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ABSTRACT: We explored the dynamic and structural effects of
actin-related proteins 2/3 (Arp2/3) on actomyosin networks using
mechanochemical simulations of active matter networks. On the
nanoscale, the Arp2/3 complex alters the topology of actomyosin
by nucleating a daughter filament at an angle with respect to a
mother filament. At a subcellular scale, they orchestrate the
formation of a branched actomyosin network. Using a coarse-
grained approach, we sought to understand how an actomyosin
network temporally and spatially reorganizes itself by varying the
concentration of the Arp2/3 complexes. Driven by motor
dynamics, the network stalls at a high concentration of Arp2/3
and contracts at a low Arp2/3 concentration. At an intermediate
Arp2/3 concentration, however, the actomyosin network is formed
by loosely connected clusters that may collapse suddenly when
driven by motors. This physical phenomenon is called an
“avalanche” largely due to the marginal instability inherent to the
morphology of a branched actomyosin network when the Arp2/3 complex is present. While embracing the data science approaches,
we unveiled the higher-order patterns in the branched actomyosin networks and discovered a sudden change in the “social” network
topology of actomyosin, which is a new type of avalanche in addition to the two types of avalanches associated with a sudden change
in the size or shape of the whole actomyosin network, as shown in a previous investigation. Our new finding promotes the
importance of using network theory and machine learning models to forecast avalanches in actomyosin networks. The mechanisms
of the Arp2/3 complexes in shaping the architecture of branched actomyosin networks obtained in this paper will help us better
understand the emergent reorganization of the topology in dense actomyosin networks that are difficult to detect in experiments.

I. INTRODUCTION

In muscle cells, actin filaments and myosins are organized into
a striped sarcomere,1 and in nonmuscle cells, actomyosin
networks tend to be isotropic, especially at the edge of cells
such as the actin cortex.1,2 We hypothesized that the
nanostructure of the actomyosin network dictates the structure
and dynamics of the entire system.1 Actin-binding proteins
(ABPs) are the key drivers of changes in the local structure of
actomyosin networks. One of such ABP is the Arp2/3
complex3 which is responsible for geometrical arrangement
in a global architecture by being a nucleator for branched
actomyosin networks.4,5 The Arp2/3 complex, also known as a
brancher in the system, creates a junction of a daughter
filament nucleated from its mother filament and subsequently
orchestrates the formation of branched actin networks.3

Together with myosin motors, the branched actomyosin
networks are responsive to mechanical perturbations from
the environment of a cell,6 as the network organization
controls contractile tension generation in a cell.

Computational models have been used to explore
actomyosin contractility,7,8 but few of these computational
models explore the effect of the Arp2/3 complex on the
dynamics of the system. Despite extensive experimental and
computational studies,9−12 only recently has the computational
work from our group shown that the presence of the Arp2/3
complex causes sudden collapse dynamics of marginally stable
actomyosin networks, called “avalanches”.13 The avalanche
possibly underscores the phenomenon of a “cytoquake”,14 a
drastic structural change in the actomyosin network within a
short period of time. The biophysical importance of this
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phenomenon is appreciated since it is deeply related to the
structural rearrangement of the cytoskeleton. However, how
this phenomenon connects to the nanoarchitecture of the
branched actomyosin network orchestrated by the Arp2/3
complexes remains unclear.
In this work, we explored the impact of Arp2/3

concentration in modulating avalanches in branched actomyo-
sin networks using coarse-grained simulations. We used the
software package MEDYAN,15 which simulates the organ-
ization of actin filaments with mechanochemical feedback from
actin-binding proteins, such as those that form catch bonds
(nonmuscle myosin IIA motors, NMIIA)16−18), slip bonds (α-
actinin linkers18,19), and filament nucleators (Arp2/3 com-
plexes9,13). In our simulations, even though we only changed
the concentration of Arp2/3 complexes while the turnover
rates1,20 remained the same in the chemical reactions, the
patterns of the temporally evolving networks were incredibly
complex. Driven by a high concentration of motors, several
new global features, or orders, emerge from a locally well-
connected network. To quantify and even to forecast such new
orders from an inhomogeneous system that is far from
equilibrium, we converted the physical networks into
mathematical graphs that reveal the pattern of a higher-order
scaffold within the complex network. Using network sciences
tools,21 we discovered a new type of avalanche in actomyosin
networks related to a sudden change in the topology of a well-
connected actomyosin network.
We then introduced these new features to train machine

learning (ML)22−25 models for forecasting these interesting
far-from-equilibrium events. As an exploration of the
predictability of avalanches, we trained two supervised machine
learning models (support vector machine26 and XGBoost27)
with only the mechanical description of the actin filaments.
The latter follows a gradient tree-boosting algorithm that is
much more sophisticated than the former which follows a
simple linear regression algorithm. In ML and supervised ML
in particular, data curation and feature extraction are crucial for
building reliable prediction models. We used features with
physical interoperation from both polymer and network
theory.
We utilized the two representative supervised machine

learning models to explore order parameters for feature
learning. We considered three polymer physics order
parameters (the mean filament displacement, the radius of
gyration, and the shape)13 and six network theory order
parameters (the density, the average clustering, the clique
number, the mean closeness, the mean betweenness, and the
assortativity)21 for feature learning. Not only have we
forecasted avalanches with great high probability, but we
have also shown that the avalanches are mechanically
dominated rather than chemically in the actomyosin network.
The consideration of the features from the network theory
order parameters into the training greatly improved the
performance of both machine learning models by minimizing
false negatives, benefiting the support vector machine model
more than the XGBoost model. Our work has greatly expanded
the toolset available for analyzing or interpreting protein-
mediated actomyosin networks.

II. METHODS
Mechanochemical Dynamics of Active Networks

(MEDYAN). We simulated the dynamics of actomyosin
networks by using a coarse-grained mechanochemical model

of active systems called Mechanochemical Dynamics of Active
Networks (MEDYAN), developed by the Papoian
group.15,20,28−31 The highlight of MEDYAN is its inclusion
of mechanochemical feedback of the active networks, which
makes the software more appropriate for our research interests
compared to the models used in previous studies. MEDYAN
consists of four main steps in its mechanochemical loop, as
described in Figure 1.

Simulation Settings. Simulation Parameters. All simu-
lations were confined to a three-dimensional, 1 μm3 rigid
cubical box to match the size of a typical dendritic spine. The
maximum time of the simulation is set to 2000 s, and
snapshots are captured every 10 s. Initially, the number of actin
filaments was 50, and the filament length was 10 monomers.
An example of typical snapshots of the simulations is shown in
Figure 2, visualized with Mayavi 4.7.0.32

Reaction Rates and Mechanical Constants. The reaction
rates used in the simulations are listed in Table 1. kp+ or kp−:
polymerization reactions of F-actin on the plus ends or minus
ends; kdp+ or kdp−: depolymerization reactions of F-actin on the
plus ends or the minus ends; kbl or kubl: binding or unbinding
reactions of α-actinin linkers; kbm or kubm: binding or
unbinding reactions of NMIIA motors; kwm: the walking
reactions of NMIIA motors; kbf: the branching reaction of F-
actin; kdf: the destruction reaction of a short F-actin no longer
than one segment. The branching or destruction reactions are
included only in branched simulations. For the details of
chemical reactions in MEDYAN, please refer to refs 13 and 15.
The mechanical constants used in the simulations are listed

in Table 2. kbend: the filament bending constant; kstretch: the
filament stretching constant; kvolume: the volume force constant;

Figure 1. The workflow of MEDYAN consists of four steps: (1)
Initiate the chemical model: the system evolves the actomyosin
network with stochastic chemical reaction diffusion. (2) Update the
mechanochemical configurations: the chemical reactions deform the
network locally, followed by the formation of a new mechanical
configuration. (3) Initiate the mechanical model: the total energy of
the new mechanical configuration is minimized with the conjugate
gradient method by reaching a new equilibrium. (4) Update the
chemical reaction rates: the chemical reaction rates are mechano-
chemically updated at the new equilibrium state. These four steps are
cycled through for the entirety of the simulations. For a detailed
description of MEDYAN, see ref 15.
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kmotor: the motor stretching constant; klinker: the cross-linker
stretching constant; kboundary: the boundary constant; λ: the
boundary screening length constant; kstretch

branch: the branching
point stretching constant; kbend

branch: the branching point bending
constant; θ0: the branching point bending angle; kdiheral

branch: the
branching point dihedral constant; and kposition

branch : the branching
point position constant. For detailed force field definitions in
MEDYAN, please refer to refs 13 and 15.

Setting of Actin-Binding Protein Concentration. To
explore the extent of actin-binding proteins on actomyosin
dynamics, we chose several concentration ratios of actin-
binding proteins to total actin. Five sets of motor and linker
concentrations were selected to replicate the in vitro experi-
ments from the Weitz group,18 while the three brancher
concentrations were selected to investigate the impact of
Arp2/3 concentration on the dynamics of the actomyosin
network, as shown in Table 3. For referring to the Arp2/3

concentrations in the study, we refer to xb:a = 0.002 as the low
brancher concentration, xb:a = 0.02 as the medium brancher
concentration, and xb:a = 0.2 as the high brancher
concentration.

Data Analysis. Polymer Physics Order Parameters. Three
polymer physics order parameters, the radius of gyration (Rg),
the mean displacement of filaments (δxF), and the shape
parameter (S), are used to describe the macroscopic properties
of the system. Their definitions are in eqs S1−S4 of the
Supporting Information.

Network Theory Order Parameters. Network theory is
utilized in this study to capture the hidden properties of the
actomyosin network. Our group has previously implemented
network theory to characterize the complex topology in

Figure 2. Typical snapshots of MEDYAN simulations for the unbranched actomyosin networks without Arp2/3 complexes (A) and for the
branched actomyosin networks with Arp2/3 complexes (B). In both snapshots, a red cylinder represents an F-actin filament, a black bead
represents a plus end of an F-actin filament, a white bead represents a minus end of an F-actin filament, a blue cylinder represents an ensemble of
NMIIA motors that consists of 15−30 motor heads, a green cylinder represents an α-actinin cross-linker, and a yellow bead represents an Arp2/3
complex.

Table 1. Reaction Rates in the Chemical Model of
MEDYAN

reaction
rates value

actin
filaments

kp+ 0.151 s −1 15

kp‑ 0.017 s −1 15

kdp+ 1.4 s−1 33

kdp− 0.8 s−1 33

linkers kbl 0.009 s−1 34

kubl 0.3 s−1 34

motors kbm 0.2 s−1 35

kubm 1.7 s−1 15

kwm 0.2 s−1 15

branching kbf 0.0001 s−1

destruction kdf 1.0 s−1 (only applied to actin filament with one
segment)

Table 2. Mechanical Constants in the Mechanical Model of
MEDYAN

mechanical constants value

actin filaments kbend 2690 pN·nm
kstretch 100 pN/nm
kvolume 100000 pN·nm4

motors kmotor 2.5 pN/nm
linkers klinker 8.0 pN/nm
boundary repulsion kboundary 41 pN·nm (10 kBT)

λ 2.7 nm
branched filament kstretch

branch 100 pN/nm
kbend
branch 100 pN·nm
θ0 ∼70°3,4

kposition
branch 100 pN·nm

Table 3. Five Sets of Concentration Ratios of Motors or
Linkers to Actin and the Three Concentration Ratios of
Branchers to Actina

xm:a xl:a motors linkers

0.01 0.01 low low
0.01 0.5 low high
0.5 0.01 high low
0.05 0.1 medium medium
0.5 0.5 high high

xb:a branchers (i.e., Arp2/3)

0.002 low
0.02 medium
0.2 high

axm:a represents the ratio of motor concentration to actin
concentration, xl:a represents the ratio of the α-actinin cross linker
concentration to the actin concentration, and xb:a represents the ratio
of brancher (Arp2/3) concentration to actin concentration.
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actomyosin dynamics. Our work reveals hidden properties
involving uneven changes in the shape or the size of a network
that are not captured by conventional order parameters.21

We followed the steps to build a mathematical graph,
G(V,E), from physical actomyosin networks based on the
proximity map of actin filaments. A proximity map is a matrix
determined from the positions of actin filaments, where the
coordinates of the plus end of each actin subunit are recorded
as the position of a node (V). We chose 20 nm as the cutoff
distance for constructing the proximity map; if the distance
between a pair of nodes is less than 20 nm, it is assigned an
edge (E) on the graph. To profile the topological arrangement
that evolves into hierarchical, higher-order complexes in a
network of actomyosins, we opted for tracking the filaments
that are generally in close contact but not in direct contact by
ignoring the chemical connectivity of filaments formed by
actin-binding proteins such as a motor or a linker. The lengths
of motors and linkers are 200 ± 25 and 35 ± 5 nm,
respectively.36,37 We also do not include the two adjacent actin
monomeric units in a filament measured at 27 nm. Therefore,
the choice of short cutoff at 20 nm in constructing a proximity
map will satisfy the purpose of tracking the emergent features
of a complex network while not capturing the chemical
connectivity of actin.
In this way, we converted the actomyosin networks into

mathematical graphs. The conformation of the mathematical
graph from the physical actomyosin network and the
calculation of network theory order parameters were
performed with the Python package NetworkX.38 Detailed
descriptions and definitions of the parameters are shown below
as well as in eqs S5−S11 of the Supporting Information.
Graph (V,E): The components of a graph G(V,E) include V,

a set of vertices (also called nodes or points, filled circles in
Figure 3), and E, a set of edges that connect the vertices (black
solid lines in Figure 3). Figure 3A shows an example of a graph
composed of six nodes and eight edges. The degree of a node
is the number of edges that are connected with it. For example,
the degree of node a is 1, while the degree of node b is 4.

Assortativity: Figure 3B shows an example graph that has
lower assortativity than the graph in Figure 3A. The
assortativity, ρ, measures the tendency of nodes with similar
degrees to be directly connected. The graph in Figure 3A has
most of the nodes with similar degrees (b, c, d, and e)
connected to each other, while the nodes with similar degrees
in the graph in Figure 3B are not connected. Therefore, the
graph in Figure 3A has higher assortativity than the graph in
Figure 3B. We employed the Z-score of the time derivative of
ρ, ZΔρ, as one of the order parameters to probe undetected
changes in the patterns. = ρ μ

σ
−Z , μ is the mean, and σ is the

standard deviation of ρ.
Machine Learning Models to Forecast Avalanches. To

predict avalanches in the mesoscopic simulations of
actomyosin dynamics, we adopted two types of supervised
learning models for training the data set simulated with
MEDYAN software: the SVM (support vector machine)
model26 and the XGBoost model.27 Although both are widely
used in machine learning, the XGBoost model has been proven
to be more sufficient (better performance) and less expensive
(consuming less computing resources) than linear regression
models in most cases, while the performance of the SVM
model depends highly on the choice of the kernels.39−41 We
trained the data with a polynomial kernel in the SVM model
provided by the python scikit-learn 0.23.2 package.26 For the
XGBoost model, we trained the data using the python
XGBoost 1.3.0 package.27

The data set used for training consists of 335 snapshots that
precede avalanches as a positive data set (“avalanche”), while
for a negative data set (“no avalanche”), we used 493 other
snapshots that were not succeeded by an avalanche. All these
avalanches were selected from the MEDYAN simulations with
the parameters of xb:a = 0.02 and xm:a = 0.5, representing the
actomyosin dynamics at a medium brancher concentration and
a high motor concentration, a condition favorable for the
avalanches because of its rich connections nucleated by the
branchers and abundant forces generated by the motors.
We have justified the upper threshold of 50 nm in the mean

filament displacement (δxF) for the selection of avalanche
events from the snapshots of trajectories. We selected the
individual snapshots with δxF over the upper threshold and
assigned them to the positive data set for training machine
learning models. We visually inspected these snapshots that
indeed there is a structurally large change over a short period
of time. We also selected snapshots with a mean filament
displacement less than the lower threshold of 20 nm and
assigned them into a negative data set for machine learning
models. We confirmed them (without an avalanche) by visual
inspection. We have included more details in Figure S5.
For each snapshot in both the positive and negative the data

set, we computed nine order parameters, or features, to
characterize the morphologically complex structures in an
actomyosin network. There are three from polymer physics:
the radius of gyration (Rg), the mean displacement (δxF), and
the shape parameter (S). There are an additional six from
network theory: the density, the clique number, the average
clustering, the mean betweenness, the mean closeness, and the
assortativity (ρ). The total data set of 335 positives and 493
negatives is selected into two parts by the Python scikit-learn
package:26 60% for training the model and 40% for testing the
performance of the model. The training and testing sets,

Figure 3. Illustrating graph properties with examples: (A) an example
graph with high assortativity; (B) an example graph that has lower
assortativity than the graph in (A).
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training_data.csv and testing_data.csv, are provided in the
Supporting Information.
Data Analytics for the Machine Learning Models. Quality

Indicators. A true positive (TP)/true negative (TN) is an
outcome where the model correctly predicts the positive/
negative class. A false positive (FP)/false negative (FN) is an
outcome where the model incorrectly predicts the positive/
negative class. The true positive rate (TPR), false positive rate
(FPR), precision, and recall are defined as follows:

= +TPR TP/(TP FN) (1)

= +FPR FP/(FP TN) (2)

= +precision TP/(TP FP) (3)

= +recall TP/(TP FN) (4)

With such quality indicators, we measured the performance of
the machine learning models by using the receiver operating
characteristic curve, the precision−recall curve, the area under
the curve, and the confusion matrix as defined below:
Receiver operating characteristic (ROC) curve: the ROC

curve was created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold
settings randomly selected by the Python scikit-learn package.
Precision−recall (PR) curve: the PR curve is created by

plotting the precision against the recall at various threshold
settings randomly selected by the Python scikit-learn package.
The area under the curve (AUC): the ratio of the area under

the curve to the total area in a figure. The AUC ranges from 0
to 1. A larger AUC value indicates a better performance of a
model.
Confusion matrix: a confusion matrix is used to present the

details in the performance of the models. The confusion matrix
is composed of true class in rows and predicted class in
columns. The numbers in the table are the numbers of the four
quality indicators (TP, TN, FP, and FN) described above. A
confusion matrix with higher true positives (TPs) and true
negatives (TNs) indicates a more accurate machine learning
model.

III. RESULTS
Content of the Arp2/3 Complex Modulates the

Dynamics of Actomyosin Networks. To explore the
influence of the Arp2/3 concentration that impacts the
content of branched networks in the contractility of an
actomyosin network, we compared the Rg/Rg

i time courses of
actomyosin systems with low, medium, and high brancher
concentrations, as shown in parts A, B, and C of Figure 4,
respectively. Rg is the radius of gyration, and Rg

i is the initial
condition of Rg. The increase and decrease in Rg/Rg

i over time
indicate the expansion and contraction of the actomyosin
network.
At low Arp2/3 concentrations (xb:a = 0.002) in Figure 4A,

Rg/Rg
i varies broadly with motor and linker concentrations. At

low motor and linker concentrations (xm:a = 0.01, xl:a = 0.01,
thin solid line in Figure 4A), Rg/Rg

i initially increases over time,
reflecting the expansion of the networks. When motor or linker
concentrations both increased (xm:a > 0.01 and xl:a > 0.01), the
contractility of actomyosin networks reacted differently by
either the active (i.e., motors) or passive actin-binding proteins
(i.e., linkers). Rg/Rg

i shows that an increase in motor
concentration always promotes contraction of an actomyosin

network (dotted line compared to thin solid line, thick solid
line compared to dashed lines in Figure 4A, xm:a = 0.5
compared to 0.01). Meanwhile, either a high or low linker

Figure 4. Time courses of Rg/Rg
i in branched networks with low,

medium, and high brancher concentrations. The black lines in (A),
(B), and (C) show the time courses of Rg/Rg

i of simulations with
different motor and linker concentration pairs under the conditions of
low (xb:a = 0.002), medium (xb:a = 0.02), and high brancher
concentrations (xb:a = 0.2), each averaged from five simulations with
the same initial conditions (averaged results are shown in black, and
the five original trajectory replicates are shown in light gray). Thin
solid lines represent networks with low motor and linker
concentrations (xm:a = 0.01, xl:a = 0.01); dashed lines represent
networks with low motor and high linker concentrations (xm:a = 0.01,
xl:a = 0.5); dotted lines represent networks with high motor and low
linker concentrations (xm:a = 0.5, xl:a = 0.01); dashed dotted lines
represent networks with medium motor and linker concentrations
(xm:a = 0.05, xl:a = 0.1); and thick solid lines represent networks with
high motor and linker concentrations (xm:a = 0.5, xl:a = 0.5). The
definitions of xm:a, xl:a, and xb:a are described in Table 3.
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concentration leads to a similar Rg/Rg
i over time at a steady

state (thick solid line and dotted line in Figure 4A, xl:a = 0.5
and 0.01). These observations are consistent with the findings
from prior experimental18 and theoretical investigations.13

Rg/Rg
i varies less over time when we increase the ratio of the

Arp2/3 concentration over actin to 0.02 (Figure 4B), but the
profiles are still modulated by the motor and linker
concentrations. When the ratio is increased to the highest
level at 0.2 (Figure 4C), Rg/Rg

i does not significantly change
over time regardless of the motor and linker concentrations.
The dynamics in these networks slow down significantly. The
actomyosin network remains highly branched and static after
the motors are unable to walk along the filaments saturated
with Arp2/3 complexes.

Network Theory Facilitates Data Visualization by
Converting a Physically Complex Network to a
Mathematical Graph. We visualized snapshots of actomyo-
sin networks at low, medium, or high Arp2/3 concentrations
while the motor and linker activities remained the same in
Figures 5A, 5C, or 5E, respectively. Their structural
morphologies are distinctive and the tensions are distributed
unevenly throughout a complex network. The length of the
filaments at a higher Arp2/3 concentration (Figure 5E) are
shorter, and the tension within them is lower compared to
those at a lower Arp2/3 concentration (Figure 5A). When the
Arp2/3 concentration is medium (Figure 5C), the filament
lengths and tension degree are also at a medium level. We
speculated that there is a causal relationship between the

Figure 5. Graph networks of physical actomyosin networks at several Arp2/3 concentrations at 500 s. (A), (C), and (E) show snapshots of the
simulations at low, medium, and high Arp2/3 concentrations, while they all have the same high motor and linker concentrations. The actomyosin
filaments are colored by tension in pN, while motors, linkers, and branchers are not shown on the snapshot. A positive value of tension represents
stretched filaments, while a negative value of tension represents compressed filaments. (B), (D), and (F) are graph representations of the
actomyosin network from (A), (C), and (E), respectively. We filtered out nodes with a node degree less than 3 and the nodes with a self-loop for
clear visualization. The layout algorithm by Yifan Hu with default parameters in Gephi 0.9242 is used. The size of a node depends on its
betweenness centrality, while the nodes are colored according to the identification number of a component (a component is a group of nodes that
are connected inside the group but not connected to any nodes outside the group).
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complexity of the physical network and the distribution of
tensions, which dictates the emergent dynamics of actomyosin
networks.
However, the first step is to quantify the complexity

emerging from an actomyosin network by converting a
physical network into a mathematically representative graph.
This transformation reveals the hidden features of actomyosin
networks in the MEDYAN simulations by filtering out
unimportant information as noise. We visualized typical
snapshots from the simulations with low (xb:a = 0.002),
medium (xb:a = 0.02), or high (xb:a = 0.2) Arp2/3
concentrations in Figures 5A, 5C, or 5E, respectively, in
mathematical graphs in Figures 5B, 5D, or 5F. Indeed, these
mathematical graphs are distinctive in both sizes and structures
and reveal hidden features through the sizes and connected-
ness of a node (which represents an actin filament). At a local
level, the number of nodes with high degrees increases with the
concentration of Arp2/3. In addition, the mathematical graphs
show that there are more connections between nodes (i.e.,
filaments) at higher Arp2/3 concentrations than those at lower
Arp2/3 concentrations.
The network theory order parameters excel at revealing

hidden features at a nonlocal level, which is a challenging task
in a nonhomogeneous system. We revealed the importance of
these hidden features by measuring the “betweenness central-
ity” of a node (described in section 1.3.4 of the Supporting
Information). When the Arp2/3 concentration is low, there are
only a few nodes with high betweenness (shown by a large
node) on the graph in Figure 5B, corresponding to a highly
connected hub of actomyosin networks in Figure 5A. When
the Arp2/3 concentration is medium (Figure 5D), several
high-betweenness components emerge, corresponding to
several delocalized and sparsely connected clusters within the
physical network (Figure 5C). When the Arp2/3 concentration
is high in Figure 5F, compared to the networks with low Arp2/
3 concentration, there are more nodes with low betweenness
emerge (shown by decentralized, small nodes). We interpreted
that these nodes are spatially far apart from one another. They
are categorized into several communities with different colors.
The layout approach created by Yifan Hu is useful to visualize
the community in a complex network by arranging the nodes
hierarchically on a mathematical graph in Figures 5B and 5D.
Overall, there was no clearly defined central hub in the
network (Figure 5E). Physically, these nodes are the individual
mother filaments with their daughter filaments (Figure 5E),
while the former are not connected to one another.
Network Theory Order Parameters Reveal Aster-like

Features from Physically Complex Actomyosin Net-
works at Varying Arp2/3 Concentrations. At the
community level, network theory order parameters such as
assortativity, ρ, provide the outlook of the hierarchical
structure within a network. The decrease in assortativity
indicates the change of a network morphology from a
“centered” to an “aster” topology, as shown in Figure 3.
While we varied the Arp2/3 complex concentration in the
simulations of actomyosin dynamics in Figure 6, we showed
that an increase in Arp2/3 complex concentration leads to a
decrease in assortativity, revealing an altered topology within a
network to become aster-like.
Similarly, in Figure 5E, where the Arp2/3 complex

concentration is high, we observed numerous short branches
on the actin filaments, which is equivalent to the composition
of having many “aster-like” branches in the network (Figure

5F). The morphology of the actomyosin networks with high
Arp2/3 concentrations is totally different from the actomyosin
networks with low Arp2/3 concentrations, resulting from the
formation of more short branches on the actin filaments
mediated by Arp2/3 nucleation behavior.

Change in Assortativity Captures a New Type of
Avalanche Resulting from Disruption in the Hierarch-
ical Organization of an Actomyosin Network. An
avalanche, or a cytoquake, is a sudden structural rearrangement
of the networks captured by the positional changes of the
filaments, δxF, in simulations or experiments.13,14 In the
computational investigation from our prior work,13 we have
characterized two types of avalanche by employing the polymer
physics order parameters such as the radius of gyration (Rg)
and the shape parameter (S). Rg and S measure distinctive
properties of a network in terms of its size and shape,
respectively. However, they do not capture the rearrangement
of topology within a network that may distinctively impact
neither the overall shape nor the size of a network. In this
work, by varying the concentration of Arp2/3, we discovered
another classification of avalanche caused by the hierarchical
reorganization of a network (Figure 7). Such changes are
structurally complex and mostly hidden by layers of
information. We captured them with the aid of unique
network theory order parameters.
We ranked the nine order parameters (three from the

polymer physics and six from the network theory order
parameters) by comparing their Pearson correlation against
one another in Figure S2. Interestingly, ρ is strongly
anticorrelated to the other order parameters, signifying its
importance in capturing emergent properties. Indeed, the
change in ρ, Δρ, is useful to probe the emergence of a higher-
order organization from uneven distribution of local nodes.
We demonstrated the new characterization of the avalanches

by showing a segment of the trajectory as an example in Figure
7 that it is entirely different from the previous two kinds. The
plot of δxF over time in Figure 7 indicates three avalanches at
600, 680, and 960 s. We also showed the time derivatives of
Rg/Rg

i , the shape parameter S, and the Z-score of time

Figure 6. Assortativity of networks with different Arp2/3 concen-
trations. The figure shows the assortativity for actomyosin networks
with low, medium, and high brancher concentrations but the same
high motor and linker concentrations. Solid lines represent networks
with low Arp2/3 concentrations (xb:a = 0.002); dashed lines represent
networks with medium Arp2/3 concentrations (xb:a = 0.02); and
dotted lines represent networks with high Arp2/3 concentrations (xb:a
= 0.2). Each black line is the averaged result of five simulations with
the same initial conditions (the five replicates are shown in light gray).
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derivative of assortativity in Figures 7A, 7C, and 7E and
provided the illustrations corresponding to the movements in
Figures 7B, 7D, and 7F. The avalanche at 600 s coincides with
a sharp decrease in Δ(Rg/Rg

i ) in Figure 7A, indicating that this
is a contraction (Figure 7B). The avalanche at 960 s coincides

with a large drop of ΔS (Figure 7C), signifying that the
network deforms under shear and the shape becomes more
oblate (Figure 7D).
The avalanche at 680 s not only coincides with contraction

and shape changes but also uniquely coincides with a peak in

Figure 7. Assortativity captures the third classification of avalanche. δxf represents the mean displacement of filaments in the network. (A) Δ(Rg/
Rg
i ) represents the time derivative of the ratio of the current Rg and the “initial” Rg at 10 s, (C) ΔS represents the time derivative of the shape

parameter, (E) ZΔρ represents the Z-score of the time derivatives of assortativity, ρ, an order parameter measuring the topology of a network. (B),
(D), and (F) are the cartoons that illustrate the changes in the size, shape, and topology of a network, corresponding to (A), (C), and (E),
respectively. The black arrows in (B) and (D) represent the moving directions of the green nodes relative to node a. The black lines in (F)
represent the edges from the green nodes to node a before the avalanche. The blue dashed lines represent newly formed edges connecting other
nodes to a nearby node b during the avalanche. An increase in ZΔρ indicates an increase in assortativity of the network. Illustratively, node a and
node b now form a “center-like” cluster during the avalanche. The example simulation has high motor, low linker, and medium brancher
concentrations.
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ZΔρ, the Z-score of Δρ in Figure 7E, while the events at 600
and 960 s do not. The sudden increase in assortativity at 680 s
indicates that the topology of the network changes by altering
the hierarchy of connected nodes. We illustrated this
movement in Figure 7F and focused on the connectivity
from the surrounding green nodes to node (a) and then to
nearby node (b) during an avalanche. Once other nodes that
connect to node (a) also connect to node (b), the node degree
and the betweenness of node (b) grow. Consequently, the
assortativity of the network increases by 0.11 because node (a)
and node (b) that now share a similarly large node degree and
high betweenness connect to each other (e.g., a tongue-in-
cheek remark would be “guilt by association”). The
connectivity of nodes changes from a “aster-like” to a
“centered” topology. Although this new type of avalanche at
680 s may still carry changes in size and shape, it is an entirely
new type of avalanche distinctive to the other two avalanches
at 600 and 960 s.
Once we discovered the third type of avalanche at 680 s

(Figure 7E), we visualized the physical networks (Figures 8A
and 8B) on a mathematical graph in Figures 8C and 8D before
and after the avalanche, respectively. Then, we computed
nonlocal order parameters, particularly the betweenness
centrality, to detect hidden patterns in a complex network.
After the avalanche at 680 s, we observed the emergence of
clustered green nodes with high betweenness in Figure 8D,
which did not exist before the avalanche (Figure 8C). The
formation of this center with high betweenness nodes increases
the assortativity of the network, reflected as a peak in Figure
7E.

Machine Learning Tools Were Applied to Forecast
Avalanches in Actomyosin Dynamics. We compared the
performance of machine learning (ML) models using the
receiver operating characteristic (ROC) and precision−recall
(PR) curves in Figure 9. Both ROC and PR curves provide a
diagnostic tool for binary classification models for measuring
the ability of a machine learning model to make correct
predictions. The area under the curve (AUC) of the two curves
provides quantitative scores that summarize the curves and can
be used to compare classifiers. An AUC closer to 1 indicates a
more skillful model.43−45

Because we achieved a comprehensive understanding of the
structural characteristics of avalanches, we will employ the
order parameters as features to apply machine learning tools to
forecast avalanches. While we compared two prominent
machine learning (ML) models in predicting emergent
avalanches in actomyosin networks, we also explored the
importance of the features employed for training data sets.
For each machine learning model (XGBoost or SVM), we

employed two sets of order parameters for training the data set.
The first set includes all nine order parameters: three polymer
physics order parameters and six network theory order
parameters. The second set includes only three polymer
physics order parameters. As shown in Figures 9A and 9B, all
nine parameters were used in training the model. For the SVM
model (blue), the AUCs for the ROC curve and PR curve are
0.88 and 0.83, respectively. For the XGBoost model (red), the
AUCs for the ROC curve and PR curve are 0.96 and 0.96,
respectively. The XGBoost model performs better than the
SVM model, which is expected since the XGBoost model is
shown to be sufficient in most applied cases, while the

Figure 8. Tension snapshots and corresponding visualized graphs for avalanches at 680 s. (A) and (B) are the tension snapshots before (670 s) and
during (680 s) the avalanche, and (C) and (D) are the corresponding visualized graphs of the snapshots. These two visualized graphs filtered out
nodes with degrees lower than 6 and nodes with self-loops for clear output, and the layout algorithm Yifan Hu with default parameters in Gephi
0.9242 was used during the visualization process. The size of a node depends on its betweenness centrality, while the nodes are colored according to
component ID.
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performance of the SVM model relies strongly on the selection
of a good kernel.39,40 Notably, the AUC values for the
XGBoost model from our investigation are high enough (close
to 1, the perfect value) to prove the excellent performance of
this model in our case.
Next, we diagnosed the outcome with only three polymer

physics order parameters used in training the models (Figures
9C and 9D). For the SVM model (blue), the AUC for the
ROC curve and that for the PR curve decrease significantly to
0.76 and 0.70, respectively, in comparison with those trained
with nine order parameters. For the XGBoost model (red), the
AUCs for the ROC curve and the AUCs for the PR curve were
0.94 and 0.93, respectively. They remain at the same level as
those trained with nine order parameters, indicating that
adding more features from network theory order parameters
improves the performance of the SVM model more than the
performance of the XGBoost model.
Network Theory Order Parameters Strengthen

Machine Learning Models to Forecast Avalanches
Better in Actomyosin Dynamics. We further diagnosed
the performance of the two ML models by employing the

confusion matrices that label the true and predicted cases in
Figure 10. The definition of a confusion matrix is explained in
the Data Analytics section. For the SVM model, the addition of
the six network theory order parameters into the ML training
data set (Figures 10A and 10C) moved 38 counts from the
category of false negatives to the category of true positives and
one count of true negatives to one count of false positives.
Meanwhile, for the XGBoost model, the addition of the six
network theory order parameters into the ML training data set
(Figures 10B and 10D) brings only eight counts from the
category of false negatives to that of true positives and three
counts from the category of false positives to the category of
true negatives. The addition of network theory order
parameters into the ML model data sets enhances the forecast
of avalanches, especially by reducing the number of false
negative predictions, indicating more predicted hidden
avalanches.
The XGBoost model exhibits better performance than the

SVM model with both three and nine parameter data sets,
indicating that the XGBoost model is potentially a better
classifier in our case for the prediction of avalanches.

Figure 9. ROC and PR curves for XGBoost and SVM models. (A) and (B) show the performance of machine learning models trained with all nine
parameters: three polymer physics order parameters and six network theory order parameters. (C) and (D) show the performance of the models
trained with only three polymer physics order parameters. (A) shows ROC curves for XGBoost and SVM models trained with all nine parameters,
and (B) shows the PR curves for these two models; (C) and (D) show the ROC and PR curves of the same types of models trained with only three
parameters.
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Additionally, the XGBoost model shows less sensitivity to the
network theory order parameters than the SVM model. These
facts motivate us to further investigate how these nine features
work during the training of this model. Therefore, we further
evaluated the importance of these features in the XGBoost
models in Figure 11.
As shown in Figure 11A, when the XGBoost model was

trained with nine features, the three polymer physics order
parameters mean displacement, shape and radius of gyration
have a prior importance in avalanche prediction. Most of the
network theory order parameters have secondary importance
with the exception of the mean betweenness. As discussed in
the mathematical graphs of Figures 5 and 8, the betweenness of
nodes tracks the centrality distributions in the network,
measuring the “shortest pathways” on actin filaments in a
physical network. As a mechanical emergent phenomenon in
actomyosin networks, avalanches are closely related to the
formation and subsequent delocalization of clustered centers in
the physical network. Therefore, the mean betweenness plays a
more important role than other network theory order
parameters in forecasting avalanches.
Figure 11B shows that in the XGBoost model trained with

only three polymer physics order parameters the importance of
these three parameters is relatively similar, which is consistent
with Figure 11A. In contrast, when we used only the six
network theory order parameters to train the data set, the
forecast of an avalanche was poor (see Figure S4). The
ensemble of decision trees27 in XGBoost is better at detecting
hidden patterns from a complex network than linear regression
in the SVM model. Although the introduction of network

order parameters in training the data set improves the
performance of both models, the extent of performance is
more significant for the SVM model than for the XGBoost
model.

IV. DISCUSSION
Arp2/3 Complex Concentration Tunes the Emer-

gence of Avalanches in Actomyosin Networks. The
actin-related proteins 2/3 (Arp2/3) complex, also known as
the brancher in our system, initiates a filament branch
(daughter filaments) at an angle of 70° on the sides of the
preexisting mother, subsequently altering the topology of the
network.4,5 The binding of the Arp2/3 complex to a filament is
an ATP-dependent process46 to prevent passive unbinding.
This piece of experimental evidence shows that it is
exceedingly rare for the Arp2/3 complex to unbind itself
from actin filaments without an ATP-consuming reaction
involving another enzyme. It motivates our reasoning of the
parametrization of the Arp2/3 complex in which the event of
Arp2/3 unbinding from actin filaments is quite rare in the
MEYDAN simulations.13 In our prior investigation, we
justified the use of MEDYAN over other codes such as
Cytosim7 or AFiNES8 because MEDYAN15 has physically
realistic models and mechanochemical feedback, which is
critical to describe active processes.
Here, our study shows that a high concentration of the

Arp2/3 complex limits linker binding and motor walking,
which in turn reduces connectivity and inhibits contraction of
the network (Figure 4C). However, by decreasing the Arp2/3
concentration in the system, the network not only contracts

Figure 10. Confusion matrices for XGBoost and SVM models. (A) and (B) show the confusion matrices of the XGBoost and SVM models trained
with all nine parameters: three polymer physics order parameters and six network theory order parameters. (C) and (D) show the confusion
matrices of the XGBoost and SVM models trained with only three polymer physics order parameters. In the confusion matrices, label 1 represents a
snapshot that is followed by avalanche while label 0 represents a snapshot that is not followed by avalanche.
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faster and more robustly (Figure 4A) but also has the ability to
form larger clusters at the center (Figure 5A). At an
intermediate concentration of the Arp2/3 complex and a
high concentration of motor proteins, the structure of
actomyosin is marginally stabilized; thus, the “avalanche”
phenomenon is most likely to occur (Figures 4B and 5C).
As the main part of the cytoskeleton, actomyosin networks

play important roles in various cell behaviors. As an essential
actin-binding protein, the distribution of Arp2/3 complexes
has been experimentally proven to be related to cell motility in
nonmuscle cells.47,48 In addition, the branched actin network is
especially rich at the edge of cells, such as the actin cortex,
indicating the importance of this protein to the modulation of
cell shape changes.2,49 This modulation is achieved by the
treadmilling of branched networks nucleated by the Arp2/3
complex and other actin-binding proteins that sever filaments
such as cofilin.50−52 The impact of the Arp2/3 complex
concentration on the simulated network structure and
dynamics described in this study will advance our under-
standing of the role of the Arp2/3 complex in these cell
behaviors.
Network Theory Reveals a New Type of Avalanche

Associated with Topological Changes in a Physical
Network. With the concentration of branchers (Arp2/3
complexes) dictating the nanostructure of the actomyosin
network, which in turn alters the entire network topology, a
proper tool is needed to describe the hierarchical properties of
the system. Therefore, we chose network theory to analyze the
simulated networks in this study. Mathematical graphs and the
tools of data science prove to be superior in detecting hidden

patterns within a complex network.21 Order parameters such as
clustering coefficient, betweenness, and closeness measure the
microscopic network properties down to a single actin subunit
and characterize its role in nonlocal features, while order
parameters such as assortativity and density measure the
macroscopic properties of the whole network. Therefore, the
network theory order parameters provide the needed
mesoscopic descriptors that connect the microscopic proper-
ties to macroscopic phenomena in an active system far from
equilibrium.
In particular, we discovered that betweenness is most useful

for visualizing the connection between the microscopic and the
macroscopic network properties when the Arp2/3 concen-
trations vary (note: Arp2/3 initiates branching). For example,
the graphs in Figures 5B,D,F have distinguished betweenness
distributions. In the mathematical graph of Figure 5B, only one
community of nodes with the highest betweenness in large
circles are connected to each other, while other communities
of nodes with a much lower betweenness in small circles are
gathered. It underpins a centralized cluster of actomyosin
filaments at low Arp2/3 concentration in the snapshot shown
in Figure 5A. In the mathematical graph of Figure 5D, several
communities have higher betweenness (in larger circles) than
other communities (in smaller circles). It indicates the
presence of multiple centers in the actomyosin network in
Figure 5C. In the mathematical graph of Figure 5F, the
betweenness of nodes is small among most communities. It
indicates delocalized communities in the actomyosin network
(Figure 5E). The causal relationship between the size of
communities and the value of betweenness supports the
hypothesis that a higher brancher (i.e., Arp2/3) concentration
leads to a global network with delocalized communities,
involving significant changes in the rearrangement of network
topology.
This new type of avalanche is related to the change of the

network topology in a branched actomyosin network. We
discovered these subtle changes in the network topology by
observing the betweenness from a mathematical graph at the
onset of an avalanche at 680 s (Figure 8). There is an increase
in the number of nodes with high betweenness during the
avalanche (Figure 8D) compared to that before the avalanche
(Figure 8C). The changes in the betweenness indicate the
altered connectivity from an aster-like to a centered-like node
(Figure 7E). The sudden creation of distinctive communities
in a network initiates an avalanche. We further revealed the
hidden hierarchy of the network with assortativity and
captured a new type of “avalanche” involving the reorganiza-
tion of a network from a “delocalized” community to a
“centralized” one (Figure 8). In cells, actomyosin networks
may have similar size and shape but distinguished intranetwork
topology. The emergence of new higher order risen above
layers of actomysin filaments probably leads to distinct
functions. Therefore, it is important to utilize assortativity or
other order parameters in the network theory to reveal the
hidden topological features among these networks.

Forecast Avalanches in Actomyosin Dynamics with
Network Science and Machine Learning. In ML and
supervised ML in particular, data curation and feature
extraction are crucial steps for building reliable prediction
models. For forecasting avalanches, Figure 9 shows how adding
network theory parameters to SVM models increases their
specificity and sensitivity, whereas XGBoost models do not
have this strong impact. As a rule of thumb, XGBoost is a

Figure 11. Feature importance of parameters in the XGBoost models.
(A) and (B) show the feature importance of the parameters used in
the two XGBoost models trained with nine and three parameters. (A)
and (B) count the number of times each feature is split across all
boosting rounds (trees) in the model as the F-score and visualize the
result as a bar graph, with the features ordered according to how many
times they appear.
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suitable option, especially for small data sets such as ours as
compared to other machines learning models.39−41 However,
the SVM model is a naiver approach since it is merely a linear
regression model that relies heavily on selecting the right
kernels and lacks the ability to boost the model multiple times
with the same data set.
A key feature is the betweenness centrality that captures the

formation and disappearance of a cluster from a complex
network. We showed that adding the betweenness centrality
into the training set with the polymer physics order parameters
greatly increases the performance of SVM, while other network
theory order parameters are of secondary importance in Figure
11.
We believe that our approach can also be used in predicting

an avalanche in experiments where the positions of actin
filaments are easier to track than actin-binding proteins. The
discovery of hidden patterns can be achieved by converting a
physical network into a mathematical graph, and the
forecasting of avalanches can be predicted by ML.
Conclusions and Future Outlook. To our knowledge, we

are the first to systematically detect the impact of Arp2/3
complex concentration on the structures and dynamics of
actomyosin networks by using mathematical graphs and data
science. These tools are shown to be useful for revealing
hidden patterns in complex networks, allowing us to leverage
this knowledge as crucial features to train machine learning
models to forecast avalanches within actomyosin networks.
To forecast the avalanches, two types of machine learning

models, the SVM and the XGBoost models, were trained under
various conditions. We showed that the XGBoost model
performs better at forecasting avalanches than the SVM model.
However, the performance of the SVM model significantly
increases when the network theory order parameters are
trained in the data set. Although the XGBoost model was
sufficient compared to the SVM model in predicting
avalanches in our work, in some other cases where an
outstanding kernel for the SVM model was utilized, the
performance of the SVM model supersedes the performance of
the XGBoost model.39−41 Therefore, ML models are not
entirely a black box; when trained with physically meaningful
features, they provide meaningful predictions with high
probability.
Despite the difference in ML models, we have used only the

features from the mechanical or topological properties of a
network in forecasting avalanches with high sensitivity and
specificity without any knowledge of their chemical dynamics.
It is indicative that the avalanche is a mechanically dominant,
common phenomenon in the simulated actomyosin systems.
Although this finding is consistent with that of another work
about avalanches risen from unbranched actomyosin net-
works,53 our independent work embraces the emergence of
structural hierarchy in a network from sudden topological
changes in the nanoarchitectures of branched actomyosin
filaments.
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