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A B S T R A C T   

The objective of this paper is to present a numerical investigation of the redundancy of steel truss bridges 
composed of novel modular joints when subjected to the sudden loss of diagonal members. The modular joint - a 
prefabricated steel nodal connector composed of flat web plate welded to flat and curved cold bent flange plates - 
represents a new approach to the construction of steel truss bridges in which the connector is a module that joins 
member that are standard rolled wide flange sections. A unique feature of this approach is that a moment- 
resisting connection is achieved in a truss topology by joining webs and flanges independently through bolted 
splice connections. This, in combination with orienting members in strong axis bending, provides the potential 
for the system to tolerate the loss of a diagonal member through load redistribution in flexure. The response of a 
119-m (390-ft) simply supported vehicular bridge following the abrupt loss of a diagonal is numerically inves
tigated considering three behaviors: (1) instantaneous dynamic behavior, focusing on the effect of the high- 
velocity stress wave, with its associated high strain rates and impact on fracture toughness particularly in the 
cold bent and welded portion of the modular joint, (2) short-term dynamic behavior of the structure, and (3) 
static behavior of the faulted structure. Results show that the modular joint is able to redistribute load after 
sudden member loss, demonstrating the redundancy of this new approach to modular construction.   

1. Introduction 

The modular joint (Fig. 1, [1]) is a new approach to the rapid 
fabrication and erection of steel truss bridges, where the module is the 
joint and members are standard rolled wide flange sections. The 
modular joint is a prefabricated built-up section composed of a flat web 
plate welded to flat and curved flange plates as shown in Fig. 1A. The 
curved flanges are cold bent to a prescribed radius to achieve the desired 
angle between members. A straight starter segment connects to other 
modular joints or to wide flange members. In this approach, a truss-like 
topology is formed using the modular joint repeatedly throughout the 
entire structure. For example, short span bridges are achieved by con
necting modular joints to one another (Fig. 1B), whereas bridges with 
longer spans are developed by connecting modular joints to wide flange 
members (Fig. 1C). 

For both short- and long-span bridges, bolted splice plate connec
tions (in double shear) are used to independently connect the webs and 
flanges. This, combined with the strong axis orientation of the wide 
flange members, enables flexure to be transmitted in a truss-like 

topology and provides the potential for the structure to tolerate the loss 
of a diagonal member. This potential to tolerate the loss of a member 
makes the system load-path redundant [2] and is a unique feature of 
truss bridges comprised of modular joints compared to conventional 
trusses which are not able to tolerate member loss. Thus, the modular 
joint system aims to achieve enhanced resiliency through load-path 
redundant design. 

The modular joint developed in Tumbeva et al. [1] is inspired by the 
“gussetless” Memorial Bridge connecting Portsmouth, NH and Kittery, 
ME. Like the Memorial Bridge, bridges composed of modular joints 
achieve the efficiency of a truss while eliminating the gusset plates 
which are prone to durability and maintenance problems, are difficult to 
fabricate and inspect, and are inefficient as fasteners are used in single 
shear [3]. Different from the Memorial Bridge, the modular joint system 
proposed in Tumbeva et al. [1] and investigated in this paper is modular, 
meaning identical joints can be used throughout the structure and 
among many different structures. While the Memorial Bridge was a 
one-of-a-kind design with sections fabricated in large pieces to minimize 
field splices, the modular joint approach focuses on small modules 
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connecting standard wide flange sections, allowing for the accelerated 
fabrication and erection of the bridge. The modular joint system can be 
stacked in ISO (International Standard Organization) shipping con
tainers for ease of transportation to a wide range of sites. These ad
vantages make the modular joint system particularly useful for 
accelerated bridge construction as well as for disaster relief and military 
operations. 

The modular joint utilizes the same fabrication techniques as the 
knuckle of the Memorial Bridge which has been experimentally tested 
and validated. For example, vibrations induced by span lifting and 
traffic loads were measured using camera-based field monitoring [4]. 
Shahsavari et al. [5] investigated live load behavior of the bridge by field 
monitoring using accelerometers, uniaxial strain gauges, strain rosettes, 
and tiltmeters. Bell and Medina [6] experimentally tested a scaled model 
of the knuckle under cycling load to evaluate the fatigue performance. 
Results showed that an infinite fatigue life is expected. A fatigue eval
uation of the knuckle was also conducted by Mashayekhi and 
Santini-Bell [7] through both field measured data and numerical 
modeling. 

In Tumbeva et al. [1], the authors have previously (1) developed the 
geometry of the modular joint, (2) developed methodologies for 
achieving constant- and variable-depth bridges, and (3) performed 
sizing optimization of the modular joint and wide flange sections for 
lowest weight while meeting geometric and structural constraints. In 
Tumbeva et al. [1], research focused on the static behavior of steel 
bridges comprised of modular joints. The novelty of the current paper is 
in understanding the dynamic behavior of the system after sudden 
member loss using explicit dynamic analyses, as well as an investigation 
of the behavior of the faulted structure through nonlinear static analysis. 
Specifically, this research focuses on the effect of the high-velocity stress 

wave instantaneously released after a member is damaged on the frac
ture toughness of the joint components as well as the ability of the 
modular joint to redistribute load. 

A key factor to bridge durability and robustness is ensuring sufficient 
fracture toughness of the bridge steel components. The American As
sociation of State Highway and Transportation Officials LRFD Bridge 
Design Specifications (AASHTO hereafter) includes minimum Charpy V- 
notch (CVN) test requirements to specify fracture toughness [8]. These 
requirements were developed in the beginning of the 1970’s, partially 
prompted by the Silver Bridge near Point Pleasant, West Virginia 
collapse in 1967 with the goal to prevent unstable crack propagation and 
brittle failure. It is, however, typical for bridge steels to experience crack 
initiation and propagation at moderate stress levels throughout the 
bridge lifespan. Hence, increasing the fracture toughness might have a 
minor effect on the steel during normal service conditions [9]. Yet, 
bridges built prior to the introduction of fracture toughness re
quirements, and thus used low toughness steel, have exhibited unstable 
crack growth resulting in bridge closure. With the improvements in the 
bridge design code to include fracture toughness requirements and 
include fatigue design provisions, brittle fracture and fatigue cracking in 
bridges built after 1985 is extremely rare [10]. 

When introducing a new concept for steel bridges, as is the case of 
the modular joint system, it is important to establish component 
behavior and fracture toughness demand. Fracture toughness is pri
marily dependent on three key factors: (1) plate thickness, (2) service 
temperature and (3) loading rate, with a reduction in toughness asso
ciated with thicker plate, lower temperature, and higher loading rate 
[9]. The event of a sudden loss of a member is associated with a stress 
wave propagating at a very high rate [e.g, 5189 m/s (17024 ft/s) for 
steel]. This type of dynamic load significantly impacts the fracture 
toughness of the steel and thus, particular attention should be given to 
the modular joint’s cold-worked flanges and the flange-to-web welds 
which are subjected to higher localized stress to avoid crack formation 
and crack propagation. This is specifically important because the cold 
bending of the flange plates and welding of the components already 
reduce the fracture toughness of the material. 

To evaluate modular joint performance during a sudden member loss 
event, a key consideration is to establish component demands and strain 
rates consistent with this type of member loss event. In the development 
of fracture toughness requirements for bridge steels, Barsom [9] 
demonstrated the relationship between temperature and strain rate, 
with a reduction in fracture toughness associated with lower tempera
tures and higher strain rates, in contrast to yield and ultimate strengths. 
To evaluate the potential for fracture in the modular joint, it is necessary 
to establish strain rates associated with abrupt member loss, which are 
clearly different from the intermediate loading rates typical of live load 
passage over a bridge (loading time > 1 s corresponding to a strain rate 
of less than 10−3/s). 

Importantly in the modular joint system, the members are rolled 
wide flange sections (i.e., no welds) and thus a reduction in fracture 
toughness during a high strain rate event is of less concern. Therefore, 
the major focus of this paper is the behavior of the modular joint 
immediately following the fracture of a diagonal member. 

It is also important to understand the global behavior of the system 
and evaluate its ability to continue to carry load as well as maintain 
functionality. A key aspect in the modular joint system is the ability to 
redistribute load through flexure as a result of the moment-resisting 
connection between components and strong axis orientation of mem
bers, allowing bridges composed of modular joints to be classified as 
redundant. 

This paper presents the redundancy analysis of the system and pro
poses a numerical approach for redundancy evaluation of steel bridges, 
that specifically considers the impact of the high-velocity stress wave. 
This numerical approach could also be used for other forms (i.e., 
variable-depth), other span arrangements, or for bridges that are not 
composed of modular joints. 

Flange plate

Weld

Wide flange members

Modular joint

(C)

(B)

Modular joint

(A)

Starter segment

Cold bent flange plate

Web plate

Fig. 1. Steel bridges composed of modular joints: (A) Modular joint, (B) Short- 
span constant-depth bridge, and (C) Long-span constant-depth bridge (reprinted 
from [1], © ASCE) 
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2. Background 

Redundancy of bridge structures can be classified into three cate
gories: (1) internal member redundancy associated with built-up sec
tions where individual plates are connected to form a section, (2) 
structural redundancy, associated with the static indeterminacy (e.g. 
continuous spans), and (3) load-path redundancy, associated with the 
ability of the structure to redistribute the load to members adjacent to a 
failed member and the capacity of these members to carry that load [2]. 
The focus of this paper is to investigate the load-path redundancy of 
constant-depth simply supported bridges composed of modular joints 
(Fig. 1C). Load-path redundancy can be evaluated through: (1) linear 
elastic static analysis, (2) nonlinear static analysis, (3) linear elastic 
dynamic analysis, and (4) nonlinear inelastic dynamic analysis [11]. 
This paper uses nonlinear inelastic dynamic analysis, which will be 
discussed in detail later in subsequent sections. 

Conventional bridge design does not specifically account for redun
dancy but rather leaves this to the engineers’ judgment and experience 
[2]. The American bridge design code [8] incorporates load factors in 
the strength limit states depending on the level of redundancy of the 
structure. If the bridge is classified as non-redundant, the load is 
increased, and if the system has a very high level of redundancy, the load 
is decreased [8]. 

A quantitative approach for evaluating the redundancy of pre
stressed concrete and steel bridge superstructures was developed by the 
National Cooperative Highway Research Program (NCHRP) Report 406 
Redundancy in Highway Bridge Superstructures [12]. A set of system 
factors were introduced which can be applied to the nominal resistance 
of each member. The system factors were developed by considering the 
level of redundancy of the entire system as opposed to only considering 
individual members. To ensure a minimum level of system redundancy, 
four limit states were defined: (1) member failure limit state for ensuring 
sufficient member capacity, (2) ultimate limit state for ensuring capacity 
of the entire system under increased truck loading, (3) functionality 
limit state for ensuring traffic safety defined as the peak displacement 
due to live load, and (4) damaged condition limit state for ensuring 
safety of the structure in the case of a member loss. These system factors 
were later calibrated for the design and safety assessment of highway 
bridges subjected to lateral and vertical vehicular loads by the NCHRP 
Report 776 Bridge System Safety and Redundancy [13]. 

The most recent development in evaluating steel bridge redundancy 
is NCHRP Report 883 Fracture-Critical System Analysis for Steel Bridges 
[14], culminating in Guide Specifications for Analysis and Identification 
of Fracture Critical Members and System Redundant Members [15]. 
NCHRP Report 883 developed a methodology to determine if a member 
is fracture critical (FCM) or instead can be considered as a 
system-redundant member (SRM). It also proposed guidelines for bridge 
design and evaluation. To determine if a member is SRM, a numerical 
modeling approach was proposed and two load combinations were 
developed: (1) Redundancy I, relating to instantaneous member loss, 
and (2) Redundancy II, for evaluating the static behavior of the faulted 
structure. In the Redundancy I load combination, a dynamic amplifi
cation factor of 1.4 is introduced to account for the inertia effects, such 
that the behavior of the system can be investigated through static 
analysis. In this paper, the Redundancy I load combination is used in an 
explicit dynamic analysis to evaluate both the instantaneous and 
short-term dynamic behavior of the modular joint system. Thus, the 
dynamic amplification factor is not included. The Redundancy II load 
combination is used when the long-term behavior of the faulted struc
ture is evaluated. 

Typically, truss bridges are non-redundant and failure of a member 
can result in the collapse of the entire structure. Extensive research has 
been conducted on investigating the redundancy of truss-type struc
tures. The Fatigue Evaluation and Redundancy Analysis report on the I- 
35W Bridge over the Mississippi River prepared by URS Corporation 
[16] included identifying the FCMs as well as evaluating the probability 

of collapse if member failure occurs. To consider the dynamic behavior 
due to the sudden member loss, the damaged structure was idealized as a 
single-degree-of-freedom system and the loss of the member was rep
resented by a pulse force. The report assumed a 5% damping resulting in 
a dynamic impact factor (i.e., an amplification factor that accounts for 
inertial effects without performing a dynamic analysis) of 1.854. Addi
tionally, recommendations for improving the redundancy of the bridge 
were proposed. 

Cha et al. [17] experimentally and numerically evaluated the 
behavior of a simple span truss bridge when the lower chord is fractured. 
The studied bridge is composed of built-up sections which also provide 
internal member redundancy. The bridge was initially loaded to 
two-thirds of the design live load. The lower chord member at midspan 
was then partially damaged, and later the same member was completely 
fractured. The free vibration of the structure was recorded. Results from 
the experimental tests and finite element (FE) analysis (assuming 
nonlinear geometry and nonlinear material properties) showed that the 
force in the fractured lower chord was distributed to the adjacent di
agonal members as well as to the lower chord in the opposite truss plane 
thus, allowing the bridge to continue to carry load even when the lower 
chord member was completely severed. 

Yan et al. [18] investigated the resistance of planar trusses to 
collapse in the case of a damaged member through numerical and 
analytical approaches. Nonlinear dynamic models, including material 
nonlinearity, were used to analyze the truss when a member is suddenly 
removed. Two resisting mechanisms were established: catenary action if 
an upper chord member is damaged and arch action if a lower chord 
member is damaged. If a diagonal member is fractured, the response was 
found to be a combination of both collapse-resistant mechanisms. 

Khuyen and Eiji [19] proposed a linear redundancy approach that 
incorporates the plastic strength of the members to identify FCM in steel 
truss bridges. The approach allows for a more accurate representation of 
the progressive collapse of the structure in the case of a sudden member 
loss in comparison with linear static analyses. The dynamic effects are 
incorporated through a dynamic impact factor which amplified the 
forces acting in the failed member. 

Goto et al. [20] numerically estimated the dynamic impact factor 
through dynamic analyses for two Warren trusses when a tension 
member suddenly fails. Linear geometry and elastic material properties 
were assumed. A simplified method to approximate the dynamic impact 
factor using the root mean square mode combination method, which did 
not require a full dynamic analysis, was also proposed. 

Liu et al. [21] numerically investigated the alternative load-path of 
the Grand River Bridge in Cayuga, Canada by removing an individual 
member from the structure before any load is applied. Material and 
geometric nonlinearities were incorporated in the models. However, 
dynamic effects were neglected. Fragility curves were developed to 
identify the bridge safety by accounting for uncertainties associated 
with load-path redundancy analysis. 

Thai and Kim [22] proposed a numerical approach that included 
material and geometric nonlinearities to investigate the dynamic 
behavior of steel trusses under earthquake loading. Results indicated 
that the developed approach is capable of capturing different failure 
modes, including buckling, yielding, inelastic post-buckling. 

Miyachi et al. [23] numerically investigated the effect of the span 
lengths and live load location on the progressive collapse of three-span 
continuous steel truss bridges by incrementally applying the live load 
until the structure collapses. Evaluation of ductility, estimated as the 
ultimate load over the yield load, was also performed. The analyses were 
carried out for two bridges with total span length of 230 m (755 ft). 
Nonlinear geometry and material properties were assumed. Results 
showed that both bridges experienced buckling failure, however, the 
bridge with a longer center span was more ductile. When the live load 
was at the side spans, longer side spans resulted in a higher ultimate 
strength, whereas when the live load was near the inner supports, a 
longer center span resulted in a higher ultimate strength. The different 
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combinations of span lengths did not affect the ultimate strength when 
the live load was positioned at the center span. 

3. Objectives and scope 

The objective of this research is to numerically investigate the 
behavior of steel truss bridges composed of modular joints when sub
jected to the sudden loss of a diagonal member. Specifically, the 
behavior of a 119-m (390-ft) simply supported, two-lane vehicular 
bridge is investigated through high-fidelity, three-dimensional (3D) FE 
analyses. This study numerically investigates three behaviors: (1) 
instantaneous behavior immediately following member loss, focusing on 
the effect of the high-velocity stress wave, (2) short-term dynamic 
behavior of the structure following member loss, and (3) static behavior 
of the faulted structure. The focus is on the local behavior of the modular 
joint (especially the location of the weld between the bent flanges and 
the web), as well as the global behavior of the system. Ultimately, the 
paper demonstrates the ability of the modular joint to redistribute load 
after sudden loss of a diagonal member. A simple case study of a wide 
flange beam is also presented to evaluate modeling methods and 
assumptions. 

4. General features of bridge geometry and numerical models 

This paper presents a numerical investigation of the redundancy of a 
119-m (390-ft) simply supported, two-lane [9.91-m (32.5-ft) wide] 
vehicular bridge composed of modular joints, developed in Tumbeva 
et al. [1]. The modular joint is a built-up section of: 44.5 mm (1.75 in.) 
thick webs, 50.8 mm (2 in.) thick bent left and right flanges, 12.7 mm 
(0.5 in.) thick bent middle flange, and 34.9 mm (1.375 in.) thick flat 
bottom flange (Fig. 1A). The bridge consists of W14×233 lower chord 
members, W14×193 upper chord members, W14×193 portal diagonal 
members, and W14×109 diagonal members. W14×132 lateral bracing 
and W14×132 portal braces are incorporated for stability of the upper 

chord. These are joined to the modular joints via 25.4-mm (1-in.) thick 
flat plates and 38.1-mm (1.5-in.) thick stiffeners. W14×159 floor beams 
are positioned at every 3.05 m (10 ft) along the span length and are 
connected to the to the lower chord beams or lower chord modular joints 
through 38.1-mm (1.5-in.) thick stiffeners (Fig. 2). 

The section sizes of the lower chord, upper chord, and diagonal 
members, as well as the thickness of the flange and web plates of the 
modular joint, were determined through sizing optimization [1]. The 
self-weight of the system was minimized while meeting structural 
(related to fatigue of the modular joint, global system stability, ultimate 
behavior, and failure mechanism) and geometric (related to trans
potability and limiting strains from cold bending in the flange plates) 
constraints. The structural constraints were evaluated through a 
high-fidelity parametric 3D FE static analysis in ABAQUS [24]. 

The behavior of this system when a diagonal member is suddenly lost 
is evaluated using a high-fidelity 3D FE model in ABAQUS [24]. This 
model is based on the 3D FE model developed in Tumbeva et al. [1]. 
However in Tumbeva et al. [1], research focused on the static behavior 
of steel bridges comprised of modular joint, whereas the current paper 
focuses on understanding the dynamic behavior of the system after 
sudden member loss using explicit dynamic analyses, as well as an 
investigation of the behavior of the faulted structure through nonlinear 
static analysis. Thus, while the geometry of the FE model is similar, the 
analysis is very different and is a unique aspect of the dynamic perfor
mance of the modular joint given abrupt member loss. 

Because a sudden loss of a tension member is associated with energy 
release in the form of a stress wave propagating through the member at a 
very high rate, the response of the system is dynamic and therefore, in 
this paper an explicit dynamic analysis is performed. This analysis is also 
required to determine the strain rates that are developed during member 
loss event and evaluate modular joint performance.The static analysis 
evaluates the long-term behavior of the faulted structure, simulating the 
post-fracture event response and reserve strength. 

The additional assumptions (i.e., large deformation, material model, 

Fig. 2. Bridge geometry and 3D FE model.  

M.D. Tumbeva et al.                                                                                                                                                                                                                           



Journal of Constructional Steel Research 188 (2022) 107038

5

mesh size) to the 3D FE model are made to reflect the complexity of 
these analyses and particularly to be able to capture the high-velocity 
stress wave released instantaneously after the member is fractured. 

All bridge components are modeled with S3R or S4R (3- or 4-node) 
reduced integration general-purpose shell elements, both with six de
grees of freedom at each node - thee translational and three rotational 
degrees of freedom. These general-purpose shell elements are capable of 
achieving full interaction between bending moments, shear, and axial 
forces. These elements, in addition to being computationally efficient, 
are suitable for modeling curved and flat shells that can exhibit 
nonlinear material response as well as undergo large deformation, and 
therefore, are the preferable choice for the current study. However, a 
comparison between different elements types (e.g., brick, shell, and 
beam elements) is also conducted and presented later in this paper. 

A mesh refinement study, discussed in the following section, was 
performed to determine an appropriate mesh size for the current study. 
It is important to use the correct mesh size as it affects the accuracy of 
the solution and more specifically the response of the system to the high- 
velocity stress wave. 

Grade 50W structural steel is used for all components in the model, 
assuming a stress-strain relationship with linear strain hardening [15] 
with the following properties: specified minimum yield strength of 345 
MPa (50 ksi), ultimate strength of 483 MPa (70 ksi), peak strain at 
failure of 0.05, modulus of elasticity of 200 GPa (29,000 ksi), density of 
7850 kg/m3 (490 lbs/ft3), and Poisson’s ratio of 0.3. Note that the FE 
model developed in Tumbeva et al. [1] used an elastic-perfectly plastic 
material model with no strain hardening. However in the event of a 
sudden member loss, the structure is expected to redistribute load 
through ductile behavior and develop a collapse-resistant mechanism. 
Thus, nonlinear material properties including strain hardening would be 
able to represent this type of response. 

Because the system undergoes sudden changes in geometry, due to 
member being fractured, causing the development of large deflections, 
the 3D FE model in this paper also incorporates nonlinear geometry. The 
model in Tumbeva et al. [1] assumed linear geometry as the response 
was expected in the liner elastic range. 

Nonlinearity of any type typically requires iterations until conver
gence is satisfied and the system is in equilibrium. In this paper, the 
software ABAQUS [24] is used hence, analysis convergence criteria are 
automatically defined by the software. This is primarily valid when the 
global static behavior of the system is investigated. For nonlinear static 
problems, ABAQUS [24] calculates the force residual at each iteration 
and compares with a tolerance value that is set to 0.5 %. Additionally, a 
displacement correction is calculated and compared to the total incre
ment displacement. Convergence is satisfied, meaning the system is 
considered in equilibrium, if the force residual is less than the tolerance 
value as well as the displacement correction is less than 1%. 

In comparison, the explicit dynamic analysis solves for the 
displacement and velocities at the current time increment using the 
already known displacement and velocities from the previous time 
increment and therefore, iterations and convergence tolerances are not 
required. The accuracy of the solution to the dynamic problem depends 
on the stability limit which in this paper is automatically utilized by 
ABAQUS [24]. Specific details on the dynamic analysis and the stability 
limit are provided in the following section. 

The splice connections between joints and members are not explicitly 
modeled. Instead, surface-to-surface or node-to-surface constraints tie 
all degrees of freedom of the connected nodes. Specifically, all nodes 
along the edges of the flanges of the members are tied to the nodes along 
the edges of the flanges of the modular joints. Similarly, the nodes along 
the web edge of the members are tied to the nodes along the web edge of 
the modular joints. The constraint ties all degrees of freedom at the 
nodes throughout the duration of the analysis. The same approach is 
used for connecting the plates to the upper chord modular joints and 
bracing, as well as for connecting the stiffeners to the lower chord 
members and modular joints. 

The bridge deck is not physically included in the model. Instead, the 
weight of the deck is applied as a pressure at the top flange of the floor 
beam. The boundary conditions are: at one end of Truss Plane 1, 
translation is restrained; at the same end of Truss Plane 2, translation is 
restrained in longitudinal and vertical directions; at the other end of 
Truss Plane 1, translation is restrained in transverse and vertical di
rections; at the same end of Truss Plane 2, translation is restrained in 
vertical direction. The boundary conditions are applied at the node that 
is at the center of the flat flange of the each of the end lower chord joints. 

5. Instantaneous dynamic behavior 

This section investigates the instantaneous loss of a diagonal mem
ber, focusing on the effect of the high-velocity stress wave propagating 
through the member and modular joint immediately after it is severed. 
The stress wave travels with a very high speed, resulting in strain rates 
significantly above the intermediate strain rate of 10−3/s typical of live 
load passage over a bridge. These high strain rates are associated with 
lower fracture toughness of the steel, which combined with the reduced 
fracture toughness due to cold bending and welding increase the prob
ability of crack formation and crack propagation in the joint compo
nents. Thus, it is particularly important to establish strain rates caused 
by abrupt member loss. 

As described earlier, there are different procedures to simulate 
member loss. Zoli and Woodward [25] provided guidelines for modeling 
abrupt cable loss applicable for cable stayed, suspension, and arch 
bridges that can also be extended to truss bridges. An explicit dynamic 
analysis is proposed, in which the fractured member is removed from the 
model geometry. The load in the member (found through an analysis of 
the structure in the undamaged state) is applied at the two nodes con
necting the member, but in opposite direction through a quasi-static 
time step. This compensates for the member removal and allows the 
structure to return to its initial (undamaged) stress state. Once the 
steady-state is reached, the load is abruptly decreased to zero, simu
lating the sudden member loss. In this paper, the method is referred to as 
QSD. 

The time-dependent forcing function used in the QSD method is 
schematically shown in Fig. 3A, in which tr, th, and td refer to the load 
rise time, load hold time, and load release time respectively. The quasi- 
static portion of the function is the summation of the two times, tr and th. 
When the quasi-static time ends, the load release begins, and after time 
td, it ends at t = 0. After that, the structure is allowed to oscillate freely. 

A limitation in using the QSD method is that during the quasi-static 
step the load must be applied very slowly, as the rise time, tr, must be 
approximately four times the natural period of the structure [26], such 
that inertia effects are minimized and the kinetic energy is close to zero 
thus, achieving a static solution. For the simply supported bridge 
investigated in this paper, this type of analysis becomes a numerically 
challenging problem, as the natural period of the undamaged structure 
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Fig. 3. Forcing function for dynamic analysis: (A) QSD method and (B) 
SD method. 
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is 3.11 s, requiring a very long load rise time, tr, of approximately 12 s. 
To ensure that steady-state is reached, the load hold time, th is approx
imately twice this period, further lengthening the quasi-static step. 

The explicit dynamic analysis method uses the central-difference 
operator to solve the equation of motion, which is conditionally stable 
if the time increment, △t, is sufficiently small (i.e. in the order of 
10−3 ms), thus requiring a large number of time increments to reach a 
solution. This typically is not a problem, as the explicit method is pri
marily used to solve short time, high speed events. Furthermore, the 
method is highly efficient as the displacement and velocities at the 
current time increment are computed using the already known 
displacement and velocities from the previous time increment and 
therefore, the global mass and stiffness matrices do not need to be 
inverted. However, as described earlier, the bridge investigated in this 
paper requires a long quasi-static time step that would result in a very 
large number of increments and might not be capable of reaching the 
static solution. 

To avoid the above-mentioned numerical challenges, in this paper 
behavior after sudden member loss is investigated through the following 
method: (1) a static analysis on the undamaged structure is performed to 
determine the initial (undamaged) stress state of the system, (2) this 
initial stress state is imported into another model in which the fractured 
member is separated into two parts by removing a number of elements 
from the member geometry along the cross-section, (3) a force with 
equal magnitude and opposite direction to the force acting on those 
elements prior to damage is applied at the failure surfaces, and (4) an 
explicit dynamic analysis is carried out in which the force is instanta
neously decreased to zero in time, td (Fig. 3B), and the structure is let to 
vibrate freely. In this method, the initial (undamaged) stress state serves 
a starting point for the dynamic analysis, meaning that the new dis
placements and forces are calculated on the already deformed configu
ration. In this paper, this method is referred to as SD. Note that, in both 
QSD and SD, the free vibration phase starts at t = 0, which is at the end of 
the load release time, td. A direct comparison of the QSD and SD methods 
is performed through a case study of a single beam discussed later in this 
section. 

The results from both QSD and SD analysis depends on the time 
increment used in the explicit central-difference method to solve the 
equation of motion. The accuracy of the solution is controlled by the 
largest time increment, referred to as the stability limit, △tst, that is a 
function of the highest frequency of the system and the damping of the 
highest frequency mode. However, a simplified equation can be used to 
estimate the stability limit: △tst = e/cd, where e is the smallest mesh size 
used in the structure and cd =

̅̅̅̅̅̅̅̅
E/ρ

√
is the wave speed, in which E is the 

modulus of elasticity and ρ is the density. For the material used in this 
paper, cd = 5189 m/s (17024 ft/s). Hence, if the material does not 
change, the accuracy of the solution is governed by the mesh size. This 
paper utilizes the automatic time incrementation and stability option in 
ABAQUS [24]. This means that ABAQUS [24] determines the stability 
limit based on the mesh size and material properties and adjusts the time 
increment size during the analysis such that it does not exceed the sta
bility limit. 

The behavior of the system also depends on the load release time, td, 
as it simulates the sudden member loss and must be sufficiently small to 
ensure the load is rapidly released to zero. However, there is no clear 
guideline on how long td needs to be. Therefore, before implementing 
the proposed procedure on the 3D FE model, a single beam is studied to 
determine the appropriate element type, mesh size, e, and load release 
time, td. This single beam case study also provides the comparison be
tween QSD and SD. 

5.1. Single beam study 

This research uses a single beam case study to determine (1) element 
type, (2) mesh size, e, and (3) load release time, td, that will be used in 

the 3D FE model of the simply supported bridge, as well as a comparison 
of the QSD and SD methods. 

The beam in this study has the same section size (W14×109) as the 
diagonal members in the simply supported bridge and a length of 3.05 m 
(10 ft) which is one half of the length of a diagonal member. The beam is 
fixed at one end - translational and rotational (if active) degrees of 
freedom are restrained in all three directions. The load is applied at the 
free end. 

5.1.1. Element type and analysis method 
The effect of the element type on the dynamic response of the beam is 

first investigated. Three different elements types are considered: (1) 
C3DR8, 8-node reduced integration brick elements with three trans
lational degrees of freedom per node, (2) S4R, 4-node reduced integra
tion shell elements with three translational and three rotational degrees 
of freedom per node, and (3) B31, 2-node 3D linear beam with three 
translational and three rotational degrees of freedom per node [24]. For 
the brick and shell elements, enhanced hourglass control is used. For all 
three element types, the mesh size is 25.4 mm (1 in.). 

The explicit dynamic analysis for each element type is performed 
using both QSD and SD methods. When the QSD method is used, the 
structure is initially unstressed. A tensile stress of 53.5 MPa (7.75 ksi) 
corresponding to the stress in D4 (indicated in Fig. 2) under Redundancy 
I load combination (to be discussed further in the next section), is 
applied at the edges of the top and bottom flanges and web at the free 
end of the beam utilizing the forcing function in Fig. 3A. 

Prior to implementing the QSD method, modal analyses were con
ducted to determine the period of the first mode for each element type, 
from which the load rise time, tr, and load hold time th were calculated 
following the recommendation described earlier. 

When the SD method is used, the initial (undamaged) state of the 
beam corresponds to that of D4 under the Redundancy I load combi
nation. This initial state is imported into a dynamic analysis in which the 
53.5 MPa (7.75 ksi) stress is applied in compression at the edges of the 
top and bottom flanges and web at the free end utilizing the forcing 
function in Fig. 3B. For both methods, the load release time, td, is 0.005 
ms. 

Regardless of element type or analysis method, the expected 
behavior is that after the load is released, a compressive wave travels 
along the beam at a rate of approximately the wave speed, cd. This is 
demonstrated by tracing the axial stresses, acting at the center of gravity 
of the section, along the beam length. Fig. 4A shows the compressive 
stress wave that has propagated into the beam at time t = 0.2 ms after 
the load was released for all element types as well as analysis methods. It 
can be seen that all three element types along with both methods 
converge to approximately the same solution, with the wave having 
traveled about the same length of 1 m (3.3 ft), as expected. 

As shown in Fig. 4A, the wave has similar path for the brick and shell 
elements but it is different for the frame elements, indicating that the 
frame elements are not capable of capturing the full dynamic behavior of 
the beam. There is a clear advantage of using shell elements due to their 
higher computational efficiency (as compared to brick elements). 
Therefore, this research utilizes shell elements for all bridge components 
in the 3D FE model. The study also verifies that both the QSD and SD 
methods provide the same response. The SD method is used in this paper 
due to the previously mentioned challenges in using the QSD method for 
the 3D FE model. 

5.1.2. Mesh refinement study 
The mesh size is determined through a mesh refinement study, in 

which the beam is modeled with shell elements and the SD method is 
used. Four different mesh sizes, e, are considered: 6.35 mm (0.25 in.), 
12.7 mm (0.5 in.), 25.4 mm (1 in.), and 50.8 mm (2 in.). The beam 
behavior is investigated by tracing the axial stresses, acting at the center 
of gravity of the section, along the beam length. 

Fig. 4B shows the compressive stress propagating through the beam 
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at t = 0.2 and t = 0.4 ms after the load is released. The plot indicates that 
the beam response is similar regardless of the mesh size. Furthermore, 
for both times, the wave has traveled the expected 1 m (3.3 ft) and 2 m 
(6.7 ft), respectively, meaning that all mesh sizes result in a stability 
limit sufficiently small to achieve an accurate solution. The order of 
magnitude of the stability limit determined using the simplified equa
tion given earlier in this paper is 10−6, which is also what ABAQUS [24] 
uses in the analysis. A slight difference in the wave path is noticeable for 
the beam with the 50.8 mm (2 in.) mesh size. Based on these results, the 
selected mesh size to be used in the 3D FE model is 25.4 mm (1 in.). 

Fig. 4C presents the axial stress contour of the beam for the 25.4 mm 
(1 in.) mesh size which clearly shows the wave path for t = 0.2 and t =
0.4 ms. The initially stressed beam experiences load reduction as the 
wave propagates through, which is demonstrated by the change in color 
in the stress contour. For example, at time t = 0.2 ms, approximately 
two-thirds of the beam (measured from the fixed end) maintains its 
initial load, defined by the red stress contour in Fig. 4C. The slight os
cillations that are seen in Fig. 4B can also be identified in the stress 
contour. 

5.1.3. Load release time 
To understand the effect of the load release time, td, a sensitivity 

study was conducted in which a range of times, td, between 5E − 6 ms 
and 5 ms were investigated. The beam was modeled with 25.4 mm (1 
in.) mesh size shell elements and the SD method was used. The beam 
response is demonstrated by tracing the axial stresses, acting at the 
center of gravity of the section, along the beam length, at a time, t = 0.2 
ms, after the load was released for each of the investigated times, td. This 
is shown in Fig. 4D. 

It is evident that the time to release the load to zero has a significant 
effect on the behavior. As td becomes longer, the wave starts propagating 
through the beam before the load is completely reduced to zero. For 
example, td = 0.05 ms results in a wave that travels approximately 1.5 m 
(4.9 ft) which is longer than the expected 1 m (3.3 ft). Because the wave 
speed and the time are constant in this case, the cause of this difference 
is that the wave is in the beam before the load reaches zero. The much 
higher stresses for td above 0.05 ms indicate that the wave has already 
propagated through the beam, reflected at the fixed end, and traveled 
back towards the free end, and that likely happened several times. As 
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shown in Fig. 4D, release times below td = 0.05 ms converge to the same 
results, with the wave traveling approximately the same length of the 
expected 1 m (3.3 ft). Thus, the 3D FE model uses td = 0.0005 ms. 

5.2. Simply supported vehicular bridge 

The instantaneous loss of a diagonal member (D4) of the simply 
supported, two-lane vehicular bridge is investigated through an explicit 
dynamic analysis which utilizes the findings from the single beam study 
as follows: all bridge components are modeled with shell elements and 
25.4 mm (1 in.) mesh size, the release load time is td = 0.0005 ms, and 
the SD method in which the dynamic analysis is performed on the initial 
(undamaged) deformed shape of the bridge is used. Note that damping 
was not included in the dynamic analysis. This is primarily because the 
high velocity stress wave propagates rapidly resulting in an instanta
neous impact for which damping would not yet be activated. It is also 
conservative to ignore the effect of damping. 

For the SD analysis method, the initial (undamaged) stress state as 
well as the tensile force in the failed diagonal member need to be known 
prior to performing the dynamic analysis. This initial stress state is found 
through a static analysis of the bridge in which the Redundancy I load 
combination developed in Connor et al. [14] and AASHTO Guide 
Specifications [15] is used: 

Redundancy I : (1 + DAR)(1.05DC + 0.85LL) (1)  

where DC is the dead load of the bridge components, LL is the vehicular 
live load, and DAR is the dynamic amplification factor. The dead load 
includes the self-weight of the structural steel components as well as a 
1.25 kN/m2 (25 psf) lightweight deck. The live load includes two lanes 
of vehicular traffic corresponding to 18.7 kN/m (1280 lbs/ft) uniformly 
distributed lane load and two design trucks positioned to produce the 
worst effect [8]. The dynamic amplification factor, DAR intended to be 
used in a static analysis to account for the inertia effects associated with 
member damage. Because in this paper an explicit dynamic analysis is 
performed, this dynamic amplification factor is not needed (i.e., 
DAR=0). 

Once the initial (undamaged) stress state is found, it is then imported 
into the explicit dynamic analysis in which diagonal member, D4 in 
Truss Plane 1, is severed by removing 50.8 mm (2 in.) from the geometry 
along its midsection. The tensile stress of 53.5 MPa (7.75 ksi) acting at 
that section is applied at the flange and web edges in compression very 

rapidly at time td as shown in Fig. 3B. The dynamic analysis is continued 
for 1 ms. This short time duration allows for a large number of time 
increments (at every 0.0002 ms) to be recorded, providing a high- 
fidelity time history of the stress wave propagating through the diago
nal member into the adjacent modular joints. Note that, in this case the 
entire cross section of the beam is severed which is considered conser
vative and simulates unstable crack propagation. Thus, if the beam had a 
larger cross section, the size of the fracture would increase, resulting in 
higher energy release and hence, a larger stress applied at the fractured 
surface. The compressive stress wave then propagates within the same 
time frame but with higher intensity, ultimately increasing the strain 
rates measured in the modular joint components. 

Fig. 5A shows the axial stress contour at time, t = 0.3 ms, after 
fracture has occurred. At this time, the high-velocity stress wave trav
eled approximately half of the undamaged portion of D4, or around 1.52 
m (5 ft). The axial stress time history is recorded at this location and is 
presented in Fig. 5B. The instant the high-velocity stress wave has 
reached the section is clearly indicated by the sudden change in stress 
from the initial (undamaged) magnitude of 53.5 MPa (7.75 ksi) to 
approximately zero. 

To further investigate the high-velocity stress wave impact on the 
diagonal member, the strain rates at the section cut indicated in Fig. 5A 
are calculated. Note that right at the vicinity of the fracture, the strain 
rates are expected to be the highest, and at sections further from the 
fracture, the strain rates should decrease. The strain rate is measured as 
the change in strain between two time instants, where strain is calcu
lated using the axial stress in the element and the modulus of elasticity. 
The region with the biggest change in the shortest time is considered 
(marked in Fig. 5B). As expected, high strain rates are measured in the 
diagonal member: 2.02, 2.09, and 3 /s for the top flange, bottom flange, 
and web respectively. These strain rates are much higher than the in
termediate strain rates of 10−3/s which are typically associated with 
undamaged bridges under live load. As the diagonal members are hot 
rolled as opposed to built-up welded sections, the high strain rates are 
not expected to further compromise the section. 

Because the stress wave travels at a very high rate [cd = 5189 m/s 
(17024 ft/s)], it reaches the modular joints connecting the damaged 
diagonal member (LJ5 and UJ4, where LJ indicates lower chord joint, 
and UJ indicates upper chord joint) in just 0.59 ms. Once the wave 
propagates into the joint, it disperses in different directions along the 
web and the flanges, and also travels back into the severed diagonal 
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member. The response of the modular joint to the impact of the 
compressive stress is investigated by recording the von Mises stress time 
history at several sections in the starter segments (Side R, Chord R, Side 
L, Chord L) and the bent flange plates (Bend R, Bend T, Bend L) of the 
lower chord modular joint LJ5 (sections indicated in Fig. 2). For the 
purpose of this investigation, the dynamic analysis is continued to 10 
ms, which provides enough time for the wave to reach these sections. As 
the analysis time is longer, to save computational resources, the results 
are recorded at every 0.002 ms which still provides a high-fidelity time 
history of the stress wave propagating through the modular joint. The 
stress time histories are presented in Fig. 6 and Fig. 7. Additionally, the 
von Mises stress contours of the wave passing through the sections are 
shown in Fig. 8. 

The instant the wave passes through the sections is distinctly defined 
by the sudden change in von Mises stress in the time history diagrams 
(Fig. 6). Side R, being closer to the severed diagonal member D4 has the 
highest von Mises stress change which is particularly noticeable in the 

middle flange. When the stress wave propagates through Side R, the von 
Mises stress in the middle flange decreases from the initial value of 86 
MPa (12.5 ksi) to approximately 20 MPa (3 ksi). Similar behavior is seen 
in the right flange and the web. However, as the wave passes through 
Side R, the von Mises stress in the middle flange begin to increase with 
peak value of 101 MPa (15 ksi) which is likely due to the middle flange 
plate having smaller thickness than the right flange and web plates. 
Fig. 8 clearly shows that the initially stressed Side R experiences load 
reduction as the wave propagates through, which is demonstrated by the 
change in color in the stress contour. Side L has a similar behavior with 
the stresses in the middle flange being much higher than the stresses in 
the left flange and web. However, the change in von Mises stress is 
smaller (Fig. 6). The peak von Mises stress of 119 MPa (17 ksi) is 
recorded in the middle flange which is approximately 47 MPa (7 ksi) 
increase from the initial stress. The change in von Mises stress in Chord R 
and Chord L are very small as it can be seen in Fig. 6. This is also evident 
from Fig. 8, as the stress contour in these sections does not significantly 
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change. 
The behavior of the bent flange plates follows similar trend with 

Bend M and Bend R having higher von Mises stress change compared to 
Bend L (Fig. 7). This is expected behavior, as both sections are closer to 
the fractured diagonal and thus, the wave propagates with higher in
tensity. Bend R experiences an instantaneous reduction in von Mises 
stress from its initial value of 114 MPa (16 ksi) to approximately 82 MPa 
(11.9 ksi), which is relatively low. As shown in Fig. 7, the sudden change 
in von Mises stress in Bend M increases the initial stress [24 MPa (3.5 
ksi)], indicating that this section is initially in compression and accu
mulates compressive stresses as the high-velocity stress wave passes 
through which is also observed by the change in the stress contour in 
Fig. 8. The von Mises stress in Bend M continues to increase in time with 

peak value of 58 MPa (8.5 ksi). Fig. 7 and Fig. 8 show that Bend L ex
periences a very small change in von Mises stress [around 15 MPa (2.15 
ksi)]. This is expected, as this sections is further away from the fractured 
diagonal member. Overall, the sudden change in von Mises stress in the 
bent regions is found to be relatively small. This behavior can also be 
observed from Fig. 8, as the stress contour does not significantly change 
as the wave is passing through the bent plates. 

The von Mises stress time histories in Fig. 7 as well as the stress 
contours in Fig. 8 indicate that none of the sections yield due to the 
instantaneous impact of the high-velocity stress wave. However, as the 
modular joint is composed of welded and cold bent flange plates, 
resulting in a reduced fracture toughness, there is a potential for further 
reduction in fracture toughness due to high strain rates (above 10−3/s). 
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Strain rates associated with abrupt member loss need to be considered in 
the design of the modular joint system, such that the modular joint is 
protected from fracture. While the system is able to tolerate the loss of a 
diagonal member, it would not be able to redistribute load if a modular 
joint is lost. Table 1 presents strain rates calculated for each section. As 
expected, the strain rates are the highest in Side R because of its prox
imity to the damaged diagonal member and lower strain rates are 
measured in the other sections. However, the strain rates measured in 
the bent flange plates are significantly higher than the intermediate 
strain rates of 10−3/s measured in undamaged bridges under live load. 
Thus, strain rates associated with sudden member loss need to be 
considered in design so that the modular joint is protected and fracture 
in any of the plates does not occur. Limiting the bend radius of the flange 
plates as a function of the plate thickness as well as using steel plates that 
exceed the minimum CVN requirements for the selected application 
increase the fracture toughness of the steel and thus, would be beneficial 
for the modular joint. 

6. Short-term dynamic behavior 

This section focuses on the short-term dynamic behavior of the 
bridge following the sudden loss of diagonal member, D4. The dynamic 
analysis from the previous section is continued to 2 s. Conservatively, 
damping was not used in this short-term dynamic analysis. In this sec
tion, the lower and upper chord members as well as the diagonal 
members (not indicated in Fig. 2) are labeled based on the modular 
joints they connect. For example, L4-5 indicates lower chord member 
connecting lower chord joints LJ4 and LJ5; D5-5 indicates a diagonal 
member connecting lower chord joint LJ5 and upper chord joint UJ5; 
U4-5 indicates an upper chord member connecting upper chord joints 
UJ4 and UJ5. 

6.1. System behavior 

As the modular joints are able to respond to the impact of the high- 
velocity stress wave and also redistribute the load into the adjacent 
members, this section investigates the short-term dynamic behavior of 
the entire system. This corresponds to the state of the structure after load 
has been released and the effect of the instantaneous impact has 
diminished and is recorded for a longer time period. The focus is on the 
ability of the members and the structure to continue carry load after 
member loss which is evaluated by recording the change in vertical 
displacements at midspan as well as the von Mises stress contour of the 
system response. 

The change in vertical displacements through time is recorded at the 
midsection of the lower chord member located at midspan, for both truss 
planes (fractured diagonal member D4 is in Truss Plane 1) and is pre
sented in Fig. 9. As the free vibration phase continues, at approximately t 
= 1.6 s, the stresses in the upper chord joint UJ5 were found to exceed 
the ultimate stress of 483 MPa (70 ksi) as shown in Fig. 10D. Therefore, 
the results are only given for the time frame between zero and 1.6 s. 

The displacement in the initial (undamaged) state are also presented 

in Fig. 9. The peak initial (undamaged) displacements in both truss 
planes is -389 mm (-15.3 in). In the free vibration phase, after member 
loss, the displacements in both truss planes oscillate approximately with 
the same magnitude that is close to the initial, indicating that the system 
maintains stability and continues to carry load. The peak positive 
displacement of 454 mm (17.9 in.) is recorded at time t = 0.496 s in 
Truss Plane 1 while the peak negative displacement of -375 mm (14.8 
in.) is recorded at time t = 0.952 s in Truss Plane 2. The difference in 
response between the two truss planes is expected with larger dis
placements recorded in Truss Plane 1. This is because the fracture is only 
in Truss Plane 1 and therefore, load is primarily distributed to its 
members, particularly in the beginning of the free vibration phase. 

The magnitude of the displacement indicates that some sections in 
the chords are yielding during the free vibration phase. Fig. 10 presents 
the response of the system through the von Mises stress contour for 
different times after member is severed. Fig. 10A shows the initial (un
damaged) stress state. Approximately at t = 0.42 s, the top flange of the 
lower chord member, L4-5 in Truss Plane 1, reaches the yield stress at 
the side with joint LJ4 (Fig. 10B). At the same time, t = 0.42 s, the top 
flange of the upper chord member, U4-5 in Truss Plane 1, at the side with 
joint UJ5 begins to yield as well (Fig. 10B). The opposite lower chord 
and upper chord members in Truss Plane 2, at t = 0.42 s maintain their 
initial stress state, indicating that Truss Plane 2 is not engaged yet. With 
time, more sections of members L4-5 and U4-5 in Truss Plane 1 begin to 
yield. As shown in Fig. 10C, at time t = 0.56 s, larger potion of the top 
flange of member U4-5 at the side with joint UJ5 has reached yield 
stress. Similar behavior is observed but in the bottom flange of U4-5 at 
the side with joint UJ4. The von Mises stress contour presented in 
Fig. 10D shows that, as the system continues to vibrate, the stresses in 
the chords in both truss planes have increased with some sections 
reaching above the yield stress, clearly demonstrating the redistribution 
of the load along the bridge span. 

The stress contour in Fig. 10D also indicates the 3D beahavior of the 
system regardless of having only one truss plane compromised. In 
addition, the deformed shape shows that the members in Truss Plane 1 
closer to the fractured diagonal member experiece out-of-plane move
ment, further demonstrating the 3D behavior. 

As shown in Fig. 10E, at time t = 1.6 s, the middle bent flange of the 
upper chord joint UJ5 is stressed up to the material’s ultimate stress of 
483 MPa (70 ksi). This is likely due to the increased stress in the diagonal 
member D5-5. In its initial state, member D5-5 has very small, close to 
zero compressive stresses. However, due to the fractured diagonal D4, 
the stresses in sections Side R and Side L of joint LJ5 increase signifi
cantly (Fig. 6), which are then transferred through the diagonal member 

Table 1 
Strain rate associated with instantaneous dynamic behavior of modular joint LJ5 
(sections indicated in Fig. 2).   

Strain rate (/s)  

Side 
R 

Chord 
R 

Side L Chord 
L 

Bend 
R 

Bend 
M 

Bend 
L 

Middle 
flange 

1.82 NA 0.252 NA NA 0.663 NA 

Right 
flange 

1.02 0.334 NA NA 0.583 NA NA 

Left flange NA NA 0.126 0.24 Na NA 0.208 
Flat flange NA 0.171 NA 0.158 NA NA NA 

Web 0.61 0.174 0.488 0.122 NA NA NA  

Dynamic anlysisStatic anlysis

Member fractureIntial state

1.05DC

1.05DC + 0.85LL

Truss Plane 1 

Truss Plane 2 

Time (s)

Fig. 9. Short-term dynamic behavior: vertical displacements at midspan lower 
chord member. 
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D5-5 to joint UJ5. This can be seen in Fig. 10B and Fig. 10C. In addition, 
the starter segment of joint UJ5 is also initially in compression, and the 
failed elements are exactly at the bend region of the middle flange plate 
which has relatively small thickness of 12.7 mm (0.5 in.), further 
contributing to the high stresses in the upper chord joint. After t = 1.6 s, 
the stresses in the system start to increase and the structure likely be
comes unstable. However, the results clearly show that the modular 
joints are capable of redirecting load to the members adjacent to the 
fractured diagonal member and these members are able to sustain that 
additional load. Furthermore, as the system continues to vibrate, Truss 
Plane 2 significantly contributes in carrying the load thereby providing 
additional capacity. 

Overall, the short-term dynamic analysis demonstrated the ability of 

the modular joint system to continue to carry load through flexure after 
a diagonal member is damaged. 

6.2. Local behavior: lower chord modular joint LJ5 

The short-term dynamic behavior of the lower chord modular joint 
LJ5 is investigated by recording the von Mises stress time history at the 
four sections in the starter segments and the three sections in the bent 
region of the flange plates, shown in Fig. 6 and Fig. 7 respectively. The 
peak von Mises stresses at each section are presented in Table 2. 

As the system is let to vibrate freely, the von Mises stress in the 
middle flange of section Side R continues to increase with peak value of 
184 MPa (27 ksi). The out-of-plane movement of the fractured diagonal 

(A)

(B) (C)

Truss plane 2

Truss plane 1

483 MPa

(D) (E)

UJ5

> 345 345 287 230 172 115 57 0

von Mises

(MPa)

LJ5

UJ5

UJ4

D4

UJ5

Top flange yields

Top flange yields

UJ5

UJ4

D4

LJ5

LJ4

LJ4

Bottom flange yields

UJ4

D4

LJ5

LJ4

UJ5

Truss Plane 1

Truss Plane 2
Truss Plane 2

Truss Plane 1

Truss Plane 1

Truss Plane 2
Truss Plane 2

Truss Plane 1

D4

UJ5
UJ4

LJ5
LJ5

Fig. 10. Short-term dynamic behavior through von Mises stress contours of the system at: (A) Initial (undamaged) state, (B) Time t = 0.42 s, (C) Time t = 0.56 s, (D) 
Time t = 1.56 s, and (E) Time t = 1.6 s. 
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D4, in combination with the relatively small thickness of 12.7 mm (0.5 
in.) of the middle flange plate are likely the cause of the high stresses. 
Section Side L experiences similar behavior. However, the recorded peak 
von Mises stress of 447 MPa (65 ksi) is much higher and close to the 
ultimate stress of 483 MPa (70 ksi). The von Mises stress in the left flange 
and web plates increases as well. This behavior indicates that the un
damaged diagonal member, D5-5, significantly contributes to the 
redistribution of the load when D4 is damaged, which can also be seen in 
Fig. 10. The high stresses in the middle flange are also caused by the out- 
of-plane movement of the fractured member D4 and thinner middle 
flange plate. The middle flange plate has a thickness of 12.7 mm (0.5 in.) 
that was selected through the optimization approach in Tumbeva et al. 
[1]. However in Tumbeva et al. [1], under all load scenarios, the forces 
acting in the middle flange plate were found to be very small, close to 
zero. Increasing the thickness of the middle flange plate would poten
tially reduce the stresses in the bent region to provide higher safety 
when a diagonal member is damaged. 

The stress contours in Fig. 10B and Fig. 10C as well as the time 
histories for sections Chord R and Chord L given in Fig. 6, indicate that 
the chord starter segments of LJ5 are able to respond to the sudden 
change in structure’s geometry through flexure, thereby providing a 
path for the load to be redirected to the adjacent members. As section 
Chord R is right under the fractured member, stresses are expected to be 
higher than the stresses in section Chord L. The von Mises stresses in the 
web of section Chord R have reached the yield point, while the von Mises 
stresses in the flat flange are above the yield stress with peak value of 
365 MPa (53 ksi). Lower von Mises stresses are recorded in the right 
flange of the section with peak value of 265 MPa (38 ksi). Section Chord 
L experiences similar behavior but with the highest peak von Mises 
stress of 304 MPa (44 ksi) found in the flat flange, indicating that the 
section has not yielded during the free vibration period. Note that the 
initial (undamaged) stress state in both sections, Chord R and Chord L, is 
primarily axial. However, the recorded dynamic behavior of having 
different stresses in the right/left and flat flanges, indicates that if D4 is 
damaged, the chord segments of joint LJ5 are able to redistribute the 
load to the adjacent lower chord members, L4-5 and L5-6, through 
flexure. 

Fig. 7 shows that none of the sections in the bent regions have 
yielded which is desirable since the flange plates are cold bent and 
welded to the web. Section Bend R has a peak von Mises stress of 319 
MPa (46 ksi) which is the highest compared to the other sections, as 
expected, but it is considerably close to the yield stress. The stresses in 
Bend M are the smallest with peak von Mises stress of 225 MPa (33 ksi). 
The time history for Bend L shows that the section maintains stresses 
close to the initial stress of 123 MPa (18 ksi) up to approximately t = 1.2 
s and then the stresses increase significantly reaching a peak value of 
302 MPa (44 ksi). 

The periodic response of the joint components that is shown in Fig. 6 
and Fig. 7 is expected as the system oscillates freely when load is being 
redistributed away from the fractured member (this behavior is also 
observed from Fig. 9). The model does not include damping and thus, 
the response does not decay in time. 

It is also important to investigate the effect of the free vibration phase 
on the strain rate behavior of the modular joint. Table 3 presents strain 

rates calculated for each section. Similar to the instantaneous dynamic 
behavior, strain rates are the highest in Side R and lower strain rates are 
measured in the other sections. Although the stresses recorded in the 
short-term dynamic behavior are much higher (Fig. 6 and Fig. 7), the 
measured strain rates are smaller in comparison with the measured 
strain rates in the instantaneous dynamic behavior (Table 1) and also are 
more consistent with the strain rates of 10−3/s that are typically asso
ciated with undamaged bridges under live load. This is primarily 
because the change in stress occurs over a larger time frame in the short- 
term dynamic response. Therefore, it is important that the analysis is 
capable of capturing the instantaneous dynamic behavior of the modular 
joint such that the associated strain rates can be measured. 

The results presented in this section clearly indicate that the modular 
joint is capable of redistributing the load through the starter segments 
and bend regions of the flange plates. To potentially reduce the stresses 
in the flange plates, their thickness could be increased. The web thick
ness and/or depth could be increased as well, to accommodate the 
relatively high stresses developed in the bottom flange. 

7. Static behavior of the faulted structure 

The prior sections investigated the instantaneous and short-term 
dynamic behavior of the modular joint system following sudden loss 
of diagonal member D4. This section, instead, focuses on the long-term 
behavior of the faulted system under normal use, thus investigating a 
circumstance in which the damage has not been detected and vehicular 
traffic continues. To simulate such scenario, a diagonal member is 
individually removed from the geometry at the beginning of the anal
ysis. This study considers diagonal members D1 through D6 (Fig. 2) 
located in Truss Plane 1. The Redundancy II load combination devel
oped in Connor et al. [14] and AASHTO Guide Specifications [15] which 
is similar to the Strength I load combination in American bridge design 
code [8] is used: 

Redundancy II : 1.05DC + 1.30(LL + IM) (2)  

where IM is the dynamic live load allowance factor (IM = 15%). The 
dead load, DC, and the live load, LL, are the same as in the previous 
section. 

The 3D FE model shown in Fig. 2 and detailed earlier is used to 
perform an implicit nonlinear static analysis in which a single diagonal 
member is removed. Dynamic effects associated with sudden member 
loss are ignored (i.e., the diagonal member was simply not included in 
the model from the start). 

Fig. 11A compares the load-displacement behavior of an undamaged 
structure to the structure with different diagonal members removed (i. 
e., each damaged structure has one diagonal member removed, with the 
removed member identified in the legend). Displacements are measured 
at the midsection of the lower chord member located at midspan in Truss 
Plane 1. For all damaged cases, except for D1, the structure is able to 
carry the full dead and live load, including load factors. It is not unex
pected that the loss of D1 cannot be tolerated, as this is a region of high 
shear demand and thus, the forces in D1 are the highest. Note that the 
portal diagonal member is not part of this study. Although, the structure 

Table 2 
Peak von Mises stress associated with short-term dynamic behavior of modular joint LJ5 (sections indicated in Fig. 2). NA = not available   

von Mises stress (MPa)  

Side R Chord R Side L Chord L Bend R Bend M Bend L 

Middle flange 184 NA 447 NA NA 225 NA 
Right flange 30 265 NA NA 319 NA NA 
Left flange NA NA 219 183 NA NA 302 
Flat flange NA 365 NA 304 NA NA NA 

Web 61 346 191 151 NA NA NA  
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is able to carry the full load in all cases except in D1, it is evident that the 
stiffness is reduced significantly, depending on which diagonal member 
is removed. The stiffness at the end of the load-displacement curve after 
the full load has been applied is compared to the initial elastic stiffness of 

the undamaged bridge. The initial elastic stiffness is determined by 
calculating the slopes between every two successive increments within 
the linear elastic region in the load-displacement curve, and taking their 
average. The end of the initial elastic region is defined at the point where 
two successive slopes differ more than 0.1%. Comparing all member loss 
cases (except D1), the D6 case is the most stiff, as it is able to maintain 
approximately 62% of its initial elastic stiffness, whereas the D2 case is 
the least stiff as it maintains just 40% of its initial elastic stiffness. This 
directly correlates with the shear demand (and the force in the diago
nal), being less in the center of the span compared to the end. To miti
gate the loss in stiffness, the chords and modular joints could be 
proportioned with greater depth. 

Fig. 11B shows the von Mises stress distribution of the faulted 
structure when member D4 is removed. Similar to the short-term dy
namic response, the members adjacent to the fractured member are 
affected the most. As expected, the stresses in the starter segments of the 
two modular joints connecting the removed D4 (LJ5 and UJ4) are zero. 
Overall, in the four modular joints (LJ4, LJ5, UJ4, and UJ5), the sections 
closer to D4 experience the highest stress concentration. This is espe
cially noticeable in the flat flange of the lower chord joint LJ5 which has 
developed stresses above the yield stress [peak stress of approximately 
413 MPa (60 ksi)], causing a significant decrease in the stiffness 
(Fig. 11A). However, none of the elements in the modular joints have 
developed stresses close to the ultimate stress of 483 MPa (70 ksi) thus, 
allowing the structure to remain stable. The stress contour in Fig. 11B 
indicates that the load that would have been in D4 is being redistributed 
through flexure to the surrounding members. 

Fig. 11B clearly shows that the diagonal members closer to D4 are 
being significantly stressed, as a direct result of the fracture and load 
being redirected to the adjacent members. However, in typical design, 
without considering a member loss event, the diagonal members are 
designed for much smaller stresses, usually close to zero. Therefore, in 
the case of a sudden loss of a diagonal member, for the structure to 
continue carry load, the diagonal members adjacent to the fractured 
should be designed to sustain the transferred load. Furthermore, buck
ling of the compressive diagonal members should be considered such 
that the system is protected from losing another member. Fig. 11B also 
shows that the lateral bracing adjacent to the removed member as well 
as the opposite upper chord are engaged. 

Overall, the global system behavior of the faulted structure was 
evaluated through a nonlinear static approach. The results demonstrated 
the ability of the modular joints to sustain the sudden loss of a diagonal 
member and redistribute the load through flexure. 

8. Conclusions 

This paper presented a numerical investigation of the redundancy of 
steel truss bridges composed of modular joints when subjected to sudden 
loss of diagonal member including the response of the system through 
nonlinear dynamic analysis and nonlinear static analysis. 

This section includes recommendations for performing the dynamic 
analysis as well as summarizes major research findings. 

Table 3 
Strain rate associated with short-term dynamic behavior of modular joint LJ5 (sections indicated in Fig. 2). NA = not available.   

Strain rate (/s)  

Side R Chord R Side L Chord L Bend R Bend M Bend L 

Middle flange 4.9E − 2 NA 1.1E − 2 NA NA 7E − 3 NA 
Right flange 1E − 2 6E − 3 NA NA 7.7E − 3 NA NA 
Left flange NA NA 8.1E − 3 6.3E − 3 NA NA 3.9E − 3 
Flat flange NA 7.8E − 3 NA 6.8E − 3 NA NA NA 

Web 1E − 2 4E − 3 7.4E − 3 3.3E − 3 NA NA NA  

(B)
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0

69
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207

276

345
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D4
D5
D6
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1.05D + 1.3 (LL + IM)

1.05DL

Truss 
Plane 1

Truss P
lane 2

UJ4

UJ5

LJ5

LJ4

Fig. 11. Static behavior of the faulted structure: (A) Load-displacement curves 
for loss of diagonal members (numbers indicated in Fig. 2) and (B) von Mises 
stress contour for loss of D4. 
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8.1. Recommendations for numerical analysis 

An explicit dynamic analysis was used to investigate the behavior of 
the modular joint system when subjected to sudden loss of a diagonal 
member. The results show that the analysis is able to capture the 
instantaneous response of the modular joints to the high-velocity stress 
wave as well as the short-term dynamic behavior of the system. It is 
particularly important that the strain rates developed in the cold bent 
and welded flange plates of the modular joint as a result of the high- 
velocity stress wave can be calculated from the analysis, as they are 
significantly above the intermediate strain rates typical of live load 
passage over a bridge and reduce the fracture toughness of the plates. 
This dynamic analysis would be most important in systems composed of 
welded components and/or bent plates. 

The following recommendations on performing the dynamic analysis 
are suggested:  

• The FE model should be developed using brick or shell elements 
which better capture the behavior of the structure under the high- 
velocity stress wave when compared to frame elements. Shell ele
ments are more suitable in large-scale models due to their higher 
computation efficiency.  

• A full 3D FE model that closely represents the structural system 
should be used due to the unsymmetrical behavior of a system when 
subjected to member loss. Modeling half or quarter of the system 
would reduce the computational expense, but would not be able to 
accurately capture the 3D load distribution that occurs.  

• The mesh size of the shell elements should be selected such that the 
stability limit required in the explicit time integration rule is suffi
ciently small for the method to achieve an accurate solution. A mesh 
refinement study should be performed to establish appropriate mesh 
size. The simplified approach of calculating the stability limit could 
be used to approximate mesh size to start the mesh refinement study.  

• The FE model should incorporate nonlinear material properties 
including strain hardening, as the structure is expected to redis
tribute load through ductile behavior and develop a collapse- 
resistant mechanism. In addition, as the system undergoes sudden 
changes in geometry causing the development of large deflections, 
nonlinear geometry should also be considered.  

• The SD analysis method is more appropriate for evaluating structures 
with longer natural periods (e.g., above 1 s). This method requires a 
static analysis of the undamaged structure to establish an initial 
stress state. This initial stress state needs to be imported into a 
different model, therefore, the FE software should have this capa
bility. The QSD analysis model could be implemented for short 
period structures (e.g., less than 1 s).  

• For both the SD and QSD analysis methods, the load release time, td, 
must be sufficiently small to ensure that the load is applied instan
taneously. A sensitivity analysis should be performed to establish 
load release time in which the stability limit could be used as a 
starting point. Expected load release times are in the order of 0.0005 
ms. 

The proposed dynamic approach, for evaluating both instantaneous 
and short-term dynamic behavior, is suitable for other steel structures 
with other forms (i.e., variable-depth), different span arrangements (e. 
g., three-span continuous system), and span lengths as well as systems 
that are not composed of modular joints. 

8.2. Summary of behavior 

This paper presented a numerical investigation of the redundancy of 
the modular joint system for the case of a 119-m (390-ft) simply sup
ported, two-lane [9.91-m (32.5-ft) wide] vehicular bridge, focusing on 
three behaviors: (1) instantaneous dynamic behavior, focusing on the 
effect of the high-velocity stress wave, with its associated high strain 

rates and impact on fracture toughness particularly in the cold bent and 
welded portion of the modular joint, (2) short-term dynamic behavior of 
the structure, and (3) static behavior of the faulted structure. Major 
findings and conclusions specifically relevant to this structural system 
include:  

• Dynamic and static analyses demonstrated that the modular joint is 
able to redistribute load through flexure when a diagonal member is 
lost. 

• High-velocity stress waves should be considered to evaluate mini
mum fracture toughness requirements. As a result of the instanta
neous impact of the stress wave on the modular joint, strain rates in 
the cold bent and welded flange plates were found to be significantly 
higher than the intermediate strain rates of 10−3/s that are typically 
associated with undamaged bridges under live load. These higher 
strain rates (associated with member loss) lower the fracture 
toughness of the flange plates, which in combination with the 
reduced fracture toughness of the flange plates due to cold bending 
and welding, require a particular consideration in design for sudden 
member loss, such that the modular joint is protected and fracture in 
any of the cold bent plates does not occur.  

• Current AASHTO provisions prescribe minimum toughness of steel 
using CVN requirements based on thickness and service temperature. 
However, it should be noted, that the minimum CVN requirements 
are in terms of the as-rolled condition of the plate and does not 
directly account for the change in fracture toughness due to welding 
and forming of the steel. Additional requirements associated with 
welding and cold bending of the plates must also be met to ensure 
enough toughness. It is therefore, recommended that fabrication of 
the modular joints is according to the Fracture Control Plan specified 
in the AASHTO/AWS (American Welding Society) D1.5M/D1.5 
Bridge Welding Code [27]. In addition, especially when considering 
dynamic strain rates, having plates that exceed the minimum CVN 
requirements is beneficial. A sensitivity analysis to account for 
toughness based on various factors (temperature, thickness, bend 
radius, etc.) would be an important area for future research.  

• Modular joints should be capacity-protected, such that yielding is 
forced into the members framing into it. This allows the modular 
joints to continue to redistribute load and prevent system collapse. 
The web and flanges bolted splice connections should be capable of 
developing the capacity of the diagonal or chord.  

• As the structure was let to oscillate freely in the short-term dynamic 
analysis, stresses close to the ultimate stress of the material were 
found in the upper chord modular joint adjacent to the fractured 
diagonal, shortly after the load was released. Increasing the thickness 
of the middle flange plate would potentially reduce the stresses and 
provide higher safety of the system in case a diagonal member is 
damaged. Thicker web plate could also be beneficial.  

• Both, static and dynamic analyses indicated that the diagonal 
members adjacent to the fractured member experience increased 
stress as a result of the load redistribution. This can cause buckling in 
the compressive diagonal members and needs to be considered in 
design to ensure that failure of these members does not occur and the 
system is protected from becoming unstable.  

• The nonlinear static analysis indicated that the system is able to carry 
the full, factored dead and live load (Redundancy II load case, 
analogous to Strength I limit state), albeit at a reduced stiffness, 
when any one of the diagonal members D2 through D6 is lost. The 
stiffness reduction can be mitigated by increasing the depth of the 
chords. The ability to proportion chord depth to tolerate diagonal 
loss is a distinct advantage of this modular system.  

• A dynamic analysis is recommended to establish the load-path 
redundancy of the system. A static analysis is not able to capture 
the behavior of the entire system and misses important localized 
behavior. 
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• A dynamic analysis that is able to capture the instantaneous response 
of the modular joint and allows strain rates due to the high-velocity 
stress wave to be calculated, is recommended. 

Overall, the modular joint system takes advantage of the aspects of 
steel trusses that have made them the dominant long-span bridge form 
over the last century (i.e., high efficiency, ease of design, and longevity) 
and overcomes barriers to truss use today: lack of redundancy and 
problematic gusset plates. Importantly, this research demonstrate that in 
the design of structures, member loss should be taken into consideration. 
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