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The objective of this paper is to present a numerical investigation of the redundancy of steel truss bridges
composed of novel modular joints when subjected to the sudden loss of diagonal members. The modular joint - a
prefabricated steel nodal connector composed of flat web plate welded to flat and curved cold bent flange plates -
represents a new approach to the construction of steel truss bridges in which the connector is a module that joins
member that are standard rolled wide flange sections. A unique feature of this approach is that a moment-
resisting connection is achieved in a truss topology by joining webs and flanges independently through bolted
splice connections. This, in combination with orienting members in strong axis bending, provides the potential
for the system to tolerate the loss of a diagonal member through load redistribution in flexure. The response of a
119-m (390-ft) simply supported vehicular bridge following the abrupt loss of a diagonal is numerically inves-
tigated considering three behaviors: (1) instantaneous dynamic behavior, focusing on the effect of the high-
velocity stress wave, with its associated high strain rates and impact on fracture toughness particularly in the
cold bent and welded portion of the modular joint, (2) short-term dynamic behavior of the structure, and (3)
static behavior of the faulted structure. Results show that the modular joint is able to redistribute load after

sudden member loss, demonstrating the redundancy of this new approach to modular construction.

1. Introduction

The modular joint (Fig. 1, [1]) is a new approach to the rapid
fabrication and erection of steel truss bridges, where the module is the
joint and members are standard rolled wide flange sections. The
modular joint is a prefabricated built-up section composed of a flat web
plate welded to flat and curved flange plates as shown in Fig. 1A. The
curved flanges are cold bent to a prescribed radius to achieve the desired
angle between members. A straight starter segment connects to other
modular joints or to wide flange members. In this approach, a truss-like
topology is formed using the modular joint repeatedly throughout the
entire structure. For example, short span bridges are achieved by con-
necting modular joints to one another (Fig. 1B), whereas bridges with
longer spans are developed by connecting modular joints to wide flange
members (Fig. 1C).

For both short- and long-span bridges, bolted splice plate connec-
tions (in double shear) are used to independently connect the webs and
flanges. This, combined with the strong axis orientation of the wide
flange members, enables flexure to be transmitted in a truss-like
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topology and provides the potential for the structure to tolerate the loss
of a diagonal member. This potential to tolerate the loss of a member
makes the system load-path redundant [2] and is a unique feature of
truss bridges comprised of modular joints compared to conventional
trusses which are not able to tolerate member loss. Thus, the modular
joint system aims to achieve enhanced resiliency through load-path
redundant design.

The modular joint developed in Tumbeva et al. [1] is inspired by the
“gussetless” Memorial Bridge connecting Portsmouth, NH and Kittery,
ME. Like the Memorial Bridge, bridges composed of modular joints
achieve the efficiency of a truss while eliminating the gusset plates
which are prone to durability and maintenance problems, are difficult to
fabricate and inspect, and are inefficient as fasteners are used in single
shear [3]. Different from the Memorial Bridge, the modular joint system
proposed in Tumbeva et al. [1] and investigated in this paper is modular,
meaning identical joints can be used throughout the structure and
among many different structures. While the Memorial Bridge was a
one-of-a-kind design with sections fabricated in large pieces to minimize
field splices, the modular joint approach focuses on small modules
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Fig. 1. Steel bridges composed of modular joints: (A) Modular joint, (B) Short-
span constant-depth bridge, and (C) Long-span constant-depth bridge (reprinted
from [1], © ASCE)

connecting standard wide flange sections, allowing for the accelerated
fabrication and erection of the bridge. The modular joint system can be
stacked in ISO (International Standard Organization) shipping con-
tainers for ease of transportation to a wide range of sites. These ad-
vantages make the modular joint system particularly useful for
accelerated bridge construction as well as for disaster relief and military
operations.

The modular joint utilizes the same fabrication techniques as the
knuckle of the Memorial Bridge which has been experimentally tested
and validated. For example, vibrations induced by span lifting and
traffic loads were measured using camera-based field monitoring [4].
Shahsavari et al. [5] investigated live load behavior of the bridge by field
monitoring using accelerometers, uniaxial strain gauges, strain rosettes,
and tiltmeters. Bell and Medina [6] experimentally tested a scaled model
of the knuckle under cycling load to evaluate the fatigue performance.
Results showed that an infinite fatigue life is expected. A fatigue eval-
uation of the knuckle was also conducted by Mashayekhi and
Santini-Bell [7] through both field measured data and numerical
modeling.

In Tumbeva et al. [1], the authors have previously (1) developed the
geometry of the modular joint, (2) developed methodologies for
achieving constant- and variable-depth bridges, and (3) performed
sizing optimization of the modular joint and wide flange sections for
lowest weight while meeting geometric and structural constraints. In
Tumbeva et al. [1], research focused on the static behavior of steel
bridges comprised of modular joints. The novelty of the current paper is
in understanding the dynamic behavior of the system after sudden
member loss using explicit dynamic analyses, as well as an investigation
of the behavior of the faulted structure through nonlinear static analysis.
Specifically, this research focuses on the effect of the high-velocity stress
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wave instantaneously released after a member is damaged on the frac-
ture toughness of the joint components as well as the ability of the
modular joint to redistribute load.

A key factor to bridge durability and robustness is ensuring sufficient
fracture toughness of the bridge steel components. The American As-
sociation of State Highway and Transportation Officials LRFD Bridge
Design Specifications (AASHTO hereafter) includes minimum Charpy V-
notch (CVN) test requirements to specify fracture toughness [8]. These
requirements were developed in the beginning of the 1970’s, partially
prompted by the Silver Bridge near Point Pleasant, West Virginia
collapse in 1967 with the goal to prevent unstable crack propagation and
brittle failure. It is, however, typical for bridge steels to experience crack
initiation and propagation at moderate stress levels throughout the
bridge lifespan. Hence, increasing the fracture toughness might have a
minor effect on the steel during normal service conditions [9]. Yet,
bridges built prior to the introduction of fracture toughness re-
quirements, and thus used low toughness steel, have exhibited unstable
crack growth resulting in bridge closure. With the improvements in the
bridge design code to include fracture toughness requirements and
include fatigue design provisions, brittle fracture and fatigue cracking in
bridges built after 1985 is extremely rare [10].

When introducing a new concept for steel bridges, as is the case of
the modular joint system, it is important to establish component
behavior and fracture toughness demand. Fracture toughness is pri-
marily dependent on three key factors: (1) plate thickness, (2) service
temperature and (3) loading rate, with a reduction in toughness asso-
ciated with thicker plate, lower temperature, and higher loading rate
[9]. The event of a sudden loss of a member is associated with a stress
wave propagating at a very high rate [e.g, 5189 m/s (17024 ft/s) for
steel]. This type of dynamic load significantly impacts the fracture
toughness of the steel and thus, particular attention should be given to
the modular joint’s cold-worked flanges and the flange-to-web welds
which are subjected to higher localized stress to avoid crack formation
and crack propagation. This is specifically important because the cold
bending of the flange plates and welding of the components already
reduce the fracture toughness of the material.

To evaluate modular joint performance during a sudden member loss
event, a key consideration is to establish component demands and strain
rates consistent with this type of member loss event. In the development
of fracture toughness requirements for bridge steels, Barsom [9]
demonstrated the relationship between temperature and strain rate,
with a reduction in fracture toughness associated with lower tempera-
tures and higher strain rates, in contrast to yield and ultimate strengths.
To evaluate the potential for fracture in the modular joint, it is necessary
to establish strain rates associated with abrupt member loss, which are
clearly different from the intermediate loading rates typical of live load
passage over a bridge (loading time > 1 s corresponding to a strain rate
of less than 10~3/s).

Importantly in the modular joint system, the members are rolled
wide flange sections (i.e., no welds) and thus a reduction in fracture
toughness during a high strain rate event is of less concern. Therefore,
the major focus of this paper is the behavior of the modular joint
immediately following the fracture of a diagonal member.

It is also important to understand the global behavior of the system
and evaluate its ability to continue to carry load as well as maintain
functionality. A key aspect in the modular joint system is the ability to
redistribute load through flexure as a result of the moment-resisting
connection between components and strong axis orientation of mem-
bers, allowing bridges composed of modular joints to be classified as
redundant.

This paper presents the redundancy analysis of the system and pro-
poses a numerical approach for redundancy evaluation of steel bridges,
that specifically considers the impact of the high-velocity stress wave.
This numerical approach could also be used for other forms (i.e.,
variable-depth), other span arrangements, or for bridges that are not
composed of modular joints.
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2. Background

Redundancy of bridge structures can be classified into three cate-
gories: (1) internal member redundancy associated with built-up sec-
tions where individual plates are connected to form a section, (2)
structural redundancy, associated with the static indeterminacy (e.g.
continuous spans), and (3) load-path redundancy, associated with the
ability of the structure to redistribute the load to members adjacent to a
failed member and the capacity of these members to carry that load [2].
The focus of this paper is to investigate the load-path redundancy of
constant-depth simply supported bridges composed of modular joints
(Fig. 1C). Load-path redundancy can be evaluated through: (1) linear
elastic static analysis, (2) nonlinear static analysis, (3) linear elastic
dynamic analysis, and (4) nonlinear inelastic dynamic analysis [11].
This paper uses nonlinear inelastic dynamic analysis, which will be
discussed in detail later in subsequent sections.

Conventional bridge design does not specifically account for redun-
dancy but rather leaves this to the engineers’ judgment and experience
[2]. The American bridge design code [8] incorporates load factors in
the strength limit states depending on the level of redundancy of the
structure. If the bridge is classified as non-redundant, the load is
increased, and if the system has a very high level of redundancy, the load
is decreased [8].

A quantitative approach for evaluating the redundancy of pre-
stressed concrete and steel bridge superstructures was developed by the
National Cooperative Highway Research Program (NCHRP) Report 406
Redundancy in Highway Bridge Superstructures [12]. A set of system
factors were introduced which can be applied to the nominal resistance
of each member. The system factors were developed by considering the
level of redundancy of the entire system as opposed to only considering
individual members. To ensure a minimum level of system redundancy,
four limit states were defined: (1) member failure limit state for ensuring
sufficient member capacity, (2) ultimate limit state for ensuring capacity
of the entire system under increased truck loading, (3) functionality
limit state for ensuring traffic safety defined as the peak displacement
due to live load, and (4) damaged condition limit state for ensuring
safety of the structure in the case of a member loss. These system factors
were later calibrated for the design and safety assessment of highway
bridges subjected to lateral and vertical vehicular loads by the NCHRP
Report 776 Bridge System Safety and Redundancy [13].

The most recent development in evaluating steel bridge redundancy
is NCHRP Report 883 Fracture-Critical System Analysis for Steel Bridges
[14], culminating in Guide Specifications for Analysis and Identification
of Fracture Critical Members and System Redundant Members [15].
NCHRP Report 883 developed a methodology to determine if a member
is fracture critical (FCM) or instead can be considered as a
system-redundant member (SRM). It also proposed guidelines for bridge
design and evaluation. To determine if a member is SRM, a numerical
modeling approach was proposed and two load combinations were
developed: (1) Redundancy I, relating to instantaneous member loss,
and (2) Redundancy II, for evaluating the static behavior of the faulted
structure. In the Redundancy I load combination, a dynamic amplifi-
cation factor of 1.4 is introduced to account for the inertia effects, such
that the behavior of the system can be investigated through static
analysis. In this paper, the Redundancy I load combination is used in an
explicit dynamic analysis to evaluate both the instantaneous and
short-term dynamic behavior of the modular joint system. Thus, the
dynamic amplification factor is not included. The Redundancy II load
combination is used when the long-term behavior of the faulted struc-
ture is evaluated.

Typically, truss bridges are non-redundant and failure of a member
can result in the collapse of the entire structure. Extensive research has
been conducted on investigating the redundancy of truss-type struc-
tures. The Fatigue Evaluation and Redundancy Analysis report on the I-
35W Bridge over the Mississippi River prepared by URS Corporation
[16] included identifying the FCMs as well as evaluating the probability
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of collapse if member failure occurs. To consider the dynamic behavior
due to the sudden member loss, the damaged structure was idealized as a
single-degree-of-freedom system and the loss of the member was rep-
resented by a pulse force. The report assumed a 5% damping resulting in
a dynamic impact factor (i.e., an amplification factor that accounts for
inertial effects without performing a dynamic analysis) of 1.854. Addi-
tionally, recommendations for improving the redundancy of the bridge
were proposed.

Cha et al. [17] experimentally and numerically evaluated the
behavior of a simple span truss bridge when the lower chord is fractured.
The studied bridge is composed of built-up sections which also provide
internal member redundancy. The bridge was initially loaded to
two-thirds of the design live load. The lower chord member at midspan
was then partially damaged, and later the same member was completely
fractured. The free vibration of the structure was recorded. Results from
the experimental tests and finite element (FE) analysis (assuming
nonlinear geometry and nonlinear material properties) showed that the
force in the fractured lower chord was distributed to the adjacent di-
agonal members as well as to the lower chord in the opposite truss plane
thus, allowing the bridge to continue to carry load even when the lower
chord member was completely severed.

Yan et al. [18] investigated the resistance of planar trusses to
collapse in the case of a damaged member through numerical and
analytical approaches. Nonlinear dynamic models, including material
nonlinearity, were used to analyze the truss when a member is suddenly
removed. Two resisting mechanisms were established: catenary action if
an upper chord member is damaged and arch action if a lower chord
member is damaged. If a diagonal member is fractured, the response was
found to be a combination of both collapse-resistant mechanisms.

Khuyen and Eiji [19] proposed a linear redundancy approach that
incorporates the plastic strength of the members to identify FCM in steel
truss bridges. The approach allows for a more accurate representation of
the progressive collapse of the structure in the case of a sudden member
loss in comparison with linear static analyses. The dynamic effects are
incorporated through a dynamic impact factor which amplified the
forces acting in the failed member.

Goto et al. [20] numerically estimated the dynamic impact factor
through dynamic analyses for two Warren trusses when a tension
member suddenly fails. Linear geometry and elastic material properties
were assumed. A simplified method to approximate the dynamic impact
factor using the root mean square mode combination method, which did
not require a full dynamic analysis, was also proposed.

Liu et al. [21] numerically investigated the alternative load-path of
the Grand River Bridge in Cayuga, Canada by removing an individual
member from the structure before any load is applied. Material and
geometric nonlinearities were incorporated in the models. However,
dynamic effects were neglected. Fragility curves were developed to
identify the bridge safety by accounting for uncertainties associated
with load-path redundancy analysis.

Thai and Kim [22] proposed a numerical approach that included
material and geometric nonlinearities to investigate the dynamic
behavior of steel trusses under earthquake loading. Results indicated
that the developed approach is capable of capturing different failure
modes, including buckling, yielding, inelastic post-buckling.

Miyachi et al. [23] numerically investigated the effect of the span
lengths and live load location on the progressive collapse of three-span
continuous steel truss bridges by incrementally applying the live load
until the structure collapses. Evaluation of ductility, estimated as the
ultimate load over the yield load, was also performed. The analyses were
carried out for two bridges with total span length of 230 m (755 ft).
Nonlinear geometry and material properties were assumed. Results
showed that both bridges experienced buckling failure, however, the
bridge with a longer center span was more ductile. When the live load
was at the side spans, longer side spans resulted in a higher ultimate
strength, whereas when the live load was near the inner supports, a
longer center span resulted in a higher ultimate strength. The different
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combinations of span lengths did not affect the ultimate strength when
the live load was positioned at the center span.

3. Objectives and scope

The objective of this research is to numerically investigate the
behavior of steel truss bridges composed of modular joints when sub-
jected to the sudden loss of a diagonal member. Specifically, the
behavior of a 119-m (390-ft) simply supported, two-lane vehicular
bridge is investigated through high-fidelity, three-dimensional (3D) FE
analyses. This study numerically investigates three behaviors: (1)
instantaneous behavior immediately following member loss, focusing on
the effect of the high-velocity stress wave, (2) short-term dynamic
behavior of the structure following member loss, and (3) static behavior
of the faulted structure. The focus is on the local behavior of the modular
joint (especially the location of the weld between the bent flanges and
the web), as well as the global behavior of the system. Ultimately, the
paper demonstrates the ability of the modular joint to redistribute load
after sudden loss of a diagonal member. A simple case study of a wide
flange beam is also presented to evaluate modeling methods and
assumptions.

4. General features of bridge geometry and numerical models

This paper presents a numerical investigation of the redundancy of a
119-m (390-ft) simply supported, two-lane [9.91-m (32.5-ft) wide]
vehicular bridge composed of modular joints, developed in Tumbeva
et al. [1]. The modular joint is a built-up section of: 44.5 mm (1.75 in.)
thick webs, 50.8 mm (2 in.) thick bent left and right flanges, 12.7 mm
(0.5 in.) thick bent middle flange, and 34.9 mm (1.375 in.) thick flat
bottom flange (Fig. 1A). The bridge consists of W14 x233 lower chord
members, W14 x193 upper chord members, W14x193 portal diagonal
members, and W14x109 diagonal members. W14x132 lateral bracing
and W14 x132 portal braces are incorporated for stability of the upper
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chord. These are joined to the modular joints via 25.4-mm (1-in.) thick
flat plates and 38.1-mm (1.5-in.) thick stiffeners. W14 x159 floor beams
are positioned at every 3.05 m (10 ft) along the span length and are
connected to the to the lower chord beams or lower chord modular joints
through 38.1-mm (1.5-in.) thick stiffeners (Fig. 2).

The section sizes of the lower chord, upper chord, and diagonal
members, as well as the thickness of the flange and web plates of the
modular joint, were determined through sizing optimization [1]. The
self-weight of the system was minimized while meeting structural
(related to fatigue of the modular joint, global system stability, ultimate
behavior, and failure mechanism) and geometric (related to trans-
potability and limiting strains from cold bending in the flange plates)
constraints. The structural constraints were evaluated through a
high-fidelity parametric 3D FE static analysis in ABAQUS [24].

The behavior of this system when a diagonal member is suddenly lost
is evaluated using a high-fidelity 3D FE model in ABAQUS [24]. This
model is based on the 3D FE model developed in Tumbeva et al. [1].
However in Tumbeva et al. [1], research focused on the static behavior
of steel bridges comprised of modular joint, whereas the current paper
focuses on understanding the dynamic behavior of the system after
sudden member loss using explicit dynamic analyses, as well as an
investigation of the behavior of the faulted structure through nonlinear
static analysis. Thus, while the geometry of the FE model is similar, the
analysis is very different and is a unique aspect of the dynamic perfor-
mance of the modular joint given abrupt member loss.

Because a sudden loss of a tension member is associated with energy
release in the form of a stress wave propagating through the member ata
very high rate, the response of the system is dynamic and therefore, in
this paper an explicit dynamic analysis is performed. This analysis is also
required to determine the strain rates that are developed during member
loss event and evaluate modular joint performance.The static analysis
evaluates the long-term behavior of the faulted structure, simulating the
post-fracture event response and reserve strength.

The additional assumptions (i.e., large deformation, material model,
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Fig. 2. Bridge geometry and 3D FE model.
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mesh size) to the 3D FE model are made to reflect the complexity of
these analyses and particularly to be able to capture the high-velocity
stress wave released instantaneously after the member is fractured.

All bridge components are modeled with S3R or S4R (3- or 4-node)
reduced integration general-purpose shell elements, both with six de-
grees of freedom at each node - thee translational and three rotational
degrees of freedom. These general-purpose shell elements are capable of
achieving full interaction between bending moments, shear, and axial
forces. These elements, in addition to being computationally efficient,
are suitable for modeling curved and flat shells that can exhibit
nonlinear material response as well as undergo large deformation, and
therefore, are the preferable choice for the current study. However, a
comparison between different elements types (e.g., brick, shell, and
beam elements) is also conducted and presented later in this paper.

A mesh refinement study, discussed in the following section, was
performed to determine an appropriate mesh size for the current study.
It is important to use the correct mesh size as it affects the accuracy of
the solution and more specifically the response of the system to the high-
velocity stress wave.

Grade 50W structural steel is used for all components in the model,
assuming a stress-strain relationship with linear strain hardening [15]
with the following properties: specified minimum yield strength of 345
MPa (50 ksi), ultimate strength of 483 MPa (70 ksi), peak strain at
failure of 0.05, modulus of elasticity of 200 GPa (29,000 ksi), density of
7850 kg/m3 (490 lbs/ft3), and Poisson’s ratio of 0.3. Note that the FE
model developed in Tumbeva et al. [1] used an elastic-perfectly plastic
material model with no strain hardening. However in the event of a
sudden member loss, the structure is expected to redistribute load
through ductile behavior and develop a collapse-resistant mechanism.
Thus, nonlinear material properties including strain hardening would be
able to represent this type of response.

Because the system undergoes sudden changes in geometry, due to
member being fractured, causing the development of large deflections,
the 3D FE model in this paper also incorporates nonlinear geometry. The
model in Tumbeva et al. [1] assumed linear geometry as the response
was expected in the liner elastic range.

Nonlinearity of any type typically requires iterations until conver-
gence is satisfied and the system is in equilibrium. In this paper, the
software ABAQUS [24] is used hence, analysis convergence criteria are
automatically defined by the software. This is primarily valid when the
global static behavior of the system is investigated. For nonlinear static
problems, ABAQUS [24] calculates the force residual at each iteration
and compares with a tolerance value that is set to 0.5 %. Additionally, a
displacement correction is calculated and compared to the total incre-
ment displacement. Convergence is satisfied, meaning the system is
considered in equilibrium, if the force residual is less than the tolerance
value as well as the displacement correction is less than 1%.

In comparison, the explicit dynamic analysis solves for the
displacement and velocities at the current time increment using the
already known displacement and velocities from the previous time
increment and therefore, iterations and convergence tolerances are not
required. The accuracy of the solution to the dynamic problem depends
on the stability limit which in this paper is automatically utilized by
ABAQUS [24]. Specific details on the dynamic analysis and the stability
limit are provided in the following section.

The splice connections between joints and members are not explicitly
modeled. Instead, surface-to-surface or node-to-surface constraints tie
all degrees of freedom of the connected nodes. Specifically, all nodes
along the edges of the flanges of the members are tied to the nodes along
the edges of the flanges of the modular joints. Similarly, the nodes along
the web edge of the members are tied to the nodes along the web edge of
the modular joints. The constraint ties all degrees of freedom at the
nodes throughout the duration of the analysis. The same approach is
used for connecting the plates to the upper chord modular joints and
bracing, as well as for connecting the stiffeners to the lower chord
members and modular joints.
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The bridge deck is not physically included in the model. Instead, the
weight of the deck is applied as a pressure at the top flange of the floor
beam. The boundary conditions are: at one end of Truss Plane 1,
translation is restrained; at the same end of Truss Plane 2, translation is
restrained in longitudinal and vertical directions; at the other end of
Truss Plane 1, translation is restrained in transverse and vertical di-
rections; at the same end of Truss Plane 2, translation is restrained in
vertical direction. The boundary conditions are applied at the node that
is at the center of the flat flange of the each of the end lower chord joints.

5. Instantaneous dynamic behavior

This section investigates the instantaneous loss of a diagonal mem-
ber, focusing on the effect of the high-velocity stress wave propagating
through the member and modular joint immediately after it is severed.
The stress wave travels with a very high speed, resulting in strain rates
significantly above the intermediate strain rate of 10™3/s typical of live
load passage over a bridge. These high strain rates are associated with
lower fracture toughness of the steel, which combined with the reduced
fracture toughness due to cold bending and welding increase the prob-
ability of crack formation and crack propagation in the joint compo-
nents. Thus, it is particularly important to establish strain rates caused
by abrupt member loss.

As described earlier, there are different procedures to simulate
member loss. Zoli and Woodward [25] provided guidelines for modeling
abrupt cable loss applicable for cable stayed, suspension, and arch
bridges that can also be extended to truss bridges. An explicit dynamic
analysis is proposed, in which the fractured member is removed from the
model geometry. The load in the member (found through an analysis of
the structure in the undamaged state) is applied at the two nodes con-
necting the member, but in opposite direction through a quasi-static
time step. This compensates for the member removal and allows the
structure to return to its initial (undamaged) stress state. Once the
steady-state is reached, the load is abruptly decreased to zero, simu-
lating the sudden member loss. In this paper, the method is referred to as
QSD.

The time-dependent forcing function used in the QSD method is
schematically shown in Fig. 3A, in which ¢, t;, and t; refer to the load
rise time, load hold time, and load release time respectively. The quasi-
static portion of the function is the summation of the two times, t, and t;.
When the quasi-static time ends, the load release begins, and after time
tg, it ends at t = 0. After that, the structure is allowed to oscillate freely.

A limitation in using the QSD method is that during the quasi-static
step the load must be applied very slowly, as the rise time, t,, must be
approximately four times the natural period of the structure [26], such
that inertia effects are minimized and the kinetic energy is close to zero
thus, achieving a static solution. For the simply supported bridge
investigated in this paper, this type of analysis becomes a numerically
challenging problem, as the natural period of the undamaged structure

JAmplitude JAmplitude
-11

I |

I | td

| |
t A 0 t
3 h d

-4-1
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Fig. 3. Forcing function for dynamic analysis: (A) QSD method and (B)
SD method.
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is 3.11 s, requiring a very long load rise time, t,, of approximately 12 s.
To ensure that steady-state is reached, the load hold time, t; is approx-
imately twice this period, further lengthening the quasi-static step.

The explicit dynamic analysis method uses the central-difference
operator to solve the equation of motion, which is conditionally stable
if the time increment, /\t, is sufficiently small (i.e. in the order of
1073 ms), thus requiring a large number of time increments to reach a
solution. This typically is not a problem, as the explicit method is pri-
marily used to solve short time, high speed events. Furthermore, the
method is highly efficient as the displacement and velocities at the
current time increment are computed using the already known
displacement and velocities from the previous time increment and
therefore, the global mass and stiffness matrices do not need to be
inverted. However, as described earlier, the bridge investigated in this
paper requires a long quasi-static time step that would result in a very
large number of increments and might not be capable of reaching the
static solution.

To avoid the above-mentioned numerical challenges, in this paper
behavior after sudden member loss is investigated through the following
method: (1) a static analysis on the undamaged structure is performed to
determine the initial (undamaged) stress state of the system, (2) this
initial stress state is imported into another model in which the fractured
member is separated into two parts by removing a number of elements
from the member geometry along the cross-section, (3) a force with
equal magnitude and opposite direction to the force acting on those
elements prior to damage is applied at the failure surfaces, and (4) an
explicit dynamic analysis is carried out in which the force is instanta-
neously decreased to zero in time, t4 (Fig. 3B), and the structure is let to
vibrate freely. In this method, the initial (undamaged) stress state serves
a starting point for the dynamic analysis, meaning that the new dis-
placements and forces are calculated on the already deformed configu-
ration. In this paper, this method is referred to as SD. Note that, in both
QSD and SD, the free vibration phase starts at t = 0, which is at the end of
the load release time, t4. A direct comparison of the QSD and SD methods
is performed through a case study of a single beam discussed later in this
section.

The results from both QSD and SD analysis depends on the time
increment used in the explicit central-difference method to solve the
equation of motion. The accuracy of the solution is controlled by the
largest time increment, referred to as the stability limit, A\ty, that is a
function of the highest frequency of the system and the damping of the
highest frequency mode. However, a simplified equation can be used to
estimate the stability limit: /\t; = e/cg, where e is the smallest mesh size
used in the structure and ¢y = \/m is the wave speed, in which E is the
modulus of elasticity and p is the density. For the material used in this
paper, c¢q = 5189 m/s (17024 ft/s). Hence, if the material does not
change, the accuracy of the solution is governed by the mesh size. This
paper utilizes the automatic time incrementation and stability option in
ABAQUS [24]. This means that ABAQUS [24] determines the stability
limit based on the mesh size and material properties and adjusts the time
increment size during the analysis such that it does not exceed the sta-
bility limit.

The behavior of the system also depends on the load release time, tg,
as it simulates the sudden member loss and must be sufficiently small to
ensure the load is rapidly released to zero. However, there is no clear
guideline on how long t; needs to be. Therefore, before implementing
the proposed procedure on the 3D FE model, a single beam is studied to
determine the appropriate element type, mesh size, e, and load release
time, tg. This single beam case study also provides the comparison be-
tween QSD and SD.

5.1. Single beam study

This research uses a single beam case study to determine (1) element
type, (2) mesh size, e, and (3) load release time, t;4, that will be used in
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the 3D FE model of the simply supported bridge, as well as a comparison
of the QSD and SD methods.

The beam in this study has the same section size (W14x109) as the
diagonal members in the simply supported bridge and a length of 3.05 m
(10 ft) which is one half of the length of a diagonal member. The beam is
fixed at one end - translational and rotational (if active) degrees of
freedom are restrained in all three directions. The load is applied at the
free end.

5.1.1. Element type and analysis method

The effect of the element type on the dynamic response of the beam is
first investigated. Three different elements types are considered: (1)
C3DR8, 8-node reduced integration brick elements with three trans-
lational degrees of freedom per node, (2) S4R, 4-node reduced integra-
tion shell elements with three translational and three rotational degrees
of freedom per node, and (3) B31, 2-node 3D linear beam with three
translational and three rotational degrees of freedom per node [24]. For
the brick and shell elements, enhanced hourglass control is used. For all
three element types, the mesh size is 25.4 mm (1 in.).

The explicit dynamic analysis for each element type is performed
using both QSD and SD methods. When the QSD method is used, the
structure is initially unstressed. A tensile stress of 53.5 MPa (7.75 ksi)
corresponding to the stress in D4 (indicated in Fig. 2) under Redundancy
I load combination (to be discussed further in the next section), is
applied at the edges of the top and bottom flanges and web at the free
end of the beam utilizing the forcing function in Fig. 3A.

Prior to implementing the QSD method, modal analyses were con-
ducted to determine the period of the first mode for each element type,
from which the load rise time, t,, and load hold time t, were calculated
following the recommendation described earlier.

When the SD method is used, the initial (undamaged) state of the
beam corresponds to that of D4 under the Redundancy I load combi-
nation. This initial state is imported into a dynamic analysis in which the
53.5 MPa (7.75 ksi) stress is applied in compression at the edges of the
top and bottom flanges and web at the free end utilizing the forcing
function in Fig. 3B. For both methods, the load release time, ty, is 0.005
ms.

Regardless of element type or analysis method, the expected
behavior is that after the load is released, a compressive wave travels
along the beam at a rate of approximately the wave speed, cq4. This is
demonstrated by tracing the axial stresses, acting at the center of gravity
of the section, along the beam length. Fig. 4A shows the compressive
stress wave that has propagated into the beam at time t = 0.2 ms after
the load was released for all element types as well as analysis methods. It
can be seen that all three element types along with both methods
converge to approximately the same solution, with the wave having
traveled about the same length of 1 m (3.3 ft), as expected.

As shown in Fig. 4A, the wave has similar path for the brick and shell
elements but it is different for the frame elements, indicating that the
frame elements are not capable of capturing the full dynamic behavior of
the beam. There is a clear advantage of using shell elements due to their
higher computational efficiency (as compared to brick elements).
Therefore, this research utilizes shell elements for all bridge components
in the 3D FE model. The study also verifies that both the QSD and SD
methods provide the same response. The SD method is used in this paper
due to the previously mentioned challenges in using the QSD method for
the 3D FE model.

5.1.2. Mesh refinement study

The mesh size is determined through a mesh refinement study, in
which the beam is modeled with shell elements and the SD method is
used. Four different mesh sizes, e, are considered: 6.35 mm (0.25 in.),
12.7 mm (0.5 in.), 25.4 mm (1 in.), and 50.8 mm (2 in.). The beam
behavior is investigated by tracing the axial stresses, acting at the center
of gravity of the section, along the beam length.

Fig. 4B shows the compressive stress propagating through the beam



M.D. Tumbeva et al.

50 N
F40
230
820
=10
15
< 0
-10
00 05 10 15 20 25 3.0
Beam length (m)
--- Solid - QSD — Solid - SD
-=- Shell - QSD — Shell - SD
-—- Frame - QSD  — Frame - SD
(A)

Axial direction

t=0.2 ms

Fixed end

load Axial direction

Axial stress

MPa
59

47
35
23
10
-1

-14 Fixed end

©

Journal of Constructional Steel Research 188 (2022) 107038

~

Axial stress (MPa)
—_ N W B W
o O O o O

(=

L
=)

00 05 10 15 20 25 30
Beam length (m)

— e¢=635mm,t=02ms ---e¢=6.35mm,t=0.4ms
— e=127mm,t=02ms --e=12.7mm,t=0.4ms
— e=254mm,t=02ms ---e=254mm,t=0.4ms
— e¢=50.8mm,t=0.2ms ---e¢=50.8 mm,t=0.4ms

B)
100
s 50
=
e 0
72}
g
@ =50
=
jé -100
-150
00 05 10 15 20 25 3.0
Beam length (m)
— t,=5ms — t,=0.0005 ms
— t,=05ms —t =5E-5ms
— td:0.05 ms td=5E-6ms
— t,=0.005 ms
(D)

Fig. 4. Instantaneous dynamic behavior of single beam case study: (A) Element type and analysis method study, (B) Mesh refinement study, (C) Stress wave contour
for a mesh size = 24.5 mm at two time instants, t = 0.2 and 0.4 ms, and (D) Load release time, tg, study.

att=0.2 and t = 0.4 ms after the load is released. The plot indicates that
the beam response is similar regardless of the mesh size. Furthermore,
for both times, the wave has traveled the expected 1 m (3.3 ft) and 2 m
(6.7 ft), respectively, meaning that all mesh sizes result in a stability
limit sufficiently small to achieve an accurate solution. The order of
magnitude of the stability limit determined using the simplified equa-
tion given earlier in this paper is 10’6, which is also what ABAQUS [24]
uses in the analysis. A slight difference in the wave path is noticeable for
the beam with the 50.8 mm (2 in.) mesh size. Based on these results, the
selected mesh size to be used in the 3D FE model is 25.4 mm (1 in.).

Fig. 4C presents the axial stress contour of the beam for the 25.4 mm
(1 in.) mesh size which clearly shows the wave path for t = 0.2 and t =
0.4 ms. The initially stressed beam experiences load reduction as the
wave propagates through, which is demonstrated by the change in color
in the stress contour. For example, at time ¢t = 0.2 ms, approximately
two-thirds of the beam (measured from the fixed end) maintains its
initial load, defined by the red stress contour in Fig. 4C. The slight os-
cillations that are seen in Fig. 4B can also be identified in the stress
contour.

5.1.3. Load release time

To understand the effect of the load release time, t4, a sensitivity
study was conducted in which a range of times, t4, between 5E — 6 ms
and 5 ms were investigated. The beam was modeled with 25.4 mm (1
in.) mesh size shell elements and the SD method was used. The beam
response is demonstrated by tracing the axial stresses, acting at the
center of gravity of the section, along the beam length, at a time, t = 0.2
ms, after the load was released for each of the investigated times, t4. This
is shown in Fig. 4D.

It is evident that the time to release the load to zero has a significant
effect on the behavior. As t; becomes longer, the wave starts propagating
through the beam before the load is completely reduced to zero. For
example, t; = 0.05 ms results in a wave that travels approximately 1.5 m
(4.9 ft) which is longer than the expected 1 m (3.3 ft). Because the wave
speed and the time are constant in this case, the cause of this difference
is that the wave is in the beam before the load reaches zero. The much
higher stresses for t; above 0.05 ms indicate that the wave has already
propagated through the beam, reflected at the fixed end, and traveled
back towards the free end, and that likely happened several times. As
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shown in Fig. 4D, release times below t; = 0.05 ms converge to the same
results, with the wave traveling approximately the same length of the
expected 1 m (3.3 ft). Thus, the 3D FE model uses t; = 0.0005 ms.

5.2. Simply supported vehicular bridge

The instantaneous loss of a diagonal member (D4) of the simply
supported, two-lane vehicular bridge is investigated through an explicit
dynamic analysis which utilizes the findings from the single beam study
as follows: all bridge components are modeled with shell elements and
25.4 mm (1 in.) mesh size, the release load time is t; = 0.0005 ms, and
the SD method in which the dynamic analysis is performed on the initial
(undamaged) deformed shape of the bridge is used. Note that damping
was not included in the dynamic analysis. This is primarily because the
high velocity stress wave propagates rapidly resulting in an instanta-
neous impact for which damping would not yet be activated. It is also
conservative to ignore the effect of damping.

For the SD analysis method, the initial (undamaged) stress state as
well as the tensile force in the failed diagonal member need to be known
prior to performing the dynamic analysis. This initial stress state is found
through a static analysis of the bridge in which the Redundancy I load
combination developed in Connor et al. [14] and AASHTO Guide
Specifications [15] is used:

Redundancy: (1 + DAg)(1.05DC + 0.85LL) (@})

where DC is the dead load of the bridge components, LL is the vehicular
live load, and DAy, is the dynamic amplification factor. The dead load
includes the self-weight of the structural steel components as well as a
1.25 kN/m? (25 psf) lightweight deck. The live load includes two lanes
of vehicular traffic corresponding to 18.7 kN/m (1280 lbs/ft) uniformly
distributed lane load and two design trucks positioned to produce the
worst effect [8]. The dynamic amplification factor, DAg intended to be
used in a static analysis to account for the inertia effects associated with
member damage. Because in this paper an explicit dynamic analysis is
performed, this dynamic amplification factor is not needed (i.e.,
DAR=0).

Once the initial (undamaged) stress state is found, it is then imported
into the explicit dynamic analysis in which diagonal member, D4 in
Truss Plane 1, is severed by removing 50.8 mm (2 in.) from the geometry
along its midsection. The tensile stress of 53.5 MPa (7.75 ksi) acting at
that section is applied at the flange and web edges in compression very
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rapidly at time tg as shown in Fig. 3B. The dynamic analysis is continued
for 1 ms. This short time duration allows for a large number of time
increments (at every 0.0002 ms) to be recorded, providing a high-
fidelity time history of the stress wave propagating through the diago-
nal member into the adjacent modular joints. Note that, in this case the
entire cross section of the beam is severed which is considered conser-
vative and simulates unstable crack propagation. Thus, if the beam had a
larger cross section, the size of the fracture would increase, resulting in
higher energy release and hence, a larger stress applied at the fractured
surface. The compressive stress wave then propagates within the same
time frame but with higher intensity, ultimately increasing the strain
rates measured in the modular joint components.

Fig. 5A shows the axial stress contour at time, t = 0.3 ms, after
fracture has occurred. At this time, the high-velocity stress wave trav-
eled approximately half of the undamaged portion of D4, or around 1.52
m (5 ft). The axial stress time history is recorded at this location and is
presented in Fig. 5B. The instant the high-velocity stress wave has
reached the section is clearly indicated by the sudden change in stress
from the initial (undamaged) magnitude of 53.5 MPa (7.75 ksi) to
approximately zero.

To further investigate the high-velocity stress wave impact on the
diagonal member, the strain rates at the section cut indicated in Fig. 5A
are calculated. Note that right at the vicinity of the fracture, the strain
rates are expected to be the highest, and at sections further from the
fracture, the strain rates should decrease. The strain rate is measured as
the change in strain between two time instants, where strain is calcu-
lated using the axial stress in the element and the modulus of elasticity.
The region with the biggest change in the shortest time is considered
(marked in Fig. 5B). As expected, high strain rates are measured in the
diagonal member: 2.02, 2.09, and 3 /s for the top flange, bottom flange,
and web respectively. These strain rates are much higher than the in-
termediate strain rates of 10~3/s which are typically associated with
undamaged bridges under live load. As the diagonal members are hot
rolled as opposed to built-up welded sections, the high strain rates are
not expected to further compromise the section.

Because the stress wave travels at a very high rate [¢q4 = 5189 m/s
(17024 ft/s)], it reaches the modular joints connecting the damaged
diagonal member (LJ5 and UJ4, where LJ indicates lower chord joint,
and UJ indicates upper chord joint) in just 0.59 ms. Once the wave
propagates into the joint, it disperses in different directions along the
web and the flanges, and also travels back into the severed diagonal
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Fig. 5. Instantaneous dynamic behavior of the damaged diagonal: (A) Compressive stress wave contour at time t = 0.3 ms and (B) Axial stress time history for
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member. The response of the modular joint to the impact of the
compressive stress is investigated by recording the von Mises stress time
history at several sections in the starter segments (Side R, Chord R, Side
L, Chord L) and the bent flange plates (Bend R, Bend T, Bend L) of the
lower chord modular joint LJ5 (sections indicated in Fig. 2). For the
purpose of this investigation, the dynamic analysis is continued to 10
ms, which provides enough time for the wave to reach these sections. As
the analysis time is longer, to save computational resources, the results
are recorded at every 0.002 ms which still provides a high-fidelity time
history of the stress wave propagating through the modular joint. The
stress time histories are presented in Fig. 6 and Fig. 7. Additionally, the
von Mises stress contours of the wave passing through the sections are
shown in Fig. 8.

The instant the wave passes through the sections is distinctly defined
by the sudden change in von Mises stress in the time history diagrams
(Fig. 6). Side R, being closer to the severed diagonal member D4 has the
highest von Mises stress change which is particularly noticeable in the
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middle flange. When the stress wave propagates through Side R, the von
Mises stress in the middle flange decreases from the initial value of 86
MPa (12.5 ksi) to approximately 20 MPa (3 ksi). Similar behavior is seen
in the right flange and the web. However, as the wave passes through
Side R, the von Mises stress in the middle flange begin to increase with
peak value of 101 MPa (15 ksi) which is likely due to the middle flange
plate having smaller thickness than the right flange and web plates.
Fig. 8 clearly shows that the initially stressed Side R experiences load
reduction as the wave propagates through, which is demonstrated by the
change in color in the stress contour. Side L has a similar behavior with
the stresses in the middle flange being much higher than the stresses in
the left flange and web. However, the change in von Mises stress is
smaller (Fig. 6). The peak von Mises stress of 119 MPa (17 ksi) is
recorded in the middle flange which is approximately 47 MPa (7 ksi)
increase from the initial stress. The change in von Mises stress in Chord R
and Chord L are very small as it can be seen in Fig. 6. This is also evident
from Fig. 8, as the stress contour in these sections does not significantly
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change.

The behavior of the bent flange plates follows similar trend with
Bend M and Bend R having higher von Mises stress change compared to
Bend L (Fig. 7). This is expected behavior, as both sections are closer to
the fractured diagonal and thus, the wave propagates with higher in-
tensity. Bend R experiences an instantaneous reduction in von Mises
stress from its initial value of 114 MPa (16 ksi) to approximately 82 MPa
(11.9 ksi), which is relatively low. As shown in Fig. 7, the sudden change
in von Mises stress in Bend M increases the initial stress [24 MPa (3.5
ksi)], indicating that this section is initially in compression and accu-
mulates compressive stresses as the high-velocity stress wave passes
through which is also observed by the change in the stress contour in
Fig. 8. The von Mises stress in Bend M continues to increase in time with

10

peak value of 58 MPa (8.5 ksi). Fig. 7 and Fig. 8 show that Bend L ex-
periences a very small change in von Mises stress [around 15 MPa (2.15
ksi)]. This is expected, as this sections is further away from the fractured
diagonal member. Overall, the sudden change in von Mises stress in the
bent regions is found to be relatively small. This behavior can also be
observed from Fig. 8, as the stress contour does not significantly change
as the wave is passing through the bent plates.

The von Mises stress time histories in Fig. 7 as well as the stress
contours in Fig. 8 indicate that none of the sections yield due to the
instantaneous impact of the high-velocity stress wave. However, as the
modular joint is composed of welded and cold bent flange plates,
resulting in a reduced fracture toughness, there is a potential for further
reduction in fracture toughness due to high strain rates (above 1073/s).
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Strain rates associated with abrupt member loss need to be considered in
the design of the modular joint system, such that the modular joint is
protected from fracture. While the system is able to tolerate the loss of a
diagonal member, it would not be able to redistribute load if a modular
joint is lost. Table 1 presents strain rates calculated for each section. As
expected, the strain rates are the highest in Side R because of its prox-
imity to the damaged diagonal member and lower strain rates are
measured in the other sections. However, the strain rates measured in
the bent flange plates are significantly higher than the intermediate
strain rates of 10~>/s measured in undamaged bridges under live load.
Thus, strain rates associated with sudden member loss need to be
considered in design so that the modular joint is protected and fracture
in any of the plates does not occur. Limiting the bend radius of the flange
plates as a function of the plate thickness as well as using steel plates that
exceed the minimum CVN requirements for the selected application
increase the fracture toughness of the steel and thus, would be beneficial
for the modular joint.

6. Short-term dynamic behavior

This section focuses on the short-term dynamic behavior of the
bridge following the sudden loss of diagonal member, D4. The dynamic
analysis from the previous section is continued to 2 s. Conservatively,
damping was not used in this short-term dynamic analysis. In this sec-
tion, the lower and upper chord members as well as the diagonal
members (not indicated in Fig. 2) are labeled based on the modular
joints they connect. For example, L4-5 indicates lower chord member
connecting lower chord joints LJ4 and LJ5; D5-5 indicates a diagonal
member connecting lower chord joint LJ5 and upper chord joint UJ5;
U4-5 indicates an upper chord member connecting upper chord joints
UJ4 and UJS.

6.1. System behavior

As the modular joints are able to respond to the impact of the high-
velocity stress wave and also redistribute the load into the adjacent
members, this section investigates the short-term dynamic behavior of
the entire system. This corresponds to the state of the structure after load
has been released and the effect of the instantaneous impact has
diminished and is recorded for a longer time period. The focus is on the
ability of the members and the structure to continue carry load after
member loss which is evaluated by recording the change in vertical
displacements at midspan as well as the von Mises stress contour of the
system response.

The change in vertical displacements through time is recorded at the
midsection of the lower chord member located at midspan, for both truss
planes (fractured diagonal member D4 is in Truss Plane 1) and is pre-
sented in Fig. 9. As the free vibration phase continues, at approximately t
= 1.6 s, the stresses in the upper chord joint UJ5 were found to exceed
the ultimate stress of 483 MPa (70 ksi) as shown in Fig. 10D. Therefore,
the results are only given for the time frame between zero and 1.6 s.

The displacement in the initial (undamaged) state are also presented

Table 1
Strain rate associated with instantaneous dynamic behavior of modular joint LJ5
(sections indicated in Fig. 2).

Strain rate (/s)

Side Chord SideL Chord Bend Bend Bend
R R L R M L
Middle 1.82 NA 0.252 NA NA 0.663 NA
flange
Right 1.02 0.334 NA NA 0.583 NA NA
flange
Left flange NA NA 0.126 0.24 Na NA 0.208
Flat flange NA 0.171 NA 0.158 NA NA NA
Web 0.61 0.174 0.488 0.122 NA NA NA
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in Fig. 9. The peak initial (undamaged) displacements in both truss
planes is -389 mm (-15.3 in). In the free vibration phase, after member
loss, the displacements in both truss planes oscillate approximately with
the same magnitude that is close to the initial, indicating that the system
maintains stability and continues to carry load. The peak positive
displacement of 454 mm (17.9 in.) is recorded at time t = 0.496 s in
Truss Plane 1 while the peak negative displacement of -375 mm (14.8
in.) is recorded at time t = 0.952 s in Truss Plane 2. The difference in
response between the two truss planes is expected with larger dis-
placements recorded in Truss Plane 1. This is because the fracture is only
in Truss Plane 1 and therefore, load is primarily distributed to its
members, particularly in the beginning of the free vibration phase.

The magnitude of the displacement indicates that some sections in
the chords are yielding during the free vibration phase. Fig. 10 presents
the response of the system through the von Mises stress contour for
different times after member is severed. Fig. 10A shows the initial (un-
damaged) stress state. Approximately at t = 0.42 s, the top flange of the
lower chord member, L4-5 in Truss Plane 1, reaches the yield stress at
the side with joint LJ4 (Fig. 10B). At the same time, t = 0.42 s, the top
flange of the upper chord member, U4-5 in Truss Plane 1, at the side with
joint UJ5 begins to yield as well (Fig. 10B). The opposite lower chord
and upper chord members in Truss Plane 2, at t = 0.42 s maintain their
initial stress state, indicating that Truss Plane 2 is not engaged yet. With
time, more sections of members L4-5 and U4-5 in Truss Plane 1 begin to
yield. As shown in Fig. 10C, at time t = 0.56 s, larger potion of the top
flange of member U4-5 at the side with joint UJ5 has reached yield
stress. Similar behavior is observed but in the bottom flange of U4-5 at
the side with joint UJ4. The von Mises stress contour presented in
Fig. 10D shows that, as the system continues to vibrate, the stresses in
the chords in both truss planes have increased with some sections
reaching above the yield stress, clearly demonstrating the redistribution
of the load along the bridge span.

The stress contour in Fig. 10D also indicates the 3D beahavior of the
system regardless of having only one truss plane compromised. In
addition, the deformed shape shows that the members in Truss Plane 1
closer to the fractured diagonal member experiece out-of-plane move-
ment, further demonstrating the 3D behavior.

As shown in Fig. 10E, at time t = 1.6 s, the middle bent flange of the
upper chord joint UJ5 is stressed up to the material’s ultimate stress of
483 MPa (70 ksi). This is likely due to the increased stress in the diagonal
member D5-5. In its initial state, member D5-5 has very small, close to
zero compressive stresses. However, due to the fractured diagonal D4,
the stresses in sections Side R and Side L of joint LJ5 increase signifi-
cantly (Fig. 6), which are then transferred through the diagonal member
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Fig. 10. Short-term dynamic behavior through von Mises stress contours of the system at: (A) Initial (undamaged) state, (B) Time t = 0.42 s, (C) Time ¢t = 0.56 s, (D)

Time t = 1.56 s, and (E) Time t = 1.6 s.

D5-5 to joint UJ5. This can be seen in Fig. 10B and Fig. 10C. In addition,
the starter segment of joint UJ5 is also initially in compression, and the
failed elements are exactly at the bend region of the middle flange plate
which has relatively small thickness of 12.7 mm (0.5 in.), further
contributing to the high stresses in the upper chord joint. Aftert =1.6s,
the stresses in the system start to increase and the structure likely be-
comes unstable. However, the results clearly show that the modular
joints are capable of redirecting load to the members adjacent to the
fractured diagonal member and these members are able to sustain that
additional load. Furthermore, as the system continues to vibrate, Truss
Plane 2 significantly contributes in carrying the load thereby providing
additional capacity.

Overall, the short-term dynamic analysis demonstrated the ability of
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the modular joint system to continue to carry load through flexure after
a diagonal member is damaged.

6.2. Local behavior: lower chord modular joint LJ5

The short-term dynamic behavior of the lower chord modular joint
LJ5 is investigated by recording the von Mises stress time history at the
four sections in the starter segments and the three sections in the bent
region of the flange plates, shown in Fig. 6 and Fig. 7 respectively. The
peak von Mises stresses at each section are presented in Table 2.

As the system is let to vibrate freely, the von Mises stress in the
middle flange of section Side R continues to increase with peak value of
184 MPa (27 ksi). The out-of-plane movement of the fractured diagonal
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Table 2
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Peak von Mises stress associated with short-term dynamic behavior of modular joint LJ5 (sections indicated in Fig. 2). NA = not available

von Mises stress (MPa)

Side R Chord R Side L Chord L Bend R Bend M Bend L
Middle flange 184 NA 447 NA NA 225 NA
Right flange 30 265 NA NA 319 NA NA
Left flange NA NA 219 183 NA NA 302
Flat flange NA 365 NA 304 NA NA NA
Web 61 346 191 151 NA NA NA

D4, in combination with the relatively small thickness of 12.7 mm (0.5
in.) of the middle flange plate are likely the cause of the high stresses.
Section Side L experiences similar behavior. However, the recorded peak
von Mises stress of 447 MPa (65 ksi) is much higher and close to the
ultimate stress of 483 MPa (70 ksi). The von Mises stress in the left flange
and web plates increases as well. This behavior indicates that the un-
damaged diagonal member, D5-5, significantly contributes to the
redistribution of the load when D4 is damaged, which can also be seen in
Fig. 10. The high stresses in the middle flange are also caused by the out-
of-plane movement of the fractured member D4 and thinner middle
flange plate. The middle flange plate has a thickness of 12.7 mm (0.5 in.)
that was selected through the optimization approach in Tumbeva et al.
[1]. However in Tumbeva et al. [1], under all load scenarios, the forces
acting in the middle flange plate were found to be very small, close to
zero. Increasing the thickness of the middle flange plate would poten-
tially reduce the stresses in the bent region to provide higher safety
when a diagonal member is damaged.

The stress contours in Fig. 10B and Fig. 10C as well as the time
histories for sections Chord R and Chord L given in Fig. 6, indicate that
the chord starter segments of LJ5 are able to respond to the sudden
change in structure’s geometry through flexure, thereby providing a
path for the load to be redirected to the adjacent members. As section
Chord R is right under the fractured member, stresses are expected to be
higher than the stresses in section Chord L. The von Mises stresses in the
web of section Chord R have reached the yield point, while the von Mises
stresses in the flat flange are above the yield stress with peak value of
365 MPa (53 ksi). Lower von Mises stresses are recorded in the right
flange of the section with peak value of 265 MPa (38 ksi). Section Chord
L experiences similar behavior but with the highest peak von Mises
stress of 304 MPa (44 ksi) found in the flat flange, indicating that the
section has not yielded during the free vibration period. Note that the
initial (undamaged) stress state in both sections, Chord R and Chord L, is
primarily axial. However, the recorded dynamic behavior of having
different stresses in the right/left and flat flanges, indicates that if D4 is
damaged, the chord segments of joint LJ5 are able to redistribute the
load to the adjacent lower chord members, L4-5 and L5-6, through
flexure.

Fig. 7 shows that none of the sections in the bent regions have
yielded which is desirable since the flange plates are cold bent and
welded to the web. Section Bend R has a peak von Mises stress of 319
MPa (46 ksi) which is the highest compared to the other sections, as
expected, but it is considerably close to the yield stress. The stresses in
Bend M are the smallest with peak von Mises stress of 225 MPa (33 ksi).
The time history for Bend L shows that the section maintains stresses
close to the initial stress of 123 MPa (18 ksi) up to approximately t = 1.2
s and then the stresses increase significantly reaching a peak value of
302 MPa (44 ksi).

The periodic response of the joint components that is shown in Fig. 6
and Fig. 7 is expected as the system oscillates freely when load is being
redistributed away from the fractured member (this behavior is also
observed from Fig. 9). The model does not include damping and thus,
the response does not decay in time.

It is also important to investigate the effect of the free vibration phase
on the strain rate behavior of the modular joint. Table 3 presents strain
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rates calculated for each section. Similar to the instantaneous dynamic
behavior, strain rates are the highest in Side R and lower strain rates are
measured in the other sections. Although the stresses recorded in the
short-term dynamic behavior are much higher (Fig. 6 and Fig. 7), the
measured strain rates are smaller in comparison with the measured
strain rates in the instantaneous dynamic behavior (Table 1) and also are
more consistent with the strain rates of 10~3/s that are typically asso-
ciated with undamaged bridges under live load. This is primarily
because the change in stress occurs over a larger time frame in the short-
term dynamic response. Therefore, it is important that the analysis is
capable of capturing the instantaneous dynamic behavior of the modular
joint such that the associated strain rates can be measured.

The results presented in this section clearly indicate that the modular
joint is capable of redistributing the load through the starter segments
and bend regions of the flange plates. To potentially reduce the stresses
in the flange plates, their thickness could be increased. The web thick-
ness and/or depth could be increased as well, to accommodate the
relatively high stresses developed in the bottom flange.

7. Static behavior of the faulted structure

The prior sections investigated the instantaneous and short-term
dynamic behavior of the modular joint system following sudden loss
of diagonal member D4. This section, instead, focuses on the long-term
behavior of the faulted system under normal use, thus investigating a
circumstance in which the damage has not been detected and vehicular
traffic continues. To simulate such scenario, a diagonal member is
individually removed from the geometry at the beginning of the anal-
ysis. This study considers diagonal members D1 through D6 (Fig. 2)
located in Truss Plane 1. The Redundancy II load combination devel-
oped in Connor et al. [14] and AASHTO Guide Specifications [15] which
is similar to the Strength I load combination in American bridge design
code [8] is used:

RedundancyII : 1.05DC + 1.30(LL + IM) 2)
where IM is the dynamic live load allowance factor (IM = 15%). The
dead load, DC, and the live load, LL, are the same as in the previous
section.

The 3D FE model shown in Fig. 2 and detailed earlier is used to
perform an implicit nonlinear static analysis in which a single diagonal
member is removed. Dynamic effects associated with sudden member
loss are ignored (i.e., the diagonal member was simply not included in
the model from the start).

Fig. 11A compares the load-displacement behavior of an undamaged
structure to the structure with different diagonal members removed (i.
e., each damaged structure has one diagonal member removed, with the
removed member identified in the legend). Displacements are measured
at the midsection of the lower chord member located at midspan in Truss
Plane 1. For all damaged cases, except for D1, the structure is able to
carry the full dead and live load, including load factors. It is not unex-
pected that the loss of D1 cannot be tolerated, as this is a region of high
shear demand and thus, the forces in D1 are the highest. Note that the
portal diagonal member is not part of this study. Although, the structure
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Table 3
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Strain rate associated with short-term dynamic behavior of modular joint LJ5 (sections indicated in Fig. 2). NA = not available.

Strain rate (/s)

Side R Chord R Side L Chord L Bend R Bend M Bend L
Middle flange 4.9E -2 NA 1.1E-2 NA NA 7E-3 NA
Right flange 1E-2 6E — 3 NA NA 7.7E -3 NA NA
Left flange NA NA 8.1E—-3 6.3E—3 NA NA 3.9E-3
Flat flange NA 7.8E -3 NA 6.8E—3 NA NA NA
Web 1E -2 4E -3 7.4E -3 33E-3 NA NA NA
the undamaged bridge. The initial elastic stiffness is determined by
10000 1 1.05D + 1.3 (LL + IM) calculating the slopes between every two successive increments within
e S o L LT the linear elastic region in the load-displacement curve, and taking their
average. The end of the initial elastic region is defined at the point where
8000 A two successive slopes differ more than 0.1%. Comparing all member loss
cases (except D1), the D6 case is the most stiff, as it is able to maintain
approximately 62% of its initial elastic stiffness, whereas the D2 case is
Z 60001 ________ L 1.0SDL, the least stiff as it maintains just 40% of its initial elastic stiffness. This
< directly correlates with the shear demand (and the force in the diago-
2 4000 —Dl nal), being less in the center of the span compared to the end. To miti-
,3 —D2 gate the loss in stiffness, the chords and modular joints could be
—D3 proportioned with greater depth.
2000 —D4 Fig. 11B shows the von Mises stress distribution of the faulted
—D5 structure when member D4 is removed. Similar to the short-term dy-
D6 namic response, the members adjacent to the fractured member are
01 — Undamaged affected the most. As expected, the stresses in the starter segments of the
(') 200 4'00 660 800 10'00 two modular joints connecting the removed D4 (LJ5 and UJ4) are zero.
Vertical displacement at midspan (mm) Overall, in the four modular joints (LJ4, LJ5, UJ4, and UJ5), the sections
closer to D4 experience the highest stress concentration. This is espe-
(A) cially noticeable in the flat flange of the lower chord joint LJ5 which has

von Mises

MPa
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0

(B)

Fig. 11. Static behavior of the faulted structure: (A) Load-displacement curves
for loss of diagonal members (numbers indicated in Fig. 2) and (B) von Mises
stress contour for loss of D4.

is able to carry the full load in all cases except in D1, it is evident that the
stiffness is reduced significantly, depending on which diagonal member
is removed. The stiffness at the end of the load-displacement curve after
the full load has been applied is compared to the initial elastic stiffness of
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developed stresses above the yield stress [peak stress of approximately
413 MPa (60 ksi)], causing a significant decrease in the stiffness
(Fig. 11A). However, none of the elements in the modular joints have
developed stresses close to the ultimate stress of 483 MPa (70 ksi) thus,
allowing the structure to remain stable. The stress contour in Fig. 11B
indicates that the load that would have been in D4 is being redistributed
through flexure to the surrounding members.

Fig. 11B clearly shows that the diagonal members closer to D4 are
being significantly stressed, as a direct result of the fracture and load
being redirected to the adjacent members. However, in typical design,
without considering a member loss event, the diagonal members are
designed for much smaller stresses, usually close to zero. Therefore, in
the case of a sudden loss of a diagonal member, for the structure to
continue carry load, the diagonal members adjacent to the fractured
should be designed to sustain the transferred load. Furthermore, buck-
ling of the compressive diagonal members should be considered such
that the system is protected from losing another member. Fig. 11B also
shows that the lateral bracing adjacent to the removed member as well
as the opposite upper chord are engaged.

Overall, the global system behavior of the faulted structure was
evaluated through a nonlinear static approach. The results demonstrated
the ability of the modular joints to sustain the sudden loss of a diagonal
member and redistribute the load through flexure.

8. Conclusions

This paper presented a numerical investigation of the redundancy of
steel truss bridges composed of modular joints when subjected to sudden
loss of diagonal member including the response of the system through
nonlinear dynamic analysis and nonlinear static analysis.

This section includes recommendations for performing the dynamic
analysis as well as summarizes major research findings.
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8.1. Recommendations for numerical analysis

An explicit dynamic analysis was used to investigate the behavior of
the modular joint system when subjected to sudden loss of a diagonal
member. The results show that the analysis is able to capture the
instantaneous response of the modular joints to the high-velocity stress
wave as well as the short-term dynamic behavior of the system. It is
particularly important that the strain rates developed in the cold bent
and welded flange plates of the modular joint as a result of the high-
velocity stress wave can be calculated from the analysis, as they are
significantly above the intermediate strain rates typical of live load
passage over a bridge and reduce the fracture toughness of the plates.
This dynamic analysis would be most important in systems composed of
welded components and/or bent plates.

The following recommendations on performing the dynamic analysis
are suggested:

e The FE model should be developed using brick or shell elements
which better capture the behavior of the structure under the high-
velocity stress wave when compared to frame elements. Shell ele-
ments are more suitable in large-scale models due to their higher
computation efficiency.

A full 3D FE model that closely represents the structural system
should be used due to the unsymmetrical behavior of a system when
subjected to member loss. Modeling half or quarter of the system
would reduce the computational expense, but would not be able to
accurately capture the 3D load distribution that occurs.

The mesh size of the shell elements should be selected such that the
stability limit required in the explicit time integration rule is suffi-
ciently small for the method to achieve an accurate solution. A mesh
refinement study should be performed to establish appropriate mesh
size. The simplified approach of calculating the stability limit could
be used to approximate mesh size to start the mesh refinement study.
The FE model should incorporate nonlinear material properties
including strain hardening, as the structure is expected to redis-
tribute load through ductile behavior and develop a collapse-
resistant mechanism. In addition, as the system undergoes sudden
changes in geometry causing the development of large deflections,
nonlinear geometry should also be considered.

The SD analysis method is more appropriate for evaluating structures
with longer natural periods (e.g., above 1 s). This method requires a
static analysis of the undamaged structure to establish an initial
stress state. This initial stress state needs to be imported into a
different model, therefore, the FE software should have this capa-
bility. The QSD analysis model could be implemented for short
period structures (e.g., less than 1 s).

For both the SD and QSD analysis methods, the load release time, tg,
must be sufficiently small to ensure that the load is applied instan-
taneously. A sensitivity analysis should be performed to establish
load release time in which the stability limit could be used as a
starting point. Expected load release times are in the order of 0.0005
ms.

The proposed dynamic approach, for evaluating both instantaneous
and short-term dynamic behavior, is suitable for other steel structures
with other forms (i.e., variable-depth), different span arrangements (e.
g., three-span continuous system), and span lengths as well as systems
that are not composed of modular joints.

8.2. Summary of behavior

This paper presented a numerical investigation of the redundancy of
the modular joint system for the case of a 119-m (390-ft) simply sup-
ported, two-lane [9.91-m (32.5-ft) wide] vehicular bridge, focusing on
three behaviors: (1) instantaneous dynamic behavior, focusing on the
effect of the high-velocity stress wave, with its associated high strain
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rates and impact on fracture toughness particularly in the cold bent and
welded portion of the modular joint, (2) short-term dynamic behavior of
the structure, and (3) static behavior of the faulted structure. Major
findings and conclusions specifically relevant to this structural system
include:

e Dynamic and static analyses demonstrated that the modular joint is
able to redistribute load through flexure when a diagonal member is
lost.

e High-velocity stress waves should be considered to evaluate mini-
mum fracture toughness requirements. As a result of the instanta-
neous impact of the stress wave on the modular joint, strain rates in
the cold bent and welded flange plates were found to be significantly
higher than the intermediate strain rates of 10~3/s that are typically
associated with undamaged bridges under live load. These higher
strain rates (associated with member loss) lower the fracture
toughness of the flange plates, which in combination with the
reduced fracture toughness of the flange plates due to cold bending
and welding, require a particular consideration in design for sudden
member loss, such that the modular joint is protected and fracture in
any of the cold bent plates does not occur.

Current AASHTO provisions prescribe minimum toughness of steel

using CVN requirements based on thickness and service temperature.

However, it should be noted, that the minimum CVN requirements

are in terms of the as-rolled condition of the plate and does not

directly account for the change in fracture toughness due to welding
and forming of the steel. Additional requirements associated with
welding and cold bending of the plates must also be met to ensure
enough toughness. It is therefore, recommended that fabrication of
the modular joints is according to the Fracture Control Plan specified
in the AASHTO/AWS (American Welding Society) D1.5M/D1.5

Bridge Welding Code [27]. In addition, especially when considering

dynamic strain rates, having plates that exceed the minimum CVN

requirements is beneficial. A sensitivity analysis to account for
toughness based on various factors (temperature, thickness, bend
radius, etc.) would be an important area for future research.

Modular joints should be capacity-protected, such that yielding is

forced into the members framing into it. This allows the modular

joints to continue to redistribute load and prevent system collapse.

The web and flanges bolted splice connections should be capable of

developing the capacity of the diagonal or chord.

e As the structure was let to oscillate freely in the short-term dynamic
analysis, stresses close to the ultimate stress of the material were
found in the upper chord modular joint adjacent to the fractured
diagonal, shortly after the load was released. Increasing the thickness
of the middle flange plate would potentially reduce the stresses and
provide higher safety of the system in case a diagonal member is
damaged. Thicker web plate could also be beneficial.

e Both, static and dynamic analyses indicated that the diagonal
members adjacent to the fractured member experience increased
stress as a result of the load redistribution. This can cause buckling in
the compressive diagonal members and needs to be considered in
design to ensure that failure of these members does not occur and the
system is protected from becoming unstable.

e The nonlinear static analysis indicated that the system is able to carry
the full, factored dead and live load (Redundancy II load case,
analogous to Strength I limit state), albeit at a reduced stiffness,
when any one of the diagonal members D2 through D6 is lost. The
stiffness reduction can be mitigated by increasing the depth of the
chords. The ability to proportion chord depth to tolerate diagonal
loss is a distinct advantage of this modular system.

e A dynamic analysis is recommended to establish the load-path
redundancy of the system. A static analysis is not able to capture
the behavior of the entire system and misses important localized
behavior.
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e A dynamic analysis that is able to capture the instantaneous response
of the modular joint and allows strain rates due to the high-velocity
stress wave to be calculated, is recommended.

Overall, the modular joint system takes advantage of the aspects of
steel trusses that have made them the dominant long-span bridge form
over the last century (i.e., high efficiency, ease of design, and longevity)
and overcomes barriers to truss use today: lack of redundancy and
problematic gusset plates. Importantly, this research demonstrate that in
the design of structures, member loss should be taken into consideration.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. CMMI-1351272 and Grant No. IIP-
2044340. Mirela D. Tumbeva is also supported by the O.H. Ammann
Research Fellowship. Support from these sources and the program
managers is gratefully acknowledged.

References
[1] M.D. Tumbeva, A.P. Thrall, T.P. Zoli, Modular joint for the accelerated fabrication

and erection of steel bridges, J. Br. Eng. 26 (6) (2021) 04021022.

FHWA, Steel Bridge Design Handbook: Redundancy, Federal Highway

Administration (FHWA), Washington D.C, 2015.

E. Covington, C. Engel, K. Kelly-Sneed, J. Noh, T.P. Zoli, Portsmouth memorial

bridge replacement: an exploration of truss design without gusset plates, in:

Proceedings of the 2013 SEI Illinois Chapter Lecture Series, 2013.

J.G. Chen, T.M. Adams, H. Sun, E.S. Bell, O. Buyukozturk, Camera-based vibration

measurement of the world war I memorial bridge in Portsmouth, New Hampshire,

J. Struct. Eng. 144 (11) (2018) 04018207.

V. Shahsavari, M. Mashayekhi, M. Mehrkash, E. Santini-Bell, Diagnostic testing of a

vertical lift truss bridge for model verification and decision-making support, Front.

Built Environ. 5 (92) (2019) 1-19.

E.S. Bell, R.A. Medina. Evaluation of Gusset-less Truss Connection to Aid Bridge

Inspection and Condition Assessment, Report No. FHWA-NH-RD-26962M, Federal

Highway Administration (FHWA), Washington, DC, 2019.

M. Mashayekhi, E. Santini-Bell, Fatigue assessment of the gusset-less connection

using field data and numerical model, Br. Struct. 15 (1-2) (2019) 75-86.

[2]

[3]

[4]

[5]

[6]

[7]

16

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

Journal of Constructional Steel Research 188 (2022) 107038

AASHTO, in: Load and Resistance Factor Design (LRFD) Bridge Design
Specifications Customary U.S. Units, 9th Edition, American Association of State
Highway and Transportation Officials (AASHTO), Washington, D.C., 2020.

J. Barsom, Development of AASHTO fracture toughness requirements for bridge
steels, Eng. Fract. Mech. 7 (3) (1975).

R. Connor, J. Lloyd, Maintenance Actions to Address Fatigue Cracking in Steel
Bridge Structures: Proposed guidelines and Commentary., NCHRP Project 20-07,
Task 387, Purdue University, West Lafayette, IN, 2017.

S.M. Marjanishvili, Progressive analysis procedure for progressive collapse,

J. Perform. Construct. Facil. 18 (2) (2004) 79-85.

M. Ghosn, F. Moses, Redundancy in Highway Bridge Superstructures., NCHRP
Report No. 406, Transportation Research Board, National Research Council,
Washington, D.C., 1998.

M. Ghosn, J. Yang, D. Beal, B. Sivakumar, Bridge System Safety And Redundancy,
NCHRP Report No. 776, Transportation Research Board, National Academies of
Sciences, Engineering, and Medicine, Washington, D.C., 2014.

R. Connor, J. Francisco, M. Bonachera, V. Amit, L. Zhichao, K. Cem, Fracture-
critical System Analysis For Steel Bridges, NCHRP Report No. 883, Transportation
Research Board, National Academies of Sciences, Engineering, and Medicine,
Washington, D.C., 2018.

AASHTO, in: Guide Specifications for Analysis and Identification of Fracture
Critical Members and System Redundant Members, 1st Edition, American
Association of State Highway and Transportation Officials (AASHTO), Washington,
D.C., 2018.

URS Corporation, Fatigue Evaluation and Redundancy Analysis., Bridge No. 9340,
1-35W Over Mississippi River, Draft Report Prepared for Mn/DOT, Minneapolis,
MN, 2006.

H. Cha, L. Lyrenmann, R.J. Connor, A. Varma, Experimental and numerical
evaluation of the postfracture redundancy of a simple span truss bridge, J. Br. Eng.
19 (11) (2014) 0401448.

S. Yan, X. Zhao, Y. Lu, Collapse-resisting mechanisms of planar trusses following
sudden member loss, J. Struct. Eng. 143 (9) (2017) 04017114.

H.T. Khuyen, 1. Eiji, Linear redundancy analysis method considering plastic region
for steel truss bridges, J. Br. Eng. 22 (3) (2017) 05016011.

Y. Goto, N. Kawanishi, I. Honda, Dynamic stress amplification caused by sudden
failure of tension members in steel truss bridges, J. Struct. Eng. 137 (8) (2011)
850-861.

S. Liu, F.M. Bartlett, W. Zhou, Alternative load paths in steel through-truss bridges:
case study, J. Br. Eng. 18 (9) (2013) 920-928.

T. Huu-Tai, K. Seung-Eock, Nonlinear inelastic time-history analysis of truss
structures, J. Construct. Steel Res. 67 (12) (2011) 1966-1972.

K. Miyachi, S. Nakamura, A. Manda, Progressive collapse analysis of steel truss
bridges and evaluation of ductility, J. Construct. Steel Res. 78 (2012) 192-200.
ABAQUS, ABAQUS/Standard Analysis User’s Manual Version 6.14, Dassault
Systemes, Waltham,MA, 2016.

T.P. Zoli, R. Woodward, Design of long span bridges for cable loss, in: Proceedings
of the 2005 IABSE Symposium: Structures and Extreme Events, Lisbon, 2005,

pp. 17-25.

R.B. Malla, P. Agarwal, R. Ahmad, Dynamic analysis methodology for progressive
failure of truss structures considering inelastic postbuckling cyclic member
behavior, Eng. Struct. 33 (5) (2011) 1503-1513.

AASHTO/American Welding Society (AWS), D1.5M/D1.5:2020 Bridge Welding
Code, American Association of State Highway and Transportation Officials
(AASHTO), Washington, D.C., 2020.


http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0005
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0005
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0010
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0010
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0015
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0015
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0015
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0020
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0020
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0020
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0025
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0025
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0025
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0030
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0030
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0030
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0035
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0035
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0040
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0040
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0040
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0045
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0045
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0050
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0050
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0050
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0055
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0055
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0060
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0060
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0060
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0065
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0065
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0065
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0070
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0070
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0070
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0070
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0075
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0075
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0075
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0075
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0080
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0080
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0080
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0085
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0085
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0085
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0090
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0090
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0095
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0095
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0100
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0100
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0100
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0105
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0105
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0110
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0110
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0115
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0115
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0120
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0120
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0125
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0125
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0125
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0130
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0130
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0130
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0135
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0135
http://refhub.elsevier.com/S0143-974X(21)00520-4/sbref0135

	Investigating the redundancy of steel truss bridges composed of modular joints
	1 Introduction
	2 Background
	3 Objectives and scope
	4 General features of bridge geometry and numerical models
	5 Instantaneous dynamic behavior
	5.1 Single beam study
	5.1.1 Element type and analysis method
	5.1.2 Mesh refinement study
	5.1.3 Load release time

	5.2 Simply supported vehicular bridge

	6 Short-term dynamic behavior
	6.1 System behavior
	6.2 Local behavior: lower chord modular joint LJ5

	7 Static behavior of the faulted structure
	8 Conclusions
	8.1 Recommendations for numerical analysis
	8.2 Summary of behavior

	Declaration of Competing Interest
	Acknowledgments
	References


