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ABSTRACT

In this paper, we propose a deep algorithm unrolling (DAU) based on
a variant of the alternating direction method of multiplier (ADMM)
called Plug-and-Play ADMM (PnP-ADMM) for denoising of signals
on graphs. DAU is a trainable deep architecture realized by unrolling
iterations of an existing optimization algorithm which contains train-
able parameters at each layer. We also propose a nested-structured
DAU: Its submodules in the unrolled iterations are also designed
by DAU. Several experiments for graph signal denoising are per-
formed on synthetic signals on a community graph and U.S. temper-
ature data to validate the proposed approach. Our proposed method
outperforms alternative optimization- and deep learning-based ap-
proaches.

Index Terms— Graph signal processing, optimization algo-
rithm, deep learning, signal denoising, deep algorithm unrolling.

1. INTRODUCTION

Many sensing devices capture and store various signals. Since ob-
served signals via such devices frequently suffer from noise or miss-
ing values as a consequence of the sensing process, signal restoration
methods have been intensively studied in signal processing. The goal
of signal restoration is to recover the original signal from observa-
tion(s) by solving an inverse problem which includes blind deconvo-
lution [1], denoising [2], and interpolation [3].

Signals often have underlying structures, e.g., sensor, social,
transportation and brain networks, power grid, and 3D meshes.
Graphs have been utilized to mathematically represent such struc-
tures. A graph signal is defined as a discrete-time signal whose
domain is nodes of a graph, and the relations between samples are
explicitly given by edges. Different from discrete-time signals on a
regular grid such as audio and image signals, graph signal process-
ing (GSP) can treat the underlying structure of the signal [4–6]. In
this way, GSP is a very powerful tool for compression [7], sampling
and restoration [8–10], and analysis of graph signals [11] which
could be used in a wide range of applications for irregular-structured
data.

In this paper, we focus on denoising of graph signals. Exist-
ing approaches can be classified into standard optimization-based
approaches such as regularized optimization [12], graph filters and
filter banks [13, 14] and deep learning on graphs [15]. As with stan-
dard signal processing, a widely-used assumption of ground-truth
signals is that the signal is smooth, i.e., it contains higher energy
in its lower-frequency components. These methods mainly utilize
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smoothness prior either on the vertex domain or on the graph fre-
quency domain. In the vertex domain approaches, a minimization
problem incorporates the smoothness as a regularization term such
as graph total variation (GTV) [16] which basically regularizes the
first-order or second-order difference of neighboring signal values.
Another approach in the graph frequency domain aims to reduce
high graph frequency components via graph Fourier transform. Ex-
amples are graph spectral low-pass filters like spectral graph bilat-
eral/trilateral filters [13, 17]. In deep learning-based approaches, a
variant of auto-encoder [18] for irregular-structured data has been
proposed in [15].

Traditionally, iterative optimization algorithms have been widely
used for signal restoration problems to efficiently solve convex op-
timization problems including regularization [19, 20] as illustrated
in Fig. 1(left). The algorithm is iterated with a fixed parameter θ
until convergence. The performance and the speed of convergence
of conventional optimization algorithms, therefore, mostly depend
on the initial choice of parameters (e.g., step size and regularization
parameter) whose values are determined manually.

Deep algorithm unrolling (DAU) is a method to build a multi-
layer network by unrolling the loops of a conventional optimization
algorithm and deploying the trainable parameters at each layer [21].
A layer of DAU corresponds to one step of the iterative optimization
algorithm. Instead of manually choosing the parameters, those in
each layer can be trained from available training data to minimize
a loss function. Some variants of DAU have been proposed in the
signal processing field [22, 23].

An extension of DAU into the graph setting was recently devel-
oped in [22]. It mainly aims to realize graph signal denoising in
an unsupervised-learning setting. Specifically, two problems with
sparse coding and trend filtering are considered with a new graph
convolutional network (GCN) [24, 25]. Furthermore, many GCN
implementaions have been proposed so far and used for various ap-
plications, e.g., semi-supervised classification [26]. These methods
often contain trainable weight matrices in their network that may re-
quire a huge number of parameters to be trained. Furthermore, it has
been reported in many papers (like [22,25,26]) that deeper networks
cannot attain good performance for GCNs, in contrast to convolu-
tional neural networks for image and speech signal processing.

In this paper, we leverage the concept of DAU mentioned above
to offer an efficient and trainable model-based network for graph sig-
nal denoising. On the basis of DAU, we unroll the iterations of Plug-
and-Play ADMM (PnP-ADMM) [27, 28], which is an efficient sig-
nal restoration method inspired by the alternating direction method
of multiplier (ADMM) [29] while being enabled to use an off-the-
shelf denoiser in its iterative algorithm. With the DAU structure,
we can install trainable model parameters at each layer. Further, the
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Algorithm 1 NestDAU

Input: y, s(0), t(0), D(p)
g , P .

1: for p = 0, . . . , P − 1 do
2: x(p+1) ← (1 + ρ)−1

(
y + ρp

(
s(p) − t(p)

))
3: s̃(p) ← x(p+1) + t(p)

4: s(p+1) ← D(p)
g (s̃(p)) (see Algorithm 2)

5: t(p+1) ← t(p) + (x(p+1) − s(p+1))
6: end for

Output: x(P ).

3.2. Design of Trainable Deep Denoiser

Here, we design a trainable denoiser-in-the-loop D(p)
g based on

DAU. To simplify the notations, the denoising problem here is
denoted as y = x+ n by setting s(p+1) = x and s̃(p) = y in (4).

Indeed, any denoiser can be used as D(p)
g including GCNs. In

this paper, we designD(p)
g based on a quadratic optimization with �1

regularization in [22, 31] because it has a small number of parame-
ters leading to computationally-efficient training. It is formulated as
follows:

min
x∈RN ,v∈R|E|

1

2
‖x− y‖2 + λ‖v‖1, subject to v = Mx. (6)

The second term in (6) can be rewritten as follows:

‖Mx‖1 =
∑

j∈Ni

√
wij |xi − xj |, (7)

where Ni is a set of vertices connecting with vi.

While [22] utilizes a half-quadratic splitting method [32] as the
fundamental iterative algorithm for DAU, we use a different iterative
algorithm using ADMM. In fact, ADMM is known as an effective
solver of (6). The optimal global solution of (6) can be found by
solving a sequence of subproblems shown in (8)–(10) represented as
follows:

x(�+1) =

(
I+

1

γ
M�M

)−1 (
y +

1

γ
M�

(
v(�) − u(�)

))
, (8)

v(�+1) = Sγλ

(
Mx(�+1) + u(�)

)
, (9)

u(�+1) = u(�) +Mx(�+1) − v(�+1), (10)

where γ is the step size of the algorithm and arbitrary initial variables
v(0),u(0) ∈ R

|E| have to be set. Furthermore, Sγλ acts as a soft-
thresholding operator, i.e., [Sγλ(x)]i = sgn(xi)max{|xi|−γλ, 0}.

To design the trainable denoiser-in-the-loop, we unroll the itera-
tion of (8)–(10). In other words, instead of using the fixed parameters
in each iteration, we set γ and γλ to be learnable, i.e., γ → {γ�}L−1

�=0

and γλ → {β�}L−1
�=0 in which � denotes the layer number of the sub-

module.

This denoiser for the submodule of NestDAU can also be used as
an independent graph signal denoiser. Therefore, we call it Graph-
DAU hereafter. To avoid the repeated matrix inversion in (8), the
eigendecomposition (EVD) of L is precomputed such that it can re-
duce the computational complexity. Algorithm 2 shows the overview
of GraphDAU.

The numbers of parameters for GraphDAU and NestDAU are
2L and (2L+ 1)P , respectively, and they are independent of N .

Algorithm 2 GraphDAU

Input: y,M, L = M�M, v(0),u(0), L.
1: Compute the eigendecomposition L = UΛU�.
2: for � = 0, . . . , L− 1 do
3: ỹ(�) ← y + 1

γ�
M�

(
v(�) − u(�)

)
4: x(�+1) ← U

(
I+ 1

γ�
Λ
)−1

U�ỹ(�)

5: v(�+1) ← Sβ�

(
Mx(�+1) + u(�)

)
6: u(�+1) ← u(�) +Mx(�+1) − v(�+1)

7: end for
Output: x(L).

Table 1: Training configuration where BS and LR refer to batch size
and learning rate, respectively.

BS Epoch Weight decay Optimizer LR Scheduler

1 5 1.0× 104 Adam [33] 0.02 StepLR

4. EXPERIMENTAL RESULTS

For experiments, we use following graph signals:

• Synthetic signals on a community graph (N = 250),

• U.S. temperature data (N = 614).

We create piecewise constant graph signals based on cluster labels
of a community graph with three communities (see Fig. 2(a)). The
graph itself is fixed with all samples, but the cluster labels are differ-
ent. Each cluster in the graph is assigned an integer value between
0 to 5 randomly as its cluster label. Then, AWGN (σ = {0.5, 1.0})
is added to the ground-truth signals. The dataset is split into 500
training, 50 validation, and 50 testing data.

For real data, we use daily average temperature data in the
United States in 2017, provided by QCLCD1. The original weather
data contain missing values. As a preprocessing, the missing values
in the time series are filled by linear interpolation. Then, like the
previous example, AWGN (σ = {3.0, 5.0, 7.0, 9.0}) is added. As
a result, we obtain 304 training (January 31st to November 30th),
31 validation (December 1st to 31st), and 30 testing (January 1st
to 30th) data. The weighted graph is constructed by a 8-nearest
neighbor graph based on the geographic coordinates of the stations.

In this paper, we compare the denoising performance with five
existing methods listed as follows:

• Diffusion with heat kernel (HD) [34]

• Spectral graph bilateral filter (SGBF) [17]

• ADMM with fixed parameters ((8)–(9)) with 10 iterations

• PnP-ADMM with fixed parameters [28]: Its formulation is
given in Section 2.2 and the off-the-shelf denoisers are HD or
SGBF with 12 iterations

For a fair comparison, their fixed parameters are tuned by performing
a grid search on the validation data to minimize RMSE.

We also include the following deep learning-based methods:

• Multilayer perceptron (MLP)

• Graph convolutional network (GCN) [26]

• Graph unrolling-based trend filtering (GUTF) [22]

• Graph unrolling-based sparse coding (GUSC) [22]

1https://www.ncdc.noaa.gov/orders/qclcd/
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