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Face mask use by the general public for limiting the spread of the COVID-19 pandemic is
controversial, though increasingly recommended, and the potential of this intervention is
not well understood. We develop a compartmental model for assessing the community-
wide impact of mask use by the general, asymptomatic public, a portion of which may
be asymptomatically infectious. Model simulations, using data relevant to COVID-19 dy-
namics in the US states of New York and Washington, suggest that broad adoption of even
relatively ineffective face masks may meaningfully reduce community transmission of
COVID-19 and decrease peak hospitalizations and deaths. Moreover, mask use decreases
the effective transmission rate in nearly linear proportion to the product of mask effec-
tiveness (as a fraction of potentially infectious contacts blocked) and coverage rate (as a
fraction of the general population), while the impact on epidemiologic outcomes (death,
hospitalizations) is highly nonlinear, indicating masks could synergize with other non-
pharmaceutical measures. Notably, masks are found to be useful with respect to both
preventing illness in healthy persons and preventing asymptomatic transmission. Hypo-
thetical mask adoption scenarios, for Washington and New York state, suggest that im-
mediate near universal (80%) adoption of moderately (50%) effective masks could prevent
on the order of 17e45% of projected deaths over two months in New York, while
decreasing the peak daily death rate by 34e58%, absent other changes in epidemic dy-
namics. Even very weak masks (20% effective) can still be useful if the underlying trans-
mission rate is relatively low or decreasing: In Washington, where baseline transmission is
much less intense, 80% adoption of such masks could reduce mortality by 24e65% (and
peak deaths 15e69%), compared to 2e9% mortality reduction in New York (peak death
reduction 9e18%). Our results suggest use of face masks by the general public is potentially
of high value in curtailing community transmission and the burden of the pandemic. The
community-wide benefits are likely to be greatest when face masks are used in
conjunction with other non-pharmaceutical practices (such as social-distancing), and
when adoption is nearly universal (nation-wide) and compliance is high.
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1. Introduction

Under the ongoing COVID-19 pandemic (caused by the SARS-CoV-2 coronavirus), recommendations and common prac-
tices regarding face mask use by the general public have varied greatly and are in rapid flux: Mask use by the public in public
spaces has been controversial in the US, although as of April 3, 2020, the US Centers for Disease Control and Prevention (CDC)
is recommending the public wear cloth masks. Public mask use is far more prevalent in many Asian countries, which have
longer experience with novel coronavirus epidemics; public mask use may have been effective at limiting community spread
during the 2003 SARS epidemic (Lau, Tsui, Lau, & Yang, 2004; Wu et al., 2004), and widespread mask use is a prominent
feature of the relatively successful COVID-19 response in Taiwan (Wang, Ng, & Brook, 2020), for example. Masks have also
been suggested as a method for limiting community transmission by asymptomatic or at least clinically undetected carriers
(Chan & Yuen, 2020), who may be a major driver of transmission of COVID-19 (Li et al., 2020). Various experimental studies
suggest that masks may both protect the wearer from acquiring various infections (Davies et al., 2013; Lai, Poon, & Cheung,
2012) or transmitting infection (Dharmadhikari et al., 2012). Medical masks (i.e., surgical masks and N95 respirators) in
healthcare workers appear to consistently protect against respiratory infection under metanalysis (MacIntyre et al., 2017;
Offeddu, Yung, Low, & Tam, 2017), although clinical trials in the community have yielded more mixed results (Canini et al.,
2010; Cowling et al., 2009; MacIntyre et al., 2009). While medical-grade masks should be prioritized for healthcare providers,
homemade cloth masks may still afford significant, although variable and generally lesser, protection (Davies et al., 2013; van
der Sande, Teunis, & Sabel, 2008), but clinical trials in the community remain lacking.

Given the flux in recommendations, and uncertainty surrounding the possible community-wide impact of mass face
masks (especially homemade cloth masks) on COVID-19 transmission, we have developed a multi-group Kermack-McKen-
drick-type compartmental mathematical model, extending prior work geared towardsmodeling the COVID-19 pandemic (e.g.
Ferguson et al., 2020; Li et al., 2020; Tracht, Del Valle,&Hyman, 2010), as well as models previously used to examinemasks in
a potential influenza pandemic (Brienen, Timen, Wallinga, Van Steenbergen, & Teunis, 2010; Tracht et al., 2010). This initial
framework suggests that masks could be effective even if implemented as a singular intervention/mitigation strategy, but
especially in combination with other non-pharmaceutical interventions that decrease community transmission rates.

Whether masks can be useful, even in principle, depends on the mechanisms for transmission for SARS-CoV-2, which are
likely a combination of droplet, contact, and possible airborne (aerosol) modes. The traditional model for respiratory disease
transmission posits infection via infectious droplets (generally 5e10 mm) that have a short lifetime in the air and infect the
upper respiratory tract, or finer aerosols, which may remain in the air for many hours (Leung et al.,2020 ), with ongoing
uncertainties in the relative importance of these modes (and in the conceptual model itself Bourouiba, 2020) for SARS-CoV-2
transmission (Bourouiba, 2020; Han, Lin, Ni, & You, 2020). TheWHO (World Health Organization, 2020, p. 27) has stated that
SARS-CoV-2 transmission is primarily via coarse respiratory droplets and contact routes. An experimental study (van
Doremalen et al., 2020) using a nebulizer found SARS-CoV-2 to remain viable in aerosols (<5 mm) for 3 h (the study dura-
tion), but the clinical relevance of this setup is debatable (World Health Organization, 2020, p. 27). One out of three symp-
tomatic COVID-19 patients caused extensive environmental contamination in (Ong et al., 2020), including of air exhaust
outlets, though the air itself tested negative.

Face masks can protect against both coarser droplet and finer aerosol transmission, though N95 respirators are more
effective against finer aerosols, and may be superior in preventing droplet transmission as well (MacIntyre et al., 2017).
Metanalysis of studies in healthy healthcare providers (in whom most studies have been performed) indicated a strong
protective value against clinical and respiratory virus infection for both surgical masks and N95 respirators (Offeddu et al.,
2017). Case control data from the 2003 SARS epidemic suggests a strong protective value to mask use by community
members in public spaces, on the order of 70% (Lau et al., 2004; Wu et al., 2004).

Experimental studies in both humans and manikins indicate that a range of masks provide at least some protective value
against various infectious agents (Davies et al., 2013; Driessche et al., 2015; Stockwell et al., 2018; van der Sande et al., 2008;
Leung et al.,2020 ). Medical masks were potentially highly effective as both source control and primary prevention under
tidally breathing and coughing conditions in manikin studies (Lai et al., 2012; Patel, Skaria, Mansour,& Smaldone, 2016), with
higher quality masks (e.g. N95 respirator vs. surgical mask) offering greater protection (Patel et al., 2016). It is largely un-
known to what degree homemade masks (typically made from cotton, teacloth, or other polyesther fibers) may protect
against droplets/aerosols and viral transmission, but experimental results by Davies et al. 7 suggest that while the homemade
masks were less effective than surgical masks, they were still markedly superior to no mask. A clinical trial in healthcare
workers (MacIntyre et al., 2015) showed relatively poor performance for cloth masks relative to medical masks.

Mathematical modeling has been influential in providing deeper understanding on the transmission mechanisms and
burden of the ongoing COVID-19 pandemic, contributing to the development of public health policy and understanding. Most
mathematical models of the COVID-19 pandemic can broadly be divided into either population-based, SIR (Kermack-
McKendrick)-type models, driven by (potentially stochastic) differential equations (Li et al., 2020; Tang et al., 2020; Wu,
Leung, & Leung, 2020; Kucharski et al., 2020; Calafiore, Novara, & Possieri, 2020; Simha, Prasad, & Narayana, 2020;
Dehning et al., 2020; Nesteruk, 2020; Zhang et al., 2020; Anastassopoulou, Russo, Tsakris, & Siettos, 2020; Moore & Okyere,
2004), or agent-based models (Biswas, Khaleque, & Sen, 2020; Chang, Harding, Zachreson, Cliff, & Prokopenko, 2020;
Ferguson et al., 2020; Ruiz Estrada & Koutronas, 2020; Wilder et al., 2020), in which individuals typically interact on a
network structure and exchange infection stochastically. One difficulty of the latter approach is that the network structure is
time-varying and can be difficult, if not impossible, to construct with accuracy. Population-based models, alternatively, may
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risk being too coarse to capture certain real-world complexities. Many of these models, of course, incorporate features from
both paradigms, and the right combination of dynamical, stochastic, data-driven, and network-based methods will always
depend on the question of interest.

In Li et al. (2020) imposed a metapopulation structure onto an SEIR-model to account for travel between major cities in
China. Notably, they include compartments for both documented and undocumented infections. Their model suggests that as
many as 86% of all cases went undetected in Wuhan before travel restrictions took effect on January 23, 2020. They addi-
tionally estimated that, on a per person basis, asymptomatic individuals were only 55% as contagious, yet were responsible for
79% of new infections, given their increased prevalence. The importance of accounting for asymptomatic individuals has been
confirmed by other studies (Calafiore et al., 2020; Ferguson et al., 2020; Moriarty, 2020; Verity et al., 2020). In their model-
based assessment of case-fatality ratios, Verity et al. (2020) estimated that 40e50% of cases went unidentified in China, as of
February 8, 2020, while in the case of the Princess Diamond cruise ship, 46.5% of individuals who tested positive for COVID-19
were asymptomatic (Moriarty, 2020). Further, Calafiore et al. (2020), using a modified SIR-model, estimated that, on average,
cases in Italy went underreported by a factor of 63, as of March 30, 2020.

Several prior mathematical models, motivated by the potential for pandemic influenza, have examined the utility of mask
wearing by the general public. These include a relatively simple modification of an SIR-type model by Brienen et al. (2010),
while Tracht et al. (2010) considered a more complex SEIR model that explicitly disaggregated those that do and do not use
masks. The latter concluded that, for pandemic H1N1 influenza, modestly effective masks (20%) could halve total infections,
while if masks were just 50% effective as source control, the epidemic could be essentially eliminated if just 25% of the
population wore masks.

We adapt these previously developed SEIR model frameworks for transmission dynamics to explore the potential
community-wide impact of public use of face masks, of varying efficacy and compliance, on the transmission dynamics and
control of the COVID-19 pandemic. In particular, we develop a two-group model, which stratifies the total population into
those who habitually do and do not wear face masks in public or other settings where transmission may occur. This model
takes the form of a deterministic system of nonlinear differential equations, and explicitly includes asymptomatically-
infectious humans. We examine mask effectiveness and coverage (i.e., the fraction of the population that habitually wears
masks) as our two primary parameters of interest.

We explore possible nonlinearities in mask coverage and effectiveness and the interaction of these two parameters; we
find that the product of mask effectiveness and coverage level strongly predicts the effect of mask use on epidemiologic
outcomes. Thus, homemade cloth masks are best deployed en masse to benefit the population at large. There is also a
potentially strong nonlinear effect of mask use on the epidemiologic outcomes of cumulative death and peak hospitalizations.
We note a possible temporal effect: Delaying mass mask adoption too longmay undermine its efficacy. Moreover, we perform
simulated case studies using mortality data for New York and Washington state. These case studies likewise suggest a
beneficial role to mass adoption of even poorly effective masks, with the relative benefit likely greater in Washington state,
where baseline transmission is less intense. The absolute potential for saving lives is still, however, greater under the more
intense transmission dynamics in New York state. Thus, early adoption of masks is useful regardless of transmission in-
tensities, and should not be delayed even if the case load/mortality seems relatively low.

In summary, the benefit to routine face mask use by the general public during the COVID-19 pandemic remains uncertain,
but our initial mathematical modeling work suggests a possible strong potential benefit to near universal adoption of even
weakly effective homemade masks that may synergize with, not replace, other control and mitigation measures.
2. Methods

2.1. Baseline mathematical models

2.1.1. Model with no mask use
We consider a baseline model without any mask use to form the foundation for parameter estimation and to estimate

transmission rates in New York and Washington state; we also use this model to determine the equivalent transmission rate
reductions resulting from public mask use in the full model.

We use a deterministic susceptible, exposed, symptomatic infectious, hospitalized, asymptomatic infectious, and recov-
ered modeling framework, with these classes respectively denoted SðtÞ, EðtÞ, IðtÞ, HðtÞ, AðtÞ, and RðtÞ; we also include DðtÞ to
track cumulative deaths. We assume that some fraction of symptomatic infectious individuals progress to the hospitalized
class, HðtÞ, where they are unable to pass the disease to the general public; we suppose that some fraction of hospitalized
patients ultimately require critical care (and may die) (Zhou et al., 2020), but do not explicitly disaggregate, for example, ICU
and non-ICU patients. Based on these assumptions and simplifications, the basic model for the transmission dynamics of
COVID-19 is given by the following deterministic system of nonlinear differential equations:

dS
dt

¼ � bðtÞðIþ hAÞ S
N
; (1)
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dE
dt

¼ bðtÞðIþhAÞ S
N
� sE; (2)

dI
dt

¼asE � 4I � gI I; (3)

dA
dt

¼ð1�aÞsE � gAA; (4)

dH
dt

¼4I � dH � gHH; (5)

dR
dt

¼gI I þ gAAþ gHH; (6)

dD
dt

¼ dH; (7)

where

N¼ Sþ E þ I þ Aþ R; (8)

is the total population in the community, and bðtÞ is the baseline infectious contact rate, which is assumed to vary with time in
general, but typically taken fixed. Additionally, h accounts for the relative infectiousness of asymptomatic carriers (in
comparison to symptomatic carriers), s is the transition rate from the exposed to infectious class (so 1=s is the disease in-
cubation period), a is the fraction of cases that are symptomatic, 4 is the rate at which symptomatic individuals are hospi-
talized, d is the disease-induced death rate, and gA, gI and gH are recovery rates for the subscripted population.

We suppose hospitalized persons are not exposed to the general population. Thus, they are excluded from the tabulation of
N, and do not contribute to infection rates in the general community. This general modeling framework is similar to a variety
of SEIR-style models recently employed in (Ferguson et al., 2020; Li et al., 2020), for example.

For most results in this paper, we set bðtÞ≡b0. However, given ongoing responses to the COVID-19 pandemic in terms of
voluntary and mandated social distancing, etc., we also consider the possibility that b varies with time and adopt the
following functional form from Tang et al. (Tang et al., 2020), with the modification that contact rates do not begin declining
from the initial contact rate, b0, until time t0:

bðtÞ¼
�

b0; t < t0
bmin þ ðb0 � bminÞexpð � rðt � t0ÞÞ; t � t0

(9)

where bmin is the minimum contact rate and r is the rate at which contact decreases.
2.2. Baseline epidemiological parameters

The incubation period for COVID-19 is estimated to average 5.1 days (Lauer et al., 2020), similar to other model-based
estimates (Li et al., 2020), giving s ¼ 1=5:1 day�1. Some previous model-based estimates of infectious duration are on the
order of several days (Ferguson et al., 2020; Li et al., 2020; Tang et al., 2020), with (Tang et al., 2020) giving about 7 days for
asymptomatic individuals to recover. However, the clinical course of the disease is typically much longer: In a study of
hospitalized patients (Zhou et al., 2020), average total duration of illness until hospital discharge or death was 21 days, and
moreover, the median duration of viral shedding was 20 days in survivors.

The effective transmission rate, b0 (as a constant), ranges from around 0.5 to 1.5 day�1 in prior modeling studies (Li et al.,
2020; Read, Bridgen, Cummings, Ho,& Jewell, 2020; Shen, Peng, Xiao,& Zhang, 2020), and typically trends downwith time (Li
et al., 2020; Tang et al., 2020). We have left this as a free parameter in our fits to Washington and New York state mortality
data, and find b0z0:5 and b0z1:4 day�1 for these states, respectively, which is consistent with the cited range.

The relative infectiousness of asymptomatic carriers, h, is not known, although Ferguson et al. (Ferguson et al., 2020)
estimated this parameter at about 0.5, and Li et al. (Li et al., 2020) gave values of 0.42e0.55. The fraction of cases that are
symptomatic, a, is also uncertain, with Li et al. 5 suggesting an overall case reporting rate of just 14% early in the outbreak in
China, but increasing to 65e69% later; further, a ¼ 2=3was used in (Ferguson et al., 2020). In the case of the Diamond Princess
Cruise ship 43, 712 (19.2%) passengers and crews tested positive for SARS-CoV-2, with 331 (46.5%) asymptomatic at the time
of testing. Therefore, we choose a ¼ 0:5 as our default.

Given an average time from symptom onset to dyspnea of 7 days in 44, 9 days to sepsis, and a range of 1e10 days to
hospitalization, a midpoint of 5 days seems reasonable (see also 15); 4z0:025 day�1 is consistent with on the order of 5e15%
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of symptomatic patients being hospitalized. If about 15% of hospitalized patients die (Ferguson et al., 2020), then dz 0:015
day�1 (based on gH ¼ 1=14 day�1).

2.2.1. Model with general population mask use
We assume that some fraction of the general population wears masks with uniform inward efficiency (i.e., primary

protection against catching disease) of εi, and outward efficiency (i.e., source control/protection against transmitting disease)
of εo. We disaggregate all population variables into those that typically do and do not wear masks, respectively subscripted
with U and M. Based on the above assumptions and simplifications, the extended multi-group model for COVID-19 (where
members of the general public wear masks in public) is given by:

dSU
dt

¼ � bðIU þ hAUÞ
SU
N

� bðð1� εoÞIM þð1� εoÞhAMÞ SU
N
; (10)

dEU SU SU

dt

¼ bðIU þhAUÞ N þbðð1� εoÞIM þð1� εoÞhAMÞ
N

� sEU ; (11)

dIU

dt

¼asEU � 4IU � gI IU ; (12)

dAU
dt
¼ð1�aÞsEU � gAAU ; (13)

dHU
dt
¼4IU � dHU � gHHU ; (14)

dRU

dt

¼gI IU þ gAAU þ gHHU ; (15)

dDU
dt
¼ dHU ; (16)

dSM SM SM

dt

¼ � bð1� εiÞðIU þhAUÞ N
� bð1� εiÞðð1� εoÞIM þð1� εoÞhAMÞ

N
; (17)

dEM SM SM

dt

¼ bð1� εiÞðIU þ hAUÞ N
þ bð1� εiÞðð1� εoÞIM þð1� εoÞhAMÞ

N
� sEM ; (18)

dIM

dt

¼asEM � 4IM � gI IM ; (19)

dAM
dt
¼ð1�aÞsEM � gAAM ; (20)

dHM
dt
¼4IM � dHM � gHHM ; (21)

dRM

dt

¼gI IM þ gAAM þ gHHM ; (22)

dDM
dt
¼ dHM ; (23)

where
N¼ SU þ EU þ IU þ AU þ RU þ SM þ EM þ IM þ AM þ RM : (25)
While much more complex than the baseline model, most of the complexity lies in what are essentially bookkeeping
terms.We also consider a reduced version of the abovemodel (equations not shown), such that only symptomatically infected
persons wear a mask, to compare the consequences of the common recommendation that only those experiencing symptoms
(and their immediate caretakers) wear masks with more general population coverage.

2.3. Mask efficiency parameters

We assume a roughly linear relationship between the overall filtering efficiency of amask and clinical efficiency in terms of
either inward efficiency (i.e., effect on εi) or outward efficiency (εo), based on Brienen et al. (2010). The fit factor for homemade
masks averaged 2 in Davies et al. (2013), while the fit factor averaged 5 for surgical masks. When volunteers coughed into a
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mask, depending upon sampling method, the number of colony-forming units resulting varied from 17% to 50% for home-
made masks and 0e30% for surgical masks, relative to no mask (Davies et al., 2013).

Surgical masks reduced P. aeruginosa infected aerosols produced by coughing by over 80% in cystic fibrosis patients in
Driessche et al. (2015), while surgical masks reduced CFU count by >90% in a similar study (Stockwell et al., 2018). N95masks
were more effective in both studies. Homemade teacloth masks had an inward efficiency between (58) and 77% over 3 h of
wear in van der Sande et al. (2008), while inward efficiency ranged 72e85% and 98e99% for surgical and N95-equivalent
masks. Outward efficiency was marginal for teacloth masks, and about 50e70% for medical masks. Surgical masks worn
by tuberculosis patients also reduced the infectiousness of hospital ward air in Dharmadhikari et al. (2012), and Leung et al.
(2020) very recently observed surgical masks to decrease infectious aerosol produced by individuals with seasonal coro-
naviruses. Manikin studies seem to recommend masks as especially valuable under coughing conditions for both source
control (Patel et al., 2016) and prevention (Lai et al., 2012).

We therefore estimate that inward mask efficiency could range widely, anywhere from 20 to 80% for cloth masks, with
�50% possibly more typical (and higher values are possible for well-made, tightly fitting masks made of optimal materials),
70e90% typical for surgical masks, and >95% typical for properly worn N95 masks. Outward mask efficiency could range
from practically zero to over 80% for homemade masks, with 50% perhaps typical, while surgical masks and N95 masks are
likely 50e90% and 70e100% outwardly protective, respectively.

2.4. Data and model fitting

We use state-level time series for cumulative mortality data compiled by the Center for Systems Science and Engineering
at Johns Hopkins University (2020), from January 22, 2020, through April 2, 2020, to calibrate the model initial conditions and
infective contact rate, b0, as well as bmin when bðtÞ is taken as an explicit function of time. Other parameters are fixed at
default values in Table 1. Parameter fitting was performed using a nonlinear least squares algorithm implemented using the
lsqnonlin function in MATLAB. We consider two US states in particular as case studies, New York and Washington, and total
population data for each state was defined according to US Census data for July 1, 2019 (US Census).

3. Results

3.1. Analytic results

Closed-form expressions for the basic reproduction number,R 0, for the baseline model without masks and the full model
with masks are given, for bðtÞ≡b0, in Appendix A and B, respectively.

3.2. Masks coverage/efficacy/time to adoption in simulated epidemics

3.2.1. Mask/efficacy interaction under immediate adoption
We run simulated epidemics using either b0 ¼ 0.5 or 1.5 day �1, with other parameters set to the defaults given in Table 1.

These parameter sets give epidemic doubling times early in time (in terms of cumulative cases and deaths) of approximately
seven or three days, respectively, corresponding to case and mortality doubling times observed (early in time) inWashington
and New York state, respectively. We use as initial conditions a normalized population of 1 million persons, all of whom are
initially susceptible, except 50 initially symptomatically infected (i.e., 5 out 100,000 is the initial infection rate), not wearing
masks.

We choose some fraction of the population to be initially in the masked class (’‘mask coverage’‘), which we also denote p,
and assume εo ¼ εi ¼ ε. The epidemic is allowed to run its course (18 simulated months) under constant conditions, and the
outcomes of interest are peak hospitalization, cumulative deaths, and total recovered. These results are normalized against
the counterfactual of no mask coverage, and results are presented as heat maps in Fig. 1.
Table 1
Baseline model parameters with brief description, likely ranges based onmodeling and clinical studies (see text for further details), and default value chosen
for this study.

Parameter Likely range (references) Default value

b (infectious contact rate) 0.5e1.5 day-1 (Li et al., 2020; Read et al., 2020; Shen et al., 2020), this work 0.5 day�1

s (transition exposed to infectious) 1/14e1/3 day-1 (Lauer et al., 2020; Li et al., 2020) 1/5.1 day�1

h (infectiousness factor for asymptomatic carriers) 0.4e0.6 (Ferguson et al., 2020; Li et al., 2020) 0.5
a (fraction of infections that become symptomatic) 0.15e0.7 (Ferguson et al., 2020; Li et al., 2020; Moriarty, 2020; Verity et al., 2020) 0.5
4 (rate of hospitalization) 0.02e0.1 (Ferguson et al., 2020; Zhou et al., 2020) 0.025 day�1

gA (recovery rate, Asymptomatic) 1/14e1/3 day-1 (Tang et al., 2020; Zhou et al., 2020) 1/7 day�1

gI (recovery rate, symptomatic) 1/30e1/3 day-1 (Tang et al., 2020; Zhou et al., 2020) 1/7 day�1

gH (recovery rate, hospitalized) 1/30e1/3 day-1 (Tang et al., 2020; Zhou et al., 2020) 1/14 day�1

d (death rate, hospitalized) 0.001e0.1 (Ferguson et al., 2020) 0.015 day�1



Fig. 1. Relative peak hospitalizations and cumulative mortality under simulated epidemics, under either a base b0 ¼ 0.5 or 1.5 day �1, under different general
mask coverage levels and efficacies (where εo ¼ εi ¼ ε). Results are relative to a base case with no mask use. The left half of the figure gives these metrics as two-
dimensional functions of coverage and efficacy. The right half gives these metrics as one-dimensional functions of coverage � efficacy.
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Note that the product ε� p predicts quite well the effect of mask deployment: Fig. 1 also shows (relative) peak hospi-
talizations and cumulative deaths as functions of this product. There is, however, a slight asymmetry between coverage and
efficacy, such that increasing coverage of moderately effective masks is generally more useful than increasing the effec-
tiveness of masks from a starting point of moderate coverage.

3.2.2. Delayed adoption
We run the simulated epidemics described, supposing the entire population is unmasked until mass mask adoption after

some discrete delay. The level of adoption is also fixed as a constant. We find that a small delay in mask adoption (without any
changes in b) has little effect on peak hospitalized fraction or cumulative deaths, but the ‘‘point of no return’’ can rapidly be
crossed, if mask adoption is delayed until near the time at which the epidemic otherwise crests. This general pattern holds
regardless of b0, but the point of no return is further in the future for smaller b0.
3.3. Mask use and equivalent b reduction

The relationship betweenmask coverage, efficacy, andmetrics of epidemic severity considered above are highly nonlinear.
The relationship between b0 (the infectious contact rate) and such metrics is similarly nonlinear. However, incremental re-
ductions in b0, due to social distancing measures, etc., can ultimately synergize with other reductions to yield a meaningful
effect on the epidemic. Therefore, we numerically determine what the equivalent change in b0 under the baseline would have
been under mask use at different coverage/efficacy levels, and we denote the equivalent b0 value as ~b0.

That is, we numerically simulate an epidemic with and without masks, with a fixed b0. Then, we fit the baseline model to
this (simulated) case data, yielding a new equivalent b0, ~b0. An excellent fit giving ~b0 can almost always be obtained, though
occasionally results are extremely sensitive to b0 for high mask coverage/efficacy, yielding somewhat poorer fits. Results are
summarized in Fig. 2, where the ~b0 values obtained and the relative changes in equivalent b (i.e., (~b0)/(b0)) are plotted as
functions of efficacy times coverage, ε� p, under simulated epidemics with three baseline (true) b0 values.

From Fig. 2, we see that even 50% coveragewith 50% effectivemasks roughly halves the effective disease transmission rate.
Widespread adoption, say 80% coverage, of masks that are only 20% effective still reduces the effective transmission rate by
about one-third.
3.4. Outward vs. inward efficiency

Fig. 3 demonstrates the effect of mask coverage on peak hospitalizations, cumulative deaths, and equivalent b0 values
when either εo ¼ 0:2 and εi ¼ 0:8, or visa versa (and for simulated epidemics using either b0 ¼ 0.5 or 1.5 day�1). These results
suggest that, all else equal, the protectionmasks afford against acquiring infection (εi) is actually slightlymore important than
protection against transmitting infection (εo), although there is overall little meaningful asymmetry.



Fig. 2. Equivalent b0, ~b0 (infectious contact rate) under baseline model dynamics as a function of mask coverage � efficacy, with the left panel giving the absolute
value, and the right giving the ratio of ~b0 to the true b0 in the simulation with masks. That is, simulated epidemics are run with mask coverage and effectiveness
ranging from 0 to 1, and the outcomes are tracked as synthetic data. The baseline model without mask dynamics is then fit to this synthetic data, with b0 the
trainable parameter; the resulting b0 is the ~b0. This is done for simulated epidemics with a true b0 of 1.5, 1, or 0.5 day�1.

Fig. 3. Epidemiologic outcomes and equivalent b0 changes as a function of mask coverage when masks are either much better at blocking outgoing (εo ¼ 0:8,
εi ¼ 0:2) or incoming (ε0 ¼ 0:2, εi ¼ 0:8) transmission. Results are demonstrated for both mask permutations under simulated epidemics with baseline b0 ¼ 0.5
or 1.5 day �1.
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3.5. Masks for symptomatic alone vs. general population

Finally, we consider numerical experiments where masks are given to all symptomatically infected persons, whether they
otherwise habitually wear masks or not (i.e., both IU and IM actually wear masks). We explore how universal mask use in
symptomatically infected persons interacts with mask coverage among the general population; we let ε

I
o represent the
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effectiveness of masks in the symptomatic, not necessarily equal to εo. We again run simulated epidemics with no masks, or
with universal masks among the symptomatic, and then compare different levels of mask coverage in the general (asymp-
tomatic) population in addition to universal masks for the symptomatic. In this section, we use equivalent b0 as our primary
metric. Fig. 4 shows how this metric varies as a function of the mask effectiveness given to symptomatic persons, along with
the coverage and effectiveness of masks worn by the general public.

We also explore how conclusions vary when either 25%, 50%, or 75% of infectious COVID-19 patients are asymptomatic (i.e.,
we vary a). Unsurprisingly, the greater the proportion of infected people that are asymptomatic, the more benefit there is to
giving the general public masks in addition to those experiencing symptoms.
3.6. Simulated case studies: New York & Washington states

Fitting to cumulative death data for New York and Washington states, we use the baseline model to determine the best
fixed b0 and Ið0Þ. We use New York state data beginning on March 1, 2020, through April 2, 2020, and Washington state data
from February 20, 2020 through April 2, 2020. For New York state, best-fit parameters are Ið0Þ ¼ 208 (range 154e264) and b0
¼ 1.40 (1.35e1.46) day�1 under fixed b0. For the time-varying bðtÞ, we fix r ¼ 0:03 day�1 and t0 ¼ 20, yielding a best-fit b0
¼ 1.33 (1.24e1.42) day�1, bmin ¼ 0.51 (�0.25e1.26) day�1, and Ið0Þ ¼ 293 (191e394).

For Washington state, parameters are Ið0Þ ¼ 622 (571e673) and b0 ¼ 0.50 (0.49e0.52) day�1 under fixed b0. For time-
varying bðtÞ, we fix r ¼ 0:04 day�1 and t0 ¼ 0, to yield a best-fit b0 ¼ 1.0 (0.87e1.23) day�1, bmin ¼ 0.10 (0e0.19) day�1,
and Ið0Þ ¼ 238 (177e300).

We fix r and t0, as it is not possible to uniquely identify r, t0 and bmin from death or case data alone (see, e.g., Roda,
Varughese, Han, & Li, 2020 on identifiability problems). Fig. 5 gives cumulative death and case data versus the model pre-
dictions for the two states, and for the two choices of bðtÞ. Note that while modeled and actual cumulative deaths match well,
model-predicted cases markedly exceed reported cases in the data, consistent with the notion of broad underreporting.

We then consider either fixed b0 or time-varying bðtÞ, according to the parameters above, in combination with the
following purely hypothetical scenarios in each state.

1. No masks, epidemic runs its course unaltered with either bðtÞ≡b0 fixed or bðtÞ variable as described above.
2. The two b scenarios are considered in combination with: weak, moderate, or strong deployment of masks, such that

p ¼ 0.2, 0.5, or 0.8; and weak, moderate, or strong masks, such that ε ¼ 0.2, 0.5, or 0.8. No masks are used up until April 2,
2020, and then these coverage levels are instantaneously imposed.

This yields 18 scenarios in all (nine mask coverage/efficacy scenarios, plus two underlying trends). Following the modeled
imposition of masks on April 2, 2020, the scenarios are run for 60 additional simulated days. Figs. 6 and 8 summarize the
Fig. 4. Equivalent b0 under the model where all symptomatic persons wear a mask (whether they otherwise habitually wear a mask or not), under varying levels
of efficacy for the masks given to the symptomatic (εIo), and in combination with different degrees of coverage and effectiveness for masks used by the rest of the
general public. Results are for simulated epidemics with a baseline b0 of 1.5 day�1.



Fig. 5. The left half of the figure gives model predictions and data for Washington state, using either a constant (top panels) or variable b (bottom panel), as
described in the text. The right half of the figure is similar, but for New York state.

Fig. 6. Simulated future (cumulative) death tolls for Washington state, using either a fixed (top panels) or variable (bottom panels) transmission rate, b, and nine
different permutations of general public mask coverage and effectiveness. The y-axes are scaled differently in top and bottom panels.
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Fig. 7. Simulated future daily death rates for Washington state, using either a fixed (top panels) or variable (bottom panels) transmission rate, b, and nine
different permutations of general public mask coverage and effectiveness. The y-axes are scaled differently in top and bottom panels.
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futuremodeled death toll in each city under the 18 different scenarios, along with historical mortality data. Figs. 7 and 9 show
modeled daily death rates, with deaths peaking sometime in late April in New York state under all scenarios, while deaths
could peak anywhere from mid-April to later than May, for Washington state. We emphasize that these are hypothetical and
exploratory results, with possible death tolls varying dramatically based upon the future course of bðtÞ. However, the results
do suggest that evenmodestly effectivemasks, if widely used, could help ‘‘bend the curve,’’with the relative benefit greater in
combination with a lower baseline b0 or stronger underlying trend towards smaller bðtÞ (i.e., in Washington vs. New York).

4. Discussion & conclusions

There is considerable ongoing debate on whether to recommend general public face mask use (likely mostly homemade
cloth masks or other improvised face coverings) 4, and while the situation is in flux, more authorities are recommending
public mask use, though they continue to (rightly) cite appreciable uncertainty. With this study, we hope to help inform this
debate by providing insight into the potential community-wide impact of widespread face mask use by members of the
general population. We have designed a mathematical model, parameterized using data relevant to COVID-19 transmission
dynamics in two US states (New York andWashington), and our model suggests nontrivial and possibly quite strong benefits
to general face mask use. The population-level benefit is greater the earlier masks are adopted, and at least some benefit is
realized across a range of epidemic intensities. Moreover, even if they have, as a sole intervention, little influence on epidemic
outcomes, face masks decrease the equivalent effective transmission rate (b0 in our model), and thus can stack with other
interventions, including social distancing and hygienic measures especially, to ultimately drive nonlinear decreases in
epidemic mortality and healthcare system burden. It bears repeating that our model results are consistent with the idea that
face masks, while no panacea, may synergize with other non-pharmaceutical control measures and should be used in
combination with and not in lieu of these.

Under simulated epidemics, the effectiveness of face masks in altering the epidemiologic outcomes of peak hospitalization
and total deaths is a highly nonlinear function of both mask efficacy and coverage in the population (see Fig. 1), with the
product of mask efficacy and coverage a good one-dimensional surrogate for the effect. We have determined howmask use in
the full model alters the equivalent b0, denoted ~b0, in the baseline model (without masks), finding this equivalent ~b0 to vary
nearly linearly with efficacy � coverage (Fig. 2).

Masks alone, unless they are highly effective and nearly universal, may have only a small effect (but still nontrivial, in
terms of absolute lives saved) in more severe epidemics, such as the ongoing epidemic in New York state. However, the
relative benefit to general mask use may increase with other decreases in b0, such that masks can synergize with other public
health measures. Thus, it is important that masks not be viewed as an alternative, but as a complement, to other public health
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control measures (including non-pharmaceutical interventions, such as social distancing, self-isolation etc.). Delaying mask
adoption is also detrimental. These factors together indicate that even in areas or states where the COVID-19 burden is low
(e.g. the Dakotas), early aggressive action that includes face masks may pay dividends.

These general conclusions are illustrated by our simulated case studies, inwhich we have tuned the infectious contact rate,
b (either as fixed b0 or time-varying bðtÞ), to cumulative mortality data for Washington and New York state through April 2,
2020, and imposed hypothetical mask adoption scenarios. The estimated range for b is much smaller in Washington state,
consistent with this state’s much slower epidemic growth rate and doubling time. Model fitting also suggests that total
symptomatic cases may be dramatically undercounted in both areas, consistent with prior conclusions on the pandemic (Li
et al., 2020). Simulated futures for both states suggest that broad adoption of evenweakmasks could help avoid many deaths,
but the greatest relative death reductions are generally seen when the underlying transmission rate also falls or is low at
baseline.

Considering a fixed transmission rate, b0, 80% adoption of 20%, 50%, and 80% effective masks reduces cumulative relative
(absolute) mortality by 1.8% (4,419), 17% (41,317), and 55% (134,920), respectively, in New York state. In Washington state,
relative (absolute) mortality reductions are dramatic, amounting to 65% (22,262), 91% (31,157), and 95% (32,529). When bðtÞ
varies with time, New York deaths reductions are 9% (21,315), 45% (103,860), and 74% (172,460), while figures forWashington
are 24% (410), 41% (684), and 48% (799). In the latter case, the epidemic peaks soon even without masks. Thus, a range of
outcomes are possible, but both the absolute and relative benefit to weak masks can be quite large; when the relative benefit
is small, the absolute benefit in terms of lives is still highly nontrivial.

Most of our model projectedmortality numbers for New York andWashington state are quite high (except for variable bðtÞ
in Washington), and likely represent worst-case scenarios, as they primarily reflect b values early in time. Thus, they may be
dramatic overestimates, depending upon these states’ populations ongoing responses to the COVID-19 epidemics. Never-
theless, the estimated transmission values for the two states, under fixed and variable bðtÞ, represent a broad range of possible
transmission dynamics and are within the range estimated in prior studies (Li et al., 2020; Read et al., 2020; Shen et al., 2020),
and so wemay have some confidence in our general conclusions on the possible range of benefits to masks. Note also that we
have restricted our parameter estimation only to initial conditions and transmission parameters, owing to identifiability
problems with more complex models and larger parameter groups (see e.g. Roda, Varughese, Han, & Li, 2020). For example,
the same death data may be consistent with either a large b0 and low d (death rate), or visa versa.

Considering the subproblem of general public mask use in addition to mask use for source control by any (known)
symptomatic person, we find that general face mask use is still highly beneficial (see Fig. 4). Unsurprisingly, this benefit is
greater if a larger proportion of infected people are asymptomatic (i.e., a in the model is smaller). Moreover, it is not the case
that masks are helpful exclusively when worn by asymptomatic infectious persons for source control, but provide benefit
when worn by (genuinely) healthy people for prevention as well. Indeed, if there is any asymmetry in outward vs. inward
mask effectiveness, inward effectiveness is actually slightly preferred, although the direction of this asymmetry matters little
with respect to overall epidemiologic outcomes. At least one experimental study (Patel et al., 2016) does suggest that masks
may be superior at source control, especially under coughing conditions vs. normal tidal breathing and so any realized benefit
of masks in the population may still be more attributable to source control.

This is somewhat surprising, given that εo appears more times than εi in the model terms giving the forces of infection,
which would suggest outward effectiveness to be of greater import at first glance. Our conclusion runs counter to the notion
that general public masks are primarily useful in preventing asymptomatically wearers from transmitting disease: Masks are
valuable as both source control and primary prevention. This may be important to emphasize, as some people who have self-
isolated for prolonged periods may reasonably believe that the chance they are asymptomatically infected is very low and
therefore do not need a mask if they venture into public, whereas our results indicate they (and the public at large) still stand
to benefit.

Our theoretical results still must be interpreted with caution, owing to a combination of potentially high rates of
noncompliance with mask use in the community, uncertainty with respect to the intrinsic effectiveness of (especially
homemade) masks at blocking respiratory droplets and/or aerosols, and even surprising amounts of uncertainty regarding
the basic mechanisms for respiratory infection transmission (Bourouiba, 2020; MacIntyre et al., 2017). Several lines of evi-
dence support the notion that masks can interfere with respiratory virus transmission, including clinical trials in healthcare
workers (MacIntyre et al., 2017; Offeddu et al., 2017), experimental studies as reviewed in (Davies et al., 2013; Dharmadhikari
et al., 2012; Lai et al., 2012; Patel et al., 2016; van der Sande et al., 2008), and case control data from the 2003 SARS epidemic
(Lau et al., 2004; Wu et al., 2004). Given the demonstrated efficacy of medical masks in healthcare workers (Offeddu et al.,
2017), and their likely superiority over cloth masks in MacIntyre et al. (2015), it is clearly essential that healthcare works
be prioritizedwhen it comes to themost effectivemedical mask supply. Fortunately, our theoretical results suggest significant
(but potentially highly variable) value even to low quality masks when used widely in the community.

With social distancing orders in place, essential service providers (such as retail workers, emergency services, law
enforcement, etc.) represent a special category of concern, as they represent a largely unavoidable high contact node in
transmission networks: Individual public-facing workers may come into contact with hundreds or thousands of people in the
course of a day, in relatively close contact (e.g. cashiers). Such contact likely exposes the workers to many asymptomatic
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carriers, and they may in turn, if asymptomatic, expose many susceptible members of the general public to potential
transmission. Air exposed to multiple infectious persons (e.g. in grocery stores) could also carry a psuedo-steady load of
infectious particles, for whichmasks would be the only plausible prophylactic (Lai et al., 2012). Thus, targeted, highly effective
mask use by service workers may be reasonable. We are currently extending the basic model framework presented here to
examine this hypothesis.

In conclusion, our findings suggest that face mask use should be as nearly universal (i.e., nation-wide) as possible and
implemented without delay, even if most masks are homemade and of relatively low quality. This measure could contribute
greatly to controlling the COVID-19 pandemic, with the benefit greatest in conjunction with other non-pharmaceutical in-
terventions that reduce community transmission. Despite uncertainty, the potential for benefit, the lack of obvious harm, and
the precautionary principle lead us to strongly recommend as close to universal (homemade, unless medical masks can be
used without diverting healthcare supply) mask use by the general public as possible.
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Appendix A. Basic Reproduction Number for the Baseline Model

The basic reproduction number is calculated for the special case when bðtÞ≡b0. The local stability of the disease-free
equilibrium (DFE) is explored using the next generation operator method (Diekmann, Heesterbeek, & Metz, 1990; van den
Driessche & Watmough, 2002). Using the notation in (van den Driessche & Watmough, 2002), it follows that the matrices
F of new infection terms and V of the remaining transfer terms associated with the baseline model are given, respectively,
by

F ¼
2
40 b0 b0h
0 0 0
0 0 0

3
5;

2
s 0 0

3

V ¼ 4 �as ð4þ gIÞ 0

�ð1� aÞs 0 gA

5:
The basic reproduction number of the model, denoted by R 0, is given by

R 0 ¼
b0a

ð4þ gIÞ
þ b0hð1� aÞ

gA
: (26)
Appendix B. Basic Reproduction Number for Full Model

The local stability of the DFE is explored using the next generation operator method (Diekmann et al., 1990; van den
Driessche & Watmough, 2002). Using the notation in van den Driessche and Watmough (2002), it follows that the
matrices F of new infection terms andV of the remaining transfer terms associated with the version of the model are given,
respectively, by
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The basic reproduction number of the model, denoted by R 0, is given by
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Fig. 8. Simulated future (cumulative) death tolls for New York state, using either a fixed (top panels) or variable (bottom panels) transmission rate, b, and nine
different permutations of general public mask coverage and effectiveness.
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Fig. 9. Simulated future daily death rates for New York state, using either a fixed (top panels) or variable (bottom panels) transmission rate, b, and nine different
permutations of general public mask coverage and effectiveness.
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