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Abstract Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major
role in organizing this behavior. There are a number of experimental observations in these systems which
await a comprehensive explanation. These include: the internal strains are tensile even for clusters that
expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster;
there can exist density waves within the cluster; and for cells in an annulus, there is a transition between
expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We
formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows
“stalling”—inhibition of cell contraction by external forces. Stalled cells are passive from a physical point
of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking
into account contact inhibition of locomotion, we get a simple picture for many of these findings as well
as predictions that could be tested.

1 Introduction

Eukaryotic cells can often move by a judicious use
of forces generated by their cytoskeleton and applied
to their surroundings [1]. The observed motion can
range from individual cells moving through extracel-
lular space to the coordinated collective motion seen
during developmental morphogenetic processes such as
gastrulation. In fact, many processes that are important
in biology and medicine involve the collective motility
of epithelial cell sheets and clusters. In addition to mor-
phogenesis, this type of motion is important during tis-
sue repair, and cancer invasion [2]; for a recent review,
see [3]. A particularly striking example occurs as part
of the progression of inflammatory breast cancer, where
the rapid progress of the disease has been connected to
collective cell motion [4,5]. In this paper, we present
a simplified mechanical model of the collective motion
of cell clusters which is intended to clarify some of the
mechanical aspects of these phenomena.

Aside from its biological relevance, collective cell
motion is of great interest from the perspective of non-
equilibrium physics. Individual cells are active parti-
cles [6], able to use their stores of ATP to remain far
from equilibrium, do work on their surroundings and on
their neighbors, and more generally evade many of the
features we associate with non-active materials. Dur-
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ing collective motion, these cells coordinate their activ-
ity by mechanical coupling, for example by connections
such as adherens junctions [7]. This coordination can
further be modulated by signaling processes, helping to
determine cellular front-back polarity [8] which affects
the directionality of applied forces. How the interplay
of all these effects gives rise to the observed collec-
tive behavior is a challenging conceptual problem. Our
model accounts for many of the observed features. For
simplicity we focus on a one-dimensional system (lines
of cells moving on a substrate). A key feature is a mech-
anism for cells to transition from being active particles
to passive ones, which turns out to underlie a uniform
explanation for several distinct experimental results.

Collective motility has been studied in many experi-
ments, for a wide variety of cell types [9]. Major progress
has been made by utilizing convenient choices of cells,
for example clusters of Madin–Darby Canine Kidney
(MDCK) cells, moving on substrates that can be pat-
terned by standard lithography techniques. Our pri-
mary interest is the physical forces between the cells.
These can be measured by traction force microscopy
[10–13]. There is significant evidence from this body of
work that the interaction between cells that produces
collective behavior is primarily mechanical.

The observed mechanics exhibits some striking fea-
tures: for example in [10], it was shown that the
mechanical stress in the center of a cluster is primarily
tensile even though there is cell division and the clus-
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ter continually expands in size. In these experiments,
tension and cell density varied on the scale of mil-
limeters. Conversely, in [11,12] the inter-cellular ten-
sion increased up to a plateau within a few cells of the
boundary. In these newer experiments, it was shown
that most of the traction on the substrate comes from
the outer parts of the cluster; in terms of net force
applied, it is as if the center is barely attached to the
substrate. This finding is most pronounced at early
times, but persists to some extent even as the overall
pattern begins to exhibit increasingly random fluctua-
tions. Our model gives a plausible explanation for both
these behaviors. We will see that a key parameter is
the rate of cell division which adds fluctuations to the
cluster interior.

Sometimes, mechanical waves are observed within the
cluster [12,14]. In [12], waves originate at the boundary
following the release of the confluent layer from con-
finement. In [14], there is spontaneous generation of
repeated waves which the authors attribute to a linear
instability of the system. In our model, there are waves
that propagate due to the effective finite response rate
of the cells when they are released from the passive
state by some perturbation. Our model does not show
an intrinsic instability as in [14]: we will comment on
this below.

In a recent experiment, one-dimensional clusters of
cells are observed in annular rings [15]. There is a tran-
sition between growth with expansion, when the clus-
ters do not fill the ring, and collective unidirectional
motility without cell division, when they do.

There have been a number of theoretical models for
the mechanics of these systems, e.g., [11,15–18]. Some
authors have modeled the cell cluster as a continuous
active medium. In [16], the cluster is treated as a vis-
cous fluid with an effective viscosity and friction coef-
ficient which interacts with a nematic-like polarization
field. Continuum models are also used to investigate
questions regarding the stability of the advancing tissue
boundary [19–21]. A continuum model for wave prop-
agation [17] required feedback between strain and an
internal variable of the cell cluster. In [14], a contin-
uum model for waves is given with a coupling between
strain and polarity. The model is qualitatively com-
patible with the experiments for the case of instability
waves.

In [15], there is a theoretical model for the transition
to collective unidirectional motility in an annulus. This
treatment considers each cell to be in one of three differ-
ent states, left polarized, right polarized, or stationary
(i.e., passive). Transitions between the states are gov-
erned by a master equation which takes into account
contact inhibition of locomotion (CIL), i.e., the ten-
dency for cells that collide to move away from each
other; see [3] and references therein. This model is very
similar to our treatment of the transition, see Sect. 3.3.

There are also models which attempt to fully resolve
the shape degrees of freedom of the individual cells,
e.g., the cellular Potts models [22], vertex models [23],
and phase-field approaches [24,25]. There has been only
limited successes in using these models to study the

detailed mechanical state of the cluster and the exis-
tence of waves.

Finally, there are simplified cell approaches, ranging
from the extreme of treating the cell as a single point
[26] to more complex collections of subcellular point-
like elements [27]. In [18], cells are treated as composed
of two force centers coupled by a contractile spring and
which interact with other cells via adhesion forces. The
theory includes cell proliferation and CIL. In [11], the
cell monolayer as a whole is treated using a molecu-
lar clutch scheme [28,29] much like the one we pro-
pose below for individual cells. However, the observed,
puzzling, feature that the tractions are localized at the
edges of the cluster was put in by hand [11]. The focus
of [11] is collective durotaxis, which we do not treat
here. (An extension of our model to the durotaxis case
is in progress).

A more detailed theory of durotaxis using a molec-
ular clutch model was given in [30]. Once more the
lack of tractions in the center of the cluster was simply
assumed by attaching the cluster to the substrate only
at the edges. In our model, below, this feature arises
naturally. It may be, of course, that attachments in the
center of the cell mass decay because they are not used.
However, this does not answer the question of how the
lack of tractions arises in the first place. The impor-
tant point is that our simplified scheme shows how the
observed coordination throughout the cluster could be
attained by mechanical means alone.

Our model is a simplified cell model in one dimension.
We consider cells connected to a substrate by bonds
that represent focal adhesions, Cells are joined by bonds
and their motion is modulated by CIL. In our version
of CIL, cells slow down to avoid hitting any barrier in
front. Also, when two cells have a head-to-head col-
lision, one or both of them reverse polarization. (See
[18] for a more a more general version of CIL). The
polarization affects the distribution of adhesion sites,
as is commonly seen in experiment [31]; adhesions are
formed in the front and are disassembled in the rear.

The dynamics of each cell involves a cycle of contrac-
tion and protrusion, as in many treatments of single-cell
motility [32–34]. The contraction is directly coupled to
intra- and inter-cellular forces through a linear contrac-
tion speed–load relation modeling the effect of many
molecular motors [28,29]. If the tensile stress on the
cell is too high, it will not be able to contract and will
instead “stall.” This is analogous to the stationary state
in [15]. This notion is compatible with the observation
in [11] and in [12] that the interior of the cluster sees
small cell speeds/traction and large tension. As we will
see below, this notion of stalled cells is key to explaining
many of the observed features of cluster mechanics.

Our model is a very simple view of a complex sys-
tem. Our intention is to isolate the key features that
give rise to the surprising effects described above. We
differ from earlier schemes by our explicit treatment
of the cell motility cycle and the incorporation of the
molecular clutch idea. These extra complications have
an important payoff: in our model, it is easy to see why
we can generate waves and the transition from passive
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to active cells is quite natural. Our simple framework
explains, within a single scheme, many of the salient
mechanical features of this class of systems.

2 One-dimensional model

In this section, we describe our model for collective
motility.

2.1 Cell motility and the molecular clutch model

Our starting point is the assumption of a motility cycle:
cells first contract and partially detach from the sub-
strate by breaking adhesive bonds (more in the back
than in the front), and then the cell protrudes forward.
Bonds can re-attach after detaching and after cell pro-
trusion. The cell then contracts again.

In [18,35], each cell is considered to be composed
of two subcellular elements that interact with a fixed
active contractile spring force. Some previous work
[33,34] assumed that the cells have a fixed contrac-
tion speed. Both of these assumptions are rather sim-
plified views of the complex process of myosin motor
mini-filaments walking along actin fibers. Here, we use
the model of [28,29]. In this more realistic account, the
molecular motors that drive contraction have a non-
trivial force–velocity curve and thereby allow the cell
to pause contraction when the tension applied is too
large. The advantage of this point of view, as we have
mentioned above, is that it gives a natural account of
cell stalling.

We picture the cell as a one-dimensional “bar” which
is uniformly compressed around its midpoint by the
contracting actin cytoskeleton (Fig. 1). We assume the
myosin motors to be concentrated at the midpoint
dividing the cell into front/back halves of equal lengths
L(t). The retarding force acting against contraction is
generated by the adhesions to the substrate and the
connections to the other cells. This force is the same
as the tension, T , at the cell midpoint, since the cell is
in force balance. The condition for stalling is that T is
greater than Ts, the stall tension. We denote the force
felt by each cell’s head as Fh. This force will play a role
in our formulation of contact inhibition of locomotion
(CIL), see Sect. 2.2.

In a time step of length dt, the half-length contracts
from L to L − dL, where

dL = dt f(T )g(Fh). (1)

The speed–load curve of the molecular clutch [28] is:

f(T ) =

⎧
⎨

⎩

vf if T ≤ 0
vf (1 − T/Ts) if 0 < T < Ts

0 if T ≥ Ts.

(2)

The factor g(Fh) is related to CIL. For a freely mov-
ing cell, g(Fh) = 1. The full definition will be given in
Sect. 2.2.

The cell starts each contraction cycle with half-length
L0. It then contracts for multiple steps according to
Eq. 1, before reaching the minimum half-length of
(1 − rcontr)L0. Afterward, it reverts to L0 by protrud-
ing forward quickly and then enters the next contrac-
tion cycle. The protrusion part of the cycle is intended
to represent the extension of the forward part of the
cell which is not connected to the substrate, and its
subsequent attachment. Since this step does not, in the
model and in reality, require detachment of adhesions,
it is reasonable to assume that it has a short time scale.

The cell is attached to substrate (assumed to be rigid)
with adhesion bonds, which describe trans-membrane
proteins such as integrin. We represent these as a num-
ber of springs with rest length zero and spring constant
k. Consider a cell whose midpoint has coordinate xc. At
the beginning of a contraction cycle, a series of springs
is formed with one end on cell body at x

(c)
i and the

other on substrate at x
(s)
i = x

(c)
i . The index i runs over

the front and back set of adhesions. All adhesions are
randomly positioned according to truncated Gaussian
probability distributions, except that two adhesions are
always placed at the ends.

Formally, adhesion indices run over i = −Nadh,back,
−Nadh,back + 1, . . . ,−1, 1, 2, . . . , Nadh,front, where neg-
ative i indicates an adhesion in the back half, and pos-
itive the front. In this process, two adhesions of indices
i = Nadh,front,−Nadh,back form at front/back end of
the cell, respectively, and the others are placed by draw-
ing the relative positions randomly:

r
(c)
i =

x
(c)
i − xc

x
(c)
Nadh,front

− xc

∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

= −1 if i = −Nadh,back

= 1 if i = Nadh,front

N (μ = i
Nadh,back

,

σ = 1
4Nadh,back

) if i= − Nadh,back + 1, . . . ,−1
N (μ = i

Nadh,front
,

σ = 1
4Nadh,front

) if i = 1, . . . , Nadh,front − 1.

(3)

N denotes the normal distribution truncated to
within [−1, 1], so as to always lie within the cell
body. We define the front/back polarity by assigning
Nadh,front > Nadh,back, i.e., the front half has more
adhesions (see Table 1). This is a simplification of the
polarized distribution described earlier in [33].

As the cell body contracts, the x
(c)
i change, but the

absolute coordinates x
(s)
i are unchanged under a rigid

substrate assumption. Therefore, the i-th adhesion is
stretched because x

(c)
i �= x

(s)
i , and exerts a force fi =

k(x(s)
i −x

(c)
i ) on the cell. The adhesions can detach when

fi becomes large. We take the rate of detachment to be
governed by Bell’s Law:
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Fig. 1 a One-dimensional
model for a single cell. The
red lines are springs with
spring constant k,
representing adhesions to
substrate. The adhesions
detach with rate koff and
attach with rate kon. The
cell length contracts
according to Eq. 1. At the
start of a contraction cycle,
more adhesions form in the
front half than in back. In
the figure, the long bonds
represent adhesions that
attached to the substrate
and the shorter ones
represent ones that have
detached. The heights of
cellular components are for
illustration only—the
model is one dimensional.
b Snapshots of key steps
during contraction cycles

a

b

koff = K exp(fi/Fd), (4)

where Fd is the critical detachment force. The adhesions
revert to zero length when detached. Afterward, they
randomly reattach with a constant rate K.

Elastic relaxation is a much faster process than any
biochemical process. This is because the elastic ele-
ments of a cell cluster relax with a rate connected to the
speed of sound. Even in a viscous disordered medium
such as a cell with its cytoskeleton and concomitant
adhesion proteins, this is surely much faster than the
contraction and division processes, which occur on the
scale of minutes.

In our model, cells undergo immediate mechanical
equilibration of the springs by shifting midpoint posi-
tions xc after each biochemical change, i.e., each con-
traction and any detachment/attachment of adhesions.
Since each half of the cell body is in equilibrium, the
tension T in Eq. 1 must be equal to the total force
exerted on the half-body by the adhesions, fi, and with
adjacent cells, finter :

T =
∑

half cell

(fi + finter) (5)

The cell contracts by a maximum ratio rcontr. Then,
it “protrudes” by reverting L(t) to L0 and placing the
back end at the x

(c)
i of the current rear-most adhesion,

as in the models of [33,34]. In a cluster of multiple cells,
each cell is only allowed to protrude to occupy the inter-
cellular space, and is prevented from overlapping with
the neighboring cell, so they may protrude to a length
smaller than L0.

Our picture of a single cell means that it will translate
uniformly in the forward direction, that is, the direction
where there are more adhesive bonds. We neglect ran-
dom reversals of polarization. We believe that random
reversals must be a minor effect in the experiments we
treat since the cell clusters do organize to spread, as in
[10] and to coherently rotate around an annulus as in
[15]. Therefore, we only focus on reversals induced by
CIL, as in the next section.

2.2 Contact inhibition of locomotion

Suppose the cell runs into a barrier (such as another
cell) in front that applies a force Fh on the cell. Then,
we modify the contraction (recall Eq. 1):
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Table 1 Parameters in one-dimensional model

Symbol Meaning Value

L0 Cell’s (maximum) half-length at the beginning of each
contraction cycle

5 µ m

vf Cell’s free(maximum) contraction speed, w.r.t half-length 3 µm/h
rcontr Cell’s maximum allowed contraction ratio 20%
Ts Cell’s stall tension 10 nN
Fhs Cell’s head-stopping force 1.5 nN
l0 Rest length of inter-cellular adhesions, also the initial

inter-cellular separation except for the pre-confinement
modeling

5 µm

k Spring constant of cell–cell and cell–substrate adhesions 1 nN/ µ m
K Reattachment rate and coefficient in detachment rate

expression of cell-substrate adhesion
6/h

Fd Critical force for detachment of cell–substrate adhesions 0.75 nN
Tdiv Threshold tension of cell division 0.99 Ts

kdiv Rate of cell division once T ≥ Tdiv 0.6/h
Nadh,back Number of adhesions to substrate in back half 8
Nadh,front Number of adhesions to substrate in front half 10
dt Time step size 1 min

g(Fh) =

⎧
⎨

⎩

1 if Fh ≥ 0
(1 + Fh/Fhs) if − Fhs < Fh < 0
0 if T ≤ −Fhs.

(6)

where Fh takes positive sign when aligned with cell
back-to-front vector. Thus, when the cell in front pulls
on the cell in question, Fh > 0 and there is no sup-
pression of motility. In this work, cases where Fh < 0
are always transient as expanding cell clusters are pri-
marily tensile. Thus, cells ’run into each other’ only in
the initial, confined state. Fhs is the scale of the force
required to stop the cell. The rationale of Eq. 6 is that
cells may actively slow down their motility to mitigate
collisions.

In addition to the slow-down, cells can actively alter
their direction of movement to avoid collision. In one
dimension, there are two possible polarities, left or
right. We have defined the polarity by the distribution
of adhesions—the half with more adhesions is the front
half; cells always protrude toward the front. For a cell
that is in front-to-front collision against another, con-
tact inhibition results in disassembly and assembly of
adhesion complexes in front and back, respectively. We
represent this process by randomly relocating detached
cell–substrate adhesions in the front half to the back
with rate:

kr = K exp(Fh/Fhs), (7)

excluding the one located at the front end. The
details of the placement of the relocated adhesions are
described in the supplement (Sect. 1).

Once the current rear half has more cell–substrate
adhesions, the cell flips polarity, i.e., it protrudes from
the end which now has more adhesions. For simplicity,
we take the same prefactor as in Eq. (4).

2.3 Formation of a cluster

To form a cluster, the nearest ends of adjacent cells are
joined by a spring with constant k, and nonzero rest
length l0. (For simplicity, we use the same k for the cell–
cell junctions and the cell–substrate adhesions.) This
elastic bond represents not only the adherens junctions
between cells, but also the elasticity of the cell body.
For example, it is known that when cells on a surface
are stretched, they flatten by elastically deforming. The
spring is intended to incorporate both effects.

A modification is necessary for the inter-cellular
springs. For an isotropic harmonic spring with rest
length l0, the potential energy is V (x1,x2) ∝ (|x1 −
x2| − l0)2. To account for volume exclusion, the inter-
cellular adhesion should not allow an equilibrium where
two connected cells intrude into each other. Thus, we
take V (x1,x2) ∝ |x1−x2− l0|2, with l0 being a vector.

In Sect. S2 of the supplement, we demonstrate the
scheme for two interacting cells.

2.4 Cell division

In [18,35], the idea is introduced that cells are likely
to divide if the intra-cellular tension is large enough. It
has long been discussed that spatial constraints control
cell division [36–38]. Here, we take the point of view
that cells start out so confined that their division rate
is negligible. Thus, only in the unconfined state, when
the cells are under tension will we have significant pro-
liferation.

To implement this, at each step, if a cell’s tension T
is greater than Tdiv, a critical tension, it divides with
constant probability dt rdiv. Upon division, a newborn
cell of the same polarity is inserted next to the current
cell, randomly on the left or right. The new cell virtually
protrudes in place to avoid overlapping (see the discus-
sion in Sect. 2.1). The nearest ends from adjacent cells
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are then connected. When the new cell is introduced,
the system is no longer in mechanical equilibrium. We
therefore equilibrate after this step.

2.5 Algorithm

The following is our complete algorithm:

• Start each cell with length 2L0. Initialize all the
adhesions to be at their rest length.

• For each time step dt,

1. For each cell, compute T according to Eq. 5;
contract according to Eq. 1; if the cell has
reached rcontr, protrude; in cases when no adhe-
sions remain attached to substrate, wait for next
step. Adhesions are stretched. Equilibrate the
cell cluster by shifting {xc}.

2. For each cell, test for detachment of cell–substrate
adhesions using Eq. 4, i.e., detach with probabil-
ity koffdt. Equilibrate.

3. For each cell, attach the free adhesions with
probability Kdt. Equilibrate.

4. For each cell, apply contact inhibition of loco-
motion (CIL). Equilibrate.

5. For each cell, test for cell division, i.e., divide
with probability dt rdiv if T ≥ Tdiv. Equilibrate.

Figure 1b illustrates several of the key steps.

2.6 Parameters

Model parameters are listed in Table 1. We chose the
parameters to be representative of cells like MDCK, but
this model is certainly not intended to fit a particular
experiment. Of course, parameters like L0, the cell size
and l0, the adhesion rest length, are simply typical cell
parameters. The time step, dt, is a simulation parame-
ter.

To choose vf , we note that it is of the order of the free
cell speed. For MDCK, this is around 3µ m/h [39,40].
Note that vf is consistent with the value in [30] Table
1.

For the stall force, our numbers are of the same order
as those in [29] (Table S1). The parameter Fd should be
thought of as representing the detachment of hundreds
of bonds—real cells do not have 18 adhesions as our
model cells do. For the same reason, K, k, and Fd should
be regarded as effective parameters associated with an
entire focal adhesion. They give reasonable results for
the entire complex, as we will see.

Our qualitative results depend very weakly on the
exact numbers we use. For example, Fhs, the head-
stopping force (steric hindrance) could be larger with-
out changing the results qualitatively. Our values for
Tdiv and kdiv are consistent with the data on waves.

3 Simulation results

3.1 Cluster dynamics without cell division

Previous models for the motility cycle [33,34] are the
limit of Ts → ∞ of our current approach. For a free cell,
this makes little difference so our results are similar.
(For an animation of a single free-moving cell, see SI
Movie S1.)

For collective effects, we started by simulating two
cells, aligned head-to-head. As the simulation starts,
the two cells begin to collide. Because of CIL, at least
one of the two cells will eventually change its polarity.
When one cell flips, the two cells will move together as
a translating cluster. Due to the finite time step size,
both cells may flip at the same step, leading to a static
situation. See SI Section 2 and SI Movies S2 and S3 for
more details. We will see that these two basic choices,
a static cluster with an equilibrated tug-of-war versus
a translating state, also characterize multicellular clus-
ters.

For 50 cells connected by springs with random initial
polarity, we used the dynamics described in Sect. 2.
In Fig. 2, we show results from one simulation for the
polarity, cell tension, force between cell and substrate,
and inter-cellular tension. Note that after initial tran-
sients the colony settles down with large domains of like
polarity (Fig. 2a, SI Fig. 5a) pulling on each other. This
is one of two possible outcomes; the other is that the
large majority of cells move in one direction and the
whole cluster translates.

For our initial conditions with random polarity for
50 cells, both outcomes occur with roughly equal likeli-
hood. In SI Sect. 3 we show that the tug-of-war state is
increasingly likely as the number of cells increases. The
presence of an initial confinement period, as in most
of the experimental protocols, also probably biases the
outcome in favor of expansion rather than translation.
We will discuss that initial condition later. Here, we
consider simulations that lead to tissue expansion with
the majority of the cells on the left moving left and
those on the right to the right. In the case shown in the
figure, we have domains of similar size.

There are interesting features in Fig. 2 that closely
correspond to experimental observations. Once the
expansion slows, the traction force becomes confined to
the edges of the colony, even though all of the cells are
attached to the substrate (Fig. 2c, e). This is because
the interior cells are mostly stalled (not contracting)
and the forces on either end of each domain balance
(Fig. 2b, d). Only at the edges are the cells pulling
outward. These traction forces at the edges eventu-
ally transmit stress to the interior via cell–cell junc-
tions, which are therefore under large tension which
can approach Ts, the stall tension (Fig. 2f, SI Fig. 5d).
Thus, interior cells are attached, but are not generating
traction, see Eqs. (1,2,5). The tension originates from
non-stalled active edge cells. Also note that the inter-
cellular springs are tensile except for early transients
[11,12].
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Fig. 2 A simulated cell
cluster without
proliferation. a Polarity of
the cells at select time
steps during initial
transient. They eventually
form two similar-sized
domains. b Kymograph of
tension at each cell’s
midpoint. Note the stalling
of the interior. c
Kymograph of traction
force on each cell by
substrate. The kymographs
shown here are composed
of discrete points in
space-time coordinate
systems where each point
represents a cell or an
inter-cellular spring at a
specific time step. d, e
Same quantities as b, c, at
select time steps. Note how
the interior cells gradually
become stalled. f
Inter-cellular force at select
time steps, the main source
of stalling tension in the
interior. g Average traction
on the left-most cells
during the latter half of
the trajectory, and
predicted values from the
simple theory discussed in
the text

a

b c

d e

f g
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Traction force fluctuates, so we averaged the traction
by each cell over the latter half of the trajectory; see
Fig. 2g. One can read off from Fig. 2d–g that intra- and
inter-cellular tension accumulates from the outermost
cells inward, while the traction exerted by each cell
monotonically approaches zero. We have shown that
the accumulation leads to stalling of the interior, but
why is such monotonic behavior seen within the active
edge layers?

It is sensible to assume that each cell’s net traction is
made possible by protrusion, without which the forces
from different cell–substrate bonds of the same cell can-
cel each other. Since the protrusion algorithm prevents
overlapping, one might be tempted attribute this to the
fact that inner cells tend to protrude less than outer
cells. This however gives the wrong result because inter-
cellular space increases inward with inter-cellular force.

A plausible explanation lies in the speed–load curve.
Roughly speaking, more frequent protrusion, i.e., shorter
contraction cycle, leads to larger average traction.
Thus, the mean value 〈Ftrac〉 ∝ 1/Tcycle ∝
〈contraction speed〉 ∝ 〈f(T )〉. We index the cells with i
starting from 0 on the outside. Then, we further approx-
imate T (i-th cell) =

∑
i′<i Ftrac(i′-th cell), and cali-

brate the proportionality coefficient using the 0-th cell
(i.e., setting 〈Ftrac〉 to the simulation value), we obtain
the “theory” curve in Fig. 2g, which is comparable to
the observed simulation values.

Given the curve in Fig. 2g, it is clear that a mini-
mum number of active edge cells are needed to accumu-
late stress to reach stalling. On the other hand, stalled,
non-contracting cells are effectively passive. Their adhe-
sions to the substrate still randomly detach/reattach,
amounting to an effective viscous friction. The fric-
tion is similar for active cells, but it is the only cell–
substrate interaction for stalled cells. Of course, the
viscous friction force is zero unless the cells actually
move. It is therefore natural to speculate that the
polarity of stalled cells is irrelevant, so we can have
force-balanced non-translating clusters, with unequal-
sized polarity domains, so long as each domain contains
more than the required minimum number of edge cells.
Fig. 3a–c and SI Fig. 6 show an example of this type of
behavior.

On the other hand, when the left or right domain has
too few cells, the accumulated tension is not enough
and the interior cells are not stalled, but they still have
uniformly weaker contraction compared to edge cells
(Fig. 3d–f, SI Fig. 7). In this case, the whole colony
translates in bulk. The limiting case is when all cells
end up having the same polarity (see SI Figs. 8, 9).
As discussed above, starting from a completely ran-
domized polarity state both types of solution emerge
dynamically.

The localization of traction and motility shown in
Figs. 2 and 3 qualitatively agrees with experimental
findings [11,12]. This agreement relies on the fact that
cells in the center are effectively stalled by tensile stress.
Note however, that as a function of time in our simu-
lation, the width of the cell colony saturates due to
the equilibrium between the traction forces at edges

and the interior forces on individual cells; on the other
hand, those experiments observed continued expansion
for ∼10 h. This is, in our view, connected to the increas-
ing importance of cell division, which occurs more fre-
quently when cells are subject to mechanical stretching
[36–38]. We will consider this effect below. The “head-
stopping” aspect of CIL can lead to similar localization
for confined clusters, as we will see.

3.2 Pre-confinement, mechanical waves, and cell
division

A common experimental procedure for studying tissue
expansion is that cells are first confined within a rect-
angular stencil before that barrier is removed and cells
are allowed to expand into a free zone [11,12]. The cells
became mobilized progressively inward, and mechanical
quantities such as tension exhibit a wave-like pattern on
the kymographs [12]. To our knowledge, there has been
so far no consensus on the exact nature of these waves.
In our interpretation, the early-time waves that initiate
from both boundaries, travel inward, and cross each
other, are related to the sudden release of the confin-
ing barrier. The later-time waves in those experiments
might be echos of early-time waves, but might also be
associated with increased cell division.

In experiments, there are symmetrically and asym-
metrically expanding clusters [12], as in our simula-
tions with initial random polarity leading to different
domain sizes. We will focus on a symmetric case with
two equal domains, with 25 cells on left and right with
left/right polarity, respectively (Fig. 4a). Due to our
CIL rules, there is no polarity reversal in these simula-
tions (Fig. 4a).

It is not surprising that there is a finite time delay
before the influence of barrier removal reaches the inner
cells. In general, one should expect a finite relay speed
of mechanical response in cell colonies. Such a delay
would appear as a “V” or “X” pattern on a kymo-
graph, with arms initiating from boundaries and meet
at the middle. We hypothesize that the prolonged ini-
tial confined growth induces compression of the cells,
the release of which then leads to the crossed waves.
To show this, we placed harmonic potentials acting
as walls on both sides and changed the rest length of
inter-cellular springs such that all the cells are under
compression that is large enough so cells basically are
stopped (recall Eq. 6). At the 2000-th step, the two
walls are removed. As shown in Fig. 4b, because of the
mechanism in Eq. 6, cell mobilization progresses grad-
ually inward, and the tension accumulates, beginning
from center then proceeding outward. In Fig. 4c, it is
shown that the blue and red colors exchange position
once they meet at the center at around the 3000-th
step, so there is crossing rather than bouncing-back or
reflection. That is, our simulation supports the “X”-
wave observed in experiments [12].

This accounts for the waves immediately after release
[12]. For later times, if in the experiment the further
wave is actually echos, i.e., reflection of the initial waves
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Fig. 3 (a–c) Polarity at
selected times and
kymographs of tension and
traction for a static cluster
consisting of two
unequal-sized domains.
(d–f) Same quantities for a
moving cluster where the
left domain has too few
cells to stall the interior

a

b c

d

e f

off the colony boundary, this may indicate a longer time
influence of the original confinement than is present in
our treatment. Our model does not show these echos—
they dissipate after reaching the opposite boundary.
What we show instead is that cell division is a possible
source for later-time waves.

With cell proliferation, the clusters grow indefinitely
as long as the critical division tension Tdiv is smaller
than Ts. Interestingly, there is now a new source of
wave-like excitation, launched from cell division sites
(Fig. 4b, c). Specifically, whenever a new cell is born,
there is a strong local density perturbation and this
appears to launch a density wave in the cluster which

then propagates to the boundary. We understand the
waves as arising simply because there is a time delay for
a cell to start to move from its stalled state to accom-
modate the presence of the new cell. These waves are
better separated when division is infrequent (Fig. 4d),
and are more overlapped when division is more frequent
(Fig. 4e). In Fig. 4d, it is clear that each wave arm con-
sists of an upper edge where cells sequentially un-stall,
and a lower edge where cells restore stalling.

In 2D expansion experiments, the rectangular colony
spans a much larger length in y-direction, and the
kymographs are constructed by taking average or
median values across y-direction and focused on expan-
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Fig. 4 Waves in cell
clusters due to confinement
release and due to
proliferation. (Caption
continued on a different
page.) Waves in cell
clusters due to confinement
release and due to
proliferation. a Initial
setup of the cluster. b, c
Cell midpoint tension,
traction kymographs of a
proliferating cluster with
pre-confinement, where l0
is increased to 10 from
that in Table 1. See also SI
Fig. 10 d, e Cell midpoint
tension kymographs for a d
less / e more frequently
proliferating cluster. See
also SI Figs. 11, 12, and
13. f Release wave speed
measurements and
estimations. Twenty-seven
samples were generated
with varied vf , Fhs, l0. g
Division wave speed
measurements and
estimations. Nine samples
were generated with varied
vf and initial separation
between adjacent cell

midpoints Δx
(init)
c . For the

exact parameter variations
in f, g see SI Sect. 5. h Cell
midpoint tension averaged
over the latter half of a
trajectory for different
division frequencies. The
exact division-related
parameter variations can
be found under SI Fig. 4

a

b c

d e

f g

h
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sion in x-direction. Therefore, the division events across
a long line parallel to y-axis are unlikely to be synchro-
nized. How this asynchrony would affect the division-
wave pattern on such a kymograph awaits elucida-
tion by extensions of our current model to the two-
dimensional case.

Proliferation events also change the tension distribu-
tion across the cluster. As shown in Fig. 4h, the ten-
sion has a clear plateau shape in the absence of divi-
sion. As division becomes more frequent, the average
interior tension decreases and the peak at the center is
sharper. Then, due to the peaked distribution, cell divi-
sion events are more likely near the center. Although
such a division would cause stress relief, the rapid prop-
agation away from the initiation point of the waves
quickly restores the center region to being the most
tensile. This behavior could account for the observa-
tion of [10] where the tension gradient is not confined
to the surface layers; we note that the experimental
data comes from a 2D system and represents an aver-
age over some distance in the longitudinal direction,
and this may smooth out the structure as compared
to our 1D simulation results. These division events are
also a source of noise in the interior. Since the interior is
now not completely stalled, there is fluctuating, nonzero
traction with the substrate from inner cells (Fig. 4c),
as compared to Fig. 2.

It is worthwhile to compare these two different wave
phenomena seen in our model. We relate the early-time
wave pattern to the response to pre-confinement, and
late-time to accommodation to cell divisions. Both are
attributable to the inherent finite response to perturba-
tions which alter the cell’s motility from a state in which
that motility was suppressed. The former type of wave
initiates from the boundaries and propagates inward,
while the latter initiates at the center and propagates
outward. To demonstrate the underlying physics, we
can look at the propagation speeds for both wave types.
For the release wave, the wave speed measures how fast
successive cells are “activated” one by one. Label the
cells from outside as 0-th, 1-st, and so on, and consider
the time needed between the sequential activation of i-
th and (i + 1)-th cell. The distance the wave travels is
the initial separation between adjacent cell midpoints
Δx

(init)
c . We approximate the i-th cell as traveling at

the speed of single free cell speed v1, which can be eas-
ily calculated from a single cell simulation. It needs to
travel for a distance of l0−(Δx

(init)
c −2L0)−Fhs/k (See

Table 1 for parameter definitions) before the compres-
sion on the next cell’s front is less than Fhs allowing the
next one to be activated. This gives a “naive theory” of
wave speed

Δx
(init)
c v1

l0 − (Δx
(init)
c − 2L0) − Fhs/k

(see Fig. 4f). An improvement is made by considering
that each cell except for the 0-th one linearly acceler-
ates from zero to v1. When the (i − 1)-th cell’s dis-

placement is between l0 − (Δx
(init)
c − 2L0)−Fhs/k and

l0 −(Δx
(init)
c −2L0), the (i−1)-th travels at v1, but the

i-th cell travels at mean speed of v1/2 because of the
linear acceleration. That is, the i-th cell travels at mean
speed v1/2 for a duration of Fhs/(kv1), then travels at
v1 for the rest distance of l0−(Δx

(init)
c −2L0)−Fhs/k−

(v1/2)(Fhs/(kv1)), before calling up the (i + 1)-th cell.
This gives a “better theory” of wave speed

Δx
(init)
c v1

l0 − (Δx
(init)
c − 2L0) − Fhs/(2k)

(see Fig. 4f). For the division-launched wave, note that
the influence of insertion of the new-born cell is trans-
mitted most strongly when the nearest cell to the divi-
sion site protrudes, so one can estimate the wave upper
edge (sequential un-stalling) speed to be (l0 + Ts/k +
2L0)/Tcycle, namely the distance between midpoints of
adjacent stalled cells divided by time length of a con-
traction cycle. Note that Tcycle is inversely proportional
to v1 and can be similarly calculated from a single-cell
simulation. Given the diffuse nature of these division
waves, the measurement can be hardly accurate, but
this theory still approximately agrees with numerics
(Fig. 4g). In principle, one can use these relations to
distinguish different wave types in real experiments.

The waves observed in [14] seem to be different from
what we have discussed so far. The authors interpret
their wave observations as arising from a spontaneous
instability in their system which gives rise to repeated
wave launches, presumably arising from the amplifi-
cation of fluctuations. We have not observed such an
instability in our simulations. We believe that the insta-
bility of [14] arises from a process that we do not have
in our model. We can see this by examining their con-
tinuum theory. The process that gives unstable behav-
ior is that the mean propulsive force of cells increases
with strain. The underlying process seems to be that
in a two-dimensional layer, uniaxial strain will align
cells. Then, a velocity fluctuation will cause additional
strain which aligns more cells, giving positive feedback.
Of course, our one-dimensional simulation cannot sup-
port such a process. In our model cell contraction and
protrusion play the role of propulsive force, and in
the molecular clutch scheme (Eq. 1), contraction slows
down as strain increases. For a real system, it is plausi-
ble that both effects might occur. Which one dominates
probably depends on parameters and cell density. We
should note that in [10,12] there is no sign of an insta-
bility.

3.3 Periodic boundary conditions

In the experiment of [15], cells move along a 1D annu-
lus. Initially, clusters expand but once the ends contact
each other around the annulus, there is a transition
between a state with expansion with proliferation and
one with collective motility (rotation) without cell divi-
sion. To treat this case, we simulated a cluster growing
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in a 1D periodic domain, ignoring any possible effect
due to ring curvature. An extra inter-cellular spring
between the two outermost cells in our colony is added
when the cluster has expanded enough to “fill the annu-
lus.” Specifically for this simulation, this size occurs at
the 5000-th step and thereafter the left- and right-most
cells are joined by an adhesion; see Fig. 5. Note that
in these simulations we have enhanced the rate of cell
division by taking Fdiv = 0.9 Ts (instead of 0.99 Ts) to
speed up cluster growth. As can be seen, our simulation
directly captures the observed transition.

The mechanism underlying the transition is that
when the two outer ends of the cluster collide as the cells
fill the annulus (i.e., when the new spring is attached),
the CIL process becomes active. To capture the tran-
sition details, we plotted the polarity and cell length
in a kymograph (Fig. 5a). In our simulations, the clus-
ter always chooses one or the other polarity, and starts
to revolve around the annulus. The resulting colony
remains weakly tensile (Fig. 5b, d). Recalling that the
condition for CIL re-polarization requires collision; indi-
vidual cell(s) may not immediately orient so as to agree
with the majority polarity, but are nonetheless dragged
along (See the red segment after the 5000-th step in
Fig. 5a). The reversal of polarity takes place in a wave
(the sloping border between red and blue in Fig. 5a and
the corresponding “scar” in b–d). The nature of this
wave is similar to that of the density waves discussed
above, involving finite delay in response to mechanical
perturbations. There is a characteristic time for reversal
of polarity, the inverse of the rate in Eq. 7. The speed
of the reversal wave is of the order of the cell separation
divided by this time. Finally, the transition to rotation
may not be so smooth. In some cases, the domain bor-
der is zigzag shaped on the kymograph. See SI Figs. 14,
15, and 16 for examples.

4 Summary and conclusions

We have introduced a one-dimensional mechanical
model for cells that are attached to each other and to
a substrate and move collectively. The cells undergo a
contraction-protrusion cycle. To account for the fact
that contraction is based on myosin mini-filaments
walking along actin fibers, we have used a molecular
clutch formulation of the connection between the stress
state of the cell and the contractile velocity. Adhesion
is represented by springs connecting points along the
cell to a rigid substrate.

These adhesive springs come and go and cell polarity
determines which half of the cell has a higher number
of such adhesions. We have also incorporated a simpli-
fied form of the well-established biological mechanism
CIL, contact inhibition of locomotion. This form of CIL
consists of slowing down the cell when it encounters an
obstacle and also reversing the polarity by moving adhe-
sive sites of two cells engaged in a head-on collision.

Given its relative simplicity, it is remarkable how
many interesting aspects of collective cell motility this

model is able to demonstrate, including a resolution of
an apparent conflict between plateau and peak stress
patterns observed in different experiments, and an
explanation for the waves.

The eventual mechanical state of a cell cluster can be
of one of several types. In the absence of any cell divi-
sion, the cluster size eventually must saturate. If the
cluster is relatively symmetric, that is there are a sig-
nificant number of cells in the right-polarized domain
engaging in a tug-of-war of with a significant number
of left-polarized cells, the cluster will stop moving alto-
gether and the inter-cellular tension will exhibit a broad
plateau. This is similar to the mechanical state observed
in [11,12]. In those experiments there is proliferation,
but this model picture barely changes when prolifera-
tion is infrequent. The plateau region is composed of a
large number of cells that have stalled and hence are no
longer actively contracting. The tension at the plateau
then falls to zero over a finite-size transition region at
the two edges. Interestingly, there is no translation of
the cluster even if the number of differently polarized
cells are unequal; this is because the number of actively
pulling cells is the same on both sides and the different
numbers of stalled cells make no difference. A differ-
ent possibility is the polarity pattern with only a small
number of cells in the thinner polarity domain, smaller
than the transition region width. The limiting case here
is when all the cells are polarized in the same direction.
Then, the cells are never stalled, and the entire cluster
moves systematically.

When there is cell division the cluster can grow indef-
initely. It is thought that cell division is directly coupled
to the size of cells [36–38] which in our model is directly
determined by the tensile stress. In our model, we have
therefore allowed a cell to divide if its tension gets close
to the stall value. For small rates of cell division, the
previous “plateau” state is relatively unchanged except
for the fact that it continues to slowly expand, simply
by adding more stalled cells to the cluster interior.

Our model can explain the occurrence of waves
emerging from the cluster boundary once it is released
from confinement and allowed to expand. In our model,
these results come simply from the time it takes for a
cell to recover motility when it ceases being stopped by
a barrier. In our model cell division events also each
lead to a propagating disturbance, moving faster than
the expansion rate and hence hitting the cluster bound-
ary and dissipating. Again, the propagating disturbance
is simply due to the transient un-stalling resulted from
the local tension release created by the newborn cell. As
argued above in a two-dimensional system these dis-
turbances may be asynchronous, thus complicate the
projected kymograph. However, they at least have the
observable effect that they can give rise to traction noise
within the cluster as in [12].

As the disturbances relax the stall condition, cells in
the interior undergo active contraction and hence con-
tribute to the net traction force. This tends to destroy
the plateau and spreads the tension gradient region over
the entire cluster. This type of pattern is similar to what
was observed in [10], where the tension gradient exists
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Fig. 5 Space-time plot of
a simulated cell cluster on
a ring. It keeps expanding
until two outermost cells
are joined by a spring at t
= 5000, indicated by the
gray dashed line. a
Polarity and half-length of
the cells. Blue or negative
sign denotes “left” polarity
and red/positive denotes
“right.” b Cell midpoint
tension. c Traction force
on each cell by substrate
due to the adhesions. d
Inter-cellular tension
stress, i.e., the stretch of
the inter-cellular springs.
Note that the rightmost
new spring created at
t = 5000 is the one
connecting two outermost
cells

a b

c d

over several millimeters worth of tissue. An alternative
explanation for this behavior is in [18], but it did not
illustrate the possible transition between a plateau and
a peak.

We have also illustrated the experiment in [15] where
cells were constrained to move along an annulus. As an
initially small cluster expands, the two ends eventu-
ally collide and the cluster transitions to the coherent
motion state with almost all the cells having the same
polarity and no division taking place. We observe that
this transition takes place by a polarity reversing wave
that eventually leads to a large preponderance of cells
moving the same way. Again, wave-like phenomena have
been seen in colliding tissues [41]. There can be individ-
ual “rebellious cells” that maintain the “wrong” polar-
ity, but these have little effect on the overall cluster
behavior.

In our work, we have assumed a completely rigid
substrate. In fact, experiments are usually performed
on compliant substrates which allows tractions to be
measured. However, we do not expect this to make a
qualitative difference in the results given here since the
loading of the intra- and inter-cellular strain into the
substrate is probably small for the conditions of the
experiments. Often cells move quite differently (or not
at all) on very compliant substrates; [42], but this is
not the case at hand. If we introduce substrate compli-

ance in future work, we would be able to treat collective
durotaxis, which has been observed for these clusters
[11].

It should be straightforward conceptually to extend
to a two-dimensional model that includes similar
contraction-protrusion dynamics. This extension has
already been accomplished for single-cell motility, with
the major changes being that now both force and torque
need to be balanced at each step of the simulation,
and the fact that polarity now becomes a vector which
determines the direction of the protrusion [34]. The
practical challenge for collective motility is to have rea-
sonable and tractable inter-cell adhesions when cells can
each move in any direction.

Cells are extremely complex mechanical objects and
of course one cannot expect to describe all their phe-
nomenology with simple models. However, at least for
collective behavior we may expect (or at least hope)
that many of the biological details are not critical when
it comes to grasping the essence of what can occur. The
results reported here should give us added confidence
in this physics-based approach.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-021-00141-7.
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