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ABSTRACT

In this paper, we propose a deep algorithm unrolling (DAU) based on
a variant of the alternating direction method of multiplier (ADMM)
called Plug-and-Play ADMM (PnP-ADMM) for denoising of signals
on graphs. DAU is a trainable deep architecture realized by unrolling
iterations of an existing optimization algorithm which contains train-
able parameters at each layer. We also propose a nested-structured
DAU: Its submodules in the unrolled iterations are also designed
by DAU. Several experiments for graph signal denoising are per-
formed on synthetic signals on a community graph and U.S. temper-
ature data to validate the proposed approach. Our proposed method
outperforms alternative optimization- and deep learning-based ap-
proaches.

Index Terms— Graph signal processing, optimization algo-
rithm, deep learning, signal denoising, deep algorithm unrolling.

1. INTRODUCTION

Many sensing devices capture and store various signals. Since ob-
served signals via such devices frequently suffer from noise or miss-
ing values as a consequence of the sensing process, signal restoration
methods have been intensively studied in signal processing. The goal
of signal restoration is to recover the original signal from observa-
tion(s) by solving an inverse problem which includes blind deconvo-
lution [1], denoising [2], and interpolation [3].

Signals often have underlying structures, e.g., sensor, social,
transportation and brain networks, power grid, and 3D meshes.
Graphs have been utilized to mathematically represent such struc-
tures. A graph signal is defined as a discrete-time signal whose
domain is nodes of a graph, and the relations between samples are
explicitly given by edges. Different from discrete-time signals on a
regular grid such as audio and image signals, graph signal process-
ing (GSP) can treat the underlying structure of the signal [4-6]. In
this way, GSP is a very powerful tool for compression [7], sampling
and restoration [8—10], and analysis of graph signals [11] which
could be used in a wide range of applications for irregular-structured
data.

In this paper, we focus on denoising of graph signals. Exist-
ing approaches can be classified into standard optimization-based
approaches such as regularized optimization [12], graph filters and
filter banks [13, 14] and deep learning on graphs [15]. As with stan-
dard signal processing, a widely-used assumption of ground-truth
signals is that the signal is smooth, i.e., it contains higher energy
in its lower-frequency components. These methods mainly utilize
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smoothness prior either on the vertex domain or on the graph fre-
quency domain. In the vertex domain approaches, a minimization
problem incorporates the smoothness as a regularization term such
as graph total variation (GTV) [16] which basically regularizes the
first-order or second-order difference of neighboring signal values.
Another approach in the graph frequency domain aims to reduce
high graph frequency components via graph Fourier transform. Ex-
amples are graph spectral low-pass filters like spectral graph bilat-
eral/trilateral filters [13,17]. In deep learning-based approaches, a
variant of auto-encoder [18] for irregular-structured data has been
proposed in [15].

Traditionally, iterative optimization algorithms have been widely
used for signal restoration problems to efficiently solve convex op-
timization problems including regularization [19, 20] as illustrated
in Fig. 1(left). The algorithm is iterated with a fixed parameter 6
until convergence. The performance and the speed of convergence
of conventional optimization algorithms, therefore, mostly depend
on the initial choice of parameters (e.g., step size and regularization
parameter) whose values are determined manually.

Deep algorithm unrolling (DAU) is a method to build a multi-
layer network by unrolling the loops of a conventional optimization
algorithm and deploying the trainable parameters at each layer [21].
A layer of DAU corresponds to one step of the iterative optimization
algorithm. Instead of manually choosing the parameters, those in
each layer can be trained from available training data to minimize
a loss function. Some variants of DAU have been proposed in the
signal processing field [22,23].

An extension of DAU into the graph setting was recently devel-
oped in [22]. It mainly aims to realize graph signal denoising in
an unsupervised-learning setting. Specifically, two problems with
sparse coding and trend filtering are considered with a new graph
convolutional network (GCN) [24, 25]. Furthermore, many GCN
implementaions have been proposed so far and used for various ap-
plications, e.g., semi-supervised classification [26]. These methods
often contain trainable weight matrices in their network that may re-
quire a huge number of parameters to be trained. Furthermore, it has
been reported in many papers (like [22,25,26]) that deeper networks
cannot attain good performance for GCNs, in contrast to convolu-
tional neural networks for image and speech signal processing.

In this paper, we leverage the concept of DAU mentioned above
to offer an efficient and trainable model-based network for graph sig-
nal denoising. On the basis of DAU, we unroll the iterations of Plug-
and-Play ADMM (PnP-ADMM) [27, 28], which is an efficient sig-
nal restoration method inspired by the alternating direction method
of multiplier (ADMM) [29] while being enabled to use an off-the-
shelf denoiser in its iterative algorithm. With the DAU structure,
we can install trainable model parameters at each layer. Further, the
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Fig. 1: NestDAU: Our proposed methods are developed based on two conventional iterative optimization algorithms. NestDAU, which is the
main framework, is designed based on PnP-ADMM. GraphDAU is a deep denoiser which can be plugged into the NestDAU as submodules.

off-the-shelf denoiser-in-the-loop is realized by DAU. It is obtained
by an optimization algorithm including GTV [30]. As a result, the
proposed nested-structured DAU (called NestDAU in this paper) uti-
lizes the concept of DAU both in the main framework and submod-
ule as illustrated in Fig. 1(right). In contrast to the existing work of
DAU for graph signals [22], our structure only needs to tune graph-
independent parameters. Therefore, the number of parameters keeps
small even if the network becomes deeper.

Through some experiments for synthetic and real data, Nest-
DAU achieves better performance than existing optimization- and
deep learning-based denoising methods in terms of RMSE.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Graph and Graph Laplacian

Throughout this paper, a vector and a matrix are written in bold
and a set is written in a calligraphic letter. An undirected graph
G = (V,£, W) consists of a collection of vertices V = {v;}1q
and undirected edges & = {e; ;} with the weighted adjacency ma-
trix W. The numbers of vertices and edges are |V| = N and |€],
respectively. w; ; € Rxo denotes the edge weight between v; and
v;. Then, we define an weighted adjacency matrix of G represented
as an N x N matrix with [W];; = w; ;. [W]i; = 0 represents un-
connected vertices. In this paper, we consider a graph which has no
self-loops, i.e., [W}“ = 0 for all . The degree matrix is defined as
a diagonal matrix with [D];; = >°_ w; ;. The combinatorial graph
Laplacian matrix of G is given by L = D — W. Since L is a real
symmetric matrix, L is diagonalizable as L, = UAU", where U
is an eigenvector matrix and A = diag(A1, ..., Anx). The weighted
graph incident matrix is denoted as M. For notation simplicity, we
assign an integer to an edge as £ = {eS}L‘il. Then, the s-th row and
t-th column of M corresponding with e; and vy,

N Wi €g — (Ui,l)j) and t = i,
Mlet = —Wi; es=(vi,v;)andt=j,
0 otherwise.

2.2. Problem Formulation

Suppose that an observed graph signal y € R™ , i.e., the ith element
y; 1s supposed to be located on v; of G, is modeled as

y=x+n, ey
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where x € R™ is an unknown graph signal to be restored, and
n; ~ N(0,0?) is an i.i.d. additive white Gaussian noise (AWGN).
The overall goal of the signal restoration is to recover x from y by
solving an inverse problem. In this paper, we consider the following
minimization problem:

min

. subjectto x = s, 2)
x,s€R

(x) +ng(s),

where [ is some cost function, g is a regularization function, and 7 is
a non-negative parameter which controls influence of regularization.
We follow an approach of PnP-ADMM [27] to (approximately)

solve (2). The cost function f is defined as f(x) & Hx =yl
which is the widely-used fidelity term for signal restoration. In the
algorithm of PnP-ADMM, the regularization term ¢ is in general
implicit. Suppose that two initial variables s t© ¢ RY are set,
then, the following sequence of subproblems are solved in the pth
iteration:

X — (14 p) ! <y +p (s“’) _ t(p))) 7 3)
S(P+1) =D, (g(i"))7 )
t(p+1) _ t(p) + (X(p+1) _ S(:tﬂrl))7 (5)

where p is step size of the algorithm, D, is an arbitrary off-the-shelf
denoiser for graph signals and §” = x4+t It is clear that
(3) and (5) are independent of the underlying graph, but (4) can be a
graph-specific denoiser.

3. PROPOSED METHOD

3.1. Nested-structured DAU for Graph Signal Restoration

To develop a trainable P layer network based on DAU, we take fol-
lowing approaches. Fig. 1(right) is the illustration of the proposed
framework.

First, the iterations of the algorithm (3)—(5) are unrolled so that
it has P sequential layers having the same structure. Then, we set p
in (3) to be learnable, i.e., p — {pp}§;01 in which p now indicates
the layer number. In other words, the network is basically equivalent
to PnP-ADMM with P iterations, but each calculation is conducted

with different parameters. Second, a set of off-the-shelf denoisers
{Dg(,p ) }5;01 for graph signals are also designed based on DAU.

Hereafter, we refer to this network as NestDAU and show its
overall algorithm in Algorithm 1.
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Algorithm 1 NestDAU

Algorithm 2 GraphDAU

Input: y, s®, £, fo’), P.
I: forp=0,...,P—1do

2 XD (14 )t (y+pp (sm _ t(p)))

3: g(l’) — x(p"rl) _|_t(1’)
4. st o PP (5P)) (see Algorithm 2)
5 t+D) ¢ 4 (X(p+1) _ s(p+1>)
6: end for
Output: x(P).

3.2. Design of Trainable Deep Denoiser

Here, we design a trainable denoiser-in-the-loop Dép ) based on

DAU. To simplify the notations, the denoising problem here is

denoted as y = x + n by setting s TV = x and §») = y in (4).
Indeed, any denoiser can be used as Dép ) including GCNs. In

this paper, we design Dép ) based on a quadratic optimization with ¢
regularization in [22,31] because it has a small number of parame-
ters leading to computationally-efficient training. It is formulated as
follows:

1
min  ~|x—y|® + A[v[1, subjecttov=Mx. (6)
XERN,VE]RlEl 2

The second term in (6) can be rewritten as follows:

IMx[[1 =3 n, VWis |2 — @51, )

where M; is a set of vertices connecting with v;.

While [22] utilizes a half-quadratic splitting method [32] as the
fundamental iterative algorithm for DAU, we use a different iterative
algorithm using ADMM. In fact, ADMM is known as an effective
solver of (6). The optimal global solution of (6) can be found by
solving a sequence of subproblems shown in (8)—(10) represented as
follows:

—1
x(+D) = (1 + lMTM) (y +ImT (v - u<‘>)) . (®)
0 0
v =g | (MX(Z+1) + u“)) , 9)

u([+1) _ u(@ 4 MX(Z-H) _ V(Z-H), (10

where 7 is the step size of the algorithm and arbitrary initial variables
v©@ u® ¢ RI¢ have to be set. Furthermore, S acts as a soft-
thresholding operator, i.e., [Sya(x)]; = sgn(z;) max{|z;| —yA, 0}.

To design the trainable denoiser-in-the-loop, we unroll the itera-
tion of (8)—(10). In other words, instead of using the fixed parameters
in each iteration, we set -y and v\ to be learnable, i.e., v — {7 [L;Ol
and YA — {B¢};Z, in which £ denotes the layer number of the sub-
module.

This denoiser for the submodule of NestDAU can also be used as
an independent graph signal denoiser. Therefore, we call it Graph-
DAU hereafter. To avoid the repeated matrix inversion in (8), the
eigendecomposition (EVD) of L is precomputed such that it can re-
duce the computational complexity. Algorithm 2 shows the overview
of GraphDAU.

The numbers of parameters for GraphDAU and NestDAU are
2L and (2L + 1) P, respectively, and they are independent of N.

Input: y, M,L=M"M, v{®, u©®, L.
1: Compute the eigendecomposition L = UAU .
2: for{=0,...,L —1do

3§yt iMT (Vu) _ u<e>)
& XU (14 7%1\)_1 Uy
5: v Sg, (MX(ZH) +u®
1) u® ¢ MxEHD) D

=)

7: end for
Output: x&).

Table 1: Training configuration where BS and LR refer to batch size
and learning rate, respectively.

BS Epoch Weightdecay Optimizer LR  Scheduler

1 5 1.0 x 10* Adam [33] 0.02 StepLR

4. EXPERIMENTAL RESULTS

For experiments, we use following graph signals:
* Synthetic signals on a community graph (/N = 250),
* U.S. temperature data (N = 614).

We create piecewise constant graph signals based on cluster labels
of a community graph with three communities (see Fig. 2(a)). The
graph itself is fixed with all samples, but the cluster labels are differ-
ent. Each cluster in the graph is assigned an integer value between
0 to 5 randomly as its cluster label. Then, AWGN (o = {0.5,1.0})
is added to the ground-truth signals. The dataset is split into 500
training, 50 validation, and 50 testing data.

For real data, we use daily average temperature data in the
United States in 2017, provided by QCLCD'. The original weather
data contain missing values. As a preprocessing, the missing values
in the time series are filled by linear interpolation. Then, like the
previous example, AWGN (o = {3.0,5.0,7.0,9.0}) is added. As
a result, we obtain 304 training (January 31st to November 30th),
31 validation (December 1st to 31st), and 30 testing (January 1st
to 30th) data. The weighted graph is constructed by a 8-nearest
neighbor graph based on the geographic coordinates of the stations.

In this paper, we compare the denoising performance with five
existing methods listed as follows:

* Diffusion with heat kernel (HD) [34]
* Spectral graph bilateral filter (SGBF) [17]
¢ ADMM with fixed parameters ((8)—(9)) with 10 iterations

* PnP-ADMM with fixed parameters [28]: Its formulation is
given in Section 2.2 and the off-the-shelf denoisers are HD or
SGBF with 12 iterations

For a fair comparison, their fixed parameters are tuned by performing
a grid search on the validation data to minimize RMSE.
We also include the following deep learning-based methods:

¢ Multilayer perceptron (MLP)

* Graph convolutional network (GCN) [26]

* Graph unrolling-based trend filtering (GUTF) [22]
* Graph unrolling-based sparse coding (GUSC) [22]

"https://www.ncdc.noaa.gov/orders/qclcd/
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Table 2: Denoising results (average RMSEs for test data).

Community graph U.S. temperature

L/ P | #of parameters | 0 =05 o0=10 | 0=30 =50 oc=70 oc=90
Noisy - - 0.507 1.004 3.030 5.037 6.999 8.916
HD - - 0.307 0.486 1.899 2.374 2.748 3.314
SGBF - - 0.285 0452 1.878 2.346 2.754 3.028
ADMM 10 - 0.196 0.368 1.827 2.320 2.597 2.913
PnP-HD 12 - 0.308 0.482 1.852 2.323 2.583 3.076
PnP-SGBF 12 - 0.285 0.448 1.890 2.345 2.709 2.965
MLP - 321 0.464 0.832 3.047 4.812 6.432 7.926
GCN - 321 0418 0512 2.175 2.394 2.727 3.008
GUTF - 19,397 0.179 0.320 2.207 2.348 2.637 2.911
GUSC - 11,270 0.225 0.368 2.132 2.383 2.738 3.062
GraphDAU 10 20 0.153 0.312 1.744 2.220 2.549 2.822
4 84 0.144 0.300 1.723 2.206 2.550 2.808
NestDAU 8 168 0.136 0.295 1.720 2.208 2.544 2.834
12 252 0.129 0.283 1.720 2.206 2.536 2.867

MLP and GCN are set to have two layers. GUTF and GUSC are
set to have one layer, and other specifications are the same as those
provided in [22].

The training configuration of our proposed method is determined
by our preliminary experiments as shown in Table 1. We set the
layer of GraphDAU to L. = 10 and it is also used as submodules
of NestDAU. We compare NestDAU having different numbers of
layers, i.e., P € {4, 8,12}, referred to as NestDAU p.

Experimental results are summarized in Table 2 in addition with
the number of trainable parameters for the learning-based methods.
Clearly, GraphDAU and NestDAU have fewer parameters than MLP,
GCN, and the existing DAU for graphs because our proposed method
does not contain weight matrices to be trained.

For both signals, the proposed method shows consistently better
RMSEs than the existing methods including the deep learning-based
methods. Basically, NestDAU is slightly better than GraphDAU be-
cause NestDAU includes GraphDAU as its submodules. The number
of layers in NestDAU affects the restoration performance: Interest-
ingly, deeper layers usually result in better RMSEs (in contrast to
the other GCNs) with an exception for the case with o = 9.0 for
the U.S. temperature data. GCN is comparable to or slightly worse
than the optimization-based approaches while it has a large number
of trainable parameters. MLP is much worse than GCN in this exper-
iment because clearly MLP does not consider the underlying graph
structure. GUTF and GUSC are comparable to the ADMM-based
denoising while they have a huge number of parameters. Note that
all methods in this experiment only use a single feature on a node.
In [22], it is suggested that using multiple features improves denois-
ing performance especially for deep learning-based approaches: Our
future work includes such comparisons.

The visualizations of the denoising results are shown in Fig. 2.
As can be seen in the figures, our proposed method suppresses errors
compared to the alternative methods.

5. CONCLUSIONS

In this paper, we proposed a signal denoising method on graphs with
a trainable network. The proposed method, called NestDAU, is de-
signed based on PnP-ADMM as the main framework and ADMM
as a submodule. The nested DAU structure outperforms alternative
methods including graph low-pass filter, convex optimization-based
denoising and deep learning-based approaches. Our future work

" @eusc” () GraphDAU (k) NestDAU 5

Fig. 2: Restoration results (community graph, o = 1.0).

includes to study the effectiveness of NestDAU for different noise
models and more general graph signal restoration problems.
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