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We show that the nonlinear stochastic dynamics of a measurement-feedback-based coherent Ising machine
(MFB-CIM) in the presence of quantum noise can be exploited to sample degenerate ground and low-energy spin
configurations of the Ising model. We formulate a general discrete-time Gaussian-state model of the MFB-CIM,
which faithfully captures the nonlinear dynamics present at and above system threshold. This model overcomes
the limitations of both mean-field models, which neglect quantum noise, and continuous-time models, which
assume long photon lifetimes. Numerical simulations of our model show that when the MFB-CIM is operated in
a quantum-noise-dominated regime with short photon lifetimes (i.e., low cavity finesse), homodyne monitoring
of the system can efficiently produce samples of low-energy Ising spin configurations, requiring many fewer
roundtrips to sample than suggested by established high-finesse, continuous-time models. We find that sampling
performance is robust to, or even improved by, turning off or altogether reversing the sign of the parametric drive,
but performance is critically reduced in the absence of optical nonlinearity. For the class of MAX-CUT problems
with binary-signed edge weights, the number of roundtrips sufficient to fully sample all spin configurations up
to the first-excited Ising energy, including all degeneracies, scales with the problem size N as 1.08N . At N = 100
with a few dozen (median ∼20) such desired configurations per instance, we have found median sufficient
sampling times of 6 × 106 roundtrips; in an experimental implementation of an MFB-CIM with a 10 GHz
repetition rate, this corresponds to a wall-clock sampling time of 60 ms.
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I. INTRODUCTION

For decades, the Ising model has served as a key concep-
tual bridge between the fields of physics and computation. A
host of important combinatorial optimization problems have
efficient mappings to the problem of finding ground states
of the Ising model [1], while the simple and highly generic
form of the model means that Ising-like interactions are ubiq-
uitous across a diverse array of systems [2]. Formally, the
Ising model consists of a set of spins σi = ±1 with configura-
tion energy given by the Ising Hamiltonian −∑

i �= j Ji jσiσ j ,
and, in general, the Ising problem of finding spin configu-
rations that minimize this energy is presently intractable on
conventional computers [3]. As a result, significant interest
has developed towards leveraging physical Ising-like sys-
tems as special-purpose computational hardware for tackling
problems such as combinatorial optimization, with ongoing
research on platforms ranging from quantum annealers built
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from microwave superconducting circuits [4,5] to coherent
Ising machines [6–9] based on networks of nonlinear optical
oscillators among many others [10–15].

But, while combinatorial optimization is often focused
on finding just one of the ground-state Ising spin configu-
rations, it is desirable in many applications to obtain many
or all degenerate ground-state configurations, and, in some
cases, to sample many low-energy configurations as well [16].
Such sampling capability is particularly useful for applica-
tions that involve obtaining distributional information about
spin configurations in an Ising model, such as estimating the
ground-state entropy of a physical simulation with Ising-like
interactions or implementing Boltzmann machines as gen-
erative models for machine learning [17–19]. In industrial
settings, accessing a pool of candidate solutions to an op-
timization problem can make processes more efficient and
flexible; for example in drug discovery [20–23], structure-
based lead optimization could generate a number of candidate
molecules for simultaneous testing. Recently, it has also
been pointed out [24,25] that when decomposing large opti-
mization problems into subproblems to be solved separately
(e.g., to accommodate hardware limitations), better solutions
to the original problem can be constructed using multiple
low-energy samples rather than just the optimum for each
subproblem. However, an Ising solver designed for combina-
torial optimization is not necessarily well suited to sample all
ground states and/or low-energy states. For instance, although
the commercial quantum annealers by D-Wave Systems have
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shown success in finding ground states of the Ising problem,
their principle of operation can lead to an exponential bias in
the distributions of degenerate ground-state samples [26–28].
Because such issues are often intrinsically tied to the hard-
ware details underlying an Ising solver, a numerical study of
sampling performance requires the development and study of
accurate models for the machine and its operation.

In this paper, we study the sampling performance of the
measurement-feedback-based coherent Ising machine (MFB-
CIM) [7–9,29], a hardware platform originally conceived
for performing Ising optimization using a network of de-
generate optical parametric oscillators (DOPOs) subject to
a real-time measurement-feedback protocol, which encodes
Ising interactions into the network dynamics. In particular,
we use a Gaussian-state model to examine how quantum
noise arises within the dynamics of the MFB-CIM and ad-
dress whether stochastic nonlinear dynamics can facilitate
efficient sampling of low-energy Ising configurations. While
a full-quantum treatment of the MFB-CIM is possible [29],
a numerical study of the large-scale systems relevant for
combinatorial optimization/sampling is only possible up to
the Gaussian-state regime where quantum correlations are
considered up to second-order (i.e., up to covariances of
observables) [30,31]. This Gaussian-state approximation is
consistent with the operational regimes of all experimental
MFB-CIMs known to date [7–9], while still providing an
accurate treatment of important quantum-noise-driven phe-
nomena such as squeezing/antisqueezing and measurement
uncertainty and backaction [29,32,33], which are central to
our study of sampling performance but usually neglected in
mean-field models.

The potential of MFB-CIMs to generate samples of de-
generate ground- and low-energy-excited spin configurations
was recently pointed out in Ref. [34], using a Gaussian-state
model formulated in continuous time [35]. As we show in
this paper, such continuous-time models correctly capture the
dynamics of the MFB-CIM in the high-finesse limit where the
cavity decay time of its constituent DOPOs dominate all other
system timescales. On the other hand, the intrinsically higher
bandwidth of a low-finesse system can, at least in principle,
be leveraged to significantly reduce computational runtime;
indeed, most experimental implementations of CIMs (both
optically-coupled as well as measurement-feedback-based)
utilize DOPOs operating in the low-finesse regime of short
cavity decay times [6–9]. Low-finesse systems are more con-
veniently described in discrete time, where dynamics occur
via a sequence of discrete operations on the system state [36].
Theoretically, quantum treatments of MFB-CIMs in discrete
time have been previously studied in Refs. [37,38]. While the
latter study used a non-Gaussian model for the quantum state,
which is only numerically tractable for small problem sizes,
the former work indeed turned to a Gaussian-state model to
study the linear dynamics of the MFB-CIM. In their Gaus-
sian model, however, the nonlinear gain saturation—which
can play an important dynamical role in the MFB-CIM near
and above threshold—was only considered phenomenolog-
ically. To circumvent these limitations, we develop here a
discrete-time Gaussian-state quantum model featuring a phys-
ical model for nonlinear gain saturation, allowing us to study
low- and intermediate-finesse MFB-CIMs below, through,

and above threshold. To our knowledge, the model presented
here is the most general treatment currently available to nu-
merically simulate large-scale MFB-CIMs operating in the
Gaussian-state regime.

II. DISCRETE-TIME GAUSSIAN QUANTUM MODEL
OF THE MFB-CIM

Conceptually, the coherent Ising machine (CIM) is a sys-
tem of N degenerate optical parametric oscillators (DOPOs),
which are nonlinear optical oscillators exhibiting saturable
phase-sensitive gain. When pumped below its oscillation
threshold, the state of a DOPO is well described by a
quadrature-squeezed vacuum state, while far above thresh-
old, nonlinear saturation of the gain due to pump depletion
stabilizes the system into one of two phase-bistable bright
coherent states (referred to as the 0- and π -phase states). To
encode Ising spins into the DOPO network, we associate these
bistable phase states to the Ising spins σ = ±1, respectively.
By engineering the interactions among the DOPOs, we can
realize system dynamics, dictated by a desired Ising coupling
matrix J .

Figure 1 depicts on the schematic level a notably suc-
cessful experimental implementation of the CIM where
the DOPOs are realized as synchronously-pumped, time-
multiplexed “signal” pulses in a single optical fiber-loop cav-
ity, with pulse interactions mediated by a synchronous, real-
time measurement-feedback protocol. In this measurement-
feedback-based CIM (MFB-CIM), the signal pulses are
separated by a time interval 1/ frep; thus to fit N pulses, the
cavity length is ∼Nc/ frep. On each roundtrip through the
cavity, the signal pulses sequentially co-propagate through
a nonlinear χ (2) crystal alongside synchronous, externally
injected pump pulses derived from the second harmonic of
the source laser, which imparts phase-sensitive amplifica-
tion along the in-phase q quadrature. Next, the signal pulses
are tapped out sequentially through an output coupler. The
output is measured on a q-quadrature homodyne detector,
which results in an indirect and weak measurement of the
q-quadrature amplitude of the internal signal pulse. Crucially,
the sign configuration of the N homodyne measurements,
say (sgn w1, . . . , sgn wN ), constitutes a sampled Ising spin
configuration under the correspondence σi ↔ sgn wi. Finally,
to implement the interactions between the pulses, an FPGA
receives the homodyne results and computes a feedback signal
vi ∝ ∑N

j=1 Ji jw j , which is applied to the corresponding ith
signal pulse via synchronous external injection of a feedback
pulse derived from the source laser but with intensity and
phase determined by vi (e.g., using synchronous optical mod-
ulators). The interference between the injected pulse and the
internal signal pulse steers the system towards lower-energy
Ising spin configurations, thus dynamically realizing the Ising
coupling matrix J in the MFB-CIM system.

The result of embedding the structure of the Ising cou-
plings into the system dynamics is that the evolution of the
state is governed by the interplay among three general el-
ements: (i) nonlinearity, which drives the signal amplitudes
to bistable spin values; (ii) linear coupling, which drives the
system towards collective configurations that minimize the
Ising energy; and (iii) quantum noise, which arises from the
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FIG. 1. Schematic of the measurement-feedback coherent Ising
machine (MFB-CIM). (a) Abstractly, the MFB-CIM consists of a
system (gray box) of N optical modes with state ρ̂i (characterized
by a mean vector μi and covariance matrix �i), each of which
experiences optical gain, loss, and nonlinearity. The system is probed
via weak measurement to produce an estimate wi of the in-phase
quadrature q̂i, up to some normally-distributed (i.e., Gaussian) quan-
tum noise zi. This estimate is processed by an external controller
(green box) that generates a feedback signal vi based on a specified
Ising-problem matrix Ji j . Closing the loop thus embeds the Ising
couplings into the system dynamics. (b) An optical schematic of the
MFB-CIM, implemented in a time-multiplexed scheme [7,8]. The
system consists of optical pulses ρ̂i circulating in a resonant cavity
with a pumped nonlinear crystal to provide gain and nonlinearity,
plus any excess linear losses. An output coupler taps out a fraction of
each pulse to be measured in balanced optical homodyne, producing
the electronic signal wi. This signal is processed by an FPGA to
generate the feedback vi, which is optically re-encoded by applying
intensity/phase modulation to a local oscillator that is injected back
into the cavity, optically displacing the pulses and closing the loop.

inherent uncertainty of the weak homodyne measurement fol-
lowed by measurement backaction and feedback injection and
introduces stochasticity into the system dynamics. As illus-
trated conceptually in Fig. 2, the dynamical evolution of the
signal amplitudes is stochastic and nonlinear, but with a strong
preference towards low-energy sign configurations dictated
by the Ising coupling matrix. In the continuous-time limit, a
convenient and intuitive picture is to think of such stochastic
trajectories as quantum-noise-driven gradient descent on a po-
tential landscape: As the state evolves stochastically in time,

the instantaneous potential seen by any given spin dynami-
cally changes as well, guiding the system around and across
local minima born out of the interplay between nonlinearity
and coupling. While we will not focus on elucidating this
energy-landscape concept in this paper, such a multistability
dynamical picture of MFB-CIM dynamics in the quantum-
noise-dominated regime can provide useful physical intuition
as we develop the formalism.

Open-dissipative bosonic systems like the MFB-CIM with
relatively weak single-photon-induced nonlinearities and sub-
ject to continuous homodyne measurement can usually be
well approximated by a Gaussian state, even as the system
evolves through the classical bifurcation at threshold. For-
mally, the Gaussian-state approximation means the quantum
state, conditioned on the measurement results, has a Wigner
function well approximated by a Gaussian distribution; con-
sequently, the state can be fully characterized by simply
specifying a set of mean-field amplitudes and a set of covari-
ances describing the quantum correlations and uncertainties of
those amplitudes [30,31]. Another very useful simplification
(which applies more specifically to MFB-CIMs) is that the
pulses, while interacting through measurement feedback, are
nevertheless unentangled since the physics in Fig. 1 only
involve local operations and classical communication (LOCC)
among the signal pulses, leading to zero covariance between
different signal pulses.

Many of the operations involved in Fig. 1, including out-
coupling, homodyne measurement, and feedback injection,
are linear operations, and for Gaussian states, such operations
have a particularly simple description if we use a discrete-
time formalism for the dynamics, where we assume the
signal pulses undergo a discrete transformation upon passing
through each optical component. This discrete-time approach
stands in contrast to more traditional continuous-time models
in quantum optics, where the amplitudes evolve continuously
in time under an effective system Hamiltonian and a set of
Liouvillian superoperators representing continuous losses and
measurements. Of course, the time-multiplexed, pulsed nature
of the setup described in Fig. 1 lends itself naturally to a
discrete-time model when the pulse widths are short com-
pared to their separation. A continuous-time model can be
thought of as an appropriate approximation to the discrete-
time model when the cavity finesse is high: In this limit, the
single-roundtrip gain, loss, and measurement effects are all
small, leading to small changes in the cavity state on every
roundtrip, so the overall system dynamics are well described
by coarse-grained, continuous-time differential equations. In
order to study the impact of varying the cavity finesse (and
hence the dynamical bandwidth of the machine) on sampling
performance, however, we require the more general frame-
work of a discrete-time formalism.

Crucially, the particular operation in the MFB-CIM that
does not lend itself easily to a discrete-time Gaussian model
is the propagation of the signal pulse through the crystal. Be-
low threshold, this operation can be well described by linear
phase-sensitive gain along the q quadrature [32], and this is
modeled as a discrete-time squeezing operation in Ref. [37].
On the other hand, when the DOPO is near or above threshold,
the co-propagating pump pulse can become depleted, which
saturates the gain and leads to nonlinear dynamics and even
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FIG. 2. Conceptual illustration of the influence of quantum noise on the nonlinear dynamics of a MFB-CIM and the sampling of spin
configurations from a representative Ising problem instance whose graph is shown to the right. The top-left panel shows the stochastic evolution
of the q-quadrature expectation values qi of the ith pulse according to the discrete-time Gaussian model detailed in Sec. II of this paper.
In the continuous-time limit of the model, these dynamics can be intuitively seen as gradient descent on an N-dimensional potential; e.g.,
V (q) = −∑N

i=1[ 1
2 (p − κ − γ )q2

i − 1
8 gq4

i + 1
2 λ
∑N

j=1 Ji jqiq j] via (24a). For each color-coded time window highlighted in the top panel, we
plot in the bottom-left panels a 2-dimensional slice of the system trajectory in (q1, q5)-coordinates; to visualize the corresponding (q1, q5)-slice
of V (q), we average its instantaneous value as determined by all the other coordinates over the given time window. The sequence illustrates
the random fluctuations in the state driven by quantum noise, causing V (q) to stochastically guide the system state through different sign
configurations, thus sampling various low-energy Ising configurations of the problem instance.

physics beyond the Gaussian-state approximation in the pres-
ence of strong single-photon-induced quantum nonlinearities
[38]. The main contribution of the model that follows is to pre-
scribe a numerically efficient treatment of the gain saturation
physics in the Gaussian-state regime, allowing the discrete-
time Gaussian model to be extended through and above
threshold while remaining consistent with continuous-time
Gaussian-state models derived from standard quantum-optical
models of the MFB-CIM in the high-finesse limit [35].

In Sec. II A we review the basic Gaussian-state formalism
with which all the linear operations in the MFB-CIM can
be succinctly described. In Sec. II B we derive the Gaussian
equations of motion for nonlinear propagation through the
crystal. We then summarize in Sec. II C the entire iterative
procedure for propagating the state of the MFB-CIM through
one roundtrip, which completes our discrete-time dynamical
model. Finally, in Sec. II D, we outline how our discrete-
time model reduces to, and connects with, more conventional
continuous-time models for the MFB-CIM.

A. Basic formalism

We abstract the time-multiplexed MFB-CIM as an N-
mode bosonic system with mode annihilation operators
âi obeying [âi, â†

j ] = δi j and quadrature operators ẑ :=
(q̂1, p̂1, . . . , q̂N , p̂N ) defined so that [ẑk, ẑ�] = i�k� where
� := ⊕N

i=1

( 0 1
−1 0

)
is the symplectic form. If the system is in

a Gaussian state [30,31,39,40], it is fully determined by only
a mean vector μ and a covariance matrix �; i.e., the quantum
state can be written as ρ̂(μ,�), where its first-order moment
(i.e., mean vector) is

μk := tr(ẑk ρ̂), (1a)

and its second-order moment (i.e., covariance matrix) is

�k� := tr
(

1
2 (δẑk δẑ� + δẑ� δẑk )ρ̂

)
, (1b)

where δẑ := ẑ − μ is a vector of fluctuation operators for each
quadrature. Because the MFB-CIM is additionally unentan-
gled due to LOCC dynamics, we can apply the additional
simplifications:

μ =
N⊕

i=1

μ(i) and � =
N⊕

i=1

�(i), (2a)

where, explicitly,

μ(i) := (〈q̂i〉, 〈p̂i〉), (2b)

�(i) :=
(

〈δq̂2
i 〉 1

2 〈δq̂iδ p̂i + δ p̂iδq̂i〉
1
2 〈δq̂iδ p̂i + δ p̂iδq̂i〉 〈δ p̂2

i 〉

)
, (2c)

so that, instead of having O(N2) entries in general, there are
at most only 4N nonzero entries in the covariance matrix (and
only 3N unique ones) for the MFB-CIM. Accordingly, the
quantum state factorizes as

ρ̂(μ,�) =
N⊗

i=1

ρ̂(μ(i), �(i) ), (2d)

as expected. Note that, here, for two vectors μ(1) and μ(2),
μ(1) ⊕ μ(2) denotes their concatenation while for two matrices
�(1) and �(2), �(1) ⊕ �(2) denotes the block diagonal matrix(
�(1) 0

0 �(2)

)
.

More generally, when two systems with states
ρ̂(μ(a), �(a) ) and ρ̂(μ(b), �(b) ) are brought together, the
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joint system is described by the state

ρ̂(μ(a), �(a) ) ⊗ ρ̂(μ(b), �(b) ) = ρ̂(μ(a) ⊕ μ(b), �(a) ⊕ �(b) ).
(3)

On the other hand, if ρ̂(μ(a,b), �(a,b) ) is a joint system of two
modes, then we can partial trace out mode b by projecting out
the subspace associated with mode b:

trb[ρ̂(μ(a,b), �(a,b) )] := ρ̂(Pμ(a,b), P�(a,b)PT), (4a)

where the projection matrix in this case is

P :=
(

1 0 0 0

0 1 0 0

)
. (4b)

Having established the basic formalism, we now briefly
describe the linear operations that are necessary for the op-
eration of the MFB-CIM before moving onto the nonlinear
crystal propagation. These elementary operations consist of
beamsplitters for modeling loss and outcoupling, coherent
injections for modeling feedback, and homodyne measure-
ments.

A two-mode beamsplitter acting on a two-mode state
ρ̂(μ,�) with field-exchange amplitude r (i.e., power ex-
change ratio r2) can be described as

Br[ρ̂(μ,�)] := ρ̂(Sμ, S�ST) (5a)

with the beamsplitter matrix

S :=

⎛⎜⎜⎜⎝
t 0 −r 0

0 t 0 −r

r 0 t 0

0 r 0 t

⎞⎟⎟⎟⎠, (5b)

where t := √
1 − r2 is the self-scattering amplitude.

A coherent injection of a displacement α ∈ R2 (represent-
ing the two quadratures of the displacement) into a mode
a can be obtained by introducing a new mode b with a
displaced mean α/ε and then applying a beamsplitter with
field-exchange amplitude ε → 0 to a and b. In this limit, the
mode a does not inject into b, but since the mean of b goes as
α/ε, the overall displacement incurred by a goes to a constant
in the limit:

Vα[ρ̂(μ(a), �(a) )]

:= lim
ε→0

trb
(
Bε

[
ρ̂(μ(a), �(a) ) ⊗ ρ̂

(
ε−1α(b), �

(b)
0

)])
,

where �0 := diag(1/2, 1/2) is the covariance of a coherent
state. The result of this limit is simple, and (dropping the
superscripts for simplicity) gives the expected result

Vα[ρ̂(μ,�)] = ρ̂(μ + α,�). (6)

Finally, we consider making a q-quadrature measurement
of a mode b in a two-mode system ρ̂(μ(a,b), �(a,b) ), which we
can write in the general form

μ(a,b) :=
(

μ(a)

μ(b)

)
and �(a,b) :=

(
�(a) V

V T �(b)

)
,

where V captures the quantum correlation between the two
modes. The measurement results in a random normally-
distributed output

w ∼ N
(
μ(b)

q , �(b)
qq

)
, (7)

where μ(b)
q and �(b)

qq (q simply denotes the first index) are
respectively the mean and variance of the q quadrature of
mode b. After the measurement is performed, the mode b is
projected onto a q̂b-eigenstate |q = w〉b and can be formally
traced out. The appropriate backaction onto the mode a is
described by [39,40]

μ(a)
w := μ(a) + V (Q�(b)Q)+((w, 0)T − μ(b) ),

�(a)
w := �(a) − V (Q�(b)Q)+V T,

where Q := (1 0
0 0

)
is the projector onto the q-quadrature of

mode b and for any matrix M, M+ denotes its Moore-Penrose
pseudo-inverse. That is, after obtaining the measurement re-
sult w, the conditional state of mode a is ρ̂(μ(a)

w , �(a)
w ). An

alternative, more explicit formula can be obtained for this
simple two-mode case by writing V = (vq vp). Then we can
compute the pseudo-inverse analytically [39,40] to get

μ(a)
w = μ(a) +

(
w − μ(b)

q

�
(b)
qq

)
vq, (8a)

�(a)
w = �(a) − vqv

T
q

�
(b)
qq

. (8b)

We denote the process of homodyne measurement plus
backaction by the operation

Mb[ρ̂(μ(a,b), �(a,b) )] := ρ̂
(
μ(a)

w , �(a)
w

)
, (9)

conditional on the measurement output w given by (7).
While these linear maps describing outcoupling, measure-

ment, and feedback injection are fairly straightforward, we
also need to take into account dissipative linear losses as well.
Experimental sources of loss in the physical CIM vary by
implementation details, but some prominent sources include
crystal facet losses (due to mode-matching inefficiency or
Fresnel-reflection losses) and cavity propagation losses (due
to scattering off mirrors or mode-matching inefficiency while
coupling in and out of fibers). Since crystal facet losses gen-
erally dominate in realistic experimental implementations, we
assume for simplicity that all loss mechanisms can be lumped
together and applied via a pair of partial beamsplitters, placed
before and after the crystal. Like the outcoupler used for
measurement, these beamsplitters tap out intracavity light, but
instead of the outgoing pulse being measured via homodyne
(which would cause backaction on the state), we assume this
external pulse cannot be measured and we simply partial trace
it out instead, leading to dissipation on the state.

B. Nonlinear crystal propagation

The most difficult part of the discrete-time model con-
cerns the propagation of the pulse through the nonlinear
crystal, which, as a dynamical non-Gaussian process, stands
in contrast to the other operations, including measurement
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and feedback, that can all be ideally treated as Gaussian op-
erations. We assume that for each ith incoming signal pulse
in mode âi, a new pump pulse in mode b̂ instantiated as a
coherent state is injected into the optical path via a dichroic
coupler to copropagate synchronously with the signal pulse,
thus activating a parametric interaction between the signal and
pump described by a Hamiltonian

Ĥ (i)
nl /h̄ = iε

2

(
b̂â†2

i − b̂†â2
i

)
, (10)

where the coupling rate ε determines the overall small-signal
parametric gain experienced by the signal pulse for a given
crystal length and initial pump-pulse amplitude. The two-
mode-interaction form of this Hamiltonian assumes that the
pulses are either sufficiently long in time to avoid walk-off
or other pulse distortion effects due to dispersion, or that
such dispersion has otherwise been well managed, allowing
us to abstract both the signal and pump pulses as single-mode
excitations of the field. In such a model, mode-matching in-
efficiencies (temporal, spectral, spatial, etc.) are all taken into
account by the coupling rate ε.

In general, the Hamiltonian (10) can produce both en-
tanglement and non-Gaussianity in the joint state between
the pump and signal pulses, requiring the full joint Hilbert
space of the two modes to describe properly. In order to
make the crystal propagation compatible with the Gaussian
formalism, we derive equations of motion (EOMs) for the
Gaussian moments of the pump and signal pulses generated
by (10), while assuming that the non-Gaussianity of the state
(characterized by higher-order moments) remains negligible.
This approximation is valid if the DOPOs have a large satu-
ration photon number, i.e., a single photon only induces small
gain saturation. We can then numerically integrate the EOMs
from the input to the output facets of the crystal, resulting in a
nonlinear map, which we abstractly write as

χ : ρ̂(μ(i), �(i) ) ⊗ ρ̂
(
μ

(b)
0 , �

(b)
0

) → ρ̂(μ(i,b), �(i,b) ), (11)

which acts on the incoming state (a Gaussian signal pulse
unentangled with a coherent-state pump pulse) and produces a
correlated pump-signal Gaussian state. After the crystal prop-
agation is complete, we need to also address what to do with
the pump pulse, as it can, in general, be entangled with the
signal. The option we take here is to trace out the pump mode,
producing a mixed Gaussian state describing only the signal
pulse; this state impurity of the signal pulse can be viewed as
dissipation caused by two-photon absorption or, equivalently,
energy loss due to back-conversion from signal to pump.

One straightforward way to restrict the quantum dynam-
ics to a Gaussian subspace is to take the Heisenberg EOMs
generated by (10) for the quadrature operators and perform a
moment expansion up to second order [41]. The Heisenberg
EOMs for crystal propagation of the ith signal pulse âi and its
corresponding pump pulse b̂ are

dâi

dτ
= εb̂â†

i ,
db̂

dτ
= −ε

2
â2

i . (12)

Let us now write for convenience âi = x̂i + iŷi and b̂ = x̂b +
iŷb, so that x̂i := q̂i/

√
2 and ŷi := p̂i/

√
2. Then these scaled

quadrature operators evolve according to

dx̂i

dτ
= ε(x̂bx̂i + ŷbŷi ),

dx̂b

dτ
= −ε

2

(
x̂2

i − ŷ2
i

)
,

dŷi

dτ
= ε(ŷbx̂i − x̂bŷi ),

dŷb

dτ
= −ε

2
(x̂iŷi + ŷix̂i ).

The evolution of the first-order moments can simply be ob-
tained by taking expectation on the above equations. In order
to break up the products, we can use the relation 〈ẑ1ẑ2〉 =
〈δẑ1 δẑ2〉 + 〈ẑ1〉〈ẑ2〉 to express the expectation of a product
of any two operators ẑ1 and ẑ2 in terms of their means and
covariance. However, it is also clear that in doing so, we need
to track the evolution of the covariances as well. To derive the
covariance EOMs, we use the general formula

d

dτ
〈δẑ1 δẑ2〉 =

〈
dẑ1

dτ
ẑ2 + ẑ1

dẑ2

dτ

〉
− d

dτ
(〈ẑ1〉〈ẑ2〉).

Crucially, in applying this equation, we make the Gaussian-
moment assumption that

〈ẑ1ẑ2ẑ3〉 → 〈ẑ1〉〈δẑ2 δẑ3〉 + 〈ẑ2〉〈δẑ1 δẑ3〉
+ 〈ẑ3〉〈δẑ1 δẑ2〉 + 〈ẑ1〉〈ẑ2〉〈ẑ3〉, (13)

where the third-order (non-Gaussian) central moment
〈δẑ1 δẑ2 δẑ3〉 = 0 by assumption.

The full EOMs derived under this procedure are provided
in Appendix C. In general, since we can use [δx̂, δŷ] = i/2
to obtain 〈δŷ δx̂〉 from 〈δx̂ δŷ〉, there are 10 covariances that
we need to track. However, we can simplify the dynamics
further by exploiting the properties of phase-sensitive ampli-
fication. Suppose that the initial state of the system obeys
(i) 〈ŷi〉 = 〈ŷb〉 = 0 (no quadrature-phase displacements) and
(ii) 〈{δx̂i, δŷi}〉 = 〈{δx̂b, δŷb}〉 = 〈δx̂b δŷi〉 = 〈δŷb δx̂i〉 = 0 (all
in-phase and quadrature-phase fluctuations are uncorrelated).
We note linear loss and outcoupling are passive operations,
which occur independently on the two quadratures, while
the measurement and feedback injection act only on the q
quadrature, so none of the linear operations can produce a
quadrature-phase displacement or generate correlations be-
tween the quadratures if none were there to begin with. For
the crystal propagation, we can examine the full EOMs in
Appendix C, which show that these conditions, if true at
the input to the crystal, remain true throughout the crystal
propagation. Thus we can take

〈ŷi〉 = 〈ŷb〉 = 0, (14a)〈
1
2 {δx̂i, δŷi}

〉 = 〈
1
2 {δx̂b, δŷb}

〉 = 0, (14b)

〈δx̂b δŷi〉 = 〈δŷb δx̂i〉 = 0, (14c)

to be invariants of the crystal propagation.
Following this procedure, we arrive at the final Gaussian-

state EOMs, which can be numerically integrated to im-
plement the crystal propagation map χ in (11). The mean
equations are given by

d〈x̂i〉
dτ

= ε〈x̂b〉〈x̂i〉 + ε〈δx̂b δx̂i + δŷb δŷi〉, (15a)

d〈x̂b〉
dτ

= −ε

2
〈x̂i〉2 − ε

2

〈
δx̂2

i − δŷ2
i

〉
, (15b)
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while the covariance EOMs are

d
〈
δx̂2

i

〉
dτ

= +2ε〈x̂b〉
〈
δx̂2

i

〉+ 2ε〈x̂i〉〈δx̂b δx̂i〉, (16a)

d
〈
δŷ2

i

〉
dτ

= −2ε〈x̂b〉
〈
δŷ2

i

〉+ 2ε〈x̂i〉〈δŷb δŷi〉, (16b)

d
〈
δx̂2

b

〉
dτ

= −2ε〈x̂i〉〈δx̂b δx̂i〉, (16c)

d
〈
δŷ2

b

〉
dτ

= −2ε〈x̂i〉〈δŷb δŷi〉, (16d)

d〈δx̂b δx̂i〉
dτ

= ε〈x̂i〉
〈
δx2

b − δx2
i

〉+ ε〈x̂b〉〈δx̂b δx̂i〉, (16e)

d〈δŷb δŷi〉
dτ

= ε〈x̂i〉
〈
δŷ2

b − δy2
i

〉− ε〈x̂b〉〈δŷb δŷi〉. (16f)

We may also explicitly specify the initial conditions for
these EOMs. While 〈x̂i〉, 〈δx̂2

i 〉, and 〈δŷ2
i 〉 obviously depend

on the state of the signal pulse input to the crystal, we have

〈x̂i〉(0) = 1√
2
〈q̂i〉, 〈x̂b〉(0) = 1√

2
β, (17a)

〈
δx̂2

i

〉
(0) = 1

2

〈
δq2

i

〉
,

〈
δŷ2

i

〉
(0) = 1

2

〈
δp2

i

〉
, (17b)

〈
δx̂2

b

〉
(0) = 1

4
,

〈
δŷ2

b

〉
(0) = 1

4
, (17c)

〈δx̂b δx̂i〉(0) = 0, 〈δŷb δŷi〉(0) = 0, (17d)

where we have introduced β := 〈q̂b〉(0) as the q-quadrature
displacement of the input coherent-state pump pulse; that
is, β/

√
2 is its amplitude and β2/2 is the expected photon

number. Thus to implement the map (11), we integrate these
initial conditions through the EOMs (15) and (16) for a time
τnl, defined to be the time the pulse takes to propagate through
the crystal. It is worth noting that the nonlinear coupling rate
ε in (10) and the propagation time τnl only occur in our model
as the dimensionless product ετnl.

This system of ODEs consist of 8 real-valued dynamical
variables and can be efficiently solved numerically; it is for
this reason that we chose to use the quadrature operators x̂
and ŷ for this derivation, as the mode operators â and â†

(which have complex-valued means and covariances) would
have resulted in 8 complex-valued ODEs.

C. Discrete-time dynamical model for the MFB-CIM

Having described all the components and transformations
necessary to model the MFB-CIM, we now describe a con-
crete iterative procedure for generating the dynamics of the
MFB-CIM. We let ρ̂(μ(i)(k), �(i)(k)) denote the state of
the ith pulse just before it starts its kth roundtrip through
the system, which occurs at wall-clock time (kN + i)/ frep,
where 1/ frep is the pulse repetition interval. Note that with
this definition, the “state”

⊗N
i=1 ρ̂(μ(i)(k), �(i)(k)) technically

combines signal pulse states from different times, since pulse
i = 1 would have entered the next roundtrip (and possibly
have already interacted with some optical elements) before
pulse i = N has finished the last roundtrip. Nevertheless, be-
cause the pulses experience LOCC evolution, this subtlety
does not introduce a significant problem.

To propagate the state of the ith signal pulse from
ρ̂(μ(i)(k), �(i)(k)) to ρ̂(μ(i)(k + 1), �(i)(k + 1)), we perform
the following operations iteratively:

(1) Input facet loss: The input facet loss can be modeled
as the operation

ρ̂(μ(i), �(i) ) → trc
(
Brloss

[
ρ̂(μ(i), �(i) ) ⊗ ρ̂

(
0(c), �

(c)
0

)])
,

(18)

where B is the beamsplitter map defined by (5) and r2
loss is

the power loss through that facet. Physically, c represents a
vacuum mode, which mixes with the signal pulse and is then
traced out.

(2) Crystal propagation: Following (11), the crystal prop-
agation is described by a Gaussian map producing a joint
correlated signal-pump state, followed by a partial trace of the
pump mode:

ρ̂(μ(i), �(i) ) → trb
[
χ
(
ρ̂(μ(i), �(i) ) ⊗ ρ̂

(
β (b), �

(b)
0

))]
, (19)

where the b mode is a displaced coherent state with mean
β (b) := (β, 0), and the map χ is obtained by solving the non-
linear Gaussian EOMs (15) and (16) with initial conditions
(17). As described in Sec. II B, these EOMs involve the non-
linear interaction strength ετnl due to the action of the crystal
Hamiltonian (10), as well as the initial pump displacement
β := 〈q̂b〉(0).

(3) Output facet loss: This step is exactly the same as for
the input facet loss. Assuming we can lump the total system
losses in a symmetric way between input and output losses
around the crystal, we can again apply (18).

(4) Outcoupling and homodyne measurement: The homo-
dyne measurement consists of two steps. First, a part of the
internal signal pulse is outcoupled, which can be described by
the map

ρ̂(μ(i), �(i) ) → ρ̂(μ(i,h), �(i,h) )

:= Brout

[
ρ̂(μ(i), �(i) ) ⊗ ρ̂

(
0(h), �

(h)
0

)]
, (20a)

where r2
out is the power outcoupling. This takes a probe exter-

nal mode h initialized in the vacuum state and mixes it with
the signal pulse at the outcoupler to produce a correlated state
of the internal cavity mode and the external outcoupled mode.
The next step is to apply a homodyne measurement on the
outcoupled mode, which produces a measurement result wi(k)
for the ith signal pulse at this roundtrip index k according
to (7). This indirect measurement of the internal signal pulse
projects its state according to the map

ρ̂(μ(i,h), �(i,h) ) → Mh[ρ̂(μ(i,h), �(i,h) )] = ρ̂
(
μ(i)

wi
, �(i)

wi

)
,

(20b)

where M is the conditional homodyne map (9), with the mean
and variances computed via (8).

(5) Measurement-based feedback injection: We finally ap-
ply displacements to the signal pulses based on the feedback
signal computed by the FPGA for implementing the Ising
couplings. Let the feedback terms be given by

vi(k) = J0(k)
N∑

j=1

Ji jw j (k), (21a)
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where wi(k) are the measurement results from the homodyne
detection in this roundtrip, and J0(k) is a feedback gain pa-
rameter, which may generally depend on the roundtrip index
k (i.e., time). We now displace the pulse amplitudes according
to

ρ̂(μ(i), �(i) ) → Vvi [ρ̂(μ(i), �(i) )], (21b)

where V is the displacement operation given by (6).
The above steps, after being applied to each pulse i =

1, . . . , N , completes one roundtrip through the CIM cavity.
Note that the exact order in which we apply the above op-
erations depends on the details of how the cavity is laid out
and the relative time-of-flight between optical components,
and our choice above is to some extent arbitrary. Neverthe-
less, generic features such as steady-state behavior should be
robust against the exact choice of ordering, and if the precise
transient behavior is desired (which can be important for very
low-finesse operation), one can rearrange the procedure above
to more accurately model the specific cavity layout.

D. Reduction to continuous-time Gaussian models

In this subsection, we briefly summarize how our discrete-
time model can be reduced to continuous-time models more
conventionally used in studies of optical CIMs in the “high-
finesse” limit. A complete derivation of this correspondence
is presented in Appendix A, and we only summarize the key
ideas and results here.

In the high-finesse limit, each discrete operation only im-
plements an infinitesimal change ρ̂ → ρ̂ + dρ̂ to the state ρ̂

and, as in the Trotterization of quantum dynamics [42,43], the
exact order in which the operations are composed within one
roundtrip becomes unimportant, allowing us to analyze the
operations in Sec. II C independently within one roundtrip.

We introduce a parameter δ such that δ → 0 formally de-
fines the high-finesse limit. We begin with the assumption that
the MFB-CIM roundtrip time (as measured by a wall clock) is
�t = N/ frep ∼ δ. We then also assume that the model param-
eters in Sec. II C scale as follows:

r2
loss ∼ r2

out ∼ β2 ∼ (ετnl)
2 ∼ J2

0 ∼ δ. (22)

As necessitated by working in the Gaussian regime, we also
need to assume, for any fixed δ, (ετnl)2 � r2

loss + r2
out.

In Appendix A, we analyze each step of the discrete-map
iteration from Sec. II C by expanding their effects on the
Gaussian means and variances 〈q̂i〉 and 〈δq̂2

i 〉 up to first order
in δ. Notably, the crystal propagation step can be similarly
treated by using Picard iteration to integrate (15) and (16) to
first order in δ, thus capturing the effects of parametric gain
and pump depletion. After going through one entire roundtrip,
we end up with updated means and variances with corrections
up to first order in δ. Denoting the updated state variables
with a prime, the discrete-time map dynamics can then be
connected to continuous-time derivatives via

lim
�t→0

〈q̂i〉′ − 〈q̂i〉
�t

:= d 〈q̂i〉
dt

, (23a)

lim
�t→0

〈
δq̂2

i

〉′ − 〈
δq̂2

i

〉
�t

:= d
〈
δq̂2

i

〉
dt

. (23b)

The continuous-time differential equations of motion have
the explicit form

d 〈q̂i〉
dt

= (p − κ − γ ) 〈q̂i〉 − g

2
〈q̂i〉3 + λ

N∑
j=1

Ji j 〈q̂ j〉

+ 2
√

κ
( 〈

δq̂2
i

〉− 1
2

)
ξi + λ

2
√

κ

N∑
j=1

Ji jξ j, (24a)

d
〈
δq̂2

i

〉
dt

= 2p
〈
δq̂2

i

〉− 2(γ + κ )
(〈
δq̂2

i

〉− 1
2

)
(24b)

− 4κ
(〈
δq̂2

i

〉− 1
2

)2 − 2g〈q̂i〉2( 3
2

〈
δq̂2

i

〉− 1
2

)
.

These equations are specified by the rates γ (the intrin-
sic loss rate), κ (the outcoupling rate), p (the pump rate),
g (the nonlinear rate), and λ (the feedback Ising-coupling
rate), together with a set of white-noise processes ξi obeying
〈ξi(t ), ξ j (t ′)〉 = δi jδ(t − t ′). In the limit �t → 0, they can be
expressed in terms of discrete-time parameters as

γ := r2
loss

�t
, κ := r2

out

2�t
, (25a)

p := βετnl√
2�t

, g := (ετnl)2

4�t
, (25b)

λ := J0rout

�t
, ξi := zi√

�t
. (25c)

As discussed in Appendix A, continuous-time EOMs of the
form (24) have recently been shown to arise from quantum-
optical master equations under appropriate Gaussian-state
assumptions [34,35], where the rates (25) are the basic pa-
rameters in those models. Thus, while our model captures
dynamics in the MFB-CIM beyond the high-finesse limit,
it also reproduces the diffusive dynamics predicted by tra-
ditional quantum-optical models for the MFB-CIM in the
appropriate limits. As such, Appendix A may serve as a useful
reference for readers interested in further exploring the rela-
tionship between continuous-time and discrete-time models of
the MFB-CIM.

III. NUMERICAL RESULTS

In this section, we present and discuss small-scale numeri-
cal simulations of the discrete-time Gaussian model presented
in Sec. II. We first show some representative trajectories of the
model dynamics and define a suitable metric for sampling per-
formance. We explore how sampling performance for a single
problem instance depends on various model parameters, such
as feedback gain or cavity finesse, and we verify that the sam-
pling behavior is consistent across many different problem
instances at small scale. Finally, we try to gain insight into
the MFB-CIM dynamics by numerically studying a handful
of operational modifications to the conventional MFB-CIM,
such as the use of negative parametric gain, the removal of
optical nonlinearity, and the replacement of quantum noise
with classical noise.
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A. Model parameters

For our numerical results, it is useful to define a new set
of parameters, which scale the model more conveniently by
keeping certain qualitative features of the dynamics constant.
The dynamics of an uncoupled classical DOPO are critically
determined by three parameters: (1) the cavity-photon 1/e2-
decay time in the absence of pumping; (2) the pump parameter
r = β/βth giving the ratio between the pump field β over its
threshold value βth; and (3) the saturation photon number nsat.
We express each of these quantities in terms of the model
parameters used in Sec. II. For convenience, let us define

Rout := r2
out, (26a)

Rloss := 1 − (
1 − r2

loss

)2
, (26b)

where the latter quantity represents the total fraction of power
lost through both facets.

First, in the absence of pumping or nonlinearity, the num-
ber of roundtrips Tdecay required for the photon number to
attenuate by a factor of 1/e2 due to linear loss and outcoupling
is simply given by

1/Tdecay := − log[(1 − Rout)
1/2(1 − Rloss)1/2]. (27)

In addition, because Tdecay captures the effect of rloss and rout

together, it is also convenient to define an “escape efficiency”
parameter

ηesc := Rout

1 − (1 − Rout)(1 − Rloss )
, (28)

which captures the relative amount of (power) attenuation due
to outcoupling as opposed to loss.

The threshold pump field is taken to be the value of β (i.e.,
the q-quadrature displacement of the input pump pulse) such
that the exponential gain experienced by a small-signal input
to the crystal (i.e., a signal pulse with vanishing amplitude)
exactly balances the attenuation due to linear loss and out-
coupling. The pump parameter is then simply the pump field
divided by this threshold value βth. We therefore define

r := β

βth
, where βth :=

√
2

ετnl

1

Tdecay
. (29)

The saturation photon number is the steady-state photon
number at r = 2, considering the effects of loss and outcou-
pling, parametric gain, and nonlinear gain saturation. Because
this feature involves the nonlinear terms of the crystal EOMs
at finite signal amplitude, the exact value of the saturation
photon number can depend on cavity layout for low-finesse
cavities. In the high-finesse limit, however, it can be shown to
be

nsat = 8

(ετnl)2

1

Tdecay
. (30)

When the roundtrip attenuation is moderately low (∼0.4 in
power), then ετnl � 1, and we can take for convenience the
above equation to define the parameter nsat, so that for a fixed
Tdecay, specifying nsat determines ετnl, which then fixes βth.
When the roundtrip attenuation is large, however, it may be
the case that a given nsat corresponds to ετnl �� 1, which
is inconsistent with a Gaussian-state approximation for the

crystal propagation. To handle these cases as well, we specify

(ετnl)
2 = min

(
8

nsatTdecay
, 1 × 10−2

)
, (31)

where 1 × 10−2 is taken as an appropriate maximal value
to respect the Gaussian-state approximation. In this latter
case, (29) and (30) are replaced with βth = (10

√
2)/Tdecay and

nsat = 800/Tdecay.
In summary, we henceforth parametrize our system using

the values Tdecay, ηesc, r, and nsat. We use (27) and (28) to
determine rloss and rout, and we use (31) to determine ετnl.
This procedure sets βth via (29), which also gives us β given r.

Finally, with regards to the feedback control, we note that
for r < 1, the feedback gain J0 needed for the system to go
above threshold due to feedback gain scales with

√
Tdecay but

also with the Ising matrix entries Ji j . To this end, we define a
feedback gain parameter

α := −J0

√
Tdecay

(∑
i �= j

|Ji j |
)1/2

, (32)

where the negative sign is chosen since we usually use J0 < 0
in order for the feedback to enforce minimization of the Ising
energy; thus α is positive in these cases.

In Fig. 3, we illustrate some representative dynamics of
the MFB-CIM running on the N = 16 problem instance
shown in Fig. 2. As a way of making the discussion in
Sec. II D more concrete, we note in particular how these
trajectories change as a function of Tdecay while all other
model parameters are held constant. By running the simu-
lation for 15Tdecay roundtrips in all cases, we see there is
a qualitative difference in going from a low-finesse system
(Tdecay = 4), to an intermediate-finesse one (Tdecay = 16), to
a high-finesse one (Tdecay = 64), but the dynamics eventually
converge to the continuous-time trajectory in the high-finesse
limit, as depicted in the rightmost column. As expected,
the homodyne record wi (and hence the measured Ising en-
ergy −∑N

j=1 Ji j sgn wi sgn w j) becomes increasingly noisy
as the finesse increases because the outcoupling ratio rout ∼
1/
√

Tdecay, providing less information about the internal state
in any given shot of the measurement and requiring more
roundtrips to obtain the same amount of information produced
by a single measurement shot in a lower-finesse system. In
addition, if we assume the wall-clock roundtrip time is fixed
(corresponding to the time between successive points in the
discrete-time model, or to dt in the continuous-time model), it
follows that the low-finesse system takes a shorter wall-clock
time to reach steady state (i.e., ∼40 roundtrips at Tdecay = 4
vs ∼640 roundtrips at Tdecay = 64), all else being equal. This
scaling plays an important role in the efficiency of the system
and the overall time-to-sample as we analyze next.

B. Ising sampling in Gaussian MFB-CIMs

As evident from Fig. 3, the dynamics of the MFB-CIM
drive the system towards states encoding low-energy spin
configurations of the Ising problem. At the same time, the
particular configurations found by the MFB-CIM are stochas-
tic. We therefore expect that, at least in certain regimes of
operation, the MFB-CIM can be used to stochastically sample
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FIG. 3. Representative trajectories of the discrete-time Gaussian-state MFB-CIM model for the N = 16 problem instance shown in Fig. 2.
Each of the first three columns represents a different cavity decay time Tdecay, while the rightmost column depicts the continuous-time limit
sampled at dt = 1/256; all trajectories are based on the same underlying noise process but sampled at different rates. The N traces shown
in the first row represent the Gaussian states of the N intracavity signal pulses: the center of each trace gives the mean quadrature amplitude
〈q̂i〉, while the half-thickness of each trace is given by the root-variance 〈δq̂2

i 〉1/2. The second row shows two of the homodyne records wi

(specifically i = 2, 3) divided by the outcoupling ratio rout; the corresponding intracavity mean 〈q̂i〉 is reproduced from the first row as a guide
for the eye. In the last row, the dark line shows the Ising energy −∑

j Ji jsgn〈q̂i〉sgn〈q̂ j〉 based on the intracavity mean, while the light-grey
line shows the Ising energy −∑

j Ji jsgn(wi )sgn(w j ) based on the homodyne record (black dashed line shows the ground energy). In this
simulation, the other model parameters are held fixed at nsat = 200, ηesc = 0.5, r = 0.9, and α = 5.

different spin configurations, simply by running the system
under the injection of measurement noise. Each “run” of the
MFB-CIM would consist of a homodyne record like the ones
shown in Fig. 3, which takes O(Tdecay) roundtrips to collect
and would yield one or more samples of low-energy Ising spin
configurations after an initial transient period; repeated runs
(i.e., passing through threshold again) could also generate new
samples. The sampling efficiency is thus characterized by the
likelihood of a given trajectory to yield at least one sample
of interest and also how quickly it can do so, while sampling
fairness depends on how uniformly such configurations are
distributed.

Figure 4 illustrates this procedure for the N = 16 prob-
lem instance shown in Fig. 2. In Fig. 4(a), the number of
trajectories where each spin configuration appears at least
once is recorded. Over the course of 1000 trajectories, we
easily obtain multiple samples of every spin configuration
of interest, indicating relatively fair sampling at least for
this instance. Nevertheless, there are systematic biases in the
sampling: namely, the spin configurations in a given energy
level are not necessarily uniformly sampled. These biases are
problem-dependent in general but also depend on the model
parameters chosen for the sampling process.

To fully quantify the sampling efficiency, however, it is
not enough to simply count trajectories in which each spin
configuration appears, since certain configurations may sys-
tematically appear later than other configurations within any

given trajectory. These differences in sampling time are il-
lustrated in Fig. 4(b), where, for each spin configuration
considered in Fig. 4(a) (up to an overall sign flip), we show
a (vertical) histogram of the first time that configuration ap-
peared in each trajectory, if it appeared at all. There is an initial
transient period (∼Tdecay roundtrips) in which low-energy
samples cannot be generated, and generally most of the distri-
butions are peaked within a few decay times of the transient.
However, the exact distribution of this first-sampling time
differs across spin configurations, with some featuring sharper
peaks and others having longer tails. As a result, a config-
uration appearing less often on a per-trajectory basis may
nevertheless be efficient to sample if it tends to appear earlier.

We can define a “required sampling time” metric in or-
der to take into account these effects, including the biases
in overall counts, the transient-time costs, and the variation
in the first-sampling-time distributions. Let us suppose we
have collected an ensemble of homodyne records w

(�)
i (k),

where 1 � � � Ntraj denotes different trajectories, 1 � i � N
denotes the DOPO or spin index, and k � 1 indexes the
number of roundtrips elapsed. Suppose further we are inter-
ested in sampling a particular Ising spin configuration σ :=
(σ1, . . . , σN ). Then we define the first-sampling time of σ in
trajectory � as

T (�)
samp(σ ) := min

k�0

{
k : ∀i � N, sgn

(
w

(�)
i (k)

) = σi
}
, (33a)
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FIG. 4. Sampling low-energy spin configurations of the N = 16
Ising problem shown in Fig. 2 using an MFB-CIM. (a) Bar graph
showing the number of trajectories with at least one occurrence of
each spin configuration, each represented by a colored bar (adjacent
bars of the same color but different lightness represent configurations
differing only in an overall sign flip). Configurations are grouped
together by Ising energy, with labels 1, 2, and 3 for the ground,
first-excited, and second-excited energy levels, respectively. The
solid-line rectangle around each group represents the expected his-
togram if sampling within that energy level were perfectly fair. Error
bars indicate simulation uncertainty of the counts. (b) Resolving the
time along a trajectory at which a sample first appears. The vertical
histograms show, for the set of realized samples, the distribution of
time (in roundtrips) at which the first sample appeared (i.e., the first-
sampling time). Each spin configuration is colored in accordance
with (a); however, occurrences of configurations differing only in
an overall sign flip have been combined. Square markers show the
required sampling time based on Tsamp as defined by (33), a metric
taking into account both the first-sampling time distribution as well
as the frequency of occurrences. For this simulation, r = 0.8, α = 5,
Tdecay = 4, ηesc = 0.2, and nsat = 200; Ntraj = 1000 trajectories are
simulated for 100Tdecay roundtrips each.

where we take min ∅ = ∞ by convention for trajectories that
produce no samples of σ . Then given a sufficiently large
number of trajectories Ntraj, each simulated for a sufficiently
long time, an estimate for the required number of roundtrips
to sample σ is Tsamp(σ ), where

1

Tsamp(σ )
:= 1

Ntraj

Ntraj∑
�=1

1

T (�)
samp(σ )

. (33b)

Under this metric, a spin configuration that is realized
less often (so 1/T (�)

samp = 0 for more values of �) will have
a larger Tsamp, as will a spin configuration that takes longer
to appear (so T (�)

samp is finite but large). As a result, Tsamp(σ )
captures, in an a posteriori sense, the observed efficiency for

FIG. 5. Required sampling time Tsamp in roundtrips as a function
of model parameters for the problem instance and spin configurations
considered in Fig. 4. For each choice of model parameters, we
run Ntraj = 1000 trajectories for 100Tdecay roundtrips and compute
Tsamp(σ ) according to (33) for each spin configuration σ , taking the
maximum over the 9 configurations. As in Fig. 4(b), we combine
samples from configurations differing only in an overall sign flip.
The dashed-white line indicates the threshold of the system, defined
to be the boundary in α and r, beyond which there exists a nonzero-
amplitude fixed point of the system dynamics at steady state. In all
these simulations, we fix nsat = 200.

sampling the configuration σ . Having defined this empirical
measure of required sampling time, we can turn to how it
is affected by the model parameters, especially the feedback
gain α and the pump parameter r. Figure 5 shows how, for
the 9 configurations considered in Fig. 4, the largest required
sampling time Tsamp varies with α and r. Efficient sampling
in the MFB-CIM is relatively robust across a wide range of
system parameters. The most critical parameters are indeed
the feedback gain and the pump parameter, which show a
sharp cutoff in sampling performance near the estimated lin-
ear threshold of the MFB-CIM. The required sampling time
is lower for systems with a faster cavity decay time (i.e.,
Tdecay = 4), which reflects the fact that a low-finesse cavity
spends fewer roundtrips in the transient period and can yield
low-energy samples more quickly due to larger (i.e., nondif-
fusive) kicks from the noise in each step. There appears to
be a slight advantage to using a system with lower escape ef-
ficiency (higher background losses), which may be related to
the fact that background loss affects the dynamical correlation
between the pulse amplitudes differently from the noise due to
measurement outcoupling [29,35].

One particularly important aspect of the sampling behavior
in the MFB-CIM is that the required sampling time scales
with the finesse of the system as measured by Tdecay. To
check whether this scaling is robust with respect to the choice
of problem instance, we consider a set of integer-valued
Sherrington-Kirkpatrick spin-glass Ising problems with range
1 (SK1), which is equivalent to a set of MAX-CUT prob-
lems with binary-signed edge weights. In Fig. 6, we show
the distribution of Tsamp(σ ) over 50 SK1 N = 16 problem
instances, where, for concreteness, σ is chosen to be the first
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FIG. 6. Time Tsamp(σ ) required to sample a specified Ising ground-state configuration σ as a function of the cavity decay time Tdecay for a
set of 50 N = 16 SK1 problems. For concreteness, we choose σ as the first lexicographic ground-state configuration each problem (up to an
overall sign flip). Each vertical histogram shows the distribution of Tsamp(σ ) as defined by (33) over the different problem instances. Diamond
markers indicate the median of the distribution while squares indicate the mean. Note that when the required sampling time becomes large, the
mean may not be defined due to some problem instances requiring more trajectories to sample than were performed. For these simulations, we
take r = 0.8, α = 4, ηesc = 0.2, and nsat = 200; we run Ntraj = 1000 trajectories for 100Tdecay roundtrips.

lexicographic spin configuration that gives the ground energy
of the problem. We see that although there is a spread in the
required sampling time across problem instances, the distri-
butions are characterized by means and medians, which show
a clear monotonic decrease with decreasing decay time. Inter-
estingly, this scaling persists to very low decay times on the
order of Tdecay ∼ 1, which is well outside the validity of any
high-finesse or continuous-time model. In fact, for this prob-
lem size, performance only saturates and degrades at Tdecay ≈
0.2, which, for this parameter set, is the point at which the
roundtrip attenuation begins to exponentially approach unity
(i.e., Rloss ∼ 1 − e−c/Tdecay ) as a function of Tdecay. At this point,
the sensitivity of the system to system parameters precludes
any additional significant gains in reducing the sampling time.
The fact that the sampling performance continues to improve
into the low-finesse regime is a key motivation for the devel-
opment of our discrete-time Gaussian-state model.

C. Sampling in alternative models of MFB-CIM

Although our focus thus far has been on developing a
general model for the MFB-CIM in the Gaussian-state ap-
proximation and studying the dynamical role of quantum
noise in its conventional operation (with parametric gain,
homodyne measurement/feedback, measurement backaction,
and gain saturation), it is also useful to consider alternative
models or modes of operation, which may be conceptually
simpler or easier to implement experimentally. Of particular
interest is to relate our quantum-based model to established
classical analogs or formulations of CIMs, such as those
based on coherent-state feedback networks without nonlinear-
ity [37], or those based on deterministic nonlinear dynamics
(with no quantum noise and only a random initial condition),
which have proven to be fruitful models in which to study
the roles of feedback and nonlinearity for CIM combinatorial
optimization [44–46].

In this subsection, we consider three cases:

(1) MFB-CIM with zero or negative parametric gain: Con-
ventionally, the MFB-CIM is operated with parametric gain,
i.e., the pump parameter r > 0. However, we can also explore
its sampling performance for r � 0, with the case of r = 0 be-
ing especially experimentally interesting as it does not require
a pump source. Such modifications are straightforward within
our general Gaussian model, so we can directly compare these
cases against the conventional r > 0 case while keeping gain
saturation, quantum noise, and so on fixed.

(2) MFB-CIM without nonlinear crystal: We can also go
one step further and consider a MFB-CIM without any para-
metric interaction (i.e., no optical nonlinearity) by setting
ετnl = 0, resulting in a “coherent-state” MFB-CIM, where
the internal field is only excited through external coherent-
state injection. This model has previously been studied in
Ref. [37] in the context of combinatorial optimization (also
via a discrete-time formulation), whereas we investigate here
its potential for sampling. Since the resulting system has linear
dynamics, the Gaussian formalism applies exactly and is an
efficient representation of the quantum state throughout the
dynamics.

(3) Mean-field MFB-CIM with injected measurement
noise: A common approach to studying open-dissipative op-
tical systems with weak single-photon nonlinearities is to
neglect quantum noise altogether by taking a mean-field or
classical limit, resulting in deterministic c-number EOMs. We
describe how such a limit can be taken for our Gaussian
MFB-CIM model, producing not only the usual continuous-
time mean-field models for the MFB-CIM [44,45] but also a
discrete-time mean-field model similar to that of Ref. [36] as
well. However, to study sampling performance in this limit,
we need an alternative noise source in the mean-field model.
For this purpose, we supplement the model by injecting fixed-
variance Gaussian-distributed noise (limiting to white noise at
the continuous-time limit) in the measurement-and-feedback
step [47]; such an extrinsic noise source can correspond, for
example, to classical Johnson noise in the detector or to a
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FIG. 7. Required sampling time of various alternative models of
MFB-CIM for the problem instance and spin configurations con-
sidered in Fig. 4. (a) Required sampling time as a function of the
feedback gain parameter α for different values of the pump parameter
r, using the full Gaussian model of the MFB-CIM. (b) Required
sampling time as a function of α, and with various values of escape
efficiency ηesc, for the MFB-CIM with no crystal (ετnl = r = 0) and
only linear dynamics. (c) Required sampling time as a function of
both r and α for the mean-field (i.e., no quantum noise) MFB-CIM,
with added classical feedback noise with variance σ 2

fb = 0 (left, i.e.,
no noise) and σ 2

fb = 1/2 (right). The dashed-white line indicates the
linear threshold of the system, as in Fig. 5. In (a) and (b), we fix
nsat = 200 and ηesc = 0.2; the cavity decay time is set to Tdecay = 4
throughout.

random signal intentionally generated by the FPGA circuit
(e.g., via a pseudorandom number generator).

In Fig. 7(a), we show the maximum required sampling
time as a function of the feedback gain over a range of pump
parameters r, including r � 0, for the previously considered
case of Tdecay = 4 and ηesc = 0.2 from Fig. 5. (For r � 0,
these lines are simply vertical slices of the upper-left panel

of Fig. 5.) We see that, surprisingly, performance is quite
comparable over a wide range of pump parameters with neg-
ative r, corresponding to parametric deamplification. In this
regime, the system even gives slightly better performance at
the expense of requiring higher feedback gain to overcome
the deamplification. Generally, for sufficiently large feedback
gain, there is always a robust region over which acceptable
sampling performance is obtained, but for r > 0, there is also
a “sweet spot” at lower feedback gain where the stochastic
noise due to antisqueezing can allow for efficient sampling
with lower feedback gain. In Sec. IV we explore how these
two operational modes, r > 0 and r < 0, scale to larger prob-
lem instances.

Next, we investigate the second model where the nonlinear
crystal is removed from the MFB-CIM. We set ετnl = 0 (so
nsat = ∞), which eliminates the need to integrate (15) and
(16) for the crystal propagation each roundtrip. There is also
no longer a pump parameter, leaving us with just the feedback
gain parameter α in addition to Tdecay and ηesc. Note that
without the nonlinear saturation, the system is unstable once
the feedback gain exceeds the roundtrip attenuation due to
loss and outcoupling, but because our sampling metric (33)
only involves the sign of the homodyne result, the metric is
unaffected so long as we terminate the simulation before nu-
merical overflow. In Fig. 7(b), we show the maximum required
sampling time for this MFB-CIM model at Ndecay = 4. We find
that the performance also exhibits a certain threshold, which
occurs at smaller values of feedback gain compared with the
nonlinear MFB-CIM. However, the attained sampling times
are greater than that of the nonlinear MFB-CIM by at least a
factor of two. This observation suggests that the nonlinear sat-
uration plays an important role in effectively embedding the
Ising problem into the dynamics of the MFB-CIM, consistent
with the findings of Ref. [46]. In Sec. IV we explore how this
model scales out to larger problem instances.

While the former two cases are straightforward to ad-
dress within our model, the third approach involves taking
a mean-field limit, which we can motivate as follows. For
simplicity, we illustrate the limit using the continuous-time
Gaussian-state EOMs (24), although by using the exact map-
ping detailed in Sec. II D, the procedure for the discrete-time
version can be similarly derived. To take the mean-field limit,
we define a rescaled mean-field coordinate q̃i := √

g/κ〈q̂i〉, in
which case (24) can be written as

dq̃i

dt
= (p − κ − γ )q̃i − κ

2
q̃i

3 + λ

N∑
j=1

Ji j q̃ j

+ √
g

[
2
(〈
δq̂2

i

〉− 1
2

)
ξi + λ

κ

N∑
j=1

Ji jξ j

]
, (34a)

d
〈
δq̂2

i

〉
dt

= 2p
〈
δq̂2

i

〉− 2(γ + κ )
(〈
δq̂2

i

〉− 1
2

)
−4κ

(〈
δq̂2

i

〉− 1
2

)2 − 2κ q̃i
2( 3

2

〈
δq̂2

i

〉− 1
2

)
. (34b)

We now consider the limit of small single-photon non-
linearities where g is very small. As long as q̃i is finite,
the dynamics of 〈δq̂2

i 〉 are bounded, so the noise terms in
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the second line of (34a) scale overall as
√

g, thus becoming
negligible compared to the other terms of (34a) in the limit
g � κ, p, γ , λ. It also follows that 〈q̂i〉 � 〈δq̂2

i 〉, so that we
can neglect the quantum fluctuations, upon which the dynam-
ics are completely characterized by q̃i, i.e., the EOMs are
simplified to

dq̃i

dt
= (p − κ − γ )q̃i − κ

2
q̃i

3 + λ

N∑
j=1

Ji j q̃ j . (35)

The numerical simulations we use to study sampling per-
formance in this limit uses the discrete-time version of the
above limit, which involve the same arguments as above.
When studying mean-field dynamics, it is standard procedure
to introduce a small, random initial condition to avoid unstable
fixed points of the dynamics, so we also adopt this convention
by setting q̃i(0) = σiq̃0, where we fix q̃0 := 1 × 10−3 and σi

is uniformly sampled from ±1. We note the main requirement
is that q̃0 be sufficiently small to avoid undue transients in
the mean-field simulations. This can correspond, e.g., to an
initial seed amplitude much smaller than those produced by
the dynamics we are interested in (or indeed by any other
physical effects that can destabilize an unstable fixed point).

Because 〈δq̂2
i 〉/〈q̂i〉2 ∼ g/κ → 0, the fluctuations in the

homodyne measurement results w̃i := √
g/κ wi also become

negligible in this limit, and w̃i → routq̃ j . The internal cavity
state, represented by simply q̃i, experiences no backaction
(e.g., amplitude shift) upon measurement, and the feedback
signal ṽi := J0

∑N
j=1 Ji jw̃ j → routJ0

∑N
j=1 Ji j q̃ j becomes a

deterministic function of the internal state. If we wish to re-
store stochasticity while still retaining the classical character
of the model, we can replace the feedback term (21) with

ṽi := J0

N∑
j=1

Ji j (w̃ j + z j ), (36)

where z j ∼ N (0, σfb), representing the injection of classical
noise into the feedback signal.

In Fig. 7(c), we show the maximum required sampling time
as a function of pump parameter and feedback gain for this
mean-field model at Ndecay = 4 and ηesc = 0.2. The left panel
shows the performance of the mean-field model with σ 2

fb = 0,
as is conventionally used to study combinatorial optimization
in the mean-field MFB-CIM. We find that this model is sig-
nificantly less efficient at sampling than the Gaussian-state
quantum model. On the other hand, setting σ 2

fb = 1/2 in the
right panel recovers much of the sampling performance of
the Gaussian-state quantum model. This result suggests that
efficient sampling in the MFB-CIM, while naturally accessi-
ble via quantum noise, can nevertheless be largely emulated
by classical noise interacting with weak single-photon nonlin-
earities. Of course, this comparable performance comes at a
cost: whereas |vi|2 and |β|2 represent the approximate number
of photons (i.e., quanta of energy) required to operate the
feedback and pump terms of the Gaussian MFB-CIM, respec-
tively, these energy costs are scaled by a factor of κ/g into the
large-photon-number regime for the mean-field MFB-CIM,
and this is before accounting for the energy consumption, if
any, associated with generating the classical noise zi. Thus,
despite the promising sampling performance predicted for the

noisy mean-field MFB-CIM model, it incurs the cost of en-
ergy inefficiency compared to the MFB-CIM sampler driven
by quantum noise.

We also remark that both the coherent-state linear model
and the mean-field nonlinear model explicitly exclude, each in
their own way, the quantum correlations between the internal
and outcoupled pulses (i.e., 〈q̂i q̂h〉). Thus these two models
do not feature the measurement-induced shifts in the mean
and variance reduction of the internal state as described by (8)
in the Gaussian model. Further research into the dynamical
and operational differences among these models could help
further elucidate the role of quantum effects in the mechanics
of the CIM.

IV. SCALING ESTIMATES OF SAMPLING
PERFORMANCE

In this section, we study the scaling of sampling perfor-
mance in the discrete-time MFB-CIM with respect to problem
size. We investigate the extent to which the observations and
results from Sec. III obtained from studying small and partic-
ular problem instances can generalize to larger sets of larger
problems. To be concrete, we focus on the SK1 problem class
introduced previously as it features instances with a large
number of ground and first-excited spin configurations, and
we evaluate the sampling performance of the MFB-CIM with
multiple instances of this problem class at every given prob-
lem size. We also numerically study the relationship between
sampling performance and the degree of degeneracy, as well
as the relative scalings among the various alternative models
of the MFB-CIM discussed in Sec. III C.

Here, we employ a more stringent metric than the (previ-
ously employed) required sampling time Tsamp to characterize
the sampling performance of the MFB-CIM. Operationally,
the previous metric attempts to capture a necessary runtime
for sampling, which is useful for characterizing the potential
computational power of the MFB-CIM but does not prescribe
a sufficient runtime for sampling that, e.g., can be used in
an experimental setting. Thus in this section, we define a
sampling time Tall given by the number of trajectories taken to
sample all ground and first-excited configurations, multiplied
by a fixed number of roundtrips Tsim (i.e., the runtime) per
trajectory. This definition is well suited to an experimental
procedure where each trajectory is run for a predetermined,
fixed time Tsim, so Tall gives the overall time such an exper-
iment would take. This metric is conservative in the sense
that more sophisticated experimental heuristics for predicting
when to stop the trajectories earlier than Tsim could lead to
faster sampling (bringing Tall closer to Tsamp). In addition to
Tall, we also study the time Tany to sample any one of the
ground or first-excited configurations, which is similarly de-
fined as the number of trajectories taken to sample any one of
the ground or first-excited configurations, multiplied by Tsim.

Figure 8 shows how the sampling performance of the
MFB-CIM scales with problem size N . For any given N , we
consider 50 problem instances from the SK1 problem class.
A representative instance of this problem class can be found
in Fig. 8(a), which shows that the nondiagonal elements of
the problem matrix Ji j ∈ ±1. As shown in Fig. 8(b), this
problem class has a large total number of degenerate ground
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FIG. 8. Scaling of the sampling performance of the MFB-CIM with respect to problem size N , evaluated using 50 SK1 problem instances
at each N . (a) A representative Ising problem matrix Ji j of the SK1 problem class at N = 30. (b) The distribution of the number Nconf of ground
and first-excited configurations for the SK1 problem class for each N . (c) The distribution of the time Tall sufficient to sample all ground
and first-excited configurations for each N . (d) The distribution of the time Tany sufficient to sample any one of the ground or first-excited
configurations for each N . The dashed black lines represent the least-squares fit of the medians of the distributions with respect to N ; the
equations of the resultant fits are shown in the respective plots. (e) The normalized time to sample all ground and first-excited configurations
as a function of Nconf. The normalized sampling time T̃all is defined as Tall divided by the median value of Tall, as shown in panel (c), for the
respective problem size N . The dashed line represents a least-squares fit on all of the data with respect to Nconf; the equation of the resultant fit
is shown in the plot. In these simulations, the MFB-CIM is operated with negative pump parameter; for more details on the model parameters
used, see the “Negative pump” row of Table I.

and first-excited configurations Nconf, which is beneficial for
evaluating sampling performance. In this paper, the degener-
ate ground and first-excited configurations of these problem
instances have been identified using the parallel-tempering
algorithm [48]. Although parallel tempering is a heuristic
algorithm and does not guarantee we identified all ground
and first-excited configurations, it has been shown to reliably
find the ground energy for the problem instances we consider
[36], and, in principle, it is capable of exhaustively finding
all the configurations, as the algorithm inherently produces
fair samples provided it is run for a sufficiently long time
(for the stochastic process to equilibrate). Figure 8(c) shows
the distribution of the sampling time Tall for various problem
sizes. These simulations are performed with negative pump
parameter (r < 0) since this regime was found to perform
robustly for the N = 16 instance studied in Sec. III C. Ad-
ditional details about the various model parameters used are
shown in Table I. As stated in the table, the key parameters of r
and α are stochastically varied from trajectory to trajectory in
order to account for problem-dependent variations in the dy-
namical threshold of the MFB-CIM, which can lead to some
problem instances being stuck (an issue easy to detect and
correct experimentally). Analogously to Fig. 8(c), Fig. 8(d)
shows the distribution of the sampling time Tany, and we note

the exponential scaling is consistent with prior results for the
time required in Ising optimization [7]. On the other hand,
studying the scaling of Tany against that of Tall provides insight
into the overhead needed to sample many configurations: the
difference in the base of the exponent (1.05 vs 1.08) suggests
that while the overhead scales exponentially, the penalty (with
a base ≈1.03) is not especially high. Finally, in Fig. 8(e),
we show the scaling of the normalized sampling time T̃all

(specifically, normalized by the median Tall at each N) with

TABLE I. Model parameters used in Sec. IV for simulating the
MFB-CIM across different operational modes (see Sec. III C) in
studying the large-N scaling of sampling performance. For all simu-
lations, Tsim = 50Ndecay, and nsat = 200 for all simulations except the
case of ε = 0, where it is undefined. Here, z ∼ N (0, 1) denotes a
standard-normal random variable that perturbs the associated param-
eter from one trajectory to the next according to the given formula.

Ndecay α r ηesc

Positive pump 4 40 + 10z −0.8 + 0.08z 0.2
No pump 4 30 + 5z 0 0.5
Negative pump 1 4 + 0.6z 0.8 + 0.05z 0.5
No nonlinearity 2 10 + 2z 0.5
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FIG. 9. Sampling performance with various alternative CIM-sampling schemes, as described in Sec. III C. (a) Median time to sample all
the ground and first-excited configurations as a function of problem size N . (b) Median time to sample any one of the ground or first-excited
configurations as a function of problem size N . For each N , 50 SK1 problem instances are used considered to compute the medians, as done in
Fig. 8. In both panels, the dotted lines represent least-squares fits of the median sampling times with respect to problem size. The parameters
for each model are specified in Table I.

respect to Nconf. We see that there is correlation between the
two quantities and that, for a fixed problem size, the sampling
time scales approximately quadratically with respect to the
number of configurations.

To put these results into experimental context, the sampling
time in roundtrips can also be converted into wall-clock time
by multiplying by the roundtrip time of the cavity, which, for a
time-multiplexed MFB-CIM, is ∼ N/ frep. Thus, for a problem
size of N = 100 and assuming a source laser with a repetition
rate of 10 GHz, Fig. 8(c) indicates that all configurations can
be sampled within a median wall-clock time of 60 ms. As a
subject for future work, it would be interesting to perform
more thorough benchmark studies to see how these wall-clock
times compare to those attained by contemporary algorithms
running on conventional digital hardware.

Lastly, we also examine how some alternative modes of
operation in the MFB-CIM perform relative to each other.
Figure 9 shows, for the models considered in Sec. III C [49],
how the medians of the time Tall to sample all configurations
or Tany to sample any configuration scales with problem size
N . The parameters used for each model are listed in Table I;
due to the large parameter space, the parameters have been
heuristically chosen by optimizing over a small set (of size
∼10), consisting of variations around the optimal parame-
ters found in Sec. III C for N = 16. The results show that
despite its decent sampling performance in the N = 16 case,
the coherent-state model scales very poorly, indicating that a
linear measurement-feedback protocol in the absence of non-
linearity cannot adequately explain the sampling performance
of the MFB-CIM; these results are consistent, for example,
with the findings of Ref. [46]. We also observe that setting
the pump parameter to be negative or even zero results in
performance that scales similarly to, or arguably even better
than, the case of positive pump parameter, both for sampling
all configurations as well as any. Considering the experimental
advantages of no longer requiring a pump for the system, we
expect the r = 0 results to be an interesting regime to explore
in MFB-CIM sampling experiments.

V. CONCLUSIONS

In this paper, we have formulated a numerically tractable,
discrete-time model of the MFB-CIM valid down to the
Gaussian-state regime in which quantum noise plays an im-
portant role in the system dynamics. Despite being based on
the Gaussian-state formalism, however, the model neverthe-
less captures nonlinear dynamics in the mean and variance
of the Gaussian state under experimentally relevant condi-
tions by employing a second-order moment expansion to
describe the propagation of the state through the intracavity
nonlinearity. The resulting dynamical model is highly general,
simultaneously overcoming several restrictions in previously
established numerical models for MFB-CIMs: Continuous-
time models based on quantum input-output theory only
apply to high-finesse CIMs; linear models based on pure
Gaussian operations (e.g., squeezing) only apply to CIMs
operating below threshold or without optical nonlinearities;
and mean-field nonlinear models only apply to high-photon-
number CIMs in the classical regime where quantum noise is
neglected.

The generality of our model has allowed us to exam-
ine the MFB-CIM in the context of a new computational
application beyond conventional combinatorial optimization:
the dynamical sampling of low-energy Ising spin configu-
rations, driven by quantum noise. We have shown that the
sampling behavior first observed in continuous-time Gaussian
models of the MFB-CIM [34] persists into the low-finesse
regime, carrying the important advantage of increased effi-
ciency by bypassing the diffusive dynamics inherent to the
continuous-time limit. We have provided natural parametriza-
tions of our model of relevance to experimental settings, and
we have operationally explored sampling performance across
a range of these parameters, including pump rate, feedback
gain, cavity finesse, and outcoupling efficiency. Using this
model, we have explored different operational modes of the
MFB-CIM, including negative or zero pump rates, which re-
sult in comparable or even enhanced performance, and the
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absence of optical nonlinearity or quantum noise, both of
which result in significant degradation of sampling perfor-
mance. Due to the compatibility of our model with both
existing (low-finesse, high-photon-number) as well as future
(quantum-noise-dominated) experimental MFB-CIMs, we ex-
pect our numerical results to have immediate implications for
the path towards demonstrating efficient Ising sampling on the
CIM platform.

In addition to our numerical findings in the context of Ising
sampling, this paper also complements and expands upon a
longstanding goal of identifying quantum mechanisms and
principles of operation in the CIM [29]. The ability to prop-
erly treat quantum noise in the Gaussian-state regime using
a discrete-time formalism generalizes and validates previous
investigations into CIM physics via continuous-time positive-
P, truncated-Husimi, and truncated-Wigner SDEs [35,50], and
it also helps clarify the limitations of mean-field models
[44,45] commonly used to study the role of nonlinear dy-
namics in the large-N limit. Back in the small-N limit, these
Gaussian-regime results can act as conceptual semiclassical
scaffolding on which to build better understanding of com-
plicated and often unintuitive deep-quantum dynamics. While
our focus has been on the measurement-feedback CIM in this
paper for the sake of simplicity and experimental relevance,
it is straightforward to generalize our approach to describe
coherently-coupled CIM networks [6,9] or potentially even
other optical machines like laser networks implementing
XY-spin Hamiltonians [51,52]. In cases where nonlocal en-
tanglement is generated, the cost of representing an entangled
Gaussian state only scales as O(N2), so our modeling ap-
proach can enable intermediate-N numerical studies into the
potential role of entanglement in these platforms.
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APPENDIX A: CONTINUOUS-TIME GAUSSIAN
QUANTUM MODELS AND THE HIGH-FINESSE LIMIT

As outlined in Sec. II D, the discrete-time model can be
reduced to continuous-time models for CIMs derived us-
ing conventional quantum optics theory. We first give one
example of such a continuous-time quantum model, which
produces the Gaussian-state EOMs (24) from the main text.
We then analyze each of the discrete map operations described
in Sec. II C, including the nonlinear crystal propagation, to
show how (24) can arise in the high-finesse limit of the for-
malism; in the process we derive the explicit relationships
(25) that characterize the scaling of all parameters in our

discrete-time model required for the limit to hold. Finally, we
present an alternative perspective on this limit in the language
of quantum input-output theory, which may also be useful for
some readers.

1. Continuous-time Gaussian quantum model

The standard approach to modeling the MFB-CIM is based
on input-output theory [33,53], which describes open quan-
tum systems coupled weakly to a set of external reservoirs. In
this formalism, the dynamics are specified by a system Hamil-
tonian capturing the unitary evolution and a set of Lindblad
operators, which describe the interactions of the system with
the reservoirs.

For the MFB-CIM, the system of N DOPOs is represented
as in the discrete-time case by optical modes with annihilation
operators âi. The system is coupled to three reservoirs. The
first describes unmeasured linear loss and is represented by
Lindblad operators L̂loss,i := √

2γ âi, where γ is the field de-
cay rate due to loss. The second describes outcoupling and is
represented by Lindblad operators L̂out,i := √

2κ âi, where κ is
the field outcoupling rate. Finally, gain saturation is modeled
as a two-photon loss corresponding to back-conversion of
signal into pump and is represented by Lindblad operators
L̂tpl,i := √

g â2
i , where g is the two-photon loss rate.

The Hamiltonian consists of two coherent effects. The first
is generated by the external pumping of the nonlinear crys-
tal, which gives a contribution of the form (ip/2)â†2

i + H.c.,
where p is the field pump rate. The second is generated by
external feedback injection, which is a function of the ho-
modyne measurement record obtained from monitoring the
output channels L̂out,i; we denote this measurement record by

mi(t ) := 〈L̂out,i + L̂†
out,i〉 + ξi(t ), (A1)

where ξi(t ) is a real-valued standard white noise process with
δ-function correlations 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). Taken to-
gether, the system Hamiltonian is given by

Ĥ (t ) := i

2

N∑
i=1

(
pâ†2

i + λ
fi(t )√

2κ
â†

i

)
+ H.c., (A2)

where fi(t ) := ∑
j Ji jm j (t ) is the feedback signal.

Because the measurement records mi(t ) constitute contin-
uous weak measurements of the system state, the dynamics
of the system are stochastic and conditional on mi(t ). In stan-
dard input-output theory, such dynamics are generated by a
stochastic master equation (SME) [54]

dρ̂

dt
= − i[Ĥ (t ), ρ̂] +

N∑
i=1

ξi(t ) H[L̂out,i] ρ̂

+
N∑

i=1

(D[L̂out,i] + D[L̂loss,i] + D[L̂tpl,i])ρ̂, (A3)

for superoperators D[Â]ρ̂ := Âρ̂Â† − 1
2 {Â†Â, ρ̂} and

H[Â]ρ̂ := {Â, ρ̂} − 〈Â + Â†〉ρ̂.
From the SME, the conditional evolution of any desired

observable can be obtained. To establish a correspondence
with the discrete-time model, we are particularly interested
in the mean and variance of the in-phase quadrature q̂i. In
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general, the expectation value of an observable X̂ has the
equation of motion

d 〈X̂ 〉
dt

= − i〈[X̂ , Ĥ (t )]〉 +
N∑

i=1

ξi(t )〈H[L̂†
out,i]X̂ 〉

+
N∑

i=1

〈(D[L̂†
out,i] + D[L̂†

loss,i] + D[L̂†
tpl,i])X̂ 〉. (A4)

We consider X̂ to be q̂i and δq̂2
i to obtain the dynamics

of the mean and variance, respectively. As in the discrete-
time model, in order to arrive at a closed set of differential
equations for the evolution, we assume that the state ρ̂ is a
Gaussian state at all times. As in the discrete-time model, this
Gaussian-state approximation holds when the single-photon
nonlinearity is small relative to the linear loss/measurement
rates, i.e., g � κ + γ . As shown in Appendix B, expecta-
tion values of quadrature operators can be evaluated under
the Gaussian-state assumption. Using the procedure outlined
there, we arrive at

d 〈q̂i〉
dt

= (p − κ − γ ) 〈q̂i〉 − g

2
〈q̂i〉3 + λ

N∑
j=1

Ji j 〈q̂ j〉

+ 2
√

κ
( 〈

δq̂2
i

〉− 1
2

)
ξi + λ

2
√

κ

N∑
j=1

Ji jξ j

− g

2
〈q̂i〉

(
3
〈
δq̂2

i

〉+ 〈
δ p̂2

i

〉− 2
)
, (A5a)

d
〈
δq̂2

i

〉
dt

= 2(p − κ − γ )
〈
δq̂2

i

〉− 4κ
( 〈

δq̂2
i

〉− 1
2

)2

+ κ + γ − 3g 〈q̂i〉2
〈
δq̂2

i

〉+ g 〈q̂i〉2

− g
[
3
〈
δq̂2

i

〉 ( 〈
δq̂2

i

〉+ 1
3

〈
δ p̂2

i

〉− 1
)− 〈

δ p̂2
i

〉+ 1
]
.

(A5b)

For the Gaussian-state approximation to be valid, we re-
quire g � κ + γ . Thus, terms that scale as g should only
be kept if the factor accompanying the g has the capacity
to be large. This is for instance satisfied in the saturation
term −g 〈q̂i〉3, where a large displacement 〈q̂i〉 can make it
comparable to the other terms such as (p − κ − γ ) 〈qi〉. Ac-
cordingly, we see that the final terms of both equations in
(A5) can in fact be neglected as having loss and measurement
κ + γ � g ensures the amount of squeezing/antisqueezing in
the MFB-CIM is modest. Removing those terms, we arrive at
the simplified continuous-time Gaussian model (24).

2. High-finesse limit of discrete-time dynamics

We now show that continuous-time dynamics of the form
(24) can be obtained from the discrete-time model in the high-
finesse limit, where each discrete operation in the MFB-CIM
only effects a small change to the state.

As discussed in Sec. II D of the main text, the high-finesse
limit can be defined by the limit δ → 0, where δ scales the
parameters of our discrete-time model according to (22). We
now consider each of the operations in Sec. II C and expand
each of them up to first order in δ. As usual, the q- and

p quadratures of the dynamics are decoupled, so we only
consider the dynamics of q̂i below.

First, we consider the linear loss at the facets given by (18).
Using (5), this produces the mapping

〈q̂i〉 →
√

1 − r2
loss〈q̂i〉

= (
1 − 1

2 r2
loss

)〈q̂i〉 + O(δ2), (A6a)〈
δq̂2

i

〉 → (
1 − r2

loss

)〈
δq̂2

i

〉+ 1
2 r2

loss. (A6b)

Since there are two of these facets in a given round-trip,
cascading the discrete map twice gives

〈q̂i〉 → (
1 − r2

loss

)〈q̂i〉 + O(δ2), (A7a)〈
δq̂2

i

〉 → (
1 − 2r2

loss

)〈
δq̂2

i

〉+ r2
loss + O(δ2). (A7b)

Second, we consider the crystal propagation. Since the map
(11) requires integrating the nonlinear EOMs (15) and (16),
we use Picard iteration to solve the EOMs while only keeping
terms at O(δ); the result is an analytic map for 〈q̂i〉 and 〈δq̂2

i 〉
correct up to O(δ). With Picard iteration starting from the
initial conditions (17), we find that the crystal propagation in
the high-finesse limit produces

〈q̂i〉 → 〈q̂i〉 + 1√
2
βετnl〈qi〉 − 1

8
(ετnl)

2〈q̂i〉3

− 1

8
(ετnl)

2〈q̂i〉
(
3
〈
δq2

i

〉+〈δ p̂2
i

〉− 2
)+ O(δ2), (A8a)〈

δq̂2
i

〉 → 〈
δq̂2

i

〉+ √
2βετnl

〈
δq̂2

i

〉
−3

4
(ετnl)

2〈q̂i〉2
〈
δq̂2

i

〉+ 1

4
(ετnl)

2〈q̂i〉2

− 1

4
(ετnl)

2
〈
δq2

i

〉(〈
δq̂2

i

〉− 〈
δp2

i

〉)+ O(δ2). (A8b)

We see the last terms in both of the above equations scale
as (ετnl)2 and only occur with low powers of the mean 〈q̂i〉.
We can therefore neglect them following the same argument
used above for eliminating the last terms of (A5): Since the
Gaussian-state approximation requires (ετnl)2 � r2

loss + r2
out,

the outcoupling and loss keep the variances close to unity, thus
ensuring that these terms remain much smaller than terms at
the same order in 〈q̂i〉 but associated with r2

loss and r2
out.

Third, we consider the measurement process. This consists
first of an outcoupling step, which changes the signal state
according to

〈q̂i〉 → (
1 − 1

2 r2
out

)〈q̂i〉 + O(δ2), (A9a)〈
δq̂2

i

〉 → (
1 − r2

out

)〈
δq̂2

i

〉+ 1
2 r2

out, (A9b)

and also produces a weak correlation between q̂i and an exter-
nal mode (labeled here by a subscript h), with mean, variance,
and covariance,

〈q̂h〉 = rout〈q̂i〉, (A10a)〈
δq̂2

h

〉 = 1
2 + r2

out

(〈
δq̂2

i

〉− 1
2

)
, (A10b)

〈δq̂iδq̂h〉 = rout

√
1 − r2

out

(〈
δq̂2

i

〉− 1
2

)
. (A10c)

013009-18



EFFICIENT SAMPLING OF GROUND AND LOW-ENERGY … PHYSICAL REVIEW RESEARCH 4, 013009 (2022)

After this, the outcoupled field is measured by homodyne,
which by (7) produces a measurement result

wi = N
(〈q̂h〉,

〈
δq̂2

h

〉)
= rout〈q̂i〉 + 1√

2

[
1 + r2

out

(〈
δq̂2

i

〉− 1
2

)]
zi + O(δ2), (A11)

where zi ∼ N (0, 1) is a standard normal random variable. At
the same time, backaction on the internal state by (8) produces
the map

〈q̂i〉 → 〈q̂i〉 +
(

wi − 〈q̂h〉
〈δq̂2

h〉
)

〈δq̂iδq̂h〉

= 〈q̂i〉 +
√

2rout
(〈
δq̂2

i

〉− 1
2

)
zi + O(δ3/2), (A12a)〈

δq̂2
i

〉 → 〈
δq̂2

i

〉− 〈δq̂iδq̂h〉2〈
δq̂2

h

〉
= 〈

δq̂2
i

〉− 2r2
out

(〈
δq̂2

i

〉− 1
2

)2 + O(δ2). (A12b)

Finally, we consider injection feedback via (21). Given
the measurement results (A11), the displacement we apply is
given by vi = J0

∑N
j=1 Ji jw j , which produces

〈q̂i〉 → 〈q̂i〉 + J0

N∑
j=1

Ji jw j

= 〈q̂i〉 + J0

N∑
j=1

Ji j
(
rout〈q̂i〉 + 1√

2
zi
)+ O(δ3/2), (A13)

and the variance 〈δq̂2
i 〉 is unchanged by the feedback.

We can now finally put together all the maps within a
single roundtrip by summing up the contributions of (A7),
(A8), (A9), (A12), and (A13) up to first order in δ. The
resulting updated state described by 〈q̂i〉′ and 〈δq̂2

i 〉
′

can then
be substituted into the definitions (23). Then by imposing
conditions related to the Gaussian-state approximation (due
to (ετnl)2 � r2

loss + r2
out) as was also done in the derivation of

(24), we finally arrive at EOMs identical to (24), provided we
utilize the relationships explicitly given in (25).

3. Quantum input-output approach

Finally, as an alternative to the above approach where the
correspondence between continuous and discrete time is made
via manipulation of the (c-number) means and variances, it
is also possible to arrive at the same conclusions using a
quantum input-output analysis of the crystal Hamiltonian (10)
as well. For example, on one roundtrip, the crystal implements
a unitary operation

Ûnl := e−iĤnlτnl = exp

(
ετnl

2

∑
i

b̂iâ
†2
i − H.c.

)
, (A14)

where Ĥnl := ∑
i Ĥ (i)

nl . We can decompose the pump operator
as the sum of a coherent-excitation part and a quantum noise
part via b̂i = βi/

√
2 + δb̂i, allowing us to treat the parametric

amplification and the nonlinear parametric quantum fluctua-

tions separately. With this substitution,

Ûnl = exp

(
βετnl

2
√

2

∑
i

â†2
i + ετnl

2

∑
i

δb̂iâ
†2
i − H.c.

)
.

(A15)

In the high-finesse limit where β2 ∼ (ετnl)2 ∼ �t ∼ δ, this
unitary evolution can be made compatible with a discrete-time
picture of the dynamics if we Trotterize [43] the above unitary
over one roundtrip time by writing

Ûnl = exp(−iĤsqz�t ) exp(−iĤtpl�t ) + O(δ3/2), (A16a)

where the first exponential effects a rotation O(δ) and is
generated by a squeezing Hamiltonian

Ĥsqz := i

2

βετnl√
2�t︸ ︷︷ ︸
p

∑
i

â†2
i + H.c., (A16b)

while the second exponential effects a rotation O(δ1/2) and is
generated by an interaction Hamiltonian that we can write as

Ĥtpl := i
ετnl

2
√

�t︸ ︷︷ ︸√
g

∑
i

b̂(in,t )
i â†2

i + H.c., (A16c)

where in the limit �t ∼ δ → 0, the quantum white-noise
operators b̂(in,t )

i := δb̂i/
√

�t have Dirac-delta commutation
relations, i.e., [b̂(in,t )

i , b̂(in,t ′ )†
i′ ] = δi,i′δ(t − t ′).

In a coarse-grained continuous-time theory over many
roundtrips, (A16b) is precisely the gain/squeezing part of the
continuous-time system Hamiltonian (23), while (A16c) is
an input-output system-reservoir interaction Hamiltonian that
formally defines the continuous-time Lindblad operator L̂tpl,i

in the continuous-time model. This process of Trotterizing
discrete-time operations can also be applied to all the linear
operations (loss, outcoupling, measurement, and feedback) as
well.

APPENDIX B: EVALUATING EXPECTATION VALUES
OF QUADRATURE OPERATORS

Here we outline how to evaluate expectation values of an
operator of the form q̂r p̂m on a single-mode Gaussian state.
We include this section largely for pedagogical purposes as
we found these results are typically presented in more general,
and hence less accessible, terms than necessary for the specific
scenario we consider [55].

First we note the Weyl-ordered (i.e., symmetrically or-
dered) expression for the operator is given by

q̂r p̂m =
min(r,m)∑

j=0

(
i

2

)2(r

j

)(
m

j

)
j!(q̂r− j p̂m− j )W, (B1)

where (·)W denotes operators that are Weyl-ordered [55]. With
the operators in Weyl form, the expectation value can be
evaluated by a phase-space integral

〈(q̂r− j p̂m− j )W〉 =
∫
R2

qr− j pm− jW (q, p) dq d p, (B2)
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where W (q, p) is the Wigner function for the quantum state.
For a Gaussian state, the Wigner function is given by a multi-
variate normal distribution:

W (z) = 1

2π det �
exp

(
−1

2
(z − μ)T�−1(z − μ)

)
, (B3)

where z = (q, p)T and μ and � are the mean vector and
covariance matrix of the state, as defined in (1).

APPENDIX C: CRYSTAL PROPAGATION EOMS

Here we present the full equations of motion for the evolu-
tion of the Gaussian moments for the joint signal-pump state
as it propagates through the crystal according to (10), using
the procedure described in Sec. II B.

The full mean-field equations of motion are

d〈x̂i〉
d (ετ )

= 〈x̂b〉〈x̂i〉 + 〈ŷb〉〈ŷi〉 + 〈δx̂b δx̂i + δŷb δŷi〉,
d〈x̂b〉
d (ετ )

= −1

2

(〈x̂i〉2 − 〈ŷi〉2
)− 1

2

〈
δx̂2

i − δŷ2
i

〉
,

d〈ŷi〉
d (ετ )

= 〈ŷb〉〈x̂i〉 − 〈x̂b〉〈ŷi〉 + 〈δŷb δx̂i − δx̂b δŷi〉,
d〈ŷb〉
d (ετ )

= −〈x̂i〉〈ŷi〉 − 1

2
〈δx̂i δŷi + δŷi δx̂i〉,

while for the covariances, we have

d
〈
δx̂2

i

〉
d (ετ )

= +2〈x̂b〉
〈
δx̂2

i

〉+ 2〈x̂i〉〈δx̂b δx̂i〉 + 2〈ŷi〉〈δŷb δx̂i〉 + 〈ŷb〉〈δx̂i δŷi + δŷi δxi〉,

d
〈
δŷ2

i

〉
d (ετ )

= −2〈x̂b〉
〈
δŷ2

i

〉+ 2〈x̂i〉〈δŷb δŷi〉 − 2〈ŷi〉〈δx̂b δŷi〉 + 〈ŷb〉〈δx̂i δŷi + δŷi δxi〉,

d
〈
δx̂2

b

〉
d (ετ )

= −2〈x̂i〉〈δx̂b δx̂i〉 − 2〈ŷi〉〈δx̂b δŷi〉,

d〈δŷ2
b〉

d (ετ )
= −2〈x̂i〉〈δŷb δŷi〉 − 2〈ŷi〉〈δŷb δx̂i〉,

d〈δx̂b δx̂i〉
d (ετ )

= +〈x̂b〉〈δx̂b δx̂i〉 + 〈x̂i〉
〈
δx2

b − δx2
i

〉+ 〈ŷb〉〈δx̂b δŷi〉 + 〈ŷi〉〈δx̂b δŷb + δyi δxi〉,
d〈δŷb δŷi〉

d (ετ )
= −〈x̂b〉〈δŷb δŷi〉 + 〈x̂i〉

〈
δŷ2

b − δy2
i

〉+ 〈ŷb〉〈δŷb δx̂i〉 − 〈ŷi〉〈δx̂i δŷi + δŷbδx̂b〉,
d〈δx̂i δŷi〉

d (ετ )
= +〈x̂i〉〈δx̂b δŷi + δŷb δx̂i〉 − 〈ŷi〉〈δx̂b δx̂i − δŷb δŷi〉 + 〈ŷb〉

〈
δx̂2

i + δŷ2
i

〉
,

d〈δx̂b δŷb〉
d (ετ )

= −〈x̂i〉〈δx̂b δŷi + δŷb δx̂i〉 − 〈ŷi〉〈δx̂b δx̂i − δŷb δŷi〉,
d〈δx̂b δŷi〉

d (ετ )
= −〈x̂b〉〈δx̂b δŷi〉 + 〈x̂i〉〈δx̂b δŷb − δx̂i δŷi〉 + 〈ŷb〉〈δx̂b δx̂i〉 − 〈ŷi〉

〈
δx̂2

b − δŷ2
i

〉
,

d〈δŷb δx̂i〉
d (ετ )

= +〈x̂b〉〈δŷb δx̂i〉 + 〈x̂i〉〈δx̂b δŷb − δx̂i δŷi〉 + 〈ŷb〉〈δŷb δŷi〉 + 〈ŷi〉
〈
δŷ2

b − δx̂2
i

〉
.
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