study of multi-stage training and simultaneous
joint training in supplementary material.

Training procedure. We denote (·)(n) as the n-th train-
ing sample. At every scale `, we consider an estimate mask
M̃` and a ground truth binary mask Y`. Using the cross-
entropy as the training loss, we formulate the following op-
timization 3:

minimize
f`, g`

− 1

N

N∑
n=1

{
Y

(n)
` log M̃

(n)
`

+ (1− Y (n)
` ) log(1− M̃ (n)

` )

}
(4)

subject to
1

N

N∑
n=1

Precision
(
M̃

(n)
` , Y

(n)
` , τ

)
︸ ︷︷ ︸

average precision using threshold τ

≥ Pmin,

1

N

N∑
n=1

Recall
(
M̃

(n)
` , Y

(n)
` , τ

)
︸ ︷︷ ︸

average recall using threshold τ

≥ Rmin.

In this optimization problem, the functions Precision(·)
and Recall(·) computes the precision-recall values of the
predicted mask M̃` relative to the true mask Y`, at a given
threshold τ .

The parameters Pmin and Rmin are the minimum preci-
sion and recall levels we desire. A pixel is considered to
be positive (artificial) in the final prediction by the entire
network only if all sub-networks predict it to be positive.
Therefore, the minimum recall Rmin at each stage must be
high (so that we allow more false positives to go through).
This is not a problem, because even if the false positive rate
at each sub-network is high (e.g. 40% false positive rate or
60% precision), after cascading the final false positive rate
will be low (e.g. 40% false positive rate at each level will be
6.4% after 3 levels of cascading). Therefore, we could have
a relatively loose precision Pmin at each stage of training. In
our implementation, we set Rmin and Pmin by checking final
loss on validation set.

3.4. Data Balancing

Unlike a generic semantic segmentation problem where
the sizes of the objects do not have a substantial impact on
the performance [45], the same issue is significantly more
important in our problem. Specifically, since the added ar-
tificial contents usually only occupy a small portion of the
foreground, there is a significant data imbalance between
the positive and the negative samples.

3For notation simplicity we omit the averaging over all pixels of an
image in the constraints.
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Addressing the data balancing issue is typically done by
(1) drawing samples according to the desired percentage,
or (2) adjusting the training loss. Our approach is based
on the latter. Considering the cross-entropy loss in (4), we
introduce a per-image weighing constant α(n)

` so that the
loss becomes

minimize
f`, g`

− 1

N

N∑
n=1

{
1

α
(n)
`

Y
(n)
` log M̃

(n)
`

+
1

(1− α(n)
` )

(1− Y (n)
` ) log(1− M̃ (n)

` )

}
Here, the weighing constant is defined according to the pro-
portion of the added content relative to the image:

α
(n)
` =

1

HW

∑
all pixels

Y
(n)
` , (5)

whereH andW are the number of rows and columns of the
label mask Y (n)

` .

4. Experiments
4.1. Implementation and Datasets

Training and validation. For the training data, we syn-
thesize the perturbed images on-the-fly to minimize overfit-
ting. As discussed in Section 3.1, the data synthesis proce-
dure draws clean and natural images from a dataset. Then it
renders artificial patterns and adds them to the images. The
clean images we use are the PASCAL VOC 2012 training
set. We randomly crop and resize them to 256 × 256 and
send through the data synthesis pipeline. The artificial pat-
terns we use are manually selected from the emoji dataset
used by Apple’s platform. We use this small collection of
Apple platform emoji rather than a larger variety of artifi-
cial contents because the goal of our experiment is to test
whether a model can generalize. We further break down the
collected emoji images to the training set and validation set
by the emoji category. Detailed training and validation set
statistics are as shown in table 2.

We implemented in PyTorch. We used Adam [23] for
optimizing sub-network parameters at each stage with ini-
tial learning rate 1e-3 and β′s in (0.9, 0.999).

Testing set. To quantitatively evaluate the generaliza-
tion capability of each segmentation model, we create a
fixed synthetic testing dataset using a large collection of
commonly seen artificial patterns: stickers/emoji, texts,
lines/curves, and logos. (Note that this is for testing. We
only train on a small collection of 156 Apple emoji. Our
goal is to show that our model generalizes.) Two large pub-
lic emoji sets (noto-emoji by Google and twemoji by Twit-
ter, a total of more than 6000 emoji) are used. These emoji
have drastically different visual and textural appearances

Clean images Total = 5717

Training emoji

animals 22

156food 36
nature 44
objects 54

Validation emoji
people 79

225face 109
hand signs 37

Table 2. Statistics of the emoji we use to train our model.

as compared to the small Apple emoji set. They are also
widely adopted by various software/websites due to their
open-source nature. For the logo patterns, we use Large
Logo Dataset (LLD) by Sage et al. [43]. Since the size
of these artificially added patterns has a significant impact
on the segmentation quality, for each type of artificial con-
tent, we group the synthesized test images into three sub-
sets (small, medium, large). In total, our test set has 12000
images (1000 for each category and size level). Detailed
description and statistics of testing set is in supplementary
material.

4.2. Evaluation Metrics

Following the semantic segmentation and the saliency
detection literature, we evaluate the performance of the
baseline methods and our proposed methods on the test
set with the following metrics: (i) The mean intersection-
over-union (mIoU). The threshold for mIoU was chosen
to maximize the mIoU value over the validation set. (ii)
The precision-recall curve. (iii) The mean absolute error
(MAE). (iv) The Fβ-measure, defined as

Fβ =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(6)

with β set to 0.3 and 2 for emphasizing precision and re-
call, respectively. Saliency detection works usually report
the Fβ-measure value obtained by an adaptive threshold as
suggested by [1]. However, since our problem scope is dif-
ferent and so the adaptive threshold is less relevant, we re-
port the maximum Fβ-measure obtained on each category
of the test set, as suggested by [40].

4.3. Main Results

Baseline models. We use DeepLabV3 (DLV3) [6], Unet
[41], BASNet [40], PFANet [60], and panoptic FPN [24]
as the baseline models. The baseline models are trained
with the same data synthesis process as our proposed model.
Each baseline model is initialized with either a pre-trained
model (if available) or random weights. All models are
trained until (1) training loss converged, or (2) validation
loss and training loss diverges, whichever comes first. To
demonstrate the raw detection capability, we do not include
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Stickers Lines Texts Logos
mIoU MAE F0.3 F2 mIoU MAE F0.3 F2 mIoU MAE F0.3 F2 mIoU MAE F0.3 F2

Ours 0.818 0.011 0.933 0.894 0.846 0.022 0.930 0.942 0.645 0.017 0.793 0.826 0.673 0.038 0.878 0.822
Unet 0.512 0.035 0.713 0.691 0.690 0.046 0.843 0.828 0.321 0.040 0.440 0.536 0.398 0.061 0.680 0.625
DLV3 0.368 0.051 0.519 0.509 0.352 0.111 0.574 0.458 0.245 0.039 0.357 0.445 0.368 0.062 0.508 0.498

BASNet 0.702 0.015 0.827 0.800 0.819 0.020 0.930 0.908 0.589 0.013 0.716 0.740 0.579 0.044 0.752 0.684
PFANet 0.689 0.024 0.826 0.839 0.735 0.031 0.896 0.883 0.411 0.023 0.538 0.630 0.491 0.059 0.746 0.663
SFPN 0.630 0.033 0.816 0.778 0.599 0.064 0.793 0.770 0.315 0.042 0.451 0.531 0.562 0.048 0.780 0.720

Table 3. Quantitative comparison of our proposed model and baseline models across different image with artificial pattern test data
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(a) Precision-recall curves
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(b) F -score as a function of the threshold
Figure 5. The precision-recall curves and the F -scores as a function of the thresholds. The four columns in this figure correspond to the
four classes of testing patterns outlined in Table 3.
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Figure 6. F0.3 score as a function of the size of the added patterns.
Despite all models are trained using the same training dataset, the
proposed method is more resilient to the variation of the size.

any post-processing steps such as conditional random field
[5, 32] to refine the masks.

Generalization to out-of-distribution patterns. The
mIoU, MAE, and the maximum F scores of the competing
methods are summarized in Table 3, whereas the precision-
recall curve, and the F -score as a function of threshold are
shown in Figure 5. We divide our testing scenarios into four
categories of data: stickers, lines, texts and logos. Since the
models are all trained on the same Apple platform emoji,
the performance analysis will indicate the generalization ca-

pability of each method.
According to Table 3 and Figure 5, the proposed method

demonstrates better generalization than all baselines in all
testing scenarios using all the evaluation metrics. Particu-
larly, we make following observations

• Regardless of the model capacity (shown in table 4),
models that combine low level (shallower layer) fea-
tures with high level context (Ours, Unet, BASNet,
PFANet, SFPN) for making final prediction generalize
better than those not (DLV3).

• Models that use residual unit as building block (Ours,
BASNet) generate sharper boundaries

Scale variations. Another crucial aspect of solving
graphics pattern segmentation problem is the ability to han-
dle a wide range of scales. We show in Figure 6 the maxi-
mumF -score as function of the relative sizes of the artificial
patterns. We consider three scales of the artificial patterns
relative to the image size: large, medium, and small. De-
tailed descriptions of these categories can be found in the
supplementary materials. As shown in the figure, the pro-
posed method has the most consistent performance among
the competing methods.
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(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet SFPN

Figure 7. Visual comparison of the proposed method and the competing methods. All models are trained using the same training dataset
to ensure a fair comparison. Note that the proposed method can handle very large and very small perturbations, while some competing
methods fail to do so.

Ours DLV3 UNet BASNet PFANet SFPN
# para. 1.0M 61M 0.5M 87M 16.4M 48M

Table 4. Number of parameters used by competing methods.

Visual comparison. In Figure 7 we show several vi-
sual comparisons for very large and very small perturba-
tions. We can see that the proposed method produces the
best masks across the scales. Additional example can be
found in the supplementary material.

Wild data and ablation study. Additional results such
as the performance on wild test data collected from popu-
lar social media websites and extensive ablation studies are
presented in the supplementary material due to space limit.

5. Conclusion

We formulate the defense against adversarially added ar-
tificial graphics patterns as an image segmentation problem
and propose a promising solution. The benchmark for such
a task is that the method has to handle a wide range of scales
and a variety of types, shapes, colors, contrast, brightness,
etc. This paper shows that the proposed cascading scheme
and explicit multi-scale modeling are effective method for
the problem. To train the model, we propose a multi-stage
training scheme where we can control the desired precision
and recall levels per-stage.

The generalization capability of the proposed method
has been tested over the set of graphics patterns we reported.
One interesting observation is that majority of the artificial
graphics patterns are rendered through a limited set of prim-
itive 2D graphics directives, although the fused images can
be stored in any image format. Due to the simplicity and
limited options of the available primitive directives, it is rec-
ommended to train on the more complex examples (stickers
and text). Skipping the simpler patterns such as lines and
logos will likely not hurt the performance.

Current system is optimized for opaque graphics patterns
under mild corruption (e.g. noise, blur, blocking artifacts
introduced by JPEG compression) and is well-suited for
majority of the threat so far. However, it is expected that
hackers will improve their techniques and exploit vulnera-
bility of current systems. In particular, future research along
this direction may focus on improving the performance on
translucent patterns (patterns alpha blended with the origi-
nal content) as well as the robustness against heavy corrup-
tion.
Acknowledgement The work is funded in part by the Army
Research Office under the contract W911NF-20-1-0179
and the National Science Foundation under grants CCF-
1763896 and CCF-1718007.
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Supplementary material

This supplementary document summarizes the following experimental results:

• Detailed description of the synthetic test set (section S1).

• Ablation study of the proposed system (section S2).

• Evaluation on real testing downloaded from the internet (section S3).

• Additional visual comparisons (section S4).

S1. Test Set Details
Our synthetic test set is composed of 12,000 images synthesized with clean natural images and graphics patterns drastically

different from training set. We used 4 types of patterns: stickers, lines, text, and logos. For each type of pattern, we synthesize
test images at 3 different size levels: large, medium, and small. Sizes are defined slightly different across different patterns
as it is very difficult to stipulate a common meaningful definition of effective size taken by a pattern for all 4 patterns (e.g.
number of pixels overtaken by the rendered pattern in an image is a good measure of size for stickers and logos but not for
text, since to achieve same amount of area as stickers/logos, a text box would occupy much larger part of image). During test
set synthesis, we do not perform random attribute alignment between graphics patterns and image. We list the exact definition
of size for each category and statistics used during test set synthesis for each category and size level below. Example images
are as shown in figure S1

Small

Medium

Large
Stickers Lines Text Logos

Figure S1. Example test images from each category and size level

Stickers/logos The effective size of stickers/logos pattern is defined as the ratio between number of pixels overwritten by
patterns in an image and the total number of pixels of that image. During synthesis, we render a random number of patterns
onto image such that the total effective area is within range for that size level.
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• Small: size ˜ Uniform(0.001, 0.016), number of patterns ∈ [1, 2]

• Medium: size ˜ Uniform(0.016, 0.064), number of patterns ∈ [1, 4]

• Large: size ˜ Uniform(0.064, 0.4), number of patterns ∈ [1, 12]

Lines The effective size of lines is defined as the ratio between width of a line and the length of shorter side of an image.
Note although we use term line, the pattern rendered includes both line segment as well as free-form curves.

• Small: size ˜ Uniform(0.008, 0.02), number of patterns ∈ [1, 10]

• Medium: size ˜ Uniform(0.02, 0.06), number of patterns ∈ [1, 10]

• Large: size ˜ Uniform(0.06, 0.15), number of patterns ∈ [1, 6]

Text The effective size of text is dictated by both the size of a glyph (roughly, width of a single character relative to image
width) and the total area of bounding box of text in the image since we could have a very long string of small font text that
occupies entire image or a very large single character. We used following number during synthesis

• Small: glyph size ˜ Uniform(0.05, 0.1), bounding box size ∈ [0.002, 0.016]

• Medium: glyph size ˜ Uniform(0.1, 0.2), bounding box size ∈ [0.016, 0.25]

• Large: glyph size ˜ Uniform(0.15, 0.4), bounding box size ∈ [0.25, 0.6]

S2. Ablation Study of Proposed Solution

We perform ablation study on each element of our proposed solution and show the effectiveness of each proposed element
in boosting the performance.

S2.1. Proposed Attribute Randomization

For data synthesis, we compare our random graphics pattern attribute blending scheme with 1) a simple and straight-
forward attribute random perturbation, 2) no attribute perturbation. In the simple perturbation scheme, we randomly adjust
pattern attributes (e.g. make pattern brighter/darker, less/more saturated, etc.) irrespective of the corresponding local/global
attribute at the target location in the image

Overall Performance on Test Set
mIoU MAE F0.3 F2

Proposed 0.745 0.022 0.873 0.863
Simple 0.667 0.031 0.843 0.793
None 0.606 0.042 0.799 0.743

Table S1. Quantitative comparison of our proposed attribute randomization versus a simple randomization scheme and no randomization

S2.2. Impact of JPEG Compression

Albeit already discussed in other scenarios (e.g. Photoshop face manipulation detection by Wang et al. [52]), models
trained for our problem heavily relies on low-level image features, and therefore we emphasize the necessity of applying
JPEG compression to training data for achieving reasonable generalization to real online images. To this end, we show
in figure S2 the performance (F-measure) of different models, trained with/without JPEG compression, on test set under
different JPEG compression settings. As can be seen, without JPEG compression during training, model performance is
severely impaired by blocking artifacts introduced by JPEG compression even at quality level 90.
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Figure S2. F0.3 score as a function of the JPEG compression quality factor. A lower quality factor means less quantization levels on DCT
coefficient and therefore stronger blocking artifacts and poorer image quality. Only performance degradation of our proposed model and
BASNet is shown for figure clarity, but all models are heavily influenced.

S2.3. Network Architecture

We investigate the effectiveness of cascading scheme by training variants of our multi-scale cascade network with 1-
level (i.e. no cascade), multi-scale input 2/3/4-level cascade, and single scale input 3-level cascade (SS 3-level). For fair
comparison, we keep total size (number of parameters) of feature extractors of each network roughly the same. Specifically,
we used 12-resblocks for 1-level network feature extractor, 6-resblocks for each of two feature extractors of 2-level network,
4-resblocks for each of three feature extractors of 3-level network, and 3-resblocks for each of four feature extractors of
4-level network. As shown in table S2, although 1-level network demonstrates on-par/slightly better performance on large
patterns, our usage of cascading scheme improves consistency of performance across different pattern sizes. The 3-level
cascade network that only uses single scale input (input at original resolution of 256x256) achieves similar performance as
compared to its multi-scale input counterpart. but it should be noted that: 1) multi-scale version still has better consistency
across patterns sizes, 2) single scale version generates very large feature maps at all hidden layers and the computation budget
required is much higher at both training and inference time. The extra computation budget limits the possibility of using a
larger backbone at each cascade level or cascading more levels.

Performance on Test Set
Small Medium Large Gap between Large and Small

mIoU F0.3 mIoU F0.3 mIoU F0.3 |∆mIoU | |∆F0.3|
1-level 0.545 0.695 0.735 0.856 0.809 0.923 0.262 0.228
2-level 0.582 0.732 0.790 0.910 0.801 0.920 0.219 0.188
3-level 0.664 0.809 0.796 0.913 0.782 0.902 0.118 0.093
4-level 0.616 0.782 0.757 0.893 0.724 0.869 0.108 0.087

SS 3-level 0.645 0.788 0.781 0.906 0.820 0.926 0.175 0.138

Table S2. Quantitative comparison of models with different number of cascade levels. Note that 3-level model performs best on small and
medium size patterns and has smallest performance gap between performance on large and small pattern

S2.4. Multi-stage training

Deep supervision has been demonstrated to be effective in training segmentation networks and is widely adopted by numer-
ous works [18,19,40,51,53]. Our multi-stage training can be perceived as a special form of deep supervision. Therefore, we
compare our training scheme with training entire multi-scale cascade network jointly with supervision on each sub-network.
Table S3 shows that our multi-stage training scheme enables our cascade network to achieve better performance.
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Overall Performance on Test Set
mIoU MAE F0.3 F2

Multi-stage 0.745 0.022 0.873 0.863
Joint 0.565 0.047 0.755 0.722

Table S3. Quantitative comparison of multi-stage training versus simultaneous joint training

S3. Wild Data Test
We compare performance of our proposed model and competing models on 100 images collected from popular social

media website using same metric as in the main text. Collected images are manually labeled. As shown in figure S3 (a, b)
and table S4, our proposed model displays best performance on these wild images. Some visual comparison examples are
shown in figure S4. Note that the overall performance is poorer as compared with synthetic test set because some images are
heavily corrupted by blur and noise.
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(a) Precision-Recall Curve (b) F-measure vs. Thresholds

Figure S3. Precision-recall and F-measure curve of each competing methods evaluated on images collected from popular social media
websites. The models here are the same as the ones in the main result section of the paper (i.e. no extra training or additional data used)

Overall Performance on Test Set
mIoU MAE F0.3 F2

Ours 0.631 0.044 0.776 0.793
Unet 0.445 0.071 0.610 0.685
DLV3 0.410 0.052 0.541 0.546

BASNet 0.410 0.063 0.569 0.541
PFANet 0.541 0.044 0.696 0.707
SFPN 0.540 0.050 0.683 0.700

Table S4. Quantitative comparison of competing methods on data from wild

S4. Additional Visual Comparisons
Additional results of the visual comparisons are shown in Figure S5, Figure S7, Figure S6, and Figure S8. For each

category, we show the perturbations of different sizes, and compare the performance with the competing methods.
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Real images downloaded from the internet

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure S4. Visual comparison of the proposed method and the competing methods on wild data collected from popular social media
websites
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More Test Set Visual Comparisons (1): Stickers

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure S5. Visual comparison of the proposed method and the competing methods on stickers
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More Test Set Visual Comparisons (2): Lines

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure S6. Visual comparison of the proposed method and the competing methods on lines
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More Test Set Visual Comparisons (3): Text

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure S7. Visual comparison of the proposed method and the competing methods on text
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More Test Set Visual Comparisons (4): Logo

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure S8. Visual comparison of the proposed method and the competing methods on logos
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