
Nature  |  Vol 601  |  27 January 2022  |  549

Article

Deep physical neural networks trained with
backpropagation

Logan G. Wright1,2,4 ✉, Tatsuhiro Onodera1,2,4 ✉, Martin M. Stein1, Tianyu Wang1,
Darren T. Schachter3, Zoey Hu1 & Peter L. McMahon1 ✉

Deep-learning models have become pervasive tools in science and engineering.
However, their energy requirements now increasingly limit their scalability1.
Deep-learning accelerators2–9 aim to perform deep learning energy-efficiently, usually
targeting the inference phase and often by exploiting physical substrates beyond
conventional electronics. Approaches so far10–22 have been unable to apply the
backpropagation algorithm to train unconventional novel hardware in situ.
The advantages of backpropagation have made it the de facto training method for
large-scale neural networks, so this deficiency constitutes a major impediment. Here
we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that
applies backpropagation to train controllable physical systems. Just as deep learning
realizes computations with deep neural networks made from layers of mathematical
functions, our approach allows us to train deep physical neural networks made from
layers of controllable physical systems, even when the physical layers lack any
mathematical isomorphism to conventional artificial neural network layers.
To demonstrate the universality of our approach, we train diverse physical neural
networks based on optics, mechanics and electronics to experimentally perform
audio and image classification tasks. Physics-aware training combines the scalability
of backpropagation with the automatic mitigation of imperfections and noise
achievable with in situ algorithms. Physical neural networks have the potential to
perform machine learning faster and more energy-efficiently than conventional
electronic processors and, more broadly, can endow physical systems with
automatically designed physical functionalities, for example, for robotics23–26,
materials27–29 and smart sensors30–32.

Like many historical developments in artificial intelligence33,34, the
widespread adoption of deep neural networks (DNNs) was enabled
in part by synergistic hardware. In 2012, building on earlier works,
Krizhevsky et al. showed that the backpropagation algorithm could be
efficiently executed with graphics-processing units to train large DNNs35
for image classification. Since 2012, the computational requirements
of DNN models have grown rapidly, outpacing Moore’s law1. Now, DNNs
are increasingly limited by hardware energy efficiency.

The emerging DNN energy problem has inspired special-purpose
hardware: DNN ‘accelerators’2–8, most of which are based on direct
mathematical isomorphism between the hardware physics and the
mathematical operations in DNNs (Fig. 1a, b). Several accelerator pro-
posals use physical systems beyond conventional electronics8, such
as optics9 and analogue electronic crossbar arrays3,4,12. Most devices
target the inference phase of deep learning, which accounts for up to
90% of the energy costs of deep learning in commercial deployments1,
although, increasingly, devices are also addressing the training phase
(for example, ref. 7).

However, implementing trained mathematical transformations
by designing hardware for strict, operation-by-operation math-
ematical isomorphism is not the only way to perform efficient
machine learning. Instead, we can train the hardware’s physical
transformations directly to perform desired computations. Here
we call this approach physical neural networks (PNNs) to emphasize
that physical processes, rather than mathematical operations, are
trained. This distinction is not merely semantic: by breaking the
traditional software–hardware division, PNNs provide the possibil-
ity to opportunistically construct neural network hardware from
virtually any controllable physical system(s). As anyone who has
simulated the evolution of complex physical systems appreciates,
physical transformations are often faster and consume less energy
than their digital emulations. This suggests that PNNs, which can
harness these physical transformations most directly, may be able
to perform certain computations far more efficiently than con-
ventional paradigms, and thus provide a route to more scalable,
energy-efficient and faster machine learning.

https://doi.org/10.1038/s41586-021-04223-6

Received: 19 May 2021

Accepted: 9 November 2021

Published online: 26 January 2022

Open access

 Check for updates

1School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. 2NTT Physics and Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA. 3School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY, USA. 4These authors contributed equally: Logan G. Wright, Tatsuhiro Onodera. ✉e-mail: lgw32@cornell.edu; to232@cornell.edu;
pmcmahon@cornell.edu

https://doi.org/10.1038/s41586-021-04223-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-04223-6&domain=pdf
mailto:lgw32@cornell.edu
mailto:to232@cornell.edu
mailto:pmcmahon@cornell.edu

550  |  Nature  |  Vol 601  |  27 January 2022

Article

PNNs are particularly well motivated for DNN-like calculations, much
more so than for digital logic or even other forms of analogue com-
putation. As expected from their robust processing of natural data,
DNNs and physical processes share numerous structural similarities,
such as hierarchy, approximate symmetries, noise, redundancy and
nonlinearity36. As physical systems evolve, they perform transforma-
tions that are effectively equivalent to approximations, variants and/
or combinations of the mathematical operations commonly used in
DNNs, such as convolutions, nonlinearities and matrix-vector multipli-
cations. Thus, using sequences of controlled physical transformations
(Fig. 1c), we can realize trainable, hierarchical physical computations,
that is, deep PNNs (Fig. 1d).

Although the paradigm of constructing computers by directly
training physical transformations has ancestry in evolved com-
puting materials18, it is today emerging in various fields, including
optics14,15,17,20, spintronic nano-oscillators10,37, nanoelectronic devices13,19
and small-scale quantum computers38. A closely related trend is physi-
cal reservoir computing (PRC)21,22, in which the transformations of
an untrained physical ‘reservoir’ are linearly combined by a trainable
output layer. Although PRC harnesses generic physical processes for
computation, it is unable to realize DNN-like hierarchical computations.
In contrast, approaches that train the physical transformations13–19

themselves can, in principle, overcome this limitation. To train physical
transformations experimentally, researchers have frequently relied
on gradient-free learning algorithms10,18–20. Gradient-based learning
algorithms, such as the backpropagation algorithm, are considered
essential for the efficient training and good generalization of large-scale
DNNs39. Thus, proposals to realize gradient-based training in physical
hardware have appeared40–47. These inspiring proposals nonetheless
make assumptions that exclude many physical systems, such as linear-
ity, dissipation-free evolution or that the system be well described by
gradient dynamics. The most general proposals13–16 overcome such
constraints by performing training in silico, that is, learning wholly
within numerical simulations. Although the universality of in silico
training is empowering, simulations of nonlinear physical systems are
rarely accurate enough for models trained in silico to transfer accurately
to real devices.

Here we demonstrate a universal framework using backpropaga-
tion to directly train arbitrary physical systems to execute DNNs, that
is, PNNs. Our approach is enabled by a hybrid in situ–in silico algo-
rithm, called physics-aware training (PAT). PAT allows us to execute
the backpropagation algorithm efficiently and accurately on any
sequence of physical input–output transformations. We demonstrate
the universality of this approach by experimentally performing image

Output

Parameters Input Output

Physical system

Parameters Output

Input

Electronics
Parameters

Output

Input

Optics

Parameters

Output

Input

Mechanics

0 1 2 3 4 5 6 7 8 9

Parameters Output

Input

Input

ParametersInput

Parameters

Output

Physical neural networks

Neural networks

d

c

ba

0 1 2 3 4 5 6 7 8 9

Fig. 1 | Introduction to PNNs. a, Artificial neural networks contain operational
units (layers): typically, trainable matrix-vector multiplications followed by
element-wise nonlinear activation functions. b, DNNs use a sequence of layers
and can be trained to implement multi-step (hierarchical) transformations
on input data. c, When physical systems evolve, they perform, in effect,
computations. We partition their controllable properties into input data
and control parameters. Changing parameters alters the transformation
performed on data. We consider three examples. In a mechanical (electronic)
system, input data and parameters are encoded into time-dependent forces
(voltages) applied to a metal plate (nonlinear circuit). The controlled

multimode oscillations (transient voltages) are then measured by a microphone
(oscilloscope). In a nonlinear optical system, pulses pass through a χ (2)
crystal, producing nonlinearly mixed outputs. Input data and parameters
are encoded in the input pulses’ spectra, and outputs are obtained from the
frequency-doubled pulses’ spectra. d, Like DNNs constructed from sequences
of trainable nonlinear mathematical functions, we construct deep PNNs with
sequences of trainable physical transformations. In PNNs, each physical layer
implements a controllable physical function, which does need to be
mathematically isomorphic to a conventional DNN layer.

Nature  |  Vol 601  |  27 January 2022  |  551

classification using three distinct systems: the multimode mechanical
oscillations of a driven metal plate, the analogue dynamics of a non-
linear electronicoscillator and ultrafast optical second-harmonic
generation (SHG). We obtain accurate hierarchical classifiers that
utilize each system’s unique physical transformations, and that
inherently mitigate each system’s unique noise processes and imper-
fections. Although PNNs are a radical departure from traditional
hardware, it is easy to integrate them into modern machine learning.
We show that PNNs can be seamlessly combined with conventional
hardware and neural network methods via physical–digital hybrid
architectures, in which conventional hardware learns to opportun-
istically cooperate with unconventional physical resources using
PAT. Ultimately, PNNs provide routes to improving the energy
efficiency and speed of machine learning by many orders of magni-
tude, and pathways to automatically designing complex functional
devices, such as functional nanoparticles28, robots25,26 and smart
sensors30–32.

An example PNN based on nonlinear optics
Figure 2 shows an example PNN based on broadband optical pulse
propagation in quadratic nonlinear media (ultrafast SHG). Ultrafast
SHG realizes a physical computation roughly analogous to a non-
linear convolution, transforming the input pulse’s near-infrared
spectrum (about 800-nm centre wavelength) into the blue (about
400 nm) through a multitude of nonlinear frequency-mixing processes
(Methods). To control this computation, input data and parameters are
encoded into sections of the spectrum of the near-infrared pulse by
modulating its frequency components using a pulse shaper (Fig. 2a).
This pulse then propagates through a nonlinear crystal, producing a
blue pulse whose spectrum is measured to read out the result of the
physical computation.

To realize vowel classification with SHG, we construct a multilayer
SHG-PNN (Fig. 2b) where the input data for the first physical layer con-
sist of a vowel-formant frequency vector. After the final physical layer,

‘ae
’

‘u
w’

‘ah
’

‘er
’

‘aw
’

‘iy
’

‘ih
’

‘ae
’

‘u
w’

‘a
h’

‘er
’

‘aw
’

‘iy
’

‘ih
’

‘ae
’

‘u
w’

‘iy
’

‘a
h’ ‘er

’
‘aw

’
‘iy

’
‘ih

’
‘ae

’
‘u

w’
‘a

h’ ‘er
’

‘a
w’

‘ih
’

1.00

0.75

0.50

1.00

0.75

0.50S
p

ec
tr

al
 a

m
p

lit
ud

e
(a

.u
.)

d

‘ae’

‘ah’

‘aw’

‘uw’

‘er’

‘iy’

‘ih’

Predicted label

Tr
ue

 la
b

el

c

Input

Parameters

Output

386

386 387

387 nm

nm

‘ah’

b

Laser
Pulse shaper Spectrometer

775 nm770 077 mn577

770 775 nm 386 387 nm

Parameters

Input
Output

a

Vowel formant
frequencies

SHG

S
p

ec
tr

al
am

p
lit

ud
e

0

0

0

0

0

0

00

00

000

000

000

000

0

0

0

0

0

0

00

00

000

5 95

8

10

9

2286

16

100

92

100

100

75

Test accuracy 93%

‘ae
’

‘u
w’

‘ah
’

‘er
’

‘aw
’

‘iy
’

‘ih
’

Fig. 2 | An example PNN, implemented experimentally using broadband
optical SHG. a, Input data are encoded into the spectrum of a laser pulse
(Methods, Supplementary Section 2). To control transformations implemented
by the broadband SHG process, a portion of the pulse’s spectrum is used as
trainable parameters (orange). The physical computation result is obtained
from the spectrum of a blue (about 390 nm) pulse generated within a χ(2)

medium. b, To construct a deep PNN, the outputs of the SHG transformations
are used as inputs to subsequent SHG transformations, with independent
trainable parameters. c, d, After training the SHG-PNN (see main text, Fig. 3),
it classifies test vowels with 93% accuracy. c, The confusion matrix for the PNN
on the test set. d, Representative examples of final-layer output spectra, which
show the SHG-PNN’s prediction.

552  |  Nature  |  Vol 601  |  27 January 2022

Article

the blue output spectrum is summed using a digital computer into
seven spectral bins (Fig. 2b, d, Supplementary Figs. 21, 22). The pre-
dicted vowel is identified by the bin with the maximum energy (Fig. 2c).
In each layer, the output spectrum is digitally renormalized before
being passed to the next layer (via the pulse shaper), along with a train-
able digital rescaling. Mathematically, this transformation is given by
x y

y
b= +l a[+1]

max()

l

l

[]

[]
, where x[l] and y[l] are the inputs and outputs of the

[l]th layer, respectively, and a and b are scalar parameters of the trans-
formation. Thus, the SHG-PNN’s computations are carried out almost
entirely by the trained optical transformations, without digital activa-
tion functions or output layers.

Deep PNNs essentially combine the computational philosophy of
techniques such as PRC21,22 with the trained hierarchical computations
and gradient-based training of deep learning. In PRC, a physical sys-
tem, often with recurrent dynamics, is used as an untrained feature
map and a trained linear output layer (typically on a digital computer)
combines these features to approximate desired functions. In PNNs,
the backpropagation algorithm is used to adjust physical parameters
so that a sequence of physical systems performs desired computations
physically, without needing an output layer. For additional details, see
Supplementary Section 3.

Physics-aware training
To train the PNNs’ parameters using backpropagation, we use PAT
(Fig. 3). In the backpropagation algorithm, automatic differentiation
determines the gradient of a loss function with respect to trainable
parameters. This makes the algorithm N-times more efficient than
finite-difference methods for gradient estimation (where N is the num-
ber of parameters). The key component of PAT is the use of mismatched
forward and backward passes in executing the backpropagation

algorithm. This technique is well known in neuromorphic com-
puting48–53, appearing recently in direct feedback alignment52 and
quantization-aware training48, which inspired PAT. PAT generalizes
these strategies to encompass arbitrary physical layers, arbitrary
physical network architectures and, more broadly, to differentially
programmable physical devices.

PAT proceeds as follows (Fig. 3). First, training input data (for example,
an image) are input to the physical system, along with trainable param-
eters. Second, in the forward pass, the physical system applies its trans-
formation to produce an output. Third, the physical output is compared
with the intended output to compute the error. Fourth, using a differenti-
able digital model, the gradient of the loss is estimated with respect to the
controllable parameters. Finally, the parameters are updated according
to the inferred gradient. This process is repeated, iterating over training
examples, to reduce the error. See Methods for the intuition behind why
PAT works and the general multilayer algorithm.

The essential advantages of PAT stem from the forward pass being
executed by the actual physical hardware, rather than by a simulation.
Our digital model for SHG is very accurate (Supplementary Fig. 20)
and includes an accurate noise model (Supplementary Figs. 18, 19).
However, as evidenced by Fig. 3b, in silico training with this model still
fails, reaching a maximum vowel-classification accuracy of about 40%.
In contrast, PAT succeeds, accurately training the SHG-PNN, even when
additional layers are added (Fig. 3b, c).

Diverse PNNs for image classification
PNNs can learn to accurately perform more complex tasks, can be
realized with virtually any physical system and can be designed with
a variety of physical network architectures. In Fig. 4, we present three
PNN classifiers for the MNIST (Modified National Institute of Standards

PAT

1 2 3 4 5 6

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy
 (%

) 100

80

60

40

20

0

Number of layers

c

1 500 1,000 1,500 2,000

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy
 (%

) 100

80

60

40

20

0

Epoch

93%
Final test
accuracy

14%

b

Error

Output

Target

Estimated
gradient

(1) Send input
and parameters (2) Perform forward inference

(4) Backpropagate error vector

(5) Update parameters
(3) Calculate error vector

Differentiable digital model

Physical system

a

In silico
training

Random
guessing

Fig. 3 | Physics-aware training. a, PAT is a hybrid in situ–in silico algorithm to
apply backpropagation to train controllable physical parameters so that
physical systems perform machine-learning tasks accurately even in the
presence of modelling errors and physical noise. Instead of performing the
training solely within a digital model (in silico), PAT uses the physical systems to
compute forward passes. Although only one layer is depicted in a, PAT

generalizes naturally to multiple layers (Methods). b, Comparison of the
validation accuracy versus training epoch with PAT and in silico training, for the
experimental SHG-PNN depicted in Fig. 2b. c, Final experimental test accuracy
for PAT and in silico training for SHG-PNNs with increasing numbers of physical
layers. The length of error bars represent two standard errors.

Nature  |  Vol 601  |  27 January 2022  |  553

and Technology database) handwritten digit classification task, based
on three distinct physical systems. For each physical system, we also
demonstrate a different PNN architecture, illustrating the variety of
physical networks possible. In all cases, models were constructed and
trained using PyTorch54.

In the mechanical PNN (Fig. 4a–d), a metal plate is driven by
time-varying forces, which encode both input data and trainable
parameters. The plate’s multimode oscillations enact controllable

convolutions on the input data (Supplementary Figs. 16, 17). Using
the plate’s trainable transformation sequentially three times, we clas-
sify 28-by-28 (784 pixel) images that are input as an unrolled time
series. To control the transformations of each physical layer, we train
element-wise rescaling of the forces applied to the plate (Fig. 4b,
Methods). PAT trains the three-layer mechanical PNN to 87% accuracy,
close to a digital linear classifier55. When the mechanical computa-
tions are replaced by identity operations, and only the digital rescaling

Predicted digit
‘0

’
‘3

’
‘1

’
‘4

’
‘2

’
‘5

’
‘6

’
‘7
’

‘8
’

‘9
’

l

‘0
’

‘3
’

‘1
’

‘4
’

‘2
’

‘5
’

‘6
’

‘7
’

‘8
’

‘9
’

h

0100 0 0 0 0 0 0 0 0

0 99 0 1 0 0 0 0 0 0

1 0 98 1 0 0 0 0 0 0

1 0 0 98 0 0 0 1 0 0

0 0 0 0 99 0 0 0 0 1

0 0 0 1 1 99 0 0 0 0

1 0 0 0 1 1 97 0 0 0

0 2 1 0 0 1 0 96 0 0

0 0 1 3 1 1 0 0 93 1

0 1 0 1 2 1 0 5 0 90

95 0 0 0 1 0 1 1 2 0

0 99 1 0 0 0 0 0 0 0

2 0 94 0 1 0 2 0 1 0

0 0 1 95 0 0 0 2 1 1

0 0 0 0 97 0 0 0 0 3

0 0 0 11 1 83 1 2 1 1

1 0 0 0 1 2 94 0 1 0

0 3 1 1 0 0 0 94 0 1

0 0 1 0 0 1 1 1 95 1

1 1 0 2 6 1 0 4 1 84

99 0 0 1 0 0 0 0 0 0

0 97 0 1 0 0 0 0 2 0

5 0 84 2 2 0 2 2 3 0

0 1 5 84 1 4 0 2 2 0

0 0 1 0 98 0 0 1 0 0

2 0 0 10 1 73 4 4 6 0

1 0 0 0 1 0 97 1 0 0

0 3 2 1 4 0 0 87 0 2

6 2 2 6 1 3 3 1 76 0

0 2 0 3 3 2 0 8 0 82

‘0
’

‘3
’

‘1
’

‘4
’

‘2
’

‘5
’

‘6
’

‘7
’

‘8
’

‘9
’

‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

d

100

95

90

k

100

90

80

70

g

100

80

60

40

20

0
0 0 10 20 30 40 50 0 10 20 30 40 50 605 10 15

Epoch EpochEpoch

Digital baseline
validation accuracy

Digital baseline �nal test accuracy

PNN �nal test accuracy

PNN validation accuracy

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy
 (%

)

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy
 (%

)

C
la

ss
i�

ca
tio

n
ac

cu
ra

cy
 (%

)

c

jf

Input

Input Output Parameters

image

Classi�cation
via argmax

Four channel × two layer SHG

Digital linear input layer

Average of seven PNNs

Physical input–output
transformation

xi = ai yi + bi

b

iea

Mechanics Electronics Optics
Tr

ue
 d

ig
it

‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

Tr
ue

 d
ig

it

‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

Tr
ue

 d
ig

it

Predicted digit Predicted digit

Fig. 4 | Image classification with diverse physical systems. We trained
PNNs based on three physical systems (mechanics, electronics and optics) to
classify images of handwritten digits. a, The mechanical PNN: the multimode
oscillations of a metal plate are driven by time-dependent forces that encode
the input image data and parameters. b, The mechanical PNN multilayer
architecture. c, The validation classification accuracy versus training epoch for
the mechanical PNN trained using PAT. The same curves are shown also for a

reference model where the physical transformations implemented by the
speaker are replaced by identity operations. d, Confusion matrix for the
mechanical PNN after training. e–h, The same as a–d, respectively, but for a
nonlinear analogue-electronic PNN. i–l, The same as a–d, respectively, for a
hybrid physical–digital PNN based on broadband optical SHG. The final test
accuracy is 87%, 93% and 97% for the mechanical, electronic and optics-based
PNNs, respectively.

554  |  Nature  |  Vol 601  |  27 January 2022

Article
operations are trained, the performance of the model is equivalent to
random guessing (10%). This shows that most of the PNN’s functionality
comes from the controlled physical transformations.

An analogue-electronic PNN is implemented with a circuit featuring
a transistor (Fig. 4e–h), which results in a noisy, nonlinear transient
response (Supplementary Figs. 12, 13). The usage and architecture of
the electronic PNN are mostly similar to that of the mechanical PNN,
with several minor differences (Methods). When trained using PAT,
the analogue-electronic PNN performs the classification task with
93% test accuracy.

Using broadband SHG, we demonstrate a physical–digital hybrid
PNN (Fig. 4i–l). This hybrid PNN involves trainable digital linear input
layers followed by trainable ultrafast SHG transformations. The train-
able SHG transformations boost the performance of the digital baseline
from roughly 90% accuracy to 97%. The classification task’s difficulty
is nonlinear with respect to accuracy, so this improvement typically
requires increasing the number of digital operations by around one
order of magnitude55. This illustrates how a hybrid physical–digital
PNN can automatically learn to offload portions of a computation
from an expensive digital processor to a fast, energy-efficient physi-
cal co-processor.

To show the potential for PNNs to perform more challenging tasks,
we simulated a multilayer PNN based on a nonlinear oscillator network.
This PNN is trained with PAT to perform the MNIST task with 99.1%
accuracy, and the Fashion-MNIST task, which is considered significantly
harder56, with 90% accuracy, in both cases with simulated physical
noise, and with mismatch between model and simulated experiment
of over 20% (Supplementary Section 4).

Discussion
Our results show that controllable physical systems can be trained
to execute DNN calculations. Many systems that are not convention-
ally used for computation appear to offer, in principle, the capacity
to perform parts of machine-learning-inference calculations orders
of magnitude faster and more energy-efficiently than conventional
hardware (Supplementary Section 5). However, there are two caveats
to note. First, owing to underlying symmetries and other constraints,
some systems may be well suited for accelerating a restricted class of
computations that share the same constraints. Second, PNNs trained
using PAT can only provide significant benefits during inference, as
PAT uses a digital model. Thus, as in the hybrid network presented in
Fig. 4i–l, we expect such PNNs to serve as a resource, rather than as a
complete replacement, for conventional general-purpose hardware
(Supplementary Section 5).

Techniques for training hardware in situ7,40–47 and methods for reliable
in silico training (for example, refs. 57–60) complement these weaknesses.
Devices trained using in situ learning algorithms will perform learning
entirely in hardware, potentially realizing learning faster and more
energy-efficiently than current approaches. Such devices are suited to
settings in which frequent retraining is required. However, to perform
both learning and inference, these devices have more specific hardware
requirements than inference-only hardware, which may limit their
achievable inference performance. In silico training can train many
physical parameters of a device, including ones set permanently during
fabrication12–16. As the resulting hardware will not perform learning, it
can be optimized for inference. Although accurate, large-scale in silico
training has been implemented4–6,57–60, this has been achieved with
only analogue electronics, for which accurate simulations and con-
trolled fabrication processes are available. PAT may be used in settings
where a simulation–reality gap cannot be avoided, such as if hardware is
designed at the limit of fabrication tolerances, operated outside usual
regimes or based on platforms other than conventional electronics.

Improvements to PAT could extend the utility of PNNs. For example,
PAT’s backward pass could be replaced by a neural network that directly

estimates parameter updates for the physical system. Implementing
this ‘teacher’ neural network with a PNN would allow subsequent train-
ing to be performed without digital assistance.

This work has focused so far on the potential application of PNNs as
accelerators for machine learning, but PNNs are promising for other
applications as well, particularly those in which physical, rather than
digital, data are processed or produced. PNNs can perform computations
on data within its physical domain, allowing for smart sensors30–32 that
pre-process information before conversion to the electronic domain (for
example, a low-power, microphone-coupled circuit tuned to recognize
specific hotwords). As the achievable sensitivity, resolution and energy
efficiency of many sensors is limited by conversion of information to the
digital electronic domain, and by processing of that data in digital elec-
tronics, PNN sensors should have advantages. More broadly, with PAT, one
is simply training the complex functionality of physical systems. Although
machine learning and sensing are important functionalities, they are but
two of many23–32 that PAT, and the concept of PNNs, could be applied to.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-04223-6.

1.	 Patterson, D. et al. Carbon emissions and large neural network training. Preprint at https://
arxiv.org/abs/2104.10350 (2021).

2.	 Reuther, A. et al. Survey of machine learning accelerators. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC) 1–12 (IEEE, 2020).

3.	 Xia, Q., & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater.
18, 309–323 (2019).

4.	 Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2,
89–124 (2017).

5.	 Khaddam-Aljameh, R. et al. HERMES core—a 14nm CMOS and PCM-based in-memory
compute core using an array of 300ps/LSB linearized CCO-based ADCs and local digital
processing. In 2021 Symposium on VLSI Circuits (IEEE, 2021).

6.	 Narayanan, P. et al. Fully on-chip MAC at 14nm enabled by accurate row-wise
programming of PCM-based weights and parallel vector-transport in duration-format. In
2021 Symposium on VLSI Technology (IEEE, 2021).

7.	 Kohda, Y. et al. Unassisted true analog neural network training chip. In 2020 IEEE
International Electron Devices Meeting (IEDM) (IEEE, 2020).

8.	 Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing.
Nat. Rev. Phys. 2, 499–510 (2020).

9.	 Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.
Nature 588, 39–47 (2020).

10.	 Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators.
Nature 563, 230–234 (2018).

11.	 Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11,
441–446 (2017).

12.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic network based
on metal-oxide memristors. Nature 521, 61–64 (2015).

13.	 Euler, H.-C. R. et al. A deep-learning approach to realizing functionality in nanoelectronic
devices. Nat. Nanotechnol. 15, 992–998 (2020).

14.	 Hughes, T. W., Williamson, I. A., Minkov, M. & Fan, S. Wave physics as an analog recurrent
neural network. Sci. Adv. 5, eaay6946 (2019).

15.	 Wu, Z., Zhou, M., Khoram, E., Liu, B. & Yu, Z. Neuromorphic metasurface. Photon. Res. 8,
46–50 (2020).

16.	 Furuhata, G., Niiyama, T. & Sunada, S. Physical deep learning based on optimal control of
dynamical systems. Phys. Rev. Appl. 15, 034092 (2021).

17.	 Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science
361, 1004–1008 (2018).

18.	 Miller, J. F., Harding, S. L. & Tufte, G. Evolution-in-materio: evolving computation in
materials. Evol. Intell. 7, 49–67 (2014).

19.	 Chen, T. et al. Classification with a disordered dopant-atom network in silicon. Nature
577, 341–345 (2020).

20.	 Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural
network. Optica 5, 756–760 (2018).

21.	 Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw.
115, 100–123 (2019).

22.	 Appeltant, L. et al. Information processing using a single dynamical node as complex
system. Nat. Commun. 2, 468 (2011).

23.	 Mouret, J.-B. & Chatzilygeroudis, K. 20 years of reality gap: a few thoughts about
simulators in evolutionary robotics. In Proc. Genetic and Evolutionary Computation
Conference Companion 1121–1124 (2017).

24.	 Howison, T., Hauser, S., Hughes, J. & Iida, F. Reality-assisted evolution of soft robots
through large-scale physical experimentation: a review. Artif. Life 26, 484–506
(2021).

https://doi.org/10.1038/s41586-021-04223-6
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350

Nature  |  Vol 601  |  27 January 2022  |  555

25.	 de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J. & Kolter, J. Z. End-to-end
differentiable physics for learning and control. Adv. Neural Inf. Process. Syst. 31,
7178–7189 (2018).

26.	 Degrave, J., Hermans, M., Dambre, J. & Wyffels, F. A differentiable physics engine for
deep learning in robotics. Front. Neurorobot. 13, 6 (2019).

27.	 Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).
28.	 Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial

neural networks. Sci. Adv. 4, eaar4206 (2018).
29.	 Stern, M., Arinze, C., Perez, L., Palmer, S. E. & Murugan, A. Supervised learning through

physical changes in a mechanical system. Proc. Natl Acad. Sci. USA 117, 14843–14850 (2020).
30.	 Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
31.	 Martel, J. N., Mueller, L. K., Carey, S. J., Dudek, P. & Wetzstein, G. Neural sensors: learning

pixel exposures for HDR imaging and video compressive sensing with programmable
sensors. IEEE Trans. Pattern Anal. Mach. Intell. 42, 1642–1653 (2020).

32.	 Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors.
Nature 579, 62–66 (2020).

33.	 Brooks, R. A. Intelligence without reason. In Proc. 12th International Joint Conference on
Artificial Intelligence Vol. 1, 569–595 (Morgan Kaufmann, 1991).

34.	 Hooker, S. The hardware lottery. Preprint at https://arxiv.org/abs/2009.06489 (2020).
35.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep

convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).
36.	 Lin, H. W., Tegmark, M. & Rolnick, D. Why does deep and cheap learning work so well?

J. Stat. Phys. 168, 1223–1247 (2017).
37.	 Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).
38.	 Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98,

032309 (2018).
39.	 Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep networks. Proc. Natl Acad.

Sci. USA 117, 30039–30045 (2020).
40.	 Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap between energy-based

models and backpropagation. Front. Comput. Neurosci. 11 (2017).
41.	 Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y. & Scellier, B. Equilibrium propagation with

continual weight updates Preprint at https://arxiv.org/abs/2005.04168 (2020).
42.	 Laborieux, A. et al. Scaling equilibrium propagation to deep convnets by drastically

reducing its gradient estimator bias. Front. Neurosci. 15 (2021).
43.	 Martin, E. et al. Eqspike: spike-driven equilibrium propagation for neuromorphic

implementations. iScience 24, 102222 (2021).
44.	 Dillavou, S., Stern, M., Liu, A. J., & Durian, D. J. Demonstration of decentralized,

physics-driven learning. Preprint at https://arxiv.org/abs/2108.00275 (2021).
45.	 Hermans, M., Burm, M., Van Vaerenbergh, T., Dambre, J. & Bienstman, P. Trainable

hardware for dynamical computing using error backpropagation through physical media.
Nat. Commun. 6, 6729 (2015).

46.	 Hughes, T. W., Minkov, M., Shi, Y. & Fan, S. Training of photonic neural networks through
in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018).

47.	 Lopez-Pastor, V. & Marquardt, F. Self-learning machines based on Hamiltonian echo
backpropagation. Preprint at https://arxiv.org/abs/2103.04992 (2021).

48.	 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized neural
networks: training neural networks with low precision weights and activations. J. Mach.
Learn. Res. 18, 6869–6898 (2017).

49.	 Frye, R. C., Rietman, E. A. & Wong, C. C. Back-propagation learning and nonidealities in
analog neural network hardware. IEEE Trans. Neural Netw. 2, 110–117 (1991).

50.	 Cramer, B. et al. Surrogate gradients for analog neuromorphic computing. Preprint at
https://arxiv.org/abs/2006.07239 (2020).

51.	 Adhikari, S. P. et al. Memristor bridge synapse-based neural network and its learning. IEEE
Trans Neural Netw. Learn. Syst. 23,1426–1435 (2012).

52.	 Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback
weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).

53.	 Launay, J., Poli, I., Boniface, F., & Krzakala, F. Direct feedback alignment scales to modern
deep learning tasks and architectures. Preprint at https://arxiv.org/abs/2006.12878 (2020).

54.	 Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library.
Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019).

55.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998).

56.	 Xiao, H., Rasul, K., & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

57.	 Spoon, K. et al. Toward software-equivalent accuracy on transformer-based deep neural
networks with analog memory devices. Front. Comput. Neurosci. 53, (2021).

58.	 Kariyappa, S. et al. Noise-resilient DNN: tolerating noise in PCM-based AI accelerators via
noise-aware training. IEEE Trans. Electron Devices 68, 4356–4362 (2021).

59.	 Gokmen, T., Rasch, M. J. & Haensch. W. The marriage of training and inference for scaled
deep learning analog hardware. In 2019 IEEE International Electron Devices Meeting
(IEDM) (IEEE, 2019).

60.	 Rasch, M. J. et al. A flexible and fast PyTorch toolkit for simulating training and inference
on analog crossbar arrays. In 2021 IEEE 3rd International Conference on Artificial
Intelligence Circuits and Systems (AICAS) (IEEE, 2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

https://arxiv.org/abs/2009.06489
https://arxiv.org/abs/2005.04168
https://arxiv.org/abs/2108.00275
https://arxiv.org/abs/2103.04992
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2006.12878
https://arxiv.org/abs/1708.07747
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Physics-aware training
To train the PNNs presented in Figs. 2–4, we used PAT to enable us to
perform backpropagation on the physical apparatuses as automatic
differentiation (autodiff) functions within PyTorch54 (v1.6). We used
PyTorch Lightning61 (v0.9) and Weights and Biases62 (v0.10) during
development as well. PAT is explained in detail in Supplementary Sec-
tion 1, where it is compared with standard backpropagation, and train-
ing physical devices in silico. Here we provide only an overview of PAT
in the context of a generic multilayer PNN (Supplementary Figs. 2, 3).

PAT can be formalized by the use of custom constituent autodiff
functions for the physically executed submodules in an overall network
architecture (Supplementary Fig. 1). In PAT, each physical system’s
forward functionality is provided by the system’s own controllable
physical transformation, which can be thought of as a parameterized
function fp that relates the input x, parameters θ, and outputs y of the
transformation via y = fp (x,θ). As a physical system cannot be
auto-differentiated, we use a differentiable digital model fm to approx-
imate each backward pass through a given physical module. This struc-
ture is essentially a generalization of quantization-aware training48, in
which low-precision neural network hardware is approximated by
quantizing weights and activation values on the forward pass, but stor-
ing weights and activations, and performing the backward pass with
full precision.

To see how this works, we consider here the specific case of a mul-
tilayer feedforward PNN with standard stochastic gradient descent.
In this case, the PAT algorithm with the above-defined custom autodiff
functions results in the following training loop:

Perform forward pass:

f= = (,) (1)l l l l[+1] []
p

[] []yx x θ

Compute (exact) error vector:

ℓ
g

L
=

∂
∂

=
∂

∂
(,) (2)N N

N
[] []

[]
targetN[]

y y
y yy

Perform backward pass

θ
x

xy yg
f

g=
∂

∂
(,) (3a)l lm [] []

T

l l[−1] []


















g

f
g=

∂

∂
(,) (3b)l lm [] []

T

l l[−1] []θ
x θθ y

Update parameters:

θ θ θ∑η
N

g→ −
1

(4)l l

k

k[] []

data

()
l[]

where g l[]θ and g l[]y
 are estimators of the physical systems’ exact gra-

dients,
L∂

∂ l[]θ
 and

L∂

∂ l[]y
, respectively for the l[]th layer, obtained by auto-

differentiation of the model, L is the loss, ℓ is the loss function (for
example, cross-entropy or mean-squared error), targety is the desired
(target) output, Ndata is the size of the batch and η is the learning rate.

l[+1]x is the input vector to the l[+ 1]th layer, which for the hidden layers
of the feedforward architecture is equal to the output vector of
the previous layer, f= = (,)l l l l[+1] []

p
[] []x y x θ , where θ l[] is the control-

lable (trainable) parameter vector for the l[]th layer. For the first layer,
the input data vector x [1] is the data to be operated on. In PAT, the error
vector is exactly estimated (g = L∂

∂
N N[] []y y

) as the forward pass is per-
formed by the physical system. This error vector is then backpropa-
gated via equation (3), which involves Jacobian matrices of the

differential digital model evaluated at the correct inputs at each layer

(that is, the actual physical inputs) (,)
f l l∂

∂
[] []

T
m





θxx , where T represents
the transpose operation. Thus, in addition to utilizing the output of
the PNN (y N[]) via physical computations in the forward pass, interme-
diate outputs (y l[]) are also utilized to facilitate the computation of
accurate gradients in PAT.

As it is implemented just by defining a custom autodiff function,
generalizing PAT for more complex architectures, such as multichan-
nel or hybrid physical–digital models, with different loss functions
and so on is straightforward. See Supplementary Section 1 for details.

An intuitive motivation for why PAT works is that the training’s opti-
mization of parameters is always grounded in the true optimization
landscape by the physical forward pass. With PAT, even if gradients are
estimated only approximately, the true loss function is always precisely
known. As long as the gradients estimated by the backward pass are
reasonably accurate, optimization will proceed correctly. Although
the required training time is expected to increase as the error in gradi-
ent estimation increases, in principle it is sufficient for the estimated
gradient to be pointing closer to the direction of the true gradient
than its opposite (that is, that the dot product of the estimated and
true gradients is positive). Moreover, by using the physical system in
the forward pass, the true output from each intermediate layer is also
known, so gradients of intermediate physical layers are always com-
puted with respect to correct inputs. In any form of in silico training,
compounding errors build up through the imperfect simulation of
each physical layer, leading to a rapidly diverging simulation–reality
gap as training proceeds (see Supplementary Section 1 for details).
As a secondary benefit, PAT ensures that learned models are inherently
resilient to noise and other imperfections beyond a digital model, as
the change of loss along noisy directions in parameter space will tend
to average to zero. This makes training robust to, for example, device–
device variations, and facilitates the learning of noise-resilient (and,
more speculatively, noise-enhanced) models8.

Differentiable digital models
To perform PAT, a differentiable digital model of the physical system’s
input–output transformation is required. Any model, fm, of the phys-
ical system’s true forward function, fp, can be used to perform PAT, so
long as it can be auto-differentiated. Viable approaches include tradi-
tional physics models, black-box machine-learning models13,63,64 and
physics-informed machine-learning65 models.

In this work, we used the black-box strategy for our differentiable
digital models, namely DNNs trained on input–output vector pairs from
the physical systems as fm (except for the mechanical system). Two
advantages of this approach are that it is fully general (it can be applied
even to systems in which one has no underlying knowledge-based model
of the system) and that the accuracy can be extremely high, at least for
physical inputs, x θθ(,) , within the distribution of the training data (for
out-of-distribution generalization, we expect physics-based approaches
to offer advantages). In addition, the fact that each physical system has
a precise corresponding DNN means that the resulting PNN can be ana-
lysed as a network of DNNs, which may be useful for explaining the PNN’s
learned physical algorithm.

For our DNN differentiable digital models, we used a neural archi-
tecture search66 to optimize hyperparameters, including the learning
rate, number of layers and number of hidden units in each layer. Typi-
cal optimal architectures involved 3–5 layers with 200–1,000 hidden
units in each, trained using the Adam optimizer, mean-squared loss
function and learning rates of around 10−4. For more details, see Sup-
plementary Section 2D.1.

For the nonlinear optical system, the test accuracy of the trained digi-
tal model (Supplementary Fig. 20) shows that the model is remarkably
accurate compared with typical simulation–experiment agreement
in broadband nonlinear optics, especially considering that the pulses

used exhibit a complex spatiotemporal structure owing to the pulse
shaper. The model is not, however, an exact description of the physi-
cal system: the typical error for each element of the output vector is
about 1–2%. For the analogue electronic circuit, agreement is also good,
although worse than the other systems (Supplementary Fig. 23), cor-
responding to around 5–10% prediction error for each component of
the output vector. For the mechanical system, we found that a linear
model was sufficient to obtain excellent agreement, which resulted
in a typical error of about 1% for each component of the output vector
(Supplementary Fig. 26).

In silico training
To train PNNs in silico, we applied a training loop similar to the one
described above for PAT except that both the forward and backward
passes are performed using the model (Supplementary Figs. 1, 3), with
one exception noted below.

To improve the performance of in silico training as much as pos-
sible and permit the fairest comparison with PAT, we also modelled
the input-dependent noise of the physical system and used this within
the forward pass of in silico training. To do this, we trained, for each
physical system, an additional DNN to predict the eigenvectors of the
output vector’s noise covariance matrix, as a function of the physi-
cal system’s input vector and parameter vector. These noise models
thus provided an input- and parameter-dependent estimate of the
distribution of noise in the output vector produced by the physical
system. We were able to achieve excellent agreement between the noise
models’ predicted noise distributions and experimental measurements
(Supplementary Figs. 18, 19). We found that including this noise model
improved the performance of experiments performed using param-
eters derived from in silico training. Consequently, all in silico training
results presented in this paper make use of such a model, except for the
mechanical system, where a simpler, uniform noise model was found to
be sufficient. For additional details, see Supplementary Section 2D.2.

Although including complex, accurate noise models does not allow
in silico training to perform as well as PAT, we recommend that such
models be used whenever in silico training is performed, such as for
physical architecture search and design and possibly pre-training
(Supplementary Section 5), as the correspondence with experiment
(and, in particular, the predicted peak accuracy achievable there) is
significantly improved over simpler noise models, or when ignoring
physical noise.

Ultrafast nonlinear optical pulse propagation experiments
For experiments with ultrafast nonlinear pulse propagation in quad-
ratic nonlinear media (Supplementary Figs. 8–10), we shaped pulses
from a mode-locked titanium:sapphire laser (Spectra Physics Tsunami,
centred around 780 nm and pulse duration around 100 fs) using a cus-
tom pulse shaper. Our optical pulse shaper used a digital micromirror
device (DMD, Vialux V-650L) and was inspired by the design in ref. 67.
Despite the binary modulations of the individual mirrors, we were
able to achieve multilevel spectral amplitude modulation by varying
the duty cycle of gratings written to the DMD along the dimension
orthogonal to the diffraction of the pulse frequencies. To control the
DMD, we adapted code developed for ref. 68, which is available at ref. 69.

After being shaped by the pulse shaper, the femtosecond pulses
were focused into a 0.5-mm-long beta-barium borate crystal.
The multitude of frequencies within the broadband pulses then
undergo various nonlinear optical processes, including sum-frequency
generation and SHG. The pulse shaper imparts a complex phase and
spatiotemporal structure on the pulse, which depend on the input and
parameters applied through the spectral modulations. These features
would make it impossible to accurately model the experiment using a
one-dimensional pulse propagation model. For simplicity, we refer to
this complex, spatiotemporal quadratic nonlinear pulse propagation
as ultrafast SHG.

Although the functionality of the SHG-PNN does not rely on a
closed-form mathematical description or indeed on any form of math-
ematical isomorphism, some readers may find it helpful to understand
the approximate form of the input–output transformation realized in
this experimental apparatus. We emphasize that the following model is
idealistic and meant to convey key intuitions about the physical trans-
formation: the model does not describe the experimental transforma-
tion in a quantitative manner, owing to the numerous experimental
complexities described above.

The physical transformation of the ultrafast SHG setup is seeded by
the infrared light from the titanium:sapphire laser. This ultrashort
pulse can be described by the Fourier transform of the electric field
envelope of the pulse, A ω()0 , where ω is the frequency of the field
detuned relative to the carrier frequency. For simplicity, consider a
pulse consisting of a set of discrete frequencies or frequency
bins, whose spectral amplitudes are described by the discrete vector

A ω A ω A ω= [(), (), …, ()] .N00 0 1 0 2 0
TA After passing through the pulse-

shaper, the spectral amplitudes of the pulse are then given by

A x A ω x A ω θ A ω θ A ω= [(), (), …, (), (), …] , (5)N N1 0 1 2 0 2 1 0 +1 2 0 +2
T

x x

where Nx is the dimensionality of the data vector, θi are the trainable
pulse-shaper amplitudes and xi are the elements of the input data vec-
tor. Thus, the output from the pulse shaper encodes both the
machine-learning data as well as the trainable parameters. Square roots
are present in equation (5) because the pulse shaper was deliberately
calibrated to perform an intensity modulation.

The output from the pulse shaper (equation (5)) is then input to the
ultrafast SHG process. The propagation of an ultrashort pulse through
a quadratic nonlinear medium results in an input–output transforma-
tion that roughly approximates an autocorrelation, or nonlinear con-
volution, assuming that the dispersion during propagation is small
and the input pulse is well described by a single spatial mode. In this
limit, the output blue spectrum B ω()i is mathematically given by

∑B ω k A ω ω A ω ω() = (+) (−), (6)i
j

i j i j

where the sum is over all frequency bins  j of the pulsed field. The
output of the trainable physical transformation y x θf= (,)p

is given by
the blue pulse’s spectral power, y B B B= [| | , | | , …, | |] ,ω ω ω

2 2 2 T
N1 2

where N
is the length of the output vector.

From this description, it is clear that the physical transformation
realized by the ultrafast SHG process is not isomorphic to any conven-
tional neural network layer, even in this idealized limit. Nonetheless,
the physical transformation retains some key features of typical neural
network layers. First, the physical transformation is nonlinear as the
SHG process involves the squaring of the input field. Second, as the
terms within the summation in equation (6) involve both parameters
and input data, the transformation also mixes the different elements
of the input data and parameters to product an output. This mixing
of input elements is similar, but not necessarily directly mathemati-
cally equivalent to, the mixing of input vector elements that occur
in the matrix-vector multiplications or convolutions that appear in
conventional neural networks.

Vowel classification with ultrafast SHG
A task often used to demonstrate novel machine-learning hardware
is the classification of spoken vowels according to formant fre-
quencies10,11. The task involves predicting the spoken vowels given a
12-dimensional input data vector of formant frequencies extracted
from audio recordings10. Here we use the vowel dataset from ref. 10,
which is based on data originally from ref. 70; data available at https://
homepages.wmich.edu/~hillenbr/voweldata.html. This dataset consists
of 273 data input–output pairs. We used 175 data pairs as the training

https://homepages.wmich.edu/~hillenbr/voweldata.html
https://homepages.wmich.edu/~hillenbr/voweldata.html

Article
set—49 for the validation and 49 for the test set. For the results in Figs. 2,
3, we optimized for the hyperparameters of the PNN architecture using
the validation error and only evaluated the test error after all optimi-
zation was conducted. In Fig. 3c, for each PNN with a given number
of layers, the experiment was conducted with two different training,
validation and test splits of the vowel data. In Fig. 3c, the line plots the
mean over the two splits, and the error bars are the standard error of
the mean.

For the vowel-classification PNN presented in Figs. 2, 3, the
input vector to each SHG physical layer is encoded in a contiguous
short-wavelength section of the spectral modulation vector sent to the
pulse shaper, and the trainable parameters are encoded in the spectral
modulations applied to the rest of the spectrum. For the physical layers
after the first layer, the input vector to the physical system is the meas-
ured spectrum obtained from the previous layer. For convenience, we
performed digital renormalization of these output vectors to maximize
the dynamic range of the input and ensure that inputs were within the
allowed range of 0 to 1 accepted by the pulse shaper. Relatedly, we found
that training stability was improved by including additional trainable
digital re-scaling parameters to the forward-fed vector, allowing the
overall bias and amplitude scale of the physical inputs to each layer to
be adjusted during training. These digital parameters appear to have a
negligible role in the final trained PNN (when the physical transforma-
tions are replaced by identity operations, the network can be trained
to perform no better than chance, and the final trained values of the
scale and bias parameters are all very close to 1 and 0, respectively).
We hypothesize that these trainable rescaling parameters are helpful
during training to allow the network to escape noise-affected subspaces
of parameter space. See Supplementary Section 2E.1 for details.

The vowel-classification SHG-PNN architecture (Supplementary
Fig. 21) was designed to be as simple as possible while still demonstrat-
ing the use of a multilayer architecture with a physical transformation
that is not isomorphic to a conventional DNN layer, and so that the
computations involved in performing the classification were essentially
all performed by the physical system itself. Many aspects of the design
are not optimal with respect to performance, so design choices, such
as our specific choice to partition input data and parameter vectors
into the controllable parameters of the experiment, should not be
interpreted as representing any systematic optimization. Similarly, the
vowel-classification task was chosen as a simple example of multidimen-
sional machine-learning classification. As this task can be solved almost
perfectly by a linear model, it is in fact poorly suited to the nonlinear
optical transformations of our SHG-PNN, which are fully nonlinear
(Supplementary Figs. 9, 10). Overall, readers should not interpret this
PNN’s design as suggestive of optimal design strategies for PNNs. For
initial guidelines on optimal design strategies, we instead refer readers
to Supplementary Section 5.

MNIST handwritten digit image classification with a hybrid
physical–digital SHG-PNN
The design of the hybrid physical–digital MNIST PNN based on ultrafast
SHG for handwritten digit classification (Fig. 4i–l) was chosen to dem-
onstrate a proof-of-concept PNN in which substantial digital operations
were co-trained with substantial physical transformations, and in which
no digital output layer was used (although a digital output layer can be
used with PNNs, and we expect such a layer will usually improve perfor-
mance, we wanted to avoid confusing readers familiar with reservoir
computing, and so avoided using digital output layers in this work).

The network (Supplementary Fig. 29) involves four trainable linear
input layers that operate on MNIST digit images, whose outputs are
fed into four separate channels in which the SHG physical transforma-
tion is used twice in succession (that is, it is two physical layers deep).
The output of the final layers of each channel (the final SHG spectra)
are concatenated, then summed into ten bins to perform a classifica-
tion. The structure of the input layer was chosen to minimize the

complexity of inputs to the pulse shaper. We found that the output
second-harmonic spectra produced by the nonlinear optical process
tended towards featureless triangular spectra if inputs were close to a
random uniform distribution. Thus, to ensure that output spectra
varied significantly with respect to changes in the input spectral mod-
ulations, we made sure that inputs to the pulse shaper would exhibit a
smoother structure in the following way. For each of 4 independent
channels, 196-dimensional input images (downsampled from
784-dimensional 28 × 28 images) are first operated on by a 196 by 50
trainable linear matrix, and then (without any nonlinear digital opera-
tions), a second 50 by 196 trainable linear matrix. The second 50 by 196
matrix is identical for all channels, the intent being that this matrix
identifies optimal ‘input modes’ to the SHG process. By varying the
middle dimension of this two-step linear input layer, one may control
the amount of structure (number of ‘spectral modes’) allowed in inputs
to the pulse shaper, as the middle dimension effectively controls the
rank of the total linear matrix. We found that a middle dimension below
30 resulted in the most visually varied SHG output spectra, but that 50
was sufficient for good performance on the MNIST task. In this network,
we also utilized skip connections between layers in each channel. This
was done so that the network would be able to ‘choose’ to use the linear
digital operations to perform the linear part of the classification task
(for which nearly 90% accuracy can be obtained55) and to thus rely on
the SHG co-processor primarily for the harder, nonlinear part of the
classification task. Between the physical layers in each channel, a train-
able, element-wise rescaling was used to allow us to train the second
physical layer transformations efficiently. That is, x a y b= +i i i i, where
bi and ai are trainable parameters, and xi and yi are the input to the pulse
shaper and the measured output spectrum from the previous physical
layer, respectively.

For further details on the nonlinear optical experimental setup and
its characterization, we refer readers to Supplementary Section 2A. For
further details on the vowel-classification SHG-PNN, we refer readers
to Supplementary Section 2E.1, and for the hybrid physical–digital
MNIST handwritten digit-classification SHG-PNN, we refer readers to
Supplementary Section 2E.4.

Analogue electronic circuit experiments
The electronic circuit used for our experiments (Supplementary Fig. 11)
was a resistor-inductor-capacitor oscillator (RLC oscillator) with a
transistor embedded within it. It was designed to produce as nonlinear
and complex a response as possible, while still containing only a few
simple components (Supplementary Figs. 12, 13). The experiments
were carried out with standard bulk electronic components, a hobbyist
circuit breadboard and a USB data acquisition (DAQ) device (Measure-
ment Computing USB-1208-HS-4AO), which allowed for one analogue
input and one analogue output channel, with a sampling rate of 1 MS s−1.

The electronic circuit provides only a one-dimensional time-series
input and one-dimensional time-series output. As a result, to partition
the inputs to the system into trainable parameters and input data so
that we could control the circuit’s transformation of input data, we
found it was most convenient to apply parameters to the
one-dimensional input time-series vector by performing trainable,
element-wise rescaling on the input time-series vector. That is,
x a y b= +i i i i , where bi and ai are trainable parameters, yi are the com-
ponents of the input data vector and xi are the re-scaled components
of the voltage time series that is then sent to the analogue circuit. For
the first layer, yi are the unrolled pixels of the input MNIST image. For
hidden layers, yi are the components of the output voltage time-series
vector from the previous layer.

We found that the electronic circuit’s output was noisy, primarily
owing to the timing jitter noise that resulted from operating the DAQ
at its maximum sampling rate (Supplementary Fig. 23). Rather than
reducing this noise by operating the device more slowly, we were moti-
vated to design the PNN architecture presented in Fig. 4 in a way that

allowed it to automatically learn to function robustly and accurately,
even in the presence of up to 20% noise per output vector element
(See Supplementary Fig. 24 for an expanded depiction of the architec-
ture). First, seven, three-layer feedforward PNNs were trained together,
with the final prediction provided by averaging the output of all seven,
three-layer PNNs. Second, skip connections similar to those used in
residual neural networks were employed71. These measures make the
output of the network effectively an ensemble average over many dif-
ferent subnetworks71, which allows it to perform accurately and train
smoothly despite the very high physical noise and multilayer design.

For further details on the analogue electronic experimental setup
and its characterization, we refer readers to Supplementary Section 2B.
For further details on the MNIST handwritten digit-classification ana-
logue electronic PNN, we refer readers to Supplementary Section 2E.2.

Oscillating mechanical plate experiments
The mechanical plate oscillator was constructed by attaching a 3.2 cm
by 3.2 cm by 1 mm titanium plate to a long, centre-mounted screw,
which was fixed to the voice coil of a commercial full-range speaker
(Supplementary Figs. 14, 15). The speaker was driven by an audio ampli-
fier (Kinter K2020A+) and the oscillations of the plate were recorded
using a microphone (Audio-Technica ATR2100x-USB Cardioid Dynamic
Microphone). The diaphragm of the speaker was completely removed
so that the sound recorded by the microphone is produced only by the
oscillating metal plate.

As the physical input (output) to (from) the mechanical oscillator
is a one-dimensional time series, similar to the electronic circuit, we
made use of element-wise trainable rescaling to conveniently allow us
to train the oscillating plate’s physical transformations.

The mechanical PNN architecture for the MNIST handwritten digit
classification task was chosen to be the simplest multilayer PNN archi-
tecture possible with such a one-dimensional dynamical system (Sup-
plementary Fig. 27). As the mechanical plate’s input–output responses
are primarily linear convolutions (Supplementary Figs. 16, 17), it is well
suited to the MNIST handwritten digit classification task, achieving
nearly the same performance as a digital linear model55.

For further details on the oscillating mechanical plate experi-
mental setup and its characterization, we refer readers to Supple-
mentary Section 2C. For further details on the MNIST handwritten
digit-classification oscillating mechanical plate PNN, we refer readers
to Supplementary Section 2E.3.

Data availability
All data generated during and code used for this work are available at
https://doi.org/10.5281/zenodo.4719150.

Code availability
An expandable demonstration code for applying PAT to train PNNs is
available at https://github.com/mcmahon-lab/Physics-Aware-Training.
All code used for this work is available at https://doi.org/10.5281/
zenodo.4719150.

61.	 Falcon, W. et al. PyTorch Lightning (2019); https://github.com/PyTorchLightning/

pytorch-lightning
62.	 Biewald, L. Experiment Tracking with Weights and Biases (2020); https://www.wandb.

com/
63.	 Kasim, M. F. et al. Building high accuracy emulators for scientific simulations with deep

neural architecture search. Preprint at https://arxiv.org/abs/2001.08055 (2020).
64.	 Rahmani, B. et al. Actor neural networks for the robust control of partially measured

nonlinear systems showcased for image propagation through diffuse media. Nat. Mach.
Intell. 2, 403–410 (2020).

65.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440
(2021).

66.	 Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation
hyperparameter optimization framework. In Proc. 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining 2623–2631 (2019).

67.	 Liu, W. et al. Programmable controlled mode-locked fiber laser using a digital
micromirror device. Opt. Lett. 42, 1923–1926 (2017).

68.	 Matthès, M. W., del Hougne, P., de Rosny, J., Lerosey, G. & Popoff, S. M. Optical complex
media as universal reconfigurable linear operators. Optica 6, 465–472 (2019).

69.	 Popoff, S. M. & Matthès, M. W. ALP4lib: q Python wrapper for the Vialux ALP-4 controller
suite to control DMDs. Zenodo https://doi.org/10.5281/zenodo.4076193 (2020).

70.	 Hillenbrand, J., Getty, L. A., Wheeler, K. & Clark, M. J. Acoustic characteristics of American
English vowels. J. Acoust. Soc. Am. 97, 3099–3111 (1995).

71.	 Veit, A.,Wilber, M. & Belongie, S. Residual networks behave like ensembles of relatively
shallow networks Preprint at https://arxiv.org/abs/1605.06431 (2016).

Acknowledgements We thank NTT Research for their financial and technical support. Portions
of this work were supported by the National Science Foundation (award CCF-1918549). L.G.W.
and T.W. acknowledge support from Mong Fellowships from Cornell Neurotech during early
parts of this work. P.L.M. acknowledges membership of the CIFAR Quantum Information
Science Program as an Azrieli Global Scholar. We acknowledge discussions with
D. Ahsanullah, M. Anderson, V. Kremenetski, E. Ng, S. Popoff, S. Prabhu, M. Saebo, H. Tanaka,
R. Yanagimoto, H. Zhen and members of the NTT PHI Lab/NSF Expeditions research
collaboration, and thank P. Jordan for discussions and illustrations.

Author contributions L.G.W., T.O. and P.L.M. conceived the project and methods. T.O. and
L.G.W. performed the SHG-PNN experiments. L.G.W. performed the electronic-PNN
experiments. M.M.S. performed the oscillating-plate-PNN experiments. T.W., D.T.S. and Z.H.
contributed to initial parts of the work. L.G.W., T.O., M.M.S. and P.L.M. wrote the manuscript.
P.L.M. supervised the project.

Competing interests L.G.W., T.O., M.M.S. and P.L.M. are listed as inventors on a US provisional
patent application (number 63/178,318) on physical neural networks and physics-aware
training. The other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-04223-6.
Correspondence and requests for materials should be addressed to Logan G. Wright,
Tatsuhiro Onodera or Peter L. McMahon.
Peer review information Nature thanks Tayfun Gokmen and Damien Querlioz for their
contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5281/zenodo.4719150
https://github.com/mcmahon-lab/Physics-Aware-Training
https://doi.org/10.5281/zenodo.4719150
https://doi.org/10.5281/zenodo.4719150
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://www.wandb.com/
https://www.wandb.com/
https://arxiv.org/abs/2001.08055
https://doi.org/10.5281/zenodo.4076193
https://arxiv.org/abs/1605.06431
https://doi.org/10.1038/s41586-021-04223-6
http://www.nature.com/reprints

	Deep physical neural networks trained with backpropagation

	An example PNN based on nonlinear optics

	Physics-aware training

	Diverse PNNs for image classification

	Discussion

	Online content

	﻿Fig. 1 Introduction to PNNs.
	﻿Fig. 2 An example PNN, implemented experimentally using broadband optical SHG.
	﻿Fig. 3 Physics-aware training.
	﻿Fig. 4 Image classification with diverse physical systems.

