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Abstract

This article reviews recent progress in quasi-phasematched x(? nonlinear nanophotonics, with a
particular focus on dispersion-engineered nonlinear interactions. Throughout this article, we
establish design rules for the bandwidth and interaction lengths of various nonlinear processes,
and provide examples for how these processes can be engineered in nanophotonic devices. In
particular, we apply these rules towards the design of sources of non-classical light and show that
dispersion-engineered devices can outperform their conventional counterparts. Examples include
ultra-broadband optical parametric amplification as a resource for measurement-based quantum
computation, dispersion-engineered spontaneous parametric downconversion as a source of
separable biphotons, and synchronously pumped nonlinear resonators as a potential route towards
single-photon nonlinearities.

1. Introduction

Crystals with quadratic (x*)) nonlinearities form the backbone of many modern optical systems, where they
can be used for second-harmonic generation (SHG), sum- and difference-frequency generation (SFG and
DFQG), optical parametric amplification (OPA), and spontaneous parametric down-conversion (SPDC). In
the context of quantum optics, these devices can be used for the generation [1, 2], manipulation [3],
transmission [4, 5], and detection [6, 7] of quantum light. The recent development of quasi-phasematched
(QPM) interactions in nanophotonic waveguides with x® nonlinearities has made possible an entirely new
class of nonlinear devices, where the linear dispersion and nonlinear optical properties of the waveguide can
be co-engineered by lithographically patterning both the waveguide geometry and the x ) coefficient
associated with the nonlinear medium. Until recently, efficient nonlinear interactions have been achieved in
state-of-the-art platforms using either modal phase-matching in nanowaveguides, or quasi-phasematching
in weakly-guiding diffused waveguides. QPM interactions in weakly-guiding waveguides rely on a periodic
poling of x) to correct for phase drifts between the interacting waves, e.g. ky,, — 2k, = 27 /A for SHG,
where Ag is the period of the modulation [8-10]. In these systems the phase-matching bandwidths (and
hence useful lengths for pulsed interactions) have ultimately been limited by the material dispersion that
dominates over geometrical dispersion in weakly-guiding waveguides. In contrast, the sub-wavelength
confinement found in direct-etched nanophotonic waveguides can be used to achieve phase-matching using
the geometry dependence of the phase-velocity of TE and TM modes [11-18]. In these systems geometrical
dispersion can dominate over material dispersion, but the design of these waveguides is constrained to
geometries that achieve phase-velocity matching between the interacting waves, e.g. n,, = #,,, for SHG.
Recent work has focused on quasi-phasematched interactions in nanophotonic waveguides (figure 1), which
overcome both of these limitations [19-27]. Quasi-phasematching can be achieved for almost any waveguide
geometry of interest, which frees up the geometric dispersion as a design parameter. This freedom enables a
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Figure 1. Example of nanophotonic waveguide designed for SHG of 1560-nm light. (a), (b) The waveguide cross section, showing

the electric field distribution, Ex, associated with the TEqy modes of the fundamental and second harmonic, respectively. (c) False

color SEM image of a fabricated PPLN waveguide, showing ferroelectric domains with period Ag. (d) The dispersion relations of

the waveguide. The propagation constant at long wavelengths differs substantially from bulk (dashed line). The phase-mismath

between a TEqo fundamental (blue line) and a TEq second harmonic (orange line) can be compensated with a suitable choice of
the grating period, k¢ = 27 /Ag. © [19] (2018) Optical Society of America.

new set of design rules where multiple dispersion orders, such as the group velocities and group-velocity
dispersion of the interacting waves, can be simultaneously engineered to achieve favorable characteristics
across a wide range of wavelengths [28-30].

The purpose of this review is two-fold. First, we provide design rules for dispersion-engineered QPM
devices, with particular focus on how to engineer the bandwidths of nonlinear interactions. Second, we apply
these rules to the design of nonlinear components that can be used to generate and manipulate quantum
light. Examples include broadband optical parametric amplification for the generation and detection of
squeezed light, high-purity separable biphotons for heralding, and microcavities with efficient few-photon
nonlinear interactions. When combined with low-loss linear photonic circuits and efficient integrated
detectors, the nonlinear components discussed here can be used to enable a number of emerging platforms
for integrated quantum photonics [31, 32]. We note here that a number of excellent reviews have discussed
recent developments in thin-film lithium niobate (TFLN) nanophotonics [33-38], as well as progress in
platforms for integrated quantum photonics [39—42]. This review complements these works by clarifying the
role of dispersion engineering in the design of nonlinear photonic devices, which has not been
comprehensively discussed in the literature. While the examples studied here predominantly consider TE
(Z-polarized) modes in X-cut TFLN ridge waveguides, these design rules are applicable to any
tightly-confining QPM device.

This work proceeds in eight sections. Section 2 briefly discusses the fabrication of nanophotonic devices
in periodically poled lithium niobate (PPLN) thin films. In section 3, we review continuous-wave (CW)
interactions in nonlinear nanowaveguides. This section establishes the theoretical framework and figures of
merit used throughout this review. Section 4 discusses the bandwidths associated with nonlinear interactions,
and provides an example design of dispersion-engineered SHG. Section 5 extends the theoretical framework
introduced in section 3 to pulsed interactions in dispersion-engineered QPM devices. We also introduce
quasi-static nonlinear photonic devices. In these devices several of the dominant dispersion orders are
eliminated simultaneously, thereby increasing the interaction lengths of short pulses by orders of magnitude.
Section 6 presents the design of ultra-broadband optical parametric amplifiers (OPAs) to produce cluster
states for measurement-based quantum computation. Section 7 discusses the generation of separable
biphotons by combining dispersion engineering with a non-uniform QPM grating. Section 8 discusses
quasi-static interactions in nonlinear resonators driven by short pulses and shows that such devices provide a
viable route towards efficient single-photon nonlinear interactions. We also compare the relative nonlinearity
of several emerging photonics platforms as a guide for researchers interested in developing highly nonlinear
devices. Section 9 summarizes this work and discusses many of the opportunities available for future
work.
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a) High voltage pulses b) c)
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Figure 2. (a) Schematic of the poling process, resulting in high fidelity domain inversion with a ~50% duty cycle. (b) Waveguides
are patterned using an Art assisted dry etch, resulting in smooth sidewalls. (c) Facet preparation is performed using laser dicing,
resulting in optical-quality end-facets. © [30] (2018) Optical Society of America.

2. Fabrication of PPLN nanowaveguides

Throughout this review, we focus on nonlinear interactions in nanophotonic PPLN waveguides. Here we
briefly describe the fabrication process for the devices used in [19, 30, 43], with similar approaches described
in [20, 25-27, 44, 45]. These waveguides are fabricated in three steps. First, we periodically pole an X-cut
magnesium-oxide (MgO)-doped lithium niobate thin film (figure 2(a)) using the methods described in [19].
The metal electrodes consist of a 15 nm thick Cr adhesion layer and a 150 nm thick Au layer, deposited by
electron-beam evaporation. We perform the periodic domain inversion by applying several 580 V, 5 ms long
pulses at room temperature with the sample submerged in oil, which corresponds to a poling electric field of
~7.6 kV mm~!. The inset shows a colorized two-photon microscope image of the resulting inverted
domains with a duty cycle of ~50%. The poled region typically has a width of 10-25 um and a length of

4-6 mm. After periodic poling, we remove the electrodes using metal etchant. The second step is to pattern
and etch the waveguides using the process described in [46]. Here, aligned electron-beam lithography is used
to create waveguide patterns inside the poled region. Each poled region can accommodate multiple ridge
waveguides (two to three in our case) without cross-talk due to the strong optical confinement. The patterns
are then transferred to the LN device layer using an optimized Ar™-based dry etching process to form ridge
waveguides [46]. This yields low-loss (~ 0.03 — 0.3 dB cm™!) ridge waveguides (figure 2(b)). The inset
shows a scanning electron microscope (SEM) image of the ridge waveguides, showing smooth sidewalls.
Finally, facet preparation is done using a DISCO DFL7340 laser saw (figure 2(c)). Here, ~10 pJ pulses are
focused into the substrate to create a periodic array of damage spots, which act as nucleation sites for crack
propagation. The sample is then cleaved. The inset shows an SEM image of the resulting end-facets, which
exhibit <10 nm facet roughness. We note here that the propagation direction (z) is along the crystalline
Y-axis, such that light polarized in the plane of the thin film (E,) is oriented along the crystalline Z-axis.

3. Continuous-Wave x (?) interactions in nanophotonic devices

We now consider continuous-wave (CW) interactions in nonlinear nanophotonic devices and establish the
theoretical framework that will be used throughout the remainder of this review. The analysis presented here
relies on solutions to the coupled-wave equations (CWEs) for SHG and three-wave mixing (TWM). These
equations, along with their associated nonlinear coupling, are derived in A.

3.1. Second-harmonic generation
We first consider SHG between a pair of modes at frequency w and 2w. The evolution of the complex field
envelopes, A, is given by the CWEs for SHG

0,A,(2) = —ikAy, (2)AL (2) exp(—iAkz) (1)

0,A,(2) = —ikAZ (z) exp(iAkz), (2)
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Figure 3. (a) The experimentally relevant operating regimes of SHG: undepleted (dashed line), depleted (solid black), and
phase-mismatched (AkL = 37,6m,97). (b) The transfer function for undepleted SHG, sinc? (AkL/2).

where A, is normalized to have units of W—'/2, such that |A,,|> = P,, is the power contained in the
fundamental. The phase-mismatch is given by Ak = ky,, — 2k,, — 27/ Ag, where Ag is the period of the QPM
grating, and the nonlinear coupling, «, is given by

. V22wt 3)
Chy,V/ n2wAeff ’
where d.f is the effective nonlinear coefficient, def = 2d53 /7 for a PPLN grating with a 50% duty cycle, Z, is
the impedance of free space, and n,, is the effective refractive index of the mode at frequency w. The effective
area, Af, measures the relative strength of the nonlinear interaction due to tight confinement. Typical values
of the effective area for doubling wavelengths around 2 pum are Ag ~1 ym? in nanophotonic devices, which
is a ~50-fold improvement when compared to weakly-guiding diffused waveguides. For guided wave devices
the effective area scales as A\~2, resulting in a quadratic scaling of « as a given device is scaled to operate at
shorter wavelengths. For bulk nonlinear devices driven by confocally-focused Gaussian beams,
Aer ~100s—1000s of m?.
In the absence of pump depletion the fundamental envelope remains unchanged, A, (z) ~ A, (0), in
which case the equation of motion for the second harmonic is readily integrated to find

Ay, (2) = —ikAZ (0)zexp(iAkz/2)sinc(Akz/2). (4)

For Ak =0, (4) gives rise to the familiar quadratic scaling of output power with input power, P,,, = 1y P2 2>
(figure 3(a)), associated with SHG. 19 = %, quoted in % W~! cm ™2, is the normalized efficiency of SHG
and is the typical figure of merit for nonlinear waveguides; waveguides with larger 7y can achieve efficient
frequency conversion with either less power or shorter devices. For Ak # 0 the second harmonic envelope
oscillates sinusoidally in z, with an amplitude given by 2kA2 (0)/Ak (figure 3(a)). In terms of conversion
efficiency, 7 = P, (L) /P, (0), (4) takes the form

1 =10 Py, (0)Lsinc*(AkL/2). (5)

The sinc?(AkL/2) factor in (5) is referred to as the SHG transfer function, and is shown in figure 3(b). Along
with 7o, the transfer function characterizes the performance of a nonlinear device. Device inhomogeneities
and loss mechanisms cause the transfer function to deviate from an ideal sinc® shape [47—49]. Phase errors
due to inhomogeneities generally broaden transfer functions, with the total area of the transfer function
conserved. Loss mechanisms give rise to a wide variety of behaviors: an overall reduction of total device
efficiency, broadened transfer functions, either an artificial suppression or an enhancement of the
normalized efficiency inferred from the power of each harmonic output from the waveguide. In practice, the
SHG transfer function is typically measured by detuning the wavelength of the fundamental by 2 to vary the
phase-mismatch, Ak(Q) = ky, (2w 4 22) — 2k, (w + Q) — 27/ Ag.

For large nyP,,(0)L? the conversion efficiency can become sufficiently large to deplete the fundamental.
In this case, (1) and (2) can be integrated, assuming Ak = 0, to find the evolution of the field envelopes
accounting for pump depletion,
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Figure 4. (a) Schematic of the characterization setup. Light from a tunable laser (TLS) is amplified using an erbium-doped fiber
amplifier (EDFA), and the polarization state is set using a fiber polarization controller (FPC). The light output from a PPLN
waveguide is collected with an optical spectrum analyzer (OSA). (b) Measured SHG transfer functions for two waveguides with
the same poling period but different top widths; the phase-matched wavelength is seen to tune 1.8 nm per nm change in the top
width. (c) Comparison of the measured (solid red) and simulated (dashed green) SHG transfer function for the 1440 nm wide
device (solid curve). Inset: CCD camera image of the scattered second harmonic at the output waveguide facet. (d) The recorded
conversion efficiency as a function of in-coupled pump power. Inset: the undepleted limit, showing a normalized efficiency of
2600% W~ cm™2. © [19] (2018) Optical Society of America.

Ay (2) = —iA, (0)tanh(kA, (0)2), (6)

Au(z) = Ay (0)sech(kA, (0)z). (7)

Saturated SHG is a useful diagnostic tool: the generated second harmonic power is background-free, and
therefore can be used to determine the input power P, and the normalized efficiency 7, by fitting the tanh®
dependence of the second harmonic. In the undepleted limit, measuring 7, requires an accurate
measurement of both the fundamental and second harmonic power.

3.2. Experimental demonstrations of SHG in PPLN nanowaveguides
Having established the relevant operating regimes of SHG, we now review a number of the early
experimental demonstrations of SHG in periodically poled TFLN waveguides. These demonstrations focused
on characterizing 79 and the SHG transfer function to verify that these devices could achieve performance
comparable to theoretical predictions. The first demonstration of QPM interactions used heterogeneously
integrated SiNx waveguides on periodically poled TFLN [20]. These devices achieved a normalized efficiency
of 160% W~! cm™2, which was an order of magnitude below theory (1600% W~! cm~2), and exhibited
transfer functions three times wider than theory. These effects are consistent with a lossy second harmonic,
and it was later determined that these discrepancies were due to lateral leakage of the second harmonic [50].
The first demonstrations using direct-etched PPLN waveguides avoided these problems and achieved
normalized efficiencies around 2600% W' cm™2 [19]. These results are shown in figure 4. The samples
were characterized using end-fire coupling (figure 4(a)) and the transfer functions are shown in figures 4(b)
and (c). We note here that the measured transfer functions exhibit fringes every 2-3 nm due to a weak
Fabry—Perot cavity formed between the fiber and the end-facet of the waveguide. These measured transfer
functions are in reasonable agreement with theoretical predictions (figure 4(c)), which suggest that the
devices do not exhibit strong loss or inhomogeneities. We note here that while the authors of [19] quoted a
theoretical value in excess of 4000% W~! cm™2, these values were calculated using d3; = 25 pm/V. Using a
Miller’s delta scaling of the parameters in [51, 52], a more accurate estimate is d3; = 21.7 pm V! for
doubling of 1560 nm light, resulting in a theoretical normalized efficiency of 3000% W~! cm~2. Further
reductions of the normalized efficiency due to the measured 40% duty cycle yield a theoretical value of
2600% W~! cm™?, in good agreement with the experimental results. Later work has focused on achieving

5
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duty cycles closer to 50% and tighter mode confinement, and there have now been multiple demonstrations
of normalized efficiencies in excess of 4000% W' cm™2 at 1.5 um [44, 45].

3.3. Three-wave mixing

Having established the nonlinear coupling and transfer function for SHG, we now generalize these results to
three-wave mixing, which encompass processes such as sum- and difference-frequency generation (SFG and
DFGQG), optical parametric amplification (OPA), and spontaneous parametric downconversion (SPDC). The
CWE:s for three-wave mixing are given by

0ul(2) = —iks A (2) A (2) exp(iAk2), ®)
0:Au, (2) = —ikAy, (2)AL, (2) exp(—ilAkz), 9)
O-Au, (2) = —ik1Aw, (2)AL, (2) exp(—iAkz), (10)

where w3 = w; + w; and w, > w;. The phase-mismatch is given by Ak = k,,, — k.,
nonlinear coupling is given by

— ku, — 27/ Ag, and the

2

V2Zywidef
Rj = . (1 1)
C\/ N, 1M 2105 3Aeff

We note here that (8)—(10) satisfy the Manley—Rowe relations, 9,P,,, /w; = —9,P,,, /ws = —0,Py, /w;.

In the undepleted limit, the solution to the CWEs for SFG and DFG are essentially identical to that of
SHG, e.g. Ay, (2) = —ik3Aw, (0)Ay, (0)zexp(iAkz/2)sinc(Akz/2) for undepleted SFG, and therefore the
previous analysis in terms of normalized efficiency and transfer function is sufficient to study these
interactions. In contrast, OPA exhibits solutions that grow exponentially with z. For convenience, we
introduce flux amplitudes a, = A, /v/iw,, a; = A, /\/hw;, and adopt the usual pump-signal-idler
nomenclature used for OPA (w3 = w), wy = ws, and w; = w;). With this notation the coupled-wave equations
for the signal and idler have symmetric nonlinear couplings,

0,a4(z) = va! (z) exp(—iAkz), (12)

0.a; (z) = 7" as(z) exp(iAkz), (13)

where v = —i,/k1k2A4,(0). These equations are solved to find

EAE L

where p(z) = [cosh(gz) + %sinh(gz)} ,v(z) = %sinh(gz), and a = aexp(iAkz/2). The field gain coefficient

is given by g = ||\/1 — (Ak/2|7])>.

We may assume v is real without loss of generality since only the relative phase ¢, — ¢ — ¢; contributes
to the nonlinear dynamics. For a phase-matched interaction, exponential growth occurs for the quadratrure
x(z) = (as+ af) /2 = exp(y2)x(0), and deamplification occurs for y(z) = (a; — a}) /(2i) = exp(—7z)y(0). In
the general case, these quadratures are given by x(z) = (4 + af)/2 and y(z) = (a, — a;)/(2i), and evolve as

EINCHES
¥(2) v i | [ y0)

where fi+ = cosh(gz) + %sinh(gz), and v = %—gksinh(gz). Phase-mismatch has three effects: the quadratures
are phase-shifted relative to the field envelopes, the amplification bandwidth is restricted to signal and idler
frequencies that satisfy |Ak| < 2|7|, and the quadratures are coupled together. Under most circumstances,
the phase-mismatch induced coupling can be ignored and the quadratures exhibit a power gain,

G+ = |c(gz) +s(gz)/g|*, where + and — correspond to the amplified and deamplified quadratures,
respectively.
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The last three-wave interaction we consider here is SPDC, which occurs in the limit of low gain
(|]yL|* ~ 0.1). In this case, (14) becomes

as(z) =as(0) + yza; (0) exp(—iAkz/2)sinc(Akz/2), (16)

a;(z) =a;(0) + ~yza? (0) exp(—iAkz/2)sinc(Akz/2). (17)

The generated signal and idler are limited to frequencies within the bandwidth set by the DFG transfer
function, sinc(AkL/2), which provides a lower bound for the OPA bandwidth. We note here that while a
more detailed treatment of SPDC is given in section 7, we may already gain some insight about this process
using (16) and (17). SPDC occurs in low-gain optical parametric amplifiers in the absence of any input
signal and idler. Instead of a,(0) = a;(0) = 0 we may take a,(0) and a;(0) to be noise fields that correspond to
semi-classical vacuum fluctuations. Under these conditions, we see that the pump field amplifies these
vacuum fluctuations to produce signal and idler photons in a range of frequencies that satisfy | AkL| < 2 7.

3.4. Quantum nonlinear optics

Throughout this review, we will consider a number of waveguide designs that have been engineered to
generate non-classical light, and therefore a more complete description of the generated fields is given in
terms of the evolution of the field annhiliation operator @, and creation operator a', respectively. In many
cases, such as in traveling-wave OPA and SPDC, the solutions of the coupled-wave equations are sufficient,
with the classical c-number fields a; and a} in (14) replaced by the operators a, and &}L, respectively [53-55].
For example, in traveling-wave OPA 4, and &;r take on the familiar form,

ay(L) exp(iAkL/2) }_[ noov ] [ as(0) }

al (L) exp(—iAkL/2) o

| o (18)

where 1 and v are defined below (14).
In general, a description of the system dynamics is given by the interaction Hamiltonian for three-wave
interactions, as obtained from the electric dipole Hamiltonian,

Hine/h = gu(au,al, al, +h.c.), (19)

where a,,, ?1:[,2 21:[,1 describes the annihilation of a photon at w3 and the creation of a photon at w, and wy, and
gp is the coupling rate. Here we have assumed a single mode at each wavelength. In the following sections,
we will rely on a phenomenological approach where gy is calculated using physically measurable parameters
such as the the transfer functions associated with nonlinear interactions, sinc(AkL/2), the normalized
efficiency, 19, and the parametric gain, . In this approach, we may establish a correspondence between the
interaction Hamiltonian (19) and the CWEs by taking all three waves to be coherent states with mean photon
number |oy,|%, such that a,, — o, becomes a complex number. As an example, for optical parametric
amplification (in pump-signal-idler nomenclature) we have

atas = *igHO‘pa;'kv (20)

O = —igpoyor . (21)

In the undepleted limit, v, (f) = @, (0), the evolution of the signal is given by 97 o, = |gu|*| ey |* s, which
again yields solutions that grow exponentially in time. In the limit of low gain, ((20) and (21)) become

as(T) = a5(0) + v T (0), (22)
ai(T) = ai(0) +yuTeg (0) (23)
where vy = —igyoy,(0). Comparing (22) and (23) with (16) and (17) and assuming an interaction time set

by the length of the device, T = L/v,, we find vy = yvgsinc(AkL/2) exp(—iAkL/2).

Having established this correspondence, this review will largely focus on how to engineer the waveguide
properties such as the normalized efficiency and the bandwidth associated with nonlinear interactions, and
in many cases the classical CWEs are sufficient to gain the necessary insight and design rules for a given
nonlinear process.
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2w + 2§2 denotes the reduction in SHG due to filtering by the SHG transfer function.

4. Dispersion-engineered nonlinear interactions

The frequency dependence of the phase mismatch, Ak, ultimately determines the bandwidth that can be
generated by SHG, SFG, DFG, and OPA, and in most cases of interest the response of the generated
harmonics to a driving nonlinear polarization is filtered by sinc(AkL/2). In this section we derive the
bandwidth of nonlinear interactions in terms of the dispersion orders associated with modes in a nonlinear
waveguide. We first derive the bandwidth associated with SHG, and provide examples of
dispersion-engineered nonlinear waveguides that enhance this bandwidth by orders of magnitude. We then
generalize this treatment for arbitrary three-wave interactions.

4.1. The bandwidth of second-harmonic generation

We begin by considering the the amount of angular frequency detuning, €2, that we can impart on the
fundamental wave before the first zero in the generated second harmonic power is reached at 2w + 22
(figure 5). The dispersion of the refractive index as {2 is varied gives rise to a variation of the
phase-mismatch,

Ak(Q) = k(2w +29Q) — 2k(w + Q) — 27/ Ag. (24)

Given an arbitrary Ak(€2) we define the SHG bandwidth, AQgyg, as the full width between the first zeroes of
the sinc? (Ak(€)L/2) transfer function, which occur at Ak(2)L = £2 7. In conventional devices the
bandwidth of the SHG transfer function is determined, to first order, by the mismatch of the group velocities
of the interacting waves. Taylor series expanding Ak with respect to €2, we find

AK(Q) = Ak + 2Ak"Q+ (2K}, — k1) Q2 (25)

where Aky = Ak(0) is the phase-mismatch at 2 = 0, Ak’ = vgzlw — V., Tepresents the
group-velocity-mismatch between the interacting waves, and k// represents the group velocity dispersion
(GVD) at frequency w. For an interaction phase-matched at {2 = 0, and neglecting terms of order O(£2?), we
find that AkL = +2 7 when 2Ak’Q)L = +27. We note here that there is an intuitive time domain description
of this phenomenon in terms of temporal walk-off. If we define the accumulated group delay between the
fundamental and second harmonic due to temporal walk-off as Ty o = Ak’L, then the full width between
the zeros of the SHG transfer function, A{gyg, is given by

2

Twalk—off

AQspg =

(26)

Equation (26) implies that the bandwidth of an SHG device is determined by the total amount of
temporal walk-off that would be accumulated between an interacting fundamental and second harmonic,
and that Ay decreases linearly with increasing device length. While we treat pulsed interactions in
section 5, (26) already allows us to develop some intuition about pulsed nonlinear processes. We see here that
as long as the pulses used in a nonlinear interaction are long compared to the accumulated group delay,

T 3> Tyalk—off> OF alternatively A} < AQsyg, the generated second harmonic bandwidth will not be filtered
by the SHG transfer function. This constraint limits pulsed interactions to either short devices or long pulses.
For the special case of a group-velocity-matched interaction, Ak’ = 0, we find that AkL = +2 7 when
(2k;!, — k!/) 2L = £27. In this limit, the scaling of AQgyc with respect to device length is no longer linear,
AQspg o< L~/2. Group velocity matching greatly enhances the bandwidth of SHG. As an example, for fields

polarized along the extraordinary axis in bulk lithium niobate, Ak’ = 100 fs mm ™! for doubling of 2 ym

8



10P Publishing J. Phys. Photonics 3 (2021) 042005 M Jankowski et al

a) Poling Period (microns) b) Group Velocity Mismatch (fs/mm)
4.9 5 5.1 5.2 -20 10 0 10 20
280
3 3
£ £320
< <
a a
[ [
a 0 360 ~
< <
2 S
] m
400
1600 1700 1800 1900 2000 1600 1700 1800 1900 2000
Top Width (nm) Top Width (nm)
c) FH GVD (fs?mm) d) SH GVD (fsmm)

80 40 0 40 80 80 40 0 40 80

280 280
3 3
£ £
=320 =320
a a
a a
< 360 = 360
L L
w i

400 400

1600 1700 1800 1900 2000 1600 1700 1800 1900 2000
Top Width (nm) Top Width (nm)

Figure 6. Variation in the phase-mismatch and dispersion orders for SHG as a function of waveguide geometry at 2060 nm for a
700 nm thin film. (a) The poling period needed to achieve quasi-phasematching, 27/ Ak, (b) The group velocity mismatch, Ak’,
(¢), (d) The group velocity dispersion of the fundamental (FH; k//), and second harmonic (SH; ;). Solid black lines
correspond to Ak’ = 0, and dashed black lines correspond to Ak’ = 45 fs mm~!.

light. Therefore, in a 1 mm long bulk crystal we expect the SHG bandwidth to be 10 THz. In a
dispersion-engineered medium with the same GVD parameters as the bulk media (k// = —50 fs> mm ™!, and
k;! =250 fs> mm~'), but with Ak’ = 0, we expect the bandwidth to be 34 THz. Given the L~'/2 scaling of
the SHG bandwidth and the numbers used here, one could increase L by an order of magnitude (L = 1 cm)
before the SHG bandwidth becomes comparable to 10 THz, thereby reducing the power requirements for
SHG by two orders of magnitude while retaining a broadband transfer function.

4.2. Example design: ultra-broadband second-harmonic generation

In nanophotonic PPLN waveguides, the propagation constants of the interacting harmonics may become
strongly modified by both the tight confinement of the fundamental and avoided mode crossings near the
second harmonic. As expected, this renders Ak’, k!/, kj/ , and higher dispersion orders functions of the
waveguide geometry, which therefore enables engineering of Ak(2). In many cases even a simple ridge
waveguide has sufficiently many degrees of freedom to achieve multiple favorable dispersion orders
simultaneously (e.g. Ak’ = 0 and 2kj/, = k//) at a desired wavelength. In contrast, in bulk media the
interacting wavelengths can typically be chosen to achieve one favorable dispersion order (e.g. Ak’ =0 or
k!! = 0). In this section we consider a design example where the geometry of a nonlinear waveguide is chosen
for ultra-broadband SHG of wavelengths around 2060 nm.

Figures 6(a)—(d) show the variation of the poling period and dispersion orders as a function of waveguide
geometry for a 700 nm thin film. Group velocity matching occurs for etch depths around 360 nm
(figure 6(b)), anomalous dispersion at the fundamental occurs for etch depths greater than 340 nm 6(c)),
and the second harmonic switches from normal to anomalous dispersion for top widths narrower than
1700 nm 6(d)).

For a top width of ~1650 nm and an etch depth of ~360 nm, we may achieve Ak’ ~ 0 and k// ~ 2 &3/,
where k// ~ —20 fs> mm~!. The resulting group velocity mismatch and group velocity dispersion as a
function of wavelength are shown in figures 7(a) and (b), and confirm that the waveguide maintains a small
group-velocity mismatch across a large bandwidth. Figure 7(c) shows the SHG transfer function for a 5 mm
long device, compared to the transfer function calculated using the dispersion of bulk lithium niobate. The
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Figure 7. (a), (b) The calculated group velocity mismatch and group velocity dispersion as a function of wavelength for a chosen
geometry corresponding to a film thickness of 700 nm, a top width of 1650 nm, and an etch depth of 364 nm. (c) The SHG
transfer function for a 5 mm long device. Solid black—dispersion engineered, solid red—bulk lithium niobate. (d) The scaling of
SHG bandwidth with increasing device length. For the case considered here, the dispersion engineered device has a bandwidth
that scales as L~1/? (dashed black), rather than the conventional L~! scaling associated with temporal walk-off (dashed red).

SHG bandwidth for this length of device is 270 nm, nearly a full order of magnitude larger than the ~30 nm
wide transfer function associated with the bulk dispersion relations. Finally, we note that for the special case
of Ak’ = 0and k// ~ 2kj/, the leading order term in the series expansion of Ak(2) given by (26) are of
order 2%, and therefore the bandwidth should exhibit an L~!/? scaling with device length. The calculated
SHG bandwidth is plotted in figure 7(d) as a function of device length, showing good agreement with the
L~'/3 scaling (dashed orange line). Conventional devices relying on the dispersion of bulk lithium niobate
exhibit an L™! scaling with device length; for a 1 cm long waveguide, we expect these devices to have a

14 nm wide transfer function, whereas dispersion-engineered devices exhibit a 220 nm wide transfer
function.

We close this section by noting that these devices exhibit broad bandwidth by having a phase-mismatch
that varies slowly with wavelength. Conversely, the phase-matched wavelength of these devices exhibits an
extremely rapid tuning with respect to small changes in phase-mismatch. This rapid tuning behavior and the
corresponding implications for the fabrication tolerance are disussed in B.

4.3. The bandwidth of three-wave mixing

We now generalize the treatment above to consider the bandwidths of arbitrary three-wave interactions. In
this case, the three frequencies w3, w;, and w; are each detuned by {23, €2, and 2, respectively, where

Q3 = Q, + Q. It’s often convenient to parameterize the frequency detuning of the interacting waves using a
common-mode detuning, €2, and an anti-symmetric detuning, {2/, such that Q3 = 2Q, 0, = Q4+ Q’, and
Q) = Q — Q’. In this case, the phase mismatch is given by

AK(Q, Q) = ke, (w3 +29) — ko, (w2 + Q2+ Q) (27)
—kwl(wl +Q—Q/) —27T/AG.

For either DFG or OPA with a fixed pump at w3 (2 = 0), Q’ corresponds to the decrease of the generated
idler frequency as the frequency of a seeded signal around w, is increased. Similarly, for SFG of frequencies
wy + Q' and w; — Q' to ws, Q' corresponds to the detuning of the two summed frequencies away from
degeneracy (figure 8).
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dispersion of the fundamental, k. Here, the height of the sinc? transfer function denotes a reduced response at 2w to SFG of the
two frequencies at w £+ Q.

We can again analyze (27) by series expanding each of the propagation constants k., around w;. To first
order in Q and ', the tuning of Ak with respect to {2 and 2 is again determined by the group velocities of
the interacting waves,

AK(Q,Q') = ko + (AK)_, + Ak}_)Q— Ak, (28)

where Ak;_, = k!, —k,. When Ak;_, = —Ak;_,, corresponding to symmetric temporal walk-off of w;
and w, relative to w3, the phase-mismatch becomes is a function only of Q', Ak(Q') = ko — Aky_,2’. This
case has been used in the design of ultrafast optical parametric amplifiers [56—60], where it is desirable for
the phase-mismatch to be a weak function of the pump bandwidth. In the context of quantum optics,
ultrafast parametric amplifiers that achieve symmetric walk-off have been studied both as a source of
multimode squeezing [61] and as a sources of separable photons. We address the latter case in section 7.

In practice, most experimentally relevant cases impose constraints on 2 and Q' that simplify this
expansion and provide clearer insights about the role of higher order dispersion. When the frequency of any
one of the three waves is held constant, Ak(€2, Q") becomes a function only of Q2 or {2/, and the tuning
behavior of Ak can be understood using the previous analysis for SHG. As an example, when 2 = 0,

kK

AKQ,Q) =Mk — Ak, Q' — =22

()2 (29)
In this case, we find that the available bandwidth for TWM is determined by the group velocity mismatch
between w; and wy, AQqyy = 47 /Ak; L, where Ak, | = k!, — k., . The scaling of bandwidth with
respect to device length again becomes AQ/y; o< L™1/? when Ak}_, = 0. Similar results occur for
Q+Q'=0andQ—-Q' =0.

In the degenerate case, where w; = w, = w, the phase-mismatch is given by

AK(Q, Q') =Aky + 2AK'Q + (2kL, — k) Q2 — k//(Q)?. (30)

When Q = 0, (30) can be used to calculate the bandwidth around w that can be summed to 22,

AQ¢pe = 24/27/k!/ L. Similarly, (30) also describes the amount of bandwidth generated by degenerate OPA.
In this case, the amplification bandwidth is determined by Ak(Q') = 2+, rather than the usual

Ak(Q")L = 2, resulting in AQ(p, = 24/2/k!!. Therefore, the bandwidth around w usable for SFG and
the bandwidth generated by OPA around w are both determined to leading order by k// rather than the
temporal walk-off. We note here that when expanding (30) to arbitrary order in 2’ all of the odd dispersion
orders cancel (e.g. Ak!//(Q')’ + Ak!)'(—€')? = 0). As a result, when a nonlinear waveguide is
dispersion-engineered to have k!/ = 0 the 2’ dependence of Ak is dominated by fourth and sixth order
dispersion, which enables phase-matching bandwidths on the order of tens of THz.

5. Pulsed second-harmonic generation in dispersion-engineered waveguides

For nonlinear processes driven using short optical pulses, A(z,t), both Q2 and Q' contribute to Ak, and
therefore multiple dispersion orders (e.g. Ak’ and k) contribute to the bandwidth generated by a nonlinear
process. In bulk media, this behavior imposes a trade-off between the pulse duration of the driving field and
the interaction length in the nonlinear crystal; short pulses with large instantaneous power can only be used
to achieve efficient interactions in short nonlinear crystals. In this section, we generalize the CWEs for SHG
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to describe short pulses, and consider two limits: undepleted SHG, and quasi-static SHG. The latter case is a
new regime for femtosecond pulses that can only be accessed in dispersion-engineered nonlinear waveguides
by simultaneously suppressing the temporal walk-off of the interacting harmonics and the GVD of
fundamental. In this limit, short pulses can interact over length scales orders of magnitude longer than in
bulk media, which can reduce the energy requirements for efficient frequency conversion to the femtojoule
scale in traveling-wave devices. The implications of quasi-static operation for synchronously-pumped
nonlinear resonators are discussed in section 8.

5.1. The coupled-wave equations for short pulses
In the absence of any nonlinearity, the field envelopes for the fundamental, A, (z, t), and second harmonic,
Ay (2, 1), evolve as

azAw :bwAwa (31)

aZAZW = _Ak/atAZw +D2wA2wa (32)

where we have chosen our phase reference such that the pulse envelopes are in a reference frame co-moving
with the fundamental pulse envelope, A,. The dispersion operators, D, describe the evolution of the field

envelopes due to GVD and higher-order dispersion, D, >0 (—i)("+1) (k&m)ﬁﬁ) /m), where k(")

represents the mth derivative of propagation constant k around frequency w.

We may add nonlinearity by assuming that x(?) is sufficiently dispersionless that the nonlinear
polarization given by Px.(2w) =€ [ ng) (2w;w’, 2w — w’)E(w')E2w — w')dw’ can be evaluated in the
time domain, i.e. Pny 2. (t) = 2€0deiE> (1), where degg = ng) /2. In this case, we may add the contributions to
0,A,(z,t) from the dispersion operator and the nonlinear coupling in (1) and (2) to find

0A, = —ikAy AL exp(—iAkz) + DAy, (33)

DAy, = —ikA% exp(iAkz) — Ak’ 0,4, + Do As. (34)
We note here that (33) and (34) are scale invariant with respect to the following transformation,

D%D/S],Ak—)Ak/ShAk/—)Akl/sh (35)

L— s; L,Pi(t) = Pin(1) /57, (36)

where P;,, (1) = |A,,(0,1)|* + |A2., (0, £)|. For any reduction of the dispersion, temporal walk-off, and
phase-mismatch by a factor s, the interaction length L can be increased by s;, thereby facilitating a quadratic
reduction of the power requirements for SHG.

In general, numerical split-step Fourier methods are required to solve (33) and (34) to account for the
evolution of the field envelopes due to dispersion and nonlinearity. However, (33) and (34) can be solved
analytically in two limits: in the limit of undepleted SHG, and in the quasi-static limit, where dispersion is
negligible. We consider these cases below.

5.2. Undepleted second-harmonic generation

For the case of undepleted SHG, one may solve (33) and (34) using a transfer function approach [62, 63]. In
this case, the evolution of A, (z,t) is given by (31) and is readily solved in the frequency domain,

A(z,Q) = A(0,9) exp(D,(Q)z). Similarly, in the frequency domain (34) becomes

D.A,(2,2Q) = — ik / Ay Ay, exp(iAkz)dQ’ (37)

— 2QAk' Ay, (2,29)
+ Dy, (2Q) A4, (2,29),

where A, + = A, (2,Q+ Q). Defining A, (z,2Q) = A,,,(z,29) exp (iAk.,2Qz — Dy, (29)z), and
multiplying both sides of (37) by exp (iAk/,2Qz — Dy, (20)z), we have

D,Ay,(2,2) = —ik / Ay Ay exp(iAk(Q,Q")z2)dQ’ (38)
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where the phase mismatch is given, as before, by
Ak(2,2) =k(2w+2Q) —k(w+ Q2+ Q') —k(w + Q — Q). As with CW undepleted SHG, (38) can be
integrated to yield the resulting second harmonic,

Ay (2,29) :—inz/Aw(O,Q—kQ’)Aw(O,Q—Q’) (39)
exp(iAk(2,Q")z/2)sinc(Ak(2,Q)z/2)dQ)’.

The response of the second harmonic to the input fundamental can still be understood in terms of a transfer
function, but in this case we need to know sinc(Ak(2,€")z/2) for every pair of interacting frequencies. The
dependence of Ak(£2,92') on the detuning of the fundamental and second harmonic was studied in

section 4, and we reproduce the result here. To second order in 2 and 2/, Ak(2,Q’) is given by

AK(Q,9Q7) = Ako +2AK'Q + (2k5), — k) Q> — k// ()™ (40)

The main feature of (40) is that 2 and Q' enter independently, which allows us to interpret the resulting
dynamics using our insights from the CW case. We see that the amount of bandwidth around the
fundamental that can contribute to SHG is given by AQp = 24/27/k//L and determined to leading order
by k//. Similarly, we see that the amount of bandwidth generated at the second harmonic AQgy is limited to
leading order by the temporal walk-off between the waves Ak’. Finally we note that for narrowband pulses,
or materials with small k/, we can neglect the Q’ term. This renders Ak(£2,€2’) a function only of 2, and
(39) reduces to

A (2,29) = — ikzexp(iAk(Q)z/2)sinc(Ak(Q)z/2) (41)
/Aw(o,QJrQ’)Aw(o,Q —Q"dQ'.

In essence, (41) suggests that the response of the generated second harmonic to the nonlinear polarization
generated by the fundamental is simply filtered by the CW SHG transfer function. Therefore, a
semi-analytical calculation of the second harmonic may be achieved in two steps. First we calculate the
second harmonic envelope that would be generated in the absence of dispersion in the time domain,
AND(z,t) = —ikAZ (0,1)z. Then, the power spectral density associated with this envelope is filtered in the
frequency domain by the CW transfer function for SHG,

|Azs, (2,2Q)* = sinc® (Ak(2)z/2)|AYP (2, Q)| (42)

As with CW interactions, the treatment used here is readily extended to TWM by adding the dispersion

operators f)w] and temporal walk-off to the coupled-wave equations. In the undepleted limit, the analysis
leading to (39) is essentially unchanged. We forgo this derivation here and simply note that, as with SHG, the
analysis of the transfer function sinc(Ak(£2,92")L/2) in terms of the dispersion orders of the interacting

waves is sufficient to determine the generated harmonic during SFG, or signal and idler during DFG and
SPDC.

5.3. Quasi-static interactions

In the previous section, we found that the bandwidth around the fundamental that can contribute to SHG is
determined by Ak//, and that the bandwidth generated around the second harmonic is determined by Ak’.
This suggests that in a dispersion-engineered waveguide where these two terms are simultaneously zero we
may neglect the temporal walk-off and dispersion operators entirely. In this quasi-static limit we can now
solve the CWEs for SHG and account for an arbitrary amount of pump depletion. In this case, the CWEs for
the pulse envelopes A, (z,t) and A, (z, t) are given by the CWEs for CW SHG, with each temporal slice of
the pulses undergoing conversion independently

0 AL (z,t) = —ikAy, (2, 1) AL (2, 1) exp(—iAkz), (43)

0, Ay, (z,1) = *I‘IﬁlAi (z,t) exp(iAkz). (44)

This heuristic model enables us to develop an intuitive understanding of SHG, OPA, and optical parametric
oscillation (OPO) since (43) and (44) can be solved exactly for most cases of interest. This quasi-static
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Figure 9. Schematic of experimental setup. The input pulses from an OPO are attenuated using a variable neutral density filter
(ND), and are focused into the sample using a reflective objective lens (OBJ). The output harmonics are measured using an
optical spectrum analyzer (OSA). b,c) Measured spectrum power spectral density of the driving polarization

(|Aw (0,9) * A, (0,€2)]?) and output second harmonic (|Azw (L, 2)]?), respectively. (d) Measured SHG transfer function (black)
for a 6 mm long nanophotonic waveguide, showing good agreement with theory (blue). The bandwidth of these waveguides
exceeds that of bulk PPLN (orange) by more than an order of magnitude. © [30] (2018) Optical Society of America.

heuristic has been shown to be accurate even for pulses with octave-spanning power spectra in the presence
of weak dispersion [64]. For phase-matched SHG, the second harmonic envelope is given by

Ay (z,1) = —iA, (0, t)tanh(kA,, (0, 1)2), (45)

which exhibits an instantaneous conversion efficiency given by P, (z,1) /P, (z,t) = tanh® (kA (0, 1)z).
Conversion occurs rapidly around ¢ = 0, where A, (0, ) is the largest. In the t — +o00 tails of A,,,, we recover
the conventional P, (z,t) /P, (z,t) = 10P,,(0,t)Z? scaling associated with undepleted SHG.

We note here that while in general numerical split-step Fourier methods are required to solve (33) and
(34), in the presence of a small amount of dispersion we can perform a single split-step analytically. In this
case, we solve for AYD(z,¢) in the time-domain using (45), and then filter this envelope in the frequency
domain using (42).

5.4. Experimental demonstration of ultra-broadband second harmonic generation

We now consider an experimental demonstration of SHG in a waveguide that has been designed to achieve
quasi-static interactions of femtosecond pulses [30]. The fabricated waveguides are similar to the designs
discussed in section 4.2, except that the waveguide geometry has been chosen to achieve quasi-static SHG
around 2050 nm (Ak’ ~ 0 and k// ~ 0). The fabricated waveguides have a top width of 1850 nm, an etch
depth of 340 nm, and a film thickness of 700 nm, corresponding to a temporal walk-off of Ak’ =5 fs mm~!,
and group velocity dispersion of Ak// = —15 fs> mm™~!. We fabricated 6 mm long waveguides with poling
periods ranging from 5.01 pm to 5.15 pum in steps of 10 nm, corresponding to a shift of the phase-mismatch
by AkL = 4w between successive devices.

The experimental setup is shown in figure 9(a). 50 fs long sech? pulses with a repetition rate of 75 MHz
from an optical parametric oscillator (OPO) are focused into, and collected from, the PPLN waveguides
using Thorlabs LMM-40X-PO01 reflective objectives (OBJ). This method of focusing ensures that the focused
beams are free of chromatic aberrations, and that the in-coupled pulses are free of chirp. The light output
from the end-facet of the waveguide is then imaged into a high-NA multi-mode fiber, and the resulting
fundamental and second harmonic spectra are captured using two Yokogawa optical spectrum analyzers
(OSA). To characterize the SHG transfer function, we record the spectrum input to the waveguide at the
fundamental and output from the waveguide at the second harmonic. Then, we estimate
AND(2,Q) ox A, (2,9Q) * A, (z,9) using the auto-convolution of the spectrum of the fundamental, shown in
figure 9(b). The ratio of the measured second harmonic spectrum (figure 9(c)) with AN yields the measured
SHG transfer function (figure 9(d)), showing good agreement between experiment and theory. These devices
exhibit a AAgpg bandwidth >220 nm, which outperforms bulk 2 ym SHG devices of the same length in
PPLN by an order of magnitude, and would have an even greater advantage in longer devices due to the
L~'/? scaling of the bandwidth. This broad transfer function confirms that the waveguide achieves
nearly-quasi-static interactions of short pulses across the length of the device. The inset of (figure 9(d))
shows an SEM image of the end facet of the waveguide, from which we estimated the waveguide geometry.
The strong agreement between the measured and theoretical transfer function verifies the waveguide
dispersion calculated using these parameters.

Having verified that these waveguides achieve phase-matching and ultra-broadband interactions, we
measured the conversion efficiency as a function of the pulse energy input to the waveguide. The results are
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Figure 10. SHG conversion efficiency and pump depletion as a function of input pulse energy, showing 50% conversion efficiency
with an input pulse energy of 60 f]. Inset: Undepleted regime with fit given by (42) and (45). © [30] (2018) Optical Society of
America.

shown in figure 10. The inset shows the undepleted regime, denoted by the dotted box, with the dashed line
corresponding to a theoretical fit based on a heuristic model for saturation, where the field envelopes
calculated using (45) are then filtered by the measured SHG transfer function using (42). The only fitting
parameter used here is a normalized efficiency of 1y = 1000 % W~! cm ™2, which is in good agreement with
the theoretically predicted value of 1100 % W' cm™2. This normalized conversion efficiency is a 50-fold
improvement over the theoretical values for conventional reverse proton-exchanged waveguides due to the
small effective area, ~ 1 um?, of the TELN waveguide. Here, a normalized efficiency of 20% W lem™2is
estimated for doubling of wavelength around 2 psm in a diffused waveguide, when the quartic scaling of
normalized efficiency with wavelength is used to scale from the 1.5 pm value [10]. When driven with short
pulses, these TFLN waveguides achieve a conversion efficiency of 50% using only 60 {] of in-coupled pulse
energy. The large normalized efficiency reported here combined with a 10-fold increase in interaction length,
results in a 5000-fold reduction in the energy requirements needed to achieve saturation when compared to a
conventional device with the same bandwidth.

These results represent one of the first examples of dispersion-engineered nonlinear interactions in
nanophotonic PPLN devices, and confirm that fabricated devices can achieve the large bandwidth
enhancements predicted in section 4. More recent work has also demonstrated quasi-static optical
parametric amplification in similar devices [65, 66]. These devices demonstrated unsaturated gains as large
as 120 dB cm ™! across nearly a micron of bandwidth using only four picojoules of pump pulse energy, and
achieved efficient optical parametric generation with orders of magnitude less pulse energy than previous
demonstrations in x(?) waveguides. In all of these cases the performance improvements of
dispersion-engineered devices when compared to conventional devices are substantial. In the following
sections, we consider the role of dispersion engineering in nonlinear devices used to generate non-classical

light.

6. Ultra-broadband squeezed light

In the previous sections we established the bandwidths associated with three-wave interactions and verified
the behavior of dispersion-engineered nonlinear devices using pulsed SHG. We now consider the design of a
dispersion-engineered OPA operating around degeneracy, which can be used both to generate and detect
broadband squeezed vacuum [7]. Squeezed states are a critical resource for continuous-variable quantum
information processing, and their use in measurement-based quantum computation represent a promising
route towards universal, fault-tolerant quantum computation [67, 68]. In particular, measurement-based
quantum computation requires multi-partite entangled states known as cluster states [69, 70]. In this
scheme, the number of entangled modes is a computational resource, with larger computations requiring
more modes.

Recent work has focused on time domain multiplexed continuous-variable cluster states, which have
proven to be extremely scalable [2]: these states have been successfully scaled to one million entangled
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Figure 11. Variation with waveguide geometry of the (a) nonlinearity, (b) phase-mismatch, and (c) group velocity dispersion of a
600 nm thin film for a fundamental centered on 1560 nm.

modes [71], where other schemes typically operate with tens of modes, and have been used to produce 2D
cluster states [72], which are necessary for universal quantum computation. In this approach, broadband
squeezed light from two CW-pumped OPAs (or OPOs) is partitioned into time bins of period T, where

T > 1/A( is determined by the bandwidth of the squeezed light. These two spatially separated beams
(hereafter referred to as rails) are then combined on a 50:50 beamsplitter to create a series of EPR states
separated by T. One rail is then delayed by T, and the two rails are again interfered on a 50:50 beamsplitter
such that each time bin is entangled with two neighboring time bins of the opposite rail, thereby forming a
cluster state. This method has three limitations: (a) The speed of computation is set by the size of the time
bins, T, and therefore by the bandwidth of the optical parametric amplifier. Early demonstrations based on
OPOs were limited to the bandwidth of a cavity resonance (34 MHz), and therefore utilized time bins of T' =
158 ns [2]. (b) The physical size of the computer is set by the delay line, 30 m for T'= 158 ns. (c) The amount
of squeezing needed for fault-tolerant quantum computation is ~ 20 dB [68], which exceeds any
experimental demonstration to date [73]. Current state of the art devices have focused on using guided-wave
OPA, and have achieved 6 dB of squeezing with 2.5 THz of bandwidth [74].

As discussed in section 4, the bandwidth of degenerate OPA with a CW pump (€2 = 0) is dominated by
k!/, with a higher order contribution from fourth order dispersion. We therefore focus on k! and ignore the
role of Ak’, kj/,, and higher order dispersion. The normalized efficiency, poling period, and k// are plotted in
figure 11 as a function of waveguide geometry for a 600 nm thin film. While many waveguide geometries
may achieve k! = 0, we consider the case where the top width and etch depth are given by 784 nm and
390 nm, respectively, corresponding to 19 = 4000% W' cm~2. The poling period and k// are shown as a
function of signal wavelength in figures 12(a) and (b). The nominal poling period of 3.3182 ym remains flat
as the signal and idler wavelength are tuned across hundreds of nanometers of bandwidth due to the
zero-crossing of k! around 1560 nm. This observed slow variation of Ak(0,’) confirms ultra-broadband
operation. It can be shown [54] that the maximum parametric gain and squeezing attainable is given by

1 = |p| £ |v|, where pu(z) = [cosh(gz) + ’Aksmh(gz) »and v(z) = Zsinh(gz).

The parametric gain, G4 (2’) is shown as a function of wavelength and pump power in figure 12(c) for a
1 cm long waveguide. These waveguides produce flat parametric gain (to within 1%) across 340 nm of
bandwidth (AQ’ ~40 THz) due to the slow variation of Ak(0,£2’), and may achieve nearly 30 dB of gain for
250 mW of pump power. The amount of detectable squeezing R_ will be limited by the propagation loss o
and detection efficiency np,

Ry =1—ngys+ nSYSGiy (46)

where 7, = (1 — exp(—2aL))np is the total detection efficiency [75]. Assuming values for the loss of v =
3dB m™! [46], we find that 20 dB of squeezing is possible for the values considered here (figure 13). Further
increases of R_ are possible by driving short waveguides with more power, provided that pump-induced
losses do not become significant. While early SHG experiments pumped with hundreds of mW of pump
power showed no evidence of such loss mechanisms [19], further experimental study is needed to
characterize these effects in the context of squeezing since the waveguide is pumped at shorter wavelengths.
In the absence of these detrimental effects, these devices are a promising route to achieve sufficient
parametric gain for fault-tolerant quantum computation and the use of dispersion engineering enables OPA
with hundreds of nanometers of bandwidth, potentially miniaturizing the physical systems used to
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Figure 12. (a) Poling period, (b) group velocity dispersion of the fundamental, and (c) OPA gain spectrum, Ry (w’), as a
function of signal wavelength. Here we assumed ng = 4000% W~! cm™2, Pj, = 200 mW, and 7jsys = 1.

implement measurement-based quantum computation by another order of magnitude relative to the
state-of-the-art [74].

7. Heralded photons from spontaneous parametric downconversion

Having established the role of waveguide dispersion in pulsed nonlinear interactions, we now consider device
designs that rely on co-engineering waveguide dispersion with spatially varying poling domains to generate
heralded single photons. The generation of indistinguishable (high purity) single photons is essential for
numerous applications, including linear optical quantum computation [76—78], quantum

communication [79], quantum simulations [80], and quantum metrology [81]. Trapped atoms [82],
quantum dots [83], single vacancy centers [84], and heralded SPDC [85] are some common platforms for
generation of pure single photons. Heralded SPDC has advantages of its ease of access, room temperature
operation, ease of integration with communication channels, and the ability to engineer emission in precise
spatio-temporal modes for high visibility interference.

We begin this section with a brief review of the theory of heralded SPDC and show that the purity of the
heralded photon is largely determined by the dispersion of the nonlinear medium. We note here that while
high purity heralded single photon generation has been implemented by several means in the past [86-90],
these demonstrations have been limited to nonlinear crystals that achieve the necessary dispersion at
desirable wavelengths, or have approximated the desired dispersion through periodic retiming of the pulse
envelopes [87]. In this section, we focus on dispersion-engineered SPDC in TFLN waveguides. There are
several advantages to heralded single photon generation in TFLN devices as opposed to traditional LN
sources: (a) factorable biphoton generation at wavelengths previously not accessible in LN, (b) higher
normalized efficiencies, which reduce the necessary pump power by orders of magnitude, and (c) the
opportunity for on-chip multiplexing of low-probability, high-fidelity single photon sources for a compact
pseudo-deterministic heralded single photon source [91]. In principle, the designs discussed here may
achieve pair generation rates as large as 1 GHz when pumped with 10 4W of power, which outperforms
state-of-the-art devices by more than an order of magnitude [92, 93].
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7.1. Theory of heralded SPDC
In x®) media heralded SPDC involves pumping a nonlinear crystal at frequency wy such that the nonlinear
interaction probabilistically annihilates a photon at w, and generates a pair of photons at w; and w; (with wy
+ w; = wp), one of which can be detected to herald the presence of the other. The generated signal and idler
photons are typically entangled in some or all of spatial, spectral, time-bin and polarization degrees of
freedom. While time-bin entanglement is essential to the heralding process, the other degrees of
entanglement are deleterious to the purity of the heralded photon. We note here that SPDC in well-defined
waveguide modes largely eliminates the spatial and polarization entanglements, and we therefore focus on
suppressing frequency domain correlations. The discussion here follows that in [1, 94, 95].

The SPDC Hamiltonian has the same form as the Hamiltonian for TWM (19), where we assume the
nonlinear medium is pumped with a pulsed coherent state and produces photons in a band of frequencies,
ws,;m and w; ,. Equation (19) can thus be written as

mt/h Z’V Wsm"’wln) jm(wS) T (wl)+hc (47)

m,n

where y(wWs m + win) = KVeSInc(AK(wWs,m, wisn)L/2)Ap(Ws,m + win)> and A, (w,) refers to the classical pump
amplitude in W'/2 at frequency w,. The signal and idler frequencies are given by ws ,» = w; + 27rm/ T, where
T is the repetition period of the pump pulses used to drive the nonlinear medium. The coupling coefficient is
proportional to the classical transfer function for DFG (16), y(ws,m + wi.x) o sinc(Ak(ws,m,win)L/2),
hereafter referred to as the phase-matching function ®(ws y,w; ») = sinc(Ak(ws,m,w; »)L/2). The signal and
idler are seeded only by vacuum fluctuations. In the weak interaction limit, corresponding to small
parametric gain, we consider only up to the first order perturbation in the evolution of the signal and idler,
thereby ignoring multiple pair emission. Under these assumptions, the state of interest is given by

= 0> +Zf(ws,m7wi,n)|1w>s,m|1w>i,na (48)

m,n
where flws m,win) = Ap(Ws,m + Wi n) ®(Ws,m,wi,n) is the joint spectral amplitude (JSA) of the biphoton state.

Using the idler as the heralding photon, the density matrix representing the state of the heralded photon
(signal) is given by the partial trace over the idler

ps = Tri{ |) (1| Pi}, (49)

where P; is the measurement operator corresponding to the heralding operation

P_ZP M Yin{lor|in- (50)

18



10P Publishing

J. Phys. Photonics 3 (2021) 042005 M Jankowski et al

Thus we obtain

/35:ZP(WI)W/(W/»i,Mwl(w/) in (51)

where

[ (W ))in = Zf(WS,M>Wi/,n)‘1W>s,W (52)

m

Equation (51) is the integral over the ensemble of pure states |0’ (w’)); weighted by the heralding
probability function (P(w”’)), and in general we have Tr(p?) < 1 indicating a mixed state. For traveling-wave
OPA, there are two routes to achieve a p, that corresponds to a spectrally separable state with Schmidt
coefficient 1:

(a) P(w') = 0w wy > 1-€. the idler detection bandwidth is restricted to a single spectral component. This
spectral filtering method is the most common approach, but suffers from two drawbacks: the resulting
reduction in count rate due to filtering of the generated bandwidth, and an inability to resolve the uncer-
tainty in the relative temporal positions of the heralded photons that were produced in a mixed state [85].

(b) The biphoton joint spectrum is factorable, i.e. f{ws m,win) = f(ws,m)fi(win) [95]. This approach relies on
engineering the phase-matching function to achieve separability without filtering.

We focus on the latter approach here, which eliminates both of the problems associated with filtering. For the
remainder of this treatment, we approximate both the pump envelope and the phase-matching function to
have Gaussian envelopes, and include both temporal walk-off and group velocity dispersion in the
phase-mismatch. With these assumptions it can be shown that the following two conditions on the group
velocity mismatch and on the pre-chirp of the pump (¢,’) guarantee a factorable state [1]:

Ak, _/Ak, ; <0, (53)

2¢," +k,'L/2=0. (54)

We note here that the second condition (54) is readily satisfied for most realistic k,” using standard
pulse-shaping techniques, and therefore focus on satisfying the first condition (53) to achieve a factorable
state.

When the first condition (53) is satisfied, i.e. the group velocity of pump lies between that of signal and
idler, both the joint spectral amplitude and the joint spectral intensity (JSL; S(ws,m,win) = [flws m,win)|?)
become factorable. We use the JSI as a proxy for the JSA since the JSI can be easily visualized by plotting the
product of the squared moduli of the pump envelope and the phase-matching function

S(Ws,mawi,n) = ‘Ap(ws,m + Wi,n)‘2|q)(ws,mawi,n)‘2' (55)

The factorability of the JSI can be determined by the JSI purity evaluated by taking its eigenvalue
decomposition and calculating the normalized sum of the squared eigenvalues. The heralded state purity is
given by the equivalent formulation in terms of Schmidt coefficients of the biphoton state [96]. Having noted
the conditions for the JSA factorability, we focus on modeling the JSI as it clearly illustrates the dispersion
engineering aspects of this problem.

7.2. Example designs

In this section, we consider design examples for high purity heralded single photon generation in TFLN
waveguides on silica, using the waveguide geometry for dispersion engineering. We consider two waveguide
geometries that achieve separability using rather different dispersion relations: symmetric temporal walk-off
(Ak,_/Ak,_; ~ —1), where the group velocity of the pump is midway between the group velocities of the
signal and idler, and asymmetric temporal walk-off (Ak)_/Ak)_; — 0_ or < —1) where the
phase-mismatch is dominated by either pump-signal or pump-idler walk-off. In both examples, we plot the
power spectrum of the Gaussian pump envelope |A,(w;,» + wi»)|* (figures 14 (a) and (e)) followed by the
modulus square of the phase-matching function |®(ws ,w; »)|* (figures 14 (b) and (f)). We initially consider
phase-matching functions generated by a uniform grating (constant Ak), which exhibit a sinc? spectrum,
and compute the JSI using (55) (figures 14 (c) and (g)). Then, we repeat this calculation using a Gaussian
phase-matching function. In the latter case, the shape of the phase-matching function is matched to the
shape of the pump spectrum by apodizing the nonlinear interaction [47, 85, 96-98].
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Figure 14. (a) The pump envelope, |Ap(ws,m + wi,»)|?, (b) phase-matching function, |®(wj s, ws,m)|*, and (c) the resulting JSI for
the case of symmetric group velocity matching. (d) The resulting JSI for a ®(wj »,ws,m) that has been apodized to have a Gaussian
dependence on frequency. (e)—(h) The same as (a)—(d), for the case of asymmetric group velocity matching.

Gaussian phase-matching functions may be achieved in two ways: changing the poling period along the
nonlinear region [98], or keeping the poling period constant but varying the strength of the nonlinear
coupling along the waveguide k — k(z). The latter can be accomplished by either spatially varying the duty
cycle directly [85], or selectively deleting some domains in order to reduce the effective duty cycle of the
grating when averaged over many periods [97, 99]. For apodized gratings with k(z) = kexp(—(z — L/2)*/
Lipod) the phase-matching function @ (w; s, wi ) fo z) exp(—iAk(ws,m,wi »)2)dz can be calculated by
assuming that L,p,q is sufficiently large to take the limits of integration to +co. The transfer function is given
by D (ws m,win) x exp (—Ak(ws m,w; ")2L2pod /4). We may find the L,p,q needed to achieve separability by
Taylor series expanding Ak and retaining terms up to first order in detuning around the signal and idler
(Qs,m and Q; , respectively, where Q; , = 2mm/T); we find O(Q; 1, Qi ) X exp( apod(Ak’ o
+Ak)_i)?/4). Fora Gaussmn pump envelope, Ap(ws m + wi,x) < exp(—? 72(m +n)?/T?), separablhty
occurs when Aky_Aky Ly =T

The pair generatlon rate of a given waveguide design is readily calculated using 3~ (0[a{ ,a;,[0) /T,
where

L
m= _iAkaCmM&In/ k(z) exp (—iAk(Ws m,wi n)z) dz. (56)
- 0

Here Ay is the peak pump amplitude and the pump envelope is given by ¢; = Z\/mexp(—¢* w72/ T?).
Intuitive analytical expressions for the pair generation rate can be found for several of the cases considered
here. In the case of strongly asymmetric walk-off (Ak;_ > Ak;_;) we find

airs KA L T
P \/>| pk | Ak/ -, (57)

where 7 is the transform-limited pulse duration of the Gaussian pump input to the waveguide. We note here
that Ak)_, must be large to ensure separability. This large walk-off effectively filters the pair generation rate,
thereby increasing the power requirements of these devices. For apodized gratings with

Ak, AV apod = —72, the pair generation rate is given by

pairs |k ApkLapoa|* (Ak')?

, (58)
s 2T\/ (AK) — (AK/_ W(Ak/)Z—A(kg_s)z

where (Ak')? = Aky_ Ak,

With the conditions for separability (53) and the design rules for apodized gratings given above, we now
consider the two example designs. The pump envelope, phase-matching function, and resulting JSI for the
case of symmetric temporal walk-off (AkILS / Ak;_ ;= —1) are shown in figures 14((a)—(d)). The waveguide
geometry is given by a 525 nm etch depth, a 500 nm top-width, a 550 nm thin film, and a side-wall angle of
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23 degrees. Phase-matching occurs for a poling period of 2.34 ym. When a 1 cm long waveguide is pumped
with pulses centered around 687 nm (3.3 THz bandwidth) in the fundamental TEy, mode, signal and idler
photons are produced in TEjy modes at 1234 nm and at 1550 nm, respectively. The same parameters are
shown for the case of asymmetric temporal walk-off (AkILS/AkILi — 0_), in figures 14((e) and (f)). In this
case, we consider an etch depth of 400 nm, a top-width of 1200 nm, and a film thickness of 900 nm, with a
corresponding poling period of 3.85 um. When a 1 cm long waveguide is pumped with 775 nm pulses (2.5
THz bandwidth) in the fundamental TM mode, signal and idler photons are generated at 1550 nm in the
waveguide’s fundamental TE and TM modes respectively. Without apodization only the design with strongly
asymmetric walk-off exhibits high (> 95%) purity. For intermediate values of Ak;_/Ak,_; around —1 the
JSI will typically have a purity ~ 70%-90% due to the side-lobes of the sinc? transfer function seen in
figures 14((b) and (c)). Once apodized with a Gaussian phase-matching function, the symmetric case is
estimated to have a JSI purity > 95% (figure 14(d)), while the purity of the asymmetric case is further
improved to > 98% (figure 14(h)).

Both of these devices have exceptionally low energy requirements. An estimated pulse energy of 300 f] is
required for generation of 0.1 photons per pulse for the asymmetric walk-off example, and an estimated
pulse energy of 1 {] is required for generation of 0.1 photons per pulse for the symmetric walk-off design. In
principle, driving this device with a 10 GHz source would produce photon pairs at a rate of 1 GHz with 10
1W of average power. We note here that at this time considerable effort is focused on heralded SPDC using
micro-ring resonators [92, 93, 100-104]. While the spectral purity in these devices is expected to be high
owing to the very narrow bandwidth of the resonant modes, possible issues regarding low heralding
efficiencies remain to be addressed [105]. At this time, state-of-the-art integrated photonic devices based on
microresonators achieve pair generation rates of 30 MHz with 10 4W of pump power [92, 93], which
suggests that the pulsed travelling-wave devices considered here may be a promising alternative. We further
note that other recent demonstrations in the TFLN platform include densely integrated and re-configurable
linear optical circuit elements [106, 107], highly efficient electro-optic modulators [108, 109], and
integrated single photon detectors [110]. Thus, alongside source engineering, this platform has many of the
components needed to implement an on-chip linear optical quantum computer [111, 112].

8. Routes toward single-photon nonlinear devices

An outstanding challenge in the field of nonlinear optics has been the realization of devices that achieve
efficient nonlinear interactions at the single-photon level by embedding a highly nonlinear medium in a
low-loss resonator [113]. These nonlinear resonators may exhibit effects similar to strongly coupled cavity or
circuit QED systems, namely, vacuum Rabi splitting [113, 114], photon blockading [115], and the formation
of Schrodinger cat states [116, 117]. The multi-mode behavior of these systems also enables new operating
regimes, such as deterministic parametric downconversion [118]. Early demonstrations in PPLN
microresonators showed normalized efficiencies of 250 000%/W [43, 119, 120], and achieved saturation with
hundreds of W of optical power. Remarkably, recent work has begun to approach single-photon
nonlinearities using CW-pumped microresonators [121]. In this section, we first review this recent work,
and we then discuss microresonators synchronously pumped by short pulses. The approach taken here is
based on the quasi-static heuristics presented in section 5.3. In this approach, we first consider the classical
behavior of CW-pumped resonators, and establish simple intuitive relationships between coupling rate g.,,
and the conditions for saturation. Then, we consider the conditions for saturation in synchronously-pumped
resonators to gain insights about the effective enhancement of the coupling rate due to multimode operation.
These quasi-static heuristics suggest that synchronously-pumped nonlinear resonators can achieve saturated
nonlinear interactions with attojoules or even zeptojoules of pulse energy, and therefore present a promising
route towards singe-photon nonlinear interactions. We note here that the development of full quantum
models of such systems is a topic of ongoing research [117, 118], and briefly summarize these results at the
end of section 8.2. We close this section by comparing a number of promising material systems.

8.1. Continuous-wave interactions in y(2) microresonators

Throughout this section we will consider two kinds of resonators: doubly-resonant (DRO), where the
long-wavelengths (w; and w,) are resonant in the cavity, and triply-resonant (TRO), where all three
interacting waves are resonant (figure 15). We retain this naming convention even for degenerate operation
(w1 = ws). Both of these configurations are assumed to be ring resonators with nonlinear interactions
occurring in one continuous section of the resonator. The interaction Hamiltonian is given by

Hin /1l = gew(daal al + h.c.), (59)
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Figure 15. Example geometries for (a) traveling-wave OPA, (b) doubly-resonant OPO (DRO), with a resonant signal (w,) and
idler (w1), and (c) triply-resonant OPO (TRO) with a resonant pump (ws3), signal, and idler. We retain this naming convention
when considering degenerate operation (w; = w,) and SHG.

where the coupling rate g, is given by

8cw, TRO = \/7%”70 LéPMAﬁ:SR/Zu (60)

ew,DRO = hwlo Lpn Affs/ 2 (61)

for a TRO and a DRO [117], respectively, where Lqpy is the length of the QPM grating and Afpsg = vo/L is
the free spectral range (FSR) of the resonator. The typical figure of merit for a nonlinear resonator is

Zow/ Kiew> Where kg o, = £, Afgr is the loss rate of the cavity and 24, = T,, + A,,, with outcoupling Ty, and
dissipative loss A, is the power loss per round trip. In many cases, we will assume that the cavity is critically
coupled (T,, = A,,) to achieve the largest possible field enhancement.

We emphasize here that the coupling rate of DROs and TROs exhibit different scaling with respect to the
physical size of a resonator. In DROs the coupling rate is invariant with respect to a simultaneous rescaling of
Lapm and Afpsg. When the dominant loss mechanism of a resonator is propagation loss, such that £ < alL,
the loss rate x; (and therefore gpro/ ke, ) is invariant with respect to the size of the resonator. In contrast,
when a TRO is uniformly poled (Lopm = L) the coupling rate (and therefore grro/ ks ) can be made
arbitrarily large by rescaling the dimensions of the resonator. In principle, nonlinear resonators can operate
at scales approaching an optical wavelength [122] if care is taken to mitigate thermorefractive noise [123]. In
many cases, such as in X-cut thin films, resonators based on quasi-phasematching may contain unpoled
regions of fixed size where no nonlinear interactions take place, Lopm + Liin = L, and the coupling rate
exhibits a local maximum with respect to Lopym due to the competition between the nonlinear length and the
cavity FSR. These scaling laws will change when we consider pulsed interactions in resonators.

Classically, there are two cases of interest: resonant SHG, where a resonator pumped at w generates a
second harmonic at 2w, and OPO, where a resonator pumped at 2w generates a fundamental at w. In the case
of triply-resonant SHG with an undepleted pump, the conversion efficiency is given by

770L2 Pw,inTi; TZw
(PZw,out/Pw,in)TRo = Ta (62)
w™2w

or for a critically coupled resonator, (P2 out/Puw,in) o = M0L* Py in/ €% l2.,. We may therefore determine g.
by measuring Py, out/Pu,in as a function of Py, in, €.8. (Paw out/Pusin)1ro = 28w Pw,in/(hwmﬁjwm,m) fora
critically-coupled resonator. Similar relationships can be found for doubly-resonant SHG,

noL? Py in T?
(PZw,out/Pw,in)DRO = %7 (63)
w

or (P2 0ut/Puw.in)pro = 28wPuw,in/ (hwka%,w) for a critically-coupled resonator. In either case, we see that as
Zew/ Ko, approaches unity saturation occurs when the mean photon number in the cavity is one-half,
Py in/(hwke,,) = 1/2. Corrections to this undepleted theory to account for saturation can be obtained using
Picard iteration [117].

Similar behavior occurs in OPOs as the coupling rate approaches the loss rate. In the case of a DRO, the
power generated at the fundamental is given by

2T,Pwm,prO Pin
(Pout,w)DRO = wet P e Ly, (64)
w th,DRO

where Py, pro = ¢%/(10L?*), and full pump depletion occurs when the resonator is driven by
Psat 20 = 4Pwh,pro- The threshold power may be expressed in terms of the coupling rate as
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Figure 16. (a) Schematic of the waveguide cross-section with associated dispersion relations for the fundamental and second
harmonic. Inset: Simulated TMg modes at each wavelength. (b) (Top) Optical microscope image of etched ring with radial
poling electrode. (Bottom) False-color SEM image of the waveguide after etching in hydrofluoric acid to visualize the poled
domains. (c) Experimental setup. An 800 nm (NVIS) and 1560 nm laser are combined using wavelength division multiplexing
(WDM) to separately measure the resonator Q. (d) Depleted fundamental (blue) and generated second harmonic (red) as a
function of pump frequency. (e) Measured conversion efficiency as a function of pump power. A normalized efficiency of
5000 000%/W is extracted by a linear fit to Poui/Pin in the undepleted limit. © [24] (2018) Optical Society of America.

P pro = hwk?, /(2gew), and therefore the condition g.y /K., = 1 corresponds to pump depletion occurring
with a single pump photon (or two signal photons) present in the cavity Pg; 2.,/ (2hwk,,) = 1. Triply
resonant OPOs exhibit nearly identical behavior,

TZw Tw Pth,TRO Pin,2w

(Pout,w)TRO = €w£2w -1

) (65)
P, RO

with a threshold reduced by the field enhancement of the resonant second harmonic,
Piytro = €5,/ (noL? Tau,).

To date, the largest grro /%y, has been demonstrated using triply-resonant SHG in periodically-poled
Z-cut lithium niobate thin films. In this case, Z-cut poling enabled QPM of TM modes throughout the
resonator (figures 16(a) and (b)) [120, 121], which allowed the authors to take advantage of the favorable
scaling of grro found in fully-poled resonators. These resonators were characterized in three steps. First, the
authors measured the quality factor of the resonator at both the fundamental (1560 nm) and second
harmonic (780 nm) to determine the loss rates, k¢, and g 5., (figure 16(c)). Then, the resonator was
temperature tuned such that both the fundamental and second harmonic are resonant in the cavity
(figure 16(d)). The generated second harmonic power was measured as a function of input power at the
fundamental to determine the normalized efficiency, (PZW’Om / Piin) , which was then used to determine the
coupling rate (figure 16(e)). The authors reported loss rates as low as g, /2m = 184.6 MHz at the
fundamental, and a coupling rate as large as g.,/2m = 1.2 MHz, corresponding to gew/ k¢, ~ 0.007. We note
here that the propagation loss of the fundamental, v, ~ 23 dB/m, is nearly an order of magnitude larger
than the state-of-the-art. Therefore, further reductions in the propagation loss may yield devices with
Zew/Kew ~ 0.1. Similarly, the coupling rate of these resonators may be further increased by reducing the
radius of curvature. The coupling rate of such resonators is ultimately limited by trade-offs between the FSR,
bending loss, and bend-induced reductions of the mode overlap.

8.2. Pulsed interactions in x?) microresonators
Having established the relationship between the coupling rate g., and the conditions for saturation in
CW-pumped resonators, we now consider a simplified model for saturation in synchronously-pumped
resonators as an estimate for an effective enhancement of the coupling rate in these systems. At this time,
reduced quantum models for these highly multimode systems are a topic of ongoing research, and we briefly
compare the simple insights found here with a number of recent results in this field at the end of this section.
We consider quasi-static nonlinear resonators where the group velocity dispersion of the fundamental
and the temporal walk-off may be eliminated using designs similar to those discussed in section 4.2.
Therefore, we may model the behavior of nonlinear oscillators driven by short pulses using the heuristics
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developed in section 5.3. In this limit, we may solve the coupled-wave equations using the CW equations of
motion for each time slice of the pulses. For an OPO, the power generated at the fundamental is given by

Pw,out(t) X Pth — -1 ) (66)

for ¢ that satisfy Py, 5., () > Pu,. We have neglected the pre-factors of (64) and (65) in (66) since the behavior
of these devices in saturation is largely determined by Pi, 2, () /Pin-

For quasi-static devices, threshold and saturation are determined by the peak power of the pump pulses
used to drive the resonator, Py, 5,,(0) = U/27 for a sech? pulse, where U = P, /Afgsr is the pulse energy. The
intracavity photon number needed to achieve threshold or saturation is therefore reduced by a factor of
(27 Afsr), which suggests that the coupling rate can be substantially enhanced by using short pulses,

Zpulse,DRO ~ Zew,DRO/ (2T Affsr), (67)

Soulse, TRO ~ o 1RO/ (2T Afpsk).- (68)

As an example, we first consider a realistic case using the designs realized in section 5, where Afpgg = 10
GHz, 1o = 1000% W~! cm™2, L =7 mm, 7 = 28 fs (50 fs 3 dB), and we assume ¢ = 10% loss per round trip
(Q ~ 10°). The doubly-resonant OPO is pumped at 1030 nm. In this case, threshold occurs for a pump pulse
energy of 32 aJ, or ~170 photons. Similar quasi-static designs can be found for fundamental wavelengths
around 1560 nm with 1y = 5000% W~! cm™2. Assuming best-case numbers (1, = 5000% W~! cm~2, and

= 1% loss per round trip), threshold occurs at 59 zeptojoules, or 0.23 pump photons. Further reductions to
the energy requirements of these systems may be achieved with a resonant second harmonic, which would
again reduce the threshold of oscillation by a factor of ~ T,,,. The thresholds for the two cases considered
here would be reduced 10-fold and 100-fold, respectively. We emphasize here that (67) and (68) suggest that
synchronously pumped resonators exhibit rather different scaling laws than their CW-pumped counterparts;
synchronously pumped TROs exhibit coupling rates that are invariant with respect to rescaling of the
dimensions of the resonator, L and Afpsg, and the coupling rate of synchronously pumped DROs can be
made arbitrarily large by increasing the size of the resonator.

We close this section by noting that the non-classical behavior of such highly-nonlinear pulsed
interactions must be understood using multimode quantum models. These models are generally intractable
due to the large size of the Hilbert space, and the development of reduced models is the subject of ongoing
work. A promising first step was taken in [117], where the authors considered the role of intracavity
dispersion on the behavior of a synchronously pumped DRO. Remarkably, when Ak’ = 0 and k// = kj/, the
authors found that the system could be described using a single pulsed supermode with an effective coupling
enhanced by 1/(Afgsr7), consistent with (67). Similarly, in [118] the authors studied parametric
downconversion of a single photon input to a traveling-wave OPA and found an effective coupling rate
between a single-mode pump and a continuum of signal and idler modes that is enhanced by the available
OPA bandwidth. Both of these results confirm that dispersion engineering is useful tool for developing
few-photon nonlinear devices, and the emergence of design rules that reduce these systems to effectively
single mode behavior with large enhancements of the nonlinear coupling represents a promising direction
for the field. At this time there is no reduced model for triply-resonant oscillators or traveling-wave devices
driven by short pulses equivalent to the model for DROs found in [117].

8.3. Choice of nonlinear materials
We close this section by comparing the relative nonlinearity of a number of emerging platforms for nonlinear
photonics. At this time, only a few of these materials have demonstrated quasi-phasematched interactions in
tightly-confining waveguides, however many of these materials have been used to realize either QPM in bulk
media or tightly-confining photonics in direct-etched thin films separately. For classical devices the figure of
merit is 19, which determines the power required to achieve efficient nonlinear interactions. For
non-classical devices we use the coupling rate as a point of comparison, which scales as ge pro ~ w1 for
DROs and gy, tro ~ /@) for TROs. We note here that 7 exhibits a quartic (w*) scaling with frequency due
to the scale invariance of Maxwell’s equations, where an explicit w? dependence occurs in the expression for
k%, and an implicit w? comes from rescaling all of the relevant waveguide dimensions with wavelength,
Aegt o< w2, In practice, this scaling is slightly faster than w* due to the dispersion of d.g;.

Figure 17 shows 7y for a number of materials of interest as a function of wavelength. Here we have a
assumed a suspended square ridge with cross-sectional area (\/n,,)?, such that the relative normalized
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Figure 17. Normalized efficiency as a function of fundamental wavelength for a (A\/n) x (\/n) suspended ridge waveguide.
Orange: ferroelectric materials, red: orientation patterned semiconductors, blue: x (3) waveguides with electric field induced
nonlinearities. Materials with intrinsic x (2) nonlinearities are plotted for fundamental frequencies as large as 40% of the bandgap.
The 7o associated with materials with induced x(») nonlinearities are plotted for frequencies as large as as 50% of the bandgap.

efficiency of a waveguide scales as 1y ~ w*d?;/n,,,. All of the materials, with the exception of silicon nitride
(Si3Ny), are assumed to be periodically poled or orientation patterned with a 50% duty cycle, and therefore
the effective nonlinear coefficient is reduced by a factor of 2/7. Both SizNy and silicon rely on electric-field
induced nonlinearities, where an effective second order nonlinear susceptibility is given by

X(ZZZ)Z = 3XSZ)ZZEDC [21-23]. In the case of Si3Ny, the material forms a self-organized nonlinear grating with a
Fourier coefficient given by x(?) /2 rather than 2 x?) /7 [22, 23, 28]. For orientation-patterned
semiconductors with four-fold rotational symmetry, such as GaP, GaAs, AlAs, and ZnSe, we assume that
propagation occurs along the <011> direction in an X-cut film such that dy4 can be used to couple between
TE modes of the fundamental and TM modes of the second harmonic. Materials with with intrinsic x®
nonlinearities are plotted for fundamental frequencies as large as 40% of the bandgap, rather than 50%, to
avoid large errors in Miller’s delta scaling and linear absorption of the second harmonic. In many cases,
two-photon absorption of the second harmonic may limit operation to 0.25E,, rather than 0.4E,.

The maximum 7, that may be achieved in a particular material system is determined both by d%;/na,,
and the bandgap of the material, with large bandgap materials able to take advantage of the w* scaling of 7.
Table 1 lists the largest normalized SHG efficiency reported for each material system in figure 1. The
fundamental wavelength () associated with each 7, and the scaling of 79 with w can be used to calculate
the normalized efficiencies at longer wavelengths. Deviations between the power law reported here and a
simple w* scaling are due to the dispersion of degr and n1,,,. GaAs exhibits the largest d.g of any materials
shown here, but is constrained to moderate normalized efficiencies by a bandgap of 1.44 eV. Similarly, Si;Ny
has the largest bandgap of any material considered here (5 eV), but is constrained to relatively low
normalized efficiencies by the induced x?) of ~ 1 pm V!, We note here that neither of these extremes
guarantee large normalized efficiencies; for back-of-the-envelope calculations dgfng /1, 1s a more useful
figure of merit than either d.g or E, alone.
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Table 1. The maximum normalized efficiency attainable in each material system. The wavelength, A..f, corresponds to highest
fundamental frequency potted in figure 17. These values may be rescaled to other wavelengths using the power law w*, where x is
determined by the dispersion relations of a given material and the Miller’s delta estimate of the scaling of the nonlinear coefficients.

Aref di® (Aref) Mo Scaling

Material (nm) n (pm/V) (%W~ em™2) w”
PPLN 780 2.17 [134] 28.4 [51,52] 138700 4.66
OP-GaAs 2165 3.33 [135] 107 [51, 136] 36500 424
OP-AlAs 1472 2.90 [137] 31.6 [124] 15200 4.48
OP-SiC 957 2.63 [138] ~11.7 [139] 9200 425
OP-GaP 1393 3.07 [51] 57.0 [140] 58500 428
OP-ZnSe 1156 2.47 [141, 142] 36.2 [51] 55300 4.28
EFISH-Si 2214 3.44 [143] 41 [21] 3300 4

EFISH-Si;N; 624 2.04 [144] 3.7 [23] 9400 4

2 ds3 for materials with 3-fold or 6-fold rotational symmetry,
d4 for materials with 4-fold rotational symmetry.

We close this section by briefly comparing the status of several of these material systems. Remarkably
large nonlinearities have been demonstrated in Al,Ga;_,As recently [15-17]. This material system can take
advantage of the tunable bandgap associated with ternary alloys; the aluminium concentration can be tuned
to optimize the nonlinearity for a fundamental wavelength of 1560 nm. Pure AlAs has a d,4 roughly four
times smaller than GaAs [124], and therefore the Al concentration can be decreased to increase di4, provided
that the bandgap does not become sufficiently small to introduce loss at the second harmonic or two-photon
loss at the fundamental. SiC, GaP, and ZnSe are similarly promising materials that have seen rapid
development in the past decade. Both SiC and GaP have been developed into low-loss platforms for
nonlinear nanophotonics [40, 41, 125], with key results including SHG [126, 127], OPO [18], and comb
formation [18, 125]. GaP and ZnSe have both been grown as orientation patterned thin films [128-132].
Both of these materials appear to be particularly promising in the near-infrared, with OP-GaP having the
largest possible normalized efficiency of any material considered here at 1560 nm (~50000% W' cm™2).
However, to date, none of these systems have combined low-loss nanophotonics with quasi-phasematching.

Lithium niobate may access one of the largest normalized efficiencies (1o ~ 130000% W~! cm~2) as the
second harmonic approaches the bandgap, which is two orders of magnitude larger than the current state of
the art. Therefore, a yet unexplored route towards single-photon nonlinearities would be to use
tightly-confining waveguides designed for frequency doubling Ti:Sapphire wavelengths. We note, however,
that care must be taken when operating at such short wavelengths. Frequency doubling these wavelengths
requires sub-micron poling periods and therefore such devices have extremely stringent fabrication
tolerances, as discussed in B. Furthermore, while there exist geometries that achieve k// = 0, group velocity
matching between an 800 nm TEy, fundamental and a 400 nm TE, second harmonic cannot be achieved
using the simple ridge waveguides considered here. Finally, we note that when short wavelengths are used as a
pump, both photorefractive damage and pump-induced absorption may become significant. These effects
may be mitigated by using 5% MgO-doped lithium niobate, which has been used in a number of recent
demonstrations [19, 30, 43, 64—66]. In congruent lithium niobate microresonators without MgO doping,
photorefractive effects may substantially alter the observed dynamics [133].

9. Summary

Dispersion-engineered nonlinear waveguides with quasi-phasematched x(?) interactions are a promising
platform for integrated quantum photonic devices. A key feature of this platform is that
quasi-phasematching frees up the waveguide geometry as a design parameter, which allows for simultaneous
engineering of the group velocities and group velocity dispersion of the interacting waves. Using extra this
degree of freedom we are able to engineer the bandwidth of continuous-wave interactions as well as the
interaction lengths associated with pulsed interactions. In both of these cases, we have been able to
demonstrate designs that achieve at least an order of magnitude better performance than the state of the art,
in terms of bandwidth and interaction length.

We then applied these design rules to a number of quantum photonic technologies. First, we considered
the design of degenerate optical parametric amplifiers for producing time domain multiplexed cluster states,
and demonstrated that in principle this platform enables orders of magnitude larger parametric gain and
bandwidth than current state of the art traveling-wave OPAs. Second, we considered sources of heralded
photons using SPDC, and demonstrated several designs that could achieve high purity photons at telecomm
wavelengths without any filtering. Third, we considered quasi-static nonlinear interactions, where
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femtosecond pulses can interact over long lengths without accumulating substantial distortions of their pulse
envelopes. In the context of synchronously-pumped nonlinear resonators, we showed that quasi-static
interactions could enable saturated SHG and OPO at the single-photon level.

9.1. Future directions
We close this review by noting that there is a rather large amount of work left to be done, and summarize
some of the possible directions for future work here.

Platform development—At this time, quasi-phasematching has only been demonstrated in three
platforms for nonlinear nanophotonics: silicon, silicon nitride, and lithium niobate. As a result, the
development of devices with dispersion-engineered x(?) interactions has been limited to these
materials [28—30]. Similar designs can be realized in thin films of stoichiometric lithium tantalate (SLT),
which is commercially available, has a larger bandgap than lithium niobate, and is less susceptible to damage.
These films may be poled and etched using recipes similar to those discussed in section 2. An extremely
promising direction for the field is to realize dispersion engineered QPM devices in both AlGaAs and GaP.
Both of these materials have been grown as orientation-patterned thin films and have been used to realize
low-loss nonlinear photonics. These systems are particularly interesting at longer wavelenghts; both AlGaAs
and GaP have broad transparency windows extending into the mid-infrared, and exhibit the largest
nonlinearities of any material considered here. Other potential material systems include ZnSe, SiC, AIN, and
KTP. ZnSe has been grown as an orientation patterned thin film, but there have been no demonstrations of
low loss ZnSe nanophotonics. Similarly, while bulk KTP is regularly periodically poled and used for
nonlinear optics, low-loss nanophotonics have not yet been demonstrated in KTP thin films. SiC and AIN
have both been used to realize a number of nonlinear photonic devices, but neither of these materials have
been grown as orientation patterned thin films. Dispersion engineered nonlinear interactions may become
possible in these systems when more complicated geometries are used to achieve both phase-velocity
matching and higher-order dispersion engineering.

Advanced approaches to dispersion engineering—While the ridge geometries considered here are the
simplest approach to dispersion engineering, this limits the number of dispersion orders that can be
engineered simultaneously and the range of wavelengths that can realize Ak’ = 0. In the case of X-cut
lithium niobate, group-velocity-matched designs are limited to wavelengths longer than 1300 nm, which
prevents quasi-static devices from taking advantage of the large normalized efficiencies found at short
wavelengths. More flexibility may be found by incorporating additional degrees of freedom, such as a side
ridge [145] or a multilayer cladding. Designs with many degrees of freedom become difficult to engineer
using heuristics and parameter sweeps, and new approaches to dispersion engineering such as photonic
inverse design [146] may resolve these limitations of the current generation of devices.

Device demonstrations— Many of the devices proposed here have not yet been realized, and at this time of
writing it is likely that a number of technical challenges need to be resolved. Ultrabroadband OPAs have
recently been demonstrated at wavelengths around 2 pm [65, 66], but there have been no demonstrations in
the C-band where low-loss optical fibers and high quantum efficiency detectors are readily available.
Similarly, there have not yet been any demonstrations of squeezing using TFLN waveguides, and the ability to
detect the squeezing will likely be limited by the relatively low collection efficiencies found in these
waveguides. This may be resolved by integrating couplers, modulators, and detectors directly into the
waveguides, or by developing extremely low-loss chip-to-fiber interfaces [147, 148]. In many cases the degree
of squeezing attainable in waveguides is limited by pump-induced absorption, which has not yet been
characterized in nanophotonic devices with the level of accuracy needed in squeezing experiments.
Successful realizations of these devices may enable chip-scale sources of cluster states for measurement-based
quantum computation.

There have not yet been any experimental demonstrations of separable biphotons in integrated photonics
platforms using designs similar to those proposed here, and it is unclear what technical problems still need to
be resolved. One potential hurdle may be inhomogeneities in the waveguide dimensions, such as variations
of the film thickness over the length of the nonlinear section, which may degrade the separability of the
generated photon pairs by distorting the phase-matching function. In principle, successful realizations of
these devices may achieve photon generation rates approaching GHz with 10 uW of pump power.

Considerable efforts have been focused on realizing single photon nonlinearities, but current
implementations are still several orders of magnitude below the nonlinear couplings needed to achieve
strong coupling. Possible routes towards such devices include operating with an 800 nm fundamental to take
advantage of the large nonlinearities available at short wavelengths, achieving higher quality factors, or by
using resonator geometries that enable smaller cavities and larger free spectral ranges [122]. We note,
however, that recent work suggests care must be taken to mitigate thermorefractive noise in the latter
approach [123].
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System-level integration—Integrated systems for quantum optics typically require many linear and
nonlinear components such as squeezers, couplers, and modulators to be functioning together with low
loss [149]. At this time, most of the work in nonlinear nanophotonic devices has focused on the
demonstration and characterization of new devices, and there have been few realizations of integrated
systems with multiple linear and nonlinear components [107]. One of the largest obstacles to realizing
photonic integrate circuits with the complexity needed for quantum optics in these platforms is the stringent
fabrication tolerances of the nonlinear devices. In most cases electro-optic tuning and temperature tuning
alone are not sufficient to compensate the phase-mismatch due to small fabrication errors of the waveguide.
These problems can be solved by developing new tuning methods or by developing new waveguide
geometries that achieve non-critical phasematching, where the gradient of the poling period with respect to
one or more waveguide dimensions is zero.

Reduced models for multimode quantum optics—The heuristic approach for calculating the coupling rate
of synchronously pumped resonators taken here suggests that short pulses can be used to realize much larger
coupling rates in synchronously pumped microresonators. In practice, a more accurate calculation of the
effective coupling rate between short pulses must rely on reduced quantum models. The coupling rate
between two pulsed supermodes in a reduced model will ultimately depend on the model, and care must be
taken to ensure few-mode operation. In the case of a synchronously pumped DRO, recent results have found
a reduced quantum model that achieves both few-mode operation and enhanced coupling rates comparable
to the heuristic approach used here [117]. Conversely, recent work studying traveling-wave parametric
down-conversion and TROs found an enhancement of the coupling rate due to the number of modes
available for parametric down-conversion, but no enhancement due to the multi-mode nature of the
pump [118]. At this time there are likely undiscovered reduced models for nonlinear waveguides and
resonators driven by short pulses that will yield clearer insights and new design rules. Solving these problems
will open up new routes towards single-photon nonlinear interactions in integrated photonic devices.
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Appendix A. Derivation of the coupled-wave equations in nonlinear waveguides

We first briefly summarize the relevant aspects of nonlinear optical waveguide theory for the devices
considered throughout this review, such as the definition of waveguide modes and their associated dispersion
relations [150]. We then establish a convenient mode normalization to derive the nonlinear coupling
between two waveguide modes. This inter-modal coupling, when combined with the linear dispersion
relations of each waveguide mode, enables an accurate description of the behavior of nonlinear devices.
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Figure Al. Schematic of typical ridge waveguide, with the associated electric field Ex ;, of the waveguide mode for both the
fundamental (a) and second harmonic (b). The top cladding is air, the etched thin film is X-cut MgO:LN, and we approximate the
2 pm thick silica adhesion layer as extending to infinity.

A.1. Waveguide modes

A typical nonlinear waveguide considered here comprises an LN ridge, an air top cladding, and a silica
substrate as shown in figure A1 with the associated E, field distribution of the TEy, mode. Cross sections
with more degrees of freedom can be used to better tailor the dispersion of the interacting modes [145], but
the simple geometry shown here already allows for engineering of a wide variety of new devices. Waveguide
modes arise as the solution to Maxwell’s equations in the absence of a nonlinear polarization, with a
dielectric constant &(x, y,w) that varies in two spatial dimensions,

V- [e(x,y,w)E(x,y,2,w)] = 0, (A1)

V -H(x,y,z,w) =0, (A.2)

V x H(x,y,z,w) = iwé(x,y,w)E(x,y,z,w), (A3)
V x E(x,y,z,w) = —iwu H(x, y,z,w). (A4)

The media considered here are uniaxial, with the crystal coordinates aligned to the waveguide coordinates
such that &(x, y,w) is a second rank diagonal tensor

€xx(%,y,w) 0 0
E(x,y,w) = 0 €y (X, y,w) 0 . (A5)
0 0 €22(%,y,w)

Throughout this review, we will use capital letters (X, Y, Z) to denote crystal coordinates, and lower-case
letters (x,,z) to denote waveguide coordinates. In typical straight waveguides, the direction of propagation
(2) is taken along the crystalline Y-axis of the lithium niobate. There are two cases of interest: X-cut lithium
niobate films, which have their crystalline Z-axis aligned with the waveguide x-axis (€. = €2z, €, = €xx,

€,z = €xx) and Z-cut lithium niobate films, which have their crystalline Z-axis aligned with the waveguide
y-axis (€xc = €xx, €,y = €27, €2; = €xx). This section will focus predominantly on TEgy modes in X-cut films,
which exhibit both large nonlinearities and allow for dispersion engineering at many wavelengths of interest.
Since €(x,y,w) is translationally invariant in z, we may solve Maxwell’s equations by expanding the fields in a
series of guided modes

E(x,y,z,w) Za# (X, y,w)e @)z (A.6)

H(x,y,z,w) Za# (x,y,w)e ku(@)z, (A7)

where a,, represents the component of E contained in mode . around frequency w. The transverse mode
profiles, E,, and H,,, and their associated propagation constant, k,,, arise as solutions to an eigenvalue
problem, and may be found using the methods described in [151]. The dispersion relations given by k,, (w)
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are determined both by the materials that comprise the waveguide and, for tightly confining structures, the
geometry of the waveguide. It can be shown that the propagation constant of mode p is given by [150]

fAmH (wpo) Hy + By, - (wE) By dA

bulw) = 2f, (ExH")-zdA ’ (A-8)

where [, flx,y)dA = f f ~_f(x,y)dxdy denotes the integral of f(x, y) over the waveguide cross section.
The inverse group Veloc1ty of mode (4 is given by a similar expression

K/ _ ono H,, - 0, (po w)Hj, + E,, - 0, (we)E; dA
W)= 2f, ( E><H* -zdA

" (A.9)

A casual comparison of (A.8) and (A.9) might suggest that nth derivatives of the propagation constant can be
found simply by replacing the partial derivatives J,, in (A.9) with 7. This is not the case since the inner
products in (A.8) have the form u - Lu, whereas the inner products in (A.9) have the form u - Lu*, where L is
an arbitrary linear operator.

A recurring theme throughout this review is that the choice of waveguide geometry and the resulting
k,.(w) are crucial in determining the performance of nonlinear devices. This section will focus predominantly
on TE(y modes in X-cut LN films, which exhibit both large nonlinearities and allow for dispersion
engineering at many wavelengths of interest. In this context there are largely two contributions that modify
k,.(w) and k/,(w). When the wavelength of a mode is larger than the dimensions of the waveguide, the fields
expand into the cladding layers around the waveguide, which modifies the E, - (w€)E,, and E, - 0,,(w€)E},
overlap integrals. This typically reduces the effective index associated with the mode #,, = ck,, /w due to the
increasing overlap of the fields with the low-index cladding, and often increases the group index n ,, = ck;,
due to a more rapid variation of the propagation constant with frequency. The second contribution to k,, (w)
is avoided crossings of different spatial modes. In this case, two modes e, and e,, that share the same parity
(e.g. TEgo and TM,¢) may approach the same propagation constant at a wavelength Axc due to their different
group velocities. However since two modes of the same parity cannot have the same propagation constant,
the modes will hybridize and k,, ,, will exhibit an anti-crossing around Asc. This strong variation of k,, (w)
around Aac can modify dispersion orders hundreds of nanometers away from the anti-crossing.

We conclude our discussion of linear waveguide theory by summarizing a few properties of waveguide
modes that will be convenient for deriving the nonlinear coupling between two modes. First, we note that all
of these eigenmodes satisfy an orthogonality relation,

1
/ TR ([, x H)]-2)ddy = P . (A.10)
A

where the fields are normalized such that P = 1 W, and therefore the power contained in mode . is P|a,, |*.
Second, we note that it is convenient to express these mode profiles using dimensionless functions e(x, y) and

h(x,y)

27,
EM(X,)/) n A 4 ey(’@)’)a (All)
4 imode, i
2n, P
H = £ h A.12
M(XJ/) ZOAmode,;L M(xJ/)’ ( )

where Z is the impedance of free space. The dimensionless field distributions e(x,y) and h(x, y) are
normalized such that the peak value of Re(e,, x h},) - Zis unity. As a consequence of (A.10), the area of mode
t is given by Apode,, = [ Re(ey, x hY) - Zdxdy. The modal area is a measure of how tightly confined a mode is
and largely determines the strength of nonlinear interactions, with more tightly confined modes producing
stronger nonlinear couplings. The definitions used here are chosen to establish an intuitive correspondence
between nonlinear interactions in nanowaveguides, which require a fully-vectorial description, and
nonlinear interactions between the conventional transverse modes that occur in loosely-guiding waveguides
and in a bulk medium Asan example, for an x- polarized Gaussian beam propagating in free space,
e(x,y) = exp(— (x> +y*) /w?)%, h(x,y) = exp(—(x* +y*)/w?)y, and Apode = W2 /2.

Having established the waveguide modes, their dispersion relations, and their normalization, we now
consider nonlinear interactions between waveguide modes. The treatment used in the following sections
accounts for the fully-vectorial nature of the modes [152, 153], with each field component of E,, coupled
together by the full nonlinear tensor, djj, of the media that comprise the waveguide.
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A.2. Nonlinear coupling

The presence of a nonlinear polarization at frequency w gives rise to driving terms that cause the content of
each mode, a,,, to evolve in z. The derivation of the coupled-wave equations under the influence of a
nonlinear polarization is similar to that of the orthogonality relations, where Maxwell’s equations now
include the nonlinear polarization,

V x H(x,y,z,w) = iwe(x, y,w)E(x,y,z,w) + iwPnL(x,y,w). (A.13)

We consider a pair of modes E; = a,,(z)E,, (x,y) exp(—ik,z), E; = a,E, (x,y) exp(—ik,z), such that such that
H, and H,, independently satisfy Maxwell’s equations. Substituting E; and H; into Maxwell’s curl equations,
taking the dot product with —H3 and E3, respectively, and adding them together yields

—H; - (V xE))+E;-(VxH) (A.14)

= iwpug Hy - Hy + iweg ES - €E; + iwE} - Pyp(x, y,w). (A.15)

Taking the complex conjugate of (A.15), interchanging the indices, and adding them together (assuming real
€) yields

~H; - (VxE)+E;-(VxH))— (A.16)
H, - (VXE)+E -(VxH)= (A.17)
—(I(JJE;< 'PNL,I —I.OJETPNLJ). (AIS)

We rewrite (A.18) using V- (A xB) =B-V x A— A -V x B to arrive at
V- (E1 X H; + E; X Hl) = — (IWE; . PNL,I — l.LUETPNLyz), (A19)

and integrate over all space. Using the orthogonality relations, we find that a,, evolves as

d.a,(z,w) = _4—;:}6"1‘“2 / E; - Py ,dxdy. (A.20)

For second-harmonic generation in the limit where one pair of modes is close to phasematching, we calculate
Py using one mode for the fundamental at frequency w and for the second harmonic at frequency 2w
without loss of generality. For the remainder of this section, the modes under consideration will be referred
to as a, and ay,, for the fundamental and second harmonic, respectively. In this case, the nonlinear
polarization is given by

PNL7w = zﬁodeffazwﬂz Z ;i,-jkEj}ZwEZ)we_"(k“ —kw)z (A.21)
jk
PNL2w = €odefrdl, Z‘_jijkEj,wEkvwe—%sz (A.22)
jk

where 7,7,k € {x,y,z}. For nonlinear interactions between modes polarized predominantly along the
crystalline Z-axis in lithium niobate, deg = %d33 is the effective nonlinear coefficient for a 50% duty cycle
periodically poled waveguide, and d;j is the normalized ) tensor. Assuming Kleinman symmetry, this is
expressed using contracted notation [154] in the coordinates of the crystal as

0 0 0 0 dis dis

where dy5 = 3.67 pm/V, djg = 1.78 pm/V, and d33 = 20.5 pm/V for SHG of 2 um light. These values are
found using a least squares fit of Miller’s delta scaling to the values reported in [51, 52], and have relative
uncertainties of +5%. We therefore expect a relative uncertainty in any calculated normalized efficiency to be
+10%.

We arrive at the coupled-wave equations for SHG by substituting equations (A.21) and (A.22) into (A.20)
and defining A, = vPa,,
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DA, = —ikAy Al e Ak (A.23)

D Ag, = —ik* ALk, (A.24)
The nonlinear coupling, «, and the associated effective area are given by

Y 2Zowdets

K= exp(—i A.25

e s P (A2
Afnode,wAmOde’ZW

Aefr = (A.26)

~ 7
*
’ Ik Zi’j’k dijke 5, € wek wdxdy

We remark here that the coupling coefficient « is complex in a nanophotonic waveguide, due to coupling
between the purely real transverse components of the fields associated with the waveguide mode with the
purely imaginary z-component of the fields. The phase of x, ¢, is given by the phase of the overlap integral
in (A.26), and can be neglected without loss of generality. When ¢,; is nonzero, the nonlinear coupling
imparts a small phase shift between each of the interacting envelopes, but does not contribute any
meaningful change in the resulting nonlinear dynamics. We can remove this phase from the coupled-wave
equations by shifting phase reference of the second harmonic, Ay, (z,t) — Ay, (2, t) exp(—icy).

The usual figure of merit for a nonlinear waveguide is the normalized efficiency, 17y = 2, which
determines the power and device length needed to achieve efficient conversion; devices with larger 79 can
operate with either less power or shorter devices. The smallest possible effective area for a given wavelength is
comparable to A.g ~ (\/n)?. Given the scale invariance of Maxwell’s equations, the A.g of any given device
scales as A%, provided that all of the dimensions of the waveguide are rescaled. Therefore, we expect 7y to
exhibit a quartic scaling with frequency as given designs are rescaled to shorter wavelengths, with a factor of
w? coming from the explicit w-dependence of #, and another factor of w? coming from A.. In practice, the
scaling of 7 for a given waveguide is slightly greater than w* due to the dispersion of deg.

Appendix B. Tuning and tolerance

Given the relationship between Ak and the frequency detuning of the interacting waves, 2 and Q' for SHG
and three-wave interactions (section 4), we are now equipped to discuss the role of tuning mechanisms, such
as temperature and fabrication errors. This treatment will yield a set of rules for calculating the fabrication
tolerance of a particular device. For the particular case of ultra-broadband interactions, such as those
discussed above, we will see that these devices exhibit extremely rapid wavelength tuning behavior and
therefore have stringent fabrication requirements.

B.1. Wavelength tuning due to phase-mismatch

We begin by considering the tuning of the phase-matched wavelength with respect to small changes in the
phase-mismatch. As an example, we consider CW SHG where Aky = ky,, — 2k, — 27 /A and define
Aqem = 27/ (ka,, — 2k,,) as the period needed to achieve phase-matching at the desired wavelengths. Small
deviations between Aqpy and the fabricated poling period, Ag, result in a residual phase-mismatch,

_ 2T 2
Agpm  Ag
N 2rAA
AL

ok

(B.1)

where AA = Ag — Agpm Is assumed to be much smaller than Ag. Given dk, the shift in phase-matched
wavelength is determined by the GVM, Ak’, of the interacting waves,

Ak(Qpy) = 0 = 5k + 2AK Qpy, (B.2)

or Qpy = —0k/2Ak’. A simple rule-of-thumb for calculating the tuning of frequency or wavelength with
respect to 0k is to note that peak of the transfer function shifts to the position of the first zero (e.g. AQspg/2
for SHG) when kL = 2. For a phase-matching error kL = 2mm, corresponding to

AAL
AL

m= (B.3)
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the shift in the peak phasematching wavelength A\ obeys A\ = mAAsyg /2, where Agyg is the full-width
of the measured SHG transfer function. This tuning behavior can be expressed as

AN AQ m

= = —. B.4
Adsug  AQspe 2 (B4)

Equations (B.3) and (B.4) gives us an intuitive picture of tolerance with respect to AA. Longer devices are
more sensitive, with m growing linearly with L. Surprisingly, m exhibits a quadratic scaling with poling
period; devices with short periods tolerate less fractional error, AA/Ag, than devices with long periods.

For dispersion-engineered devices with Ak’ = 0 the tuning of wavelength becomes a nonlinear function
of 8k, with Qpy varying rapidly for frequencies around w,

1
40k — k1)

We need to retain dispersion terms beyond second order in our series expansion for Ak(2) to accurately
describe this tuning behavior since (B.5) diverges for small errors (6k ~ 0). A simpler approach is to use (B.3)
and (B.4), which gives the average tuning of AQ with respect to dk for kL € [0,27] and is a reasonable
approximation for arbitrary Ak(w). Taking the device in section 4.2 as an example, we have

Alsuc = 300 nm for a 5 mm long device and a period of ~ 5 um. Therefore, m =1 when AA =5 nm and
the SHG peak shifts by 150 nm, or AXA/AA = 30.

Given this strong dependence of the phase-matched wavelength on the phase-mismatch in
dispersion-engineered devices, care needs to be taken to ensure that the phase-mismatch of fabricated
devices can be controlled with sufficient precision. The remainder of this section addresses typical
fabrication errors and tuning mechanisms.

Dsilpm = — (B.5)

B.2. Waveguide geometry errors
Small deviations in the geometry of a fabricated waveguide from a nominal design shift k, and k;,,, thereby
changing the poling period needed to achieve phase-matching, Aqpy. For a typical waveguide, the geometry

can be parameterized by top width, w, etch depth, h, and film thickness, y. Small errors in these parameters
shift AQPM by

AAQPM = dwawAQpM + dy@,AQpM + dhahAQpM, (B.6)

or AAgpm = dx - VAqpy for an arbitrary parameterization given by x. Higher order contributions to
Ak(,Q') such as Ak’ and k! typically exhibit more tolerance to waveguide geometry errors than the
phase-mismatch, and are neglected here. Therefore, to reasonable approximation, we can quantify the role of
geometry errors entirely using AAqpy and the resulting tuning of the phase-matched wavelength.

Typical values for VAqpy are given by 0,,Aqpm = 2 nm/nm, 9, Aqpm = —2 nm/nm, and 9, Aqpm = 5
nm/nm. As the waveguide dimensions are made larger and the guided modes become more loosely confined,
Aqpm becomes larger until it asymptotes to the values found in bulk media. In practice, using the fabrication
methods described in section 2, variations in dw, dh, and dy between fabrication runs may be as large as
450 nm, £10 nm, and +3 nm, respectively. These geometry errors correspond to an upper and lower bound
of AAqpm ~ £140 nm and a variation in the phase-matched wavelength, A\, by microns. This large
uncertainty in A\ illustrates the difficulty of producing dispersion-engineered nonlinear devices using
precise fabrication alone; for the numbers considered here, the precision in dy required to fabricate a
waveguide with |[A\| < 100 nm is 6.7 Angstroms. While these difficulties may be overcome by using
non-critical designs, where 0, Aqpm or 0,,Aqpm Vvanishes, such waveguide geometries rarely have the desired
dispersion. Instead, fine tuning of the phase-mismatch may be achieved by fabricating many identical
waveguides with slightly different poling periods, and by using temperature tuning. Phase-matching can be
found reliably when the range of fabricated poling periods spans the bounds of AAgpum.

B.3. Choice of poling periods

The lithographically patterned poling period Ag can be written with a precision much finer than resolution
(dx) of the lithography tools used to define the grating. As a result, optical lithography can be used to define
A with better control than Agpy, even when the waveguide geometry is patterned using electron-beam
lithography. In this section, we briefly derive the resolution needed to pattern a period A¢ without substantial
degradation to device performance. When dx/Ag is sufficiently small, we make choose an arbitrarily fine step
between successive A, which enables us to tune the phase-matched wavelength of dispersion-engineered
devices in small steps. Having established this tuning behavior, we then discuss commonly used heuristics for
fabricating dispersion-engineered devices. The treatment presented here follows [47].
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For grating patterned with resolution dx, the desired poling period is given by
Ac=(Q+e)dx=Ag+ AA, (B.7)

where Q is an integer (Ag = Qdx) and f% <e< % represents the quantization error between the desired
poling period A¢ and the patterned period Aq. The phase drift of the nonlinear polarization due to this
small error in poling period can be corrected by patterning an inverted domain of width A/2 + dx instead of
A /2 once every P periods, where

P 1 dx (B.8)
2 2AA° '
It can be shown that the degradation of the nonlinear coupling « for SHG or three-wave mixing is given

by [47]

[ <1—|—2Psmc(¢mx)> (B.9)

1+2P

provided that ¢, < 2P, where ¢ = %f‘ is the largest phase error incurred by the nonlinear polarization.

The nonlinear coupling & will be degraded by less than 1% if ¢y < 0.08 7, and therefore the resolution
needed to achieve high-fidelity poling is

dx < 0.08A¢. (B.10)

Equation (B.10) is remarkably lax; most experimentally relevant poling periods are on the order of microns,
whereas many optical lithography tools can pattern poling electrodes with a resolution of < 100 nm. When
(B.10) is violated, the fidelity scales as % /K ~ sinc(dmax) ~ 1 — @2, /6. As a result, ppax = 0.25 7
corresponds to &/k = 0.9.

When (B.10) is satisfied, there is negligible degradation of device operation due to quantization error,
and the desired poling period A can be patterned in arbitrarily fine steps. For a dispersion-engineered
waveguide driven by a pulsed laser without wavelength tuning, the fabricated poling periods must have (a) a
sufficiently fine spacing to efficiently sample the transfer function of a desired nonlinear interaction, and (b)
a sufficiently coarse spacing to account for fabrication errors. A natural choice of the spacing in Ag to satisfy
condition (a) is given by adding or removing a single domain, corresponding to a change in m by 1/2, which
bounds the total accumulated phase-error by dkL = 7 /2 for the waveguide closest to phase-matching. In this
case, the change between successive periods is given by AAg = AZ/(2L), where L is the length of the
nonlinear waveguide. For our previous example of a 5 mm long device with a nominal period of 5 ym the
poling period would change in steps of 2.5 nm, which tunes the peak of the SHG transfer function in discrete
steps of 75 nm. We note here that achieving the same tuning using waveguide dimensions would require
successive waveguides to be patterned with widths that change by ~ 1 nm. While this spacing of period still
produces large steps of the phase-matched wavelength, it is often too fine to span the bounds of AAgpy for a
realistic number of fabricated devices. For the 140 nm bounds of AAqgpy in the example above, we would
need 112 poling periods.

These limitations can be overcome by using multiple tuning mechanisms in parallel. Varying the
temperature T of a waveguide can be used to fine-tune the phase-mismatch since drk,,, # Ork,, and typical
devices, such as those considered in section 4.2, exhibit a tuning of drAqpm ~ 0.2 — 0.3 nm C~!. This allows
for continuous tuning of the phase-mismatch between successive poling periods, and the range of available
temperatures can enable coarser spacing of the poling period, e.g. AAg ~ 10 nm for a temperature range of
30 C. In this case, only 28 poled waveguides are necessary to span the bounds of AAqgpm. Further
improvements in fabrication tolerance are possible by patterning multiple waveguides per poling period.
This effectively bounds the width error dw (and therefore AAqgpm), which in turn reduces the number of
necessary poling periods.
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