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ABSTRACT: Direct coupling analysis (DCA) is a global statistical approach that uses
information encoded in protein sequence data to predict spatial contacts in a three-dimensional
structure of a folded protein. DCA has been widely used to predict the monomeric fold at
amino acid resolution and to identify biologically relevant interaction sites within a folded
protein. Going beyond single proteins, DCA has also been used to identify spatial contacts that
stabilize the interaction in protein complex formation. However, extracting this higher order
information necessary to predict dimer contacts presents a significant challenge. A DCA
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evolutionary signal is much stronger at the single protein level (intraprotein contacts) than at

the protein—protein interface (interprotein contacts). Therefore, if DCA-derived information is to be used to predict the structure of
these complexes, there is a need to identify statistically significant DCA predictions. We propose a simple Z-score measure that can
filter good predictions despite noisy, limited data. This new methodology not only improves our prediction ability but also provides a

quantitative measure for the validity of the prediction.

B INTRODUCTION

Reliable structural models of proteins are crucial for under-
standing the structure-to-function relationship of those proteins
in living systems. To this end, experimental approaches such as
X-ray crystallography and NMR have successfully produced
high-resolution structures of hundreds of proteins, which are
readily available in the Protein Data Bank (PDB).' Experimental
structures, however, are only available for a small fraction of the
known proteins of interest." This has led to a significant demand
for other information sources that can be exploited to predict
structures of proteins and protein—protein complexes. Over the
past decade, statistical methodologies”™'” have been developed
that utilize information encoded in protein sequence data to
identify spatial contacts present in a three-dimensional protein
structure. These methods quantify observed correlations
between amino acid identities at different positions (termed
protein coevolution) and use this information to infer structural
contacts. The key assumption to these sequence-based
approaches is that residue coevolution arises from a strong
evolutionary constraint to preserve, on average, stable protein
interactions over the course of natural selection.

Direct Coupling Analysis (DCA) has had remarkable success
in predicting structural contacts in the 3D protein structure by
quantifying amino acid coevolution (covariation) within a
protein family from their amino acid sequences.””'*'**" It has
also been shown that DCA and related approaches can predict
spatial contacts that stabilize the interaction between two
proteins”*' >’ and can identify the configurational diversity
inherent in some protein families”****>*” Success in identifying
interprotein contact prediction is often hampered by weaker
interprotein signals compared to intraprotein signals.*® In
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addition, only limited sequence data are available for pairs of
proteins.

Historically, the degree of coevolution between pairs of
residues has been expressed using metrics such as Direct
Information®® or Frobenius norm'**” where larger values are
related to greater amounts of coevolution. Highly coevolving
amino acid residue pairs are likely to be in spatial proximity
within a 3D structure of a protein or protein complex. Contact
pair predictions are ranked by these metrics, and the top-
coevolving residue pairs (e.g., top ten) are typically treated as the
predictions used in structural determination. As commented
above, the prediction of dimer contacts from sequence
coevolution is generally more challenging than the prediction
of monomeric contacts. On average, monomeric coevolutionary
signals are much stronger than dimeric signals, reflecting the
importance of preserving monomeric folds over natural
selection. This difficulty is exemplified in Figure 1, which
shows, as an example, the DCA predictions for the Sigk-RskA*®
dimer. Hence, there is a need to quantitatively assess the
statistical significance of DCA predictions for dimer contacts,
which are often noisy and made using limited data. To address
this challenge, we propose a Z-score threshold to validate these
predictions, which is a statistical metric that measures the
relationship between a set of data points and a reference
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Figure 1. Comparison of DCA coupling strengths for the monomer and dimer signal for MSA with sufficient sequence statistics. We examined the
sigma-anti-sigma SigK-RskA dimer (PDB ID: 4NQW; resolution: 2.4 A). The amount of nonredundant sequence information within a multiple-
sequence alignment (MSA) is known to have a large influence on the DCA prediction accuracy. One coarse measure of this sequence information is
given by N,4/L, which describes the effective number of sequences over the sequence length L of the MSA (See Methods for more details). MSAs for
which Ng/L >>1 are generally considered to have ample sequence statistics; for Sigk-RskA, this measure is Nog/L = 5.76. (A) Top 100 Mean-Field
DCA residue pair predictions are pictured as red-colored circles; a darker shade indicates increasing direct information. DI (calculated in bits) contains
information for both monomeric (intraprotein) and dimeric (interprotein) structural contacts. The dimeric predictions are plotted separately at the
top panel for clarity. The PDB crystal contacts for the monomer (dark-gray circles) and dimer interface (light-gray squares) are plotted to compare the
DCA predictions against the crystal structure contacts. We have reindexed the PDB residue indices, such that the first monomer begins from 1 and ends
at N and the second monomer from N + 1 to M + N, where N and M are the lengths of monomer one and two, respectively. (B). DI values are shown for
the monomeric contacts and for the interface contacts. Recall that DI measures the degree by which amino acid pairs exhibit correlated amino acid
identities over natural selection, which often reveals their spatially proximity in the 3D space within a protein structure or set of structures. Above a DI

of 0.3 (black-colored dashed line), the positive predictive value, defined as PPV = %fpp

inset) and 80% for monomeric predictions (pink-colored dashed line in the inset; TP is the true positive count and FP is the false positive count).
Notice that the DI scores for the monomeric contacts are more likely to be above this threshold than dimeric ones. This likely reflects how the
maintenance of the protein fold is apparently a stronger evolutionary constraint on sequence selection than the maintenance of dimeric interfaces.

, is 100% for dimeric predictions (blue-colored line in the

distribution in units of standard deviation. This measure is
applied to examine the statistical significance of DCA
predictions from 76 dimer systems using DCA information.

B METHODS

Paired Multiple Sequence Alignments were Down-
loaded from the EVcoupling Database. Extending DCA to
predict heterodimers involves concatenating two interacting
families together, after determining which individual sequences
interact by genomic adjacency. For bacterial proteins, this task is
simpler because interacting sequences mostly share the same
operon.”"”” This task is more challenging for eukaryotes where
tools such as iterative pair-matching algorithms®”** and highest
reciprocal identity methods™”*" are utilized to determine these
matches. Interestingly, predicting homodimer contacts does not
involve identifying protein partners but has the challenﬁge that
interchain contacts may also exist as intrachain contacts.”® MSAs
of 561 concatenated protein family pairs were downloaded from
the EVcoupling heterodimeric database,” which uses the
highest reciprocal identity approach. Of the 561 MSAs available
in the data set, we selected the 76 MSAs, which have a
corresponding dimeric biological unit in an available PDB
structure. Complexes involving more than two proteins were
excluded from our analysis. The PDB structures all have
resolutions of at least 3 A.

11409

MSAs Classified by the Amount of Unique Sequence
Information. The number of effective sequences of an MSA,

N,

< is the number of nonredundant sequences N, ¢ =ZkN=1 Wy,
where N is the total number of MSA sequences and wy, is the
reciprocal of the number of sequences within the MSA that are
similar to sequence k, defined by a threshold of 80% or more
amino acid identity (see refs8 37, for additional details). The
ratio N,g/L, where L is the length of a sequence in the MSA, is
often a useful metric for characterizing the quantity of sequence
data available for a given system.”' Therefore, it is used for an
initial determination if sufficient information is available to
predict protein contacts using coevolutionary inference
techniques. MSAs for which N.g/L >>1 are typically considered
to have ample sequence statistics, while MSAs for which N.4/L
<1 have insufficient sequence statistics. For simplicity, we
divided the 76 MSAs into 2 categories: Ng/L 21 (n = 28
sequences) and N.g/L <1 (n = 48 sequences).

Quantifying Coevolutionary Information between
Residue Pairs. Highly coevolving residue pairs are presumed
to be in spatial proximity within a 3D structure of a protein or
protein complex. The coevolutionary residue couplings for each
system were calculated using plmDCA,'"*” which uses
pseudolikelihood maximization to infer a statistical model that
is consistent with the amino acid correlations observed in the
MSA data. The degree of coevolution between pairs of residues
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Figure 2. Applying Z-score analysis to DCA analysis to filter out statistically insignificant predictions. MSAs of 561 concatenated protein family pairs
were downloaded from the EVcoupling database. After filtering for 76 MSAs, which have a corresponding dimeric biological unit in an available PDB
structure, we categorized the remaining MSAs into two groups based on their effective number of sequences per length: dimers with sufficient sequence
data (N.¢/L 2 1) and limited data (N,g/L S 1). (A) Average PPV (top panel) and the number of predicted dimer contacts (bottom panel) as a
function of the Z-score are shown for the two groups N /L 2 1 (pink-colored lines) and N.z/L < 1 (blue-colored lines) and for each group’s
monomeric (dashed lines) and dimeric predictions (solid lines). For the N.g/L 2 1 systems, at Z = 3.5 (green-colored vertical line), the average PPV
for true dimer predictions is 49.7%, which increases to 100% at Z = 5.6 (black vertical line). (B) Z-score values of all DCA dimer predictions and their
corresponding residue—residue distances in the PDB crystal structure. There are 358 dimer pair predictions above Z = 3.5 and 49 of those are above Z =
5.6. Note that at Z = 5.6, there are four predictions around 50 A and one at 30 A that come from the N /L < 1 systems (red-colored rectangles). These
long-range contacts currently contribute to the dimer pair false positive count in (A) They may, however, be associated with alternative dimer
structures (see discussion in the Results section). (C) Average PPV as a function of the descending rank order of DCA predictions for monomeric
predictions (dashed lines) and dimeric predictions (solid lines). The pink lines plotted are the average PPV for systems with N.g/L 2 1, whereas the
blue lines correspond to the average PPV for the N,g/L 5 1 systems. The average PPV for the top ten predictions is 94.4% (for N.z/L > 1) and 84.6%
(for Nog/L < 1) for monomeric predictions and 30.3% (for N,g/L > 1) and 16.5% (for Ng/L < 1) for the dimeric predictions. Asillustrated in (A), a Z-
score threshold offers significant improvements in prediction accuracy compared to simply selecting the top rank-order predictions. (D) Z-scores of
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Figure 2. continued

the top coevolving residue pairs for the two groups of MSAs—N,¢/L 2 1 top panel and N 4/L < 1 bottom panel. The x-axis is labeled by PDB ID. The
systems with N,¢/L 2 1 (n=28) were used as the reference distribution. A dimer contact is defined if they are separated by less than 15 A between two
interchain residue heavy atoms. This choice allows for a flexible refining process using molecular dynamics simulations. Two lines are drawn at Z = 5.6
(black line) and Z = 3.5 (green-colored line), and the arrows show the average PPV at these points. We observed seven systems in the N g/L 2 1 group
to have an average PPV of 100% at Z = 5.6 and an additional ten systems to have an average PPV > 49.7% at a threshold Z = 3.5.

was expressed using the Frobenius norm of the coupling
14,37

matrix ' where larger values are related to greater amounts of

coevolution. The Frobenius norm score is given by

-, -

(1)

was calculated from the DCA coupling matrix jij after which an
average product correction was applied to remove entropic and
phylogenetic effects,* resulting in the so-called corrected-norm

FN,FN,
(CN-score) CN; = FN; — ——, where FN, and FN, are

FN,

averaged over columns i and j, respectively. FN,, is the average
value of the entire matrix. We could similarly quantify the
amount of coevolutionary information using the DI,™* which is a
Kullback-Leibler” divergence between the inferred global
statistical model of coevolving amino-acid pairs, P,-S-DCA), and a
pair-independent model consisting of the product of the single
site occurrence of a particular amino-acid A; and A;

(DCA)
Py (A A))
DL = Y PPN, A)n ——— =

A4 fx (Ai)fj (A].) 2)

Equation 2 measures the amount information encoded in
Pl-(]-DCA) relative to a null model where the residue sites i and j are
statistically independent (no coevolution); hence, DI;; = 0 when
Pi(jDCA) can be factorized into independent single-site frequen-
cies.®

Determining Statistical Significance of Residue Cou-
pling Strength Using the Z-Score Analysis. We defined a
dimer contact to be less than 15 A between two interchain
residue heavy atoms, although we also examined contact
definitions of 8 and 10 A shown in the Supporting Information
Figure S1. This broad definition of a contact accommodates the
subtle conformational rearrangements that occur within a folded
protein and can further be refined by combining DCA
predictions as constraints in molecular dynamics simulation
(see subsection Using DCA predictions as docking constraints).
The CN-scores of these predictions were used for the Z-score
calculation. The Z-score is defined as

CN, — CN /12!
l Y

Z. =
4 SNer/L21 (3)

where CNf;’*ff/LZl and Y121 are the average and standard

deviation of the CN-score, respectively. The reference
distribution combines the DCA predictions for the monomeric
contacts for sequences with Ng/L 21 (n = 28) (e.g., systems
with sufficient statistics). The Z-score analysis provides the
appropriate metric to quantify the statistical significance of any
specific prediction relative to the chosen reference distribution.
A similar Z-score analysis has been applied to analyze phylogenic
correlations within a protein family inferred using DCA.**

Validation of Residue Coupling Z-Scores Using the
PPV. The total number of true positives (TP) and false positives
(FP) were determined for all 76 sequences described above and

used to calculate their PPV, defined as PPV = P _ ppv
TP + FP

estimates the fraction of true contacts (defined by the PDB
structure) out of the top n predicted contacts .

Using DCA Predictions as Docking Constraints.
Previous studies have demonstrated how predicted DCA
dimer contacts can be used to dock monomer structures to
obtain a predicted dimer”"***** or multimeric complex.”> We
will primarily adopt the docking protocol of dos Santos et al.*’
The monomeric structures are typically available on the PDB or
constructed using homology modeling from existing structural
data.****~** Docking is then performed by simulating a coarse-
grained structure-based model*”" representation of the
monomeric subunits and interaction between the subunits; an
attractive potential is provided between the interprotein residue
pairs predicted by DCA to be in contact. This docking procedure
is discussed in greater detail in the Supporting Information for a
specific illustrative example. This docked model can be further
refined using explicit solvent molecular dynamics.”’ The
resulting structural model can then be compared to known
crystal structures”” or, if none exists, validated by analyzing the
interaction energetics of the dimer interface of the predicted
protein complex. This is accomplished using frustration
analysis,> > which can be used to assess how energetically
favorable or unfavorable a particular structure is.

B RESULTS AND DISCUSSION

DCA uses coevolution information to predict not only spatial
contacts in a monomeric protein®~'”'* but also dimeric contacts
that stabilize the interaction between protein com-
plexes.”">¥2%°¢ Figure 1 shows representative DCA predictions
for the sigma factor SigK-RskA dimer,”” where the top 100 DCA
predicted contacts (containing both intra- and interprotein
pairs) are plotted alongside the known crystal structure contacts.
As discussed in Figure 1 and in the Introduction, the
coevolutionary couplings between intraprotein residues are on
average stronger than those for interprotein residue pairs.
Ordinarily, the strongest coevolutionary couplings reflect
contacts on the monomeric folds, while dimeric contacts can
be viewed as a perturbative effect.

Historically, DCA predictions have been ranked in the
descending order starting from the highest coevolving signal and
the top ranked predictions are taken to represent structural
contacts. However, selecting dimeric contact predictions in this
manner can be problematic. The weakness of dimeric coevolu-
tionary signals relative to monomeric signals makes dimer
predictions more sensitive to noise associated with limited data.
Therefore, a more rigorous approach is needed to determine if
these predictions are statistically significant and meaningful.
Toward this goal, we propose a quantitative approach to
establish a threshold below which all DCA predictions should be
excluded because no sufficient information is available. Figure
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Figure 3. Z-score threshold removes incorrect DCA predictions for N.g/L 2 1 systems with only true contacts for Z-scores above 5.6 (black circles).
For comparison, the top ten DCA predictions are shown as red-colored squares and the crystal dimer contacts from the PDB are shown as gray-colored
squares. (A—G). Seven out of the twenty-eight Nz/L 2 1 dimers have true interface contacts above this threshold. False positive predictions are
present when using the top ten predictions but were eliminated using this Z-score threshold. The remaining dimer systems in this group did not have
any dimer predictions available (see Figure 2A bottom panel), but predictions at lower Z-score thresholds exist at the cost of a lower PPV, that is, not
every DCA pair is a crystal interface contact.

To quantitatively determine suitable thresholds to filter DCA

1B illustrates the confidence level of DCA predictions at predictions, a statistical significance measure using a Z-score
different values of the chosen threshold. analysis is implemented. As previously described, to test this
11412 https://doi.org/10.1021/acs.jpcb.1c07145
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Figure 4. Applying Z-score threshold to systems with limited data (Ng/L < 1). Using a Z-score threshold of 5.6 reveals that systems with limited data
generally have no statistically significant predictions. (A) Only 1 of the 48 dimers has a true interface contact prediction (black circle) that overlaps with
the crystal contact (gray squares). Interestingly, (B—D) three representative dimer systems that have high scoring contacts (Z > 5.6) are not in spatial
proximity within a known dimeric structure. These predictions may capture alternative dimer structure because there is a significant high covariation

signal revealed by using a Z-score threshold.

procedure, we investigated the 561 paired protein families from
the EVcoupling heterodimeric webserver’” and filtered
sequence coevolution information for 76 families (presented
inFigure 2), which were associated with independent dimer
biological complexes in the PDB structure.

The strengths of the coevolutionary signals were determined
using plmDCA. This information was used to validate the
interprotein predictions using Z-score analysis, and we
compared these results to the rank-ordered predictions
traditionally used to predict the 3D structure. Figure 2A (top
panel) shows the average PPV as a function of the Z-score (eq 3)
for all dimer systems with sufficient data (N4/L 2 1; pink-
colored lines) and systems with limited data (N,g/L < 1; blue-
colored lines). Again, this Z-score threshold, which quantifies
the statistical significance of DCA-based predictions, is
particularly needed for any dimer prediction. For more
information on how the Z-score analysis is performed or how
the two subgroups of dimers are selected (ie, Nyw/L S 1 and
N,/L 2 1); see the Materials and Methods section.

At a Z-score threshold of about 5.6 (shown as a black line in
Figure 2A—D), we achieved a PPV of effectively 100%, meaning
that all of the dimer predictions greater than or equal to this
threshold are confirmed to be spatially proximal contacts within
a known crystal structure. A comparative plot of PPV as a
function of Z-score is shown in Figure S1 for different contact
distances, showing that the general conclusions of Figure 2 are
not sensitive to the specific definition of contact distance.

However, setting an appropriate threshold for refining
predictions involves a tradeoff between a higher PPV and a
decreasing number of predictions remaining (i.e., less systems
covered), as shown in the bottom panel of Figure 2A. For
consistency, Figure 2B shows an aggregated scatter plot of the Z-
score for all DCA interprotein predictions and the distances
between interprotein residue pairs within a crystal structure.
Interestingly, for the Ng/L < 1 data set, we observed a few
interprotein DCA predictions with a Z-score above 5.6 that are
not a spatial contact in the crystal (actual distances >30 A). Such
a contradiction may be resolved by the existence of alternative
dimeric conformations or higher order assemblies. This
possibility is explored at the end of this section.

When selecting the top rank-order DCA predictions rather
than applying a Z-score threshold, the top 10 dimeric DCA
predictions had an average PPV below 25% for N.¢/L < 1 and
below 40% for the N.g/L 2 1 data sets (Figure 2C blue and red
solid lines, respectively). Generally, selecting the top DCA
predictions for monomeric contacts is an accurate predictor of
intraprotein contacts; for example, selecting the top 10
predictions for monomeric contacts in all 61 dimers leads to
an average PPV above 90% (Figure 2C inset—blue dashed
lines). Filtering the top DCA predictions using a Z-score
threshold for the dimeric contacts provides an improvement
over using the top 10 dimer predictions for systems with Ng/L
z 1
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Figure 2D illustrates the application of the Z-score thresh-
olding to the DCA dimer predictions for each system belonging
to the Nyg/L 2 1 and Ng/L < 1 groups, respectively. The
threshold of Z = 5.6 yields the most accurate dimer prediction,
while still making predictions for 8 out of the 28 dimer systems
with N.g/L 2 1 (Figure 2D). As discussed previously, these
results demonstrate that good predictions are not available to
every system, that is, having sufficient interprotein contacts
above the desired threshold (e.g,, Z > 5.6 in Figure 2D). Two
notable examples of systems with many statistically significant
predicted dimer contacts were Sigk-RskA (PDB ID: 4NQW)
and hisH-hisF (PDB ID: 1KA9); both systems had abundant
sequence data (N,/L > 1) that was accurately able to
characterize the coevolutionary signals that reflect spatial
contacts in both the monomeric folds and dimeric interfaces.
Shown in Figure 3, using a Z-score threshold on dimer
predictions with sufficient data (N,z/L 2 1) removes false
positives (panels A,B,E—G) and in the two cases (panels C,D)
for which the top 10 predictions are all true positives, applying
the Z-score threshold performs equally well.

Figure 2D shows very few DCA dimer contact predictions
above Z = 5.6 for systems with limited data (N,¢/L < 1). Several
representative examples are shown in Figure 4. For systems with
limited data, only one system (PRPF38A-MFAPI) has a single
DCA prediction above Z = 5.6 that is also a true positive dimer
contact. Interestingly, three systems with limited data exhibit
dimer contacts above Z = 5.6 that are not observed in a known
experimental structure (Figure 4B—D). The fact that these
predictions contain statistically significant covariance informa-
tion suggests that they may not be false positives; they could
potentially be associated with relevant alternative conformations
of certain dimer complexes. We investigate this possibility for
the Pex4p-Pex22p”® system (included in the data limited subset;
ie, Nyg/L < 1). This dimer contains three predicted
interprotein contacts with a Z-score between 5.6 and 5.8
(black circles shown in Figure SB left panel) that are not
observed in the known crystal structure. It should also be noted
that using the top 10 DCA dimer predictions yielded two true
positive contacts with a statistical significance above the
threshold of Z = 3.5 (see Figure SB right panel). Therefore,
these largest Z-score predictions provide an interesting example
case for which an alternative complex structure may exist (see
Figure S), a possibility that is further explored below.

Statistically significant DCA predictions that are not found in
a known crystallographic protein structure pose an interesting
question. Are these residue pairs real contacts in an alternative
biologically relevant conformation? We explore this possibility
by examining the case of the Pex4p—Pex22p complex, one of the
dimers where this situation occurs (see Figure 5). In the
peroxisome of a eukaryotic cell, E1, E2, and E3 enzymes
participate in a series of ubiquitin-associated events that result in
the transfer of ubiquitin to a substrate targeted for either
degradation or translocation. Ubiquitin-conjugating E2 enzymes
are involved in ubiquitin coordination to substrates.”® The
peroxisome-associated E2 enzyme, Pex4p, binds to the
peroxisomal membrane protein Pex22p (pink and light-purple
subunits shown in Figure SA). None of the contacts that overlap
with the crystal structure interface shows a high Z-score DCA
pair. This protein complex binding is necessary for Pex4p to
coordinate ubiquitin transfer to the target substrate via another
enzyme PexSp. The active site of Pex4p is located at a cysteine
residue (labeled in Figure SA and represented as a purple
residue) and is implicated in ubiquitin binding.”® No other
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Figure 5. DCA predicts an alternative binding site at Z > 5.6 for the
Pex4p-Pex22p dimer. Ubiquitin-conjugating enzymes play an impor-
tant role in protein degradation via ubiquitin-coordination to
substrates. (A) Peroxisome-associated E2 enzyme Pex4p, shown in a
light-purple-colored new-cartoon representation, is bound to the
peroxisomal membrane protein Pex22p (pink-colored new-cartoon).
The crystal interface (top left, pink-colored subunit) is shown and
compared to our predicted docked interface (top right, pink-colored
subunit). We analyzed the energy landscape of both the crystal interface
and our newly predicted (alternative) interface using the configura-
tional frustration index, which is a proxy for the interaction energy
between pairs of residues where a distribution of various decoy residue
pair configurations is compared to the native configuration and
expressed as a Z-score. Minimally and highly frustrated regions between
pairs involved both interfaces are plotted as green- and red-colored
lines, respectively. While the crystal interface is larger, our predicted
interface is also minimally frustrated except for one highly frustrated
interaction between glutamic acid and aspartic acid. The red text labels
correspond to the Z-filtered DCA pairs. The peroxisomal membrane
protein is a noncanonical E2 binding partner and thus affects the
specific function of E2. An alternate binding site is revealed by these
three contacts. We added two more contacts to stabilize the alternative
dimer structure (Z = 5.0 and Z = 4.3, respectively; refer to Supporting
Information csv file). (PDB ID: 2Y9M, resolution 2.6 A.) Note that the
PDB residues were reindexed to start from 1 (as described in Figure 1
caption) and thus are shifted away from the original PDB indexing. (B)
Contact map showing the top ten dimeric predictions (red-colored
squares), crystal interface contacts (gray squares), and Z-score filtered
dimeric predictions (black circles). All three predicted interchain
contacts (left panel) had Z-scores >5.6 and appear to be false positives
because they do not exist in a known crystal structure. When a less
stringent filter at Z = 3.5 (right panel) is applied, we obtain our first true
dimer contact at a distance of 8 A, which is present in the known crystal
structure.

known binding interface between Pex22p and Pex4p has been
reported. The three DCA-predicted interchain pairs are shown
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as filled black circles in Figure SB left panel (labeled by the red-
colored three-letter residue name). Figure SA shows that their Z-
scores are >5.6 but are separated by more than 30 A in the crystal
structure (PDB: 2Y9M). If we consider all interprotein residue
pairs with a Z-scores above 5.6 as real interface contacts, these
three new contacts reveal a potentially new binding interface
between Pex22p and Pex4p. The first true dimer contact (8 A
distance in the crystal structure) is identified in our DCA
predictions by relaxing the Z-score threshold to a cutoff of 3.5
(Figure SB right panel). To explore the idea of a potentially new
interface between Pex22p and Pex4p, we performed a molecular
docking simulation where the top five contacts—the top three
described above and two additional ones with Z = 5.0 and Z =
4.3, respectively (see Supporting Information csv file), are
included to further stabilize this proposed new interface. To
verify if this new interface is energetically stable, we utilized
frustration analysis,””** which quantitatively determines if the
interface interactions are physically favorable. This approach is
an energy landscape-based method for quantifying energetic
interactions between residue pairs to determine their stability.
We find that the predicted interface (see Figure SA) is minimally
frustrated and thus is a plausible alternate dimer structure. The
predicted interface may also exist concurrently with the complex
present in the crystal dimer, as part of a larger complex structure
that may delay ubiquitination in a nonlinear manner. Because
Pex22p has a membrane-bound domain (not yet crystallized), a
rearrangement of either the membrane or of the domain may
need to occur to allow for the formation of this predicted
complex.

In summary, we are confident that DCA can yield a strong
crystal dimer signal when the Z-scores are sufficiently large. Few
true DCA dimer predictions are found for systems with limited
data (N.¢/L < 1) (Figure 2D), illustrating the lack of statistical
significance of the majority of predictions for these systems. Still,
although limited, statistically significant dimer predictions can
be found for these systems (Figure 4). Moreover, for the case of
the Pex4p—Pex22p system (N,z/L = 0.20), these predictions
suggest an alternative dimer conformation. To probe the
plausibility of this conformation, we integrated the high Z-
score-filtered DCA pairs into a structure-based model to
simulate the alternative docked structure and utilized physical
methods to check its stability. It is of interest to note that dimer
interfaces may not be unique to a single structure; homologues
of bound substrates may be present in the DCA predictions.

B CONCLUSIONS

Gaining a mechanistic understanding of proteins and their
functional interactions requires knowledge of their three-
dimensional structures. Much of this information is obtained
from experiments (e.g.,, X-ray crystallography), but it is limited
to a subset of known proteins. Sequence coevolutionary
information helps fill this gap by providing additional
information that can be used in protein structural predic-
tions. S~ 10/1421,23,25,33,35,45,55

DCA quantifies this coevolutionary information to predict
structural contacts in a folded protein or protein complex. While
DCA has found great success in predicting monomeric
contacts,’”'*'* generating predictions for the dimer complex
(and higher order complexes) presents a significantly greater
challenge because interprotein amino acid correlations are much
weaker than intraprotein correlations. This is expected because
evolutionary information is much stronger at the individual
protein level relative to the protein—protein interface. Hence,
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selecting the top dimer predictions from a simple rank-order
may not be sufficient to guarantee a good prediction for these
interface contacts because the top predictions may not be
statistically significant. To this end, we have introduced a simple
Z-score analysis to assess the statistical significance of any DCA
prediction. We have shown that setting a Z-score threshold on
these predictions involves a tradeoff between predictive accuracy
and the number of predictions that are made. In the extreme
case, a stringent threshold of Z = 5.6 accurately predicts dimer
contacts, although many systems that we examined did not have
enough information to meet this threshold. Interestingly, DCA
predictions for which Z > 5.6 are excellent candidates for
alternative structural contacts when these contacts are not
observed in known structures. We have explored the Pex4p—
Pex22p dimer system as an illustrative example, generating a
plausible alternative interface that is supported by our predicted
dimer contacts. Predictions where Z > 5.6 may not always exist;
yet DCA predictions at a lower Z-score threshold can still be
used, albeit with a lower predictive accuracy.

Predictions for systems with limited data (N,4/L < 1) further
pose an interesting challenge. While we have no control over the
amount of sequence data that is available, we can still potentially
make progress in structure prediction for these limited data
systems. For example, we can incorporate additional constraints
on our model or perhaps reduce the amino acid representation
to a reduced, coarse-grained representation. The contact
predictions of our model can further be combined with physical
modeling (e.g., docking), which would corroborate interprotein
contact predictions.

Recent advances have demonstrated how machine learning
from PDB structures can be used to create remarkable predictors
of the protein structure.”” Coevolutionary information is
nevertheless a nonstructural source of information that can
provide additional structural information. The strength of
coevolutionary methods is further supported by developments
in high throughput sequencing, producing new sequence data at
a much higher rate than experimental structural data can be
obtained. This type of approach offers a complementary source
of information that can augment the new, cutting-edge structure
prediction methods.
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