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Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases
have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or
frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge
purely in a system's dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator net-
work, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated
dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topologi-
cal protection of the network's quality factor. The topologically non-trivial dissipation of our system exposes new opportunities
to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling
to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future

work in the study of synthetic dimensions.

ost topological phases in condensed matter', ultracold

atoms” and photonics’ rely on conservative couplings to

achieve non-trivial topological invariants. Conservative
couplings arise when the elements of a system—either atoms of a
quantum system or ring resonators of a photonic system (Fig. 1a)—
exchange information directly through their overlapping modes.
The conservation of energy imposes a particular set of possible phase
relationships on conservative couplings due to the unitary nature
of the scattering matrix. In topological lattice models, conservative
couplings engender energy or frequency spectra whose bands are
characterized by quantized, non-zero topological invariants. The
presence of non-trivial topological invariants, in turn, gives rise to
topologically protected edge states at the boundaries of the lattice*’,
whose existence is robust against the presence of defects and disor-
der. The edge states of conservatively coupled systems are touted for
their unusual and exceptional transport dynamics, which may be
unidirectional and free from backscattering.

Dissipative couplings indirectly couple the elements of a system
through an intermediate reservoir®, such as a bath of atomic modes
or the modes of a bus waveguide® (Fig. 1a). Dissipative couplings may
be thought of as two separate couplings: information from one ele-
ment of the system first couples into the reservoir and then couples
from the reservoir into a second element of the system. In general,
some information is irrevocably lost to the reservoir in this process,
and dissipative couplings do not conserve energy. However, dissipa-
tive couplings enable additional freedom to engineer the coupling
phases, as the system’s scattering matrix is no longer unitary. (It is
essential to distinguish dissipative couplings from the on-site gain
and loss produced by, say, laser gain and absorption. The latter phe-
nomena, combined with conservative couplings, have been exten-
sively studied in both theory and experiment in non-Hermitian

topological photonics. In this work, we study non-trivial topology
that appears solely due to dissipative couplings. Such a phenom-
enon has not been experimentally studied in topological photon-
ics.) As shown in Fig. 1a, the right choice of coupling phases can
introduce splittings purely in the dissipation modes of a system.
Other coupling phases may introduce splittings in the frequency
modes of a system or in a combination of frequency and dissipa-
tion modes (Supplementary Section 3). Such ‘dissipation engineer-
ing’ plays an important role in superconducting circuits, ultracold
atoms and photonics, where it is used for reservoir engineering’,
laser mode-locking'®"!, and quantum and photonic computing'*~**.
Several recent studies have proposed combining dissipative and
conservative couplings to enable time-reversal symmetry-breaking
couplings" and to induce non-trivial topological invariants'*2’.
These proposals suggest that dissipative coupling, like nonlinear-
ity and local gain and loss*~*%, may enable new topological
phases and topology-inspired technologies for quantum and clas-
sical applications. However, topological phases that arise in lattices
with purely dissipative couplings remain largely unexplored”*.

Here we experimentally realize topological phases with purely
dissipative couplings. In contrast to previous works, our dissipa-
tively coupled topological lattices exhibit topologically non-trivial
bands of dissipation rates and feature robust topological edge states
with dissipation rates between those of the bulk bands.

Our experimental platform consists of a time-multiplexed reso-
nator network (Fig. 1b,c) that uses the notion of synthetic dimen-
sions®*" to generate dissipatively coupled lattices that are capable
of hosting non-trivial topological invariants. A general implemen-
tation of this network (Fig. 1b) contains N resonant optical pulses
separated by repetition period Ty. Each pulse represents a single,
synthetic lattice site, represented by a synthetic resonator (Fig. 1c).

'Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA. ?Department of Electrical Engineering, Stanford University,
Stanford, CA, USA. 3Department of Mechanical Engineering and IPST, University of Maryland, College Park, MD, USA. “Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA, USA. State Key Laboratory of Advanced Optical Communication Systems and Networks,
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China. éTheoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering
Research, Wako, Japan. "Department of Physics, University of Michigan, Ann Arbor, MI, USA. 8RIKEN Center for Quantum Computing, Wako, Saitama,
351-0198, Japan. °These authors contributed equally: Christian Leefmans, Avik Dutt. Me-mail: marandi@caltech.edu

NATURE PHYSICS | www.nature.com/naturephysics


mailto:marandi@caltech.edu
http://orcid.org/0000-0002-6064-4356
http://orcid.org/0000-0001-9481-0247
http://orcid.org/0000-0003-3682-7432
http://orcid.org/0000-0002-0081-9732
http://orcid.org/0000-0002-0470-0050
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-021-01492-w&domain=pdf
http://www.nature.com/naturephysics

ARTICLES NATURE PHYSICS

/a

Dissipative coupling

1)8(r

¥

Dissipation

Band structure

\

\/
_/\

Conservative coupling

Energy/frequency

LT

Quasi-momentum, k

¢

dt

/

.

[4

Synthetic resonators

Coupling delays
Ta 274 (N- 1)TR

N N

General time-multiplexed network

@@
e

Fig. 1| Topological dissipation and time-multiplexed resonator networks. a, Dissipatively coupled resonators (left) can map the energy spectrum of a
tight-binding model to the dissipation spectrum of the resonators. The dynamics of dissipatively coupled resonators can be described by the dissipators D [L}]
of a Lindblad master equation (equation (1)). Note that with purely dissipative couplings, there are no Hamiltonian dynamics (H=0) (Supplementary Section
5 provides a detailed derivation). On the other hand, conservatively coupled resonators (right) map the energy bands of a tight-binding model to the frequency
spectrum of the resonators. In the absence of loss, the dynamics of a conservatively coupled system exhibit only Hamiltonian dynamics: p = —i[H, p].

b, Schematic of a resonant cavity loop (light blue) that supports N pulses separated by a repetition period, T, and possesses delay lines of various lengths. The
delay lines contain EOMs (yellow) that are driven by a controller. ¢, Equivalent synthetic resonator representation of b. Each synthetic resonator consists of a
single, recirculating pulse. The time-multiplexed network is built by coupling the pulses with delay lines, which are indicated by the shaded boxes.
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Fig. 2 | Realizing 1D and 2D synthetic lattices with switchable boundary conditions in a time-multiplexed resonator network. a, We construct a
four-delay-line, time-multiplexed network capable of implementing two synthetic dimensions. An erbium-doped fiber amplifier (EDFA) partially
compensates for the roundtrip loss in the network. b, With the +4T; delay lines blocked, we use IMs in the +T; delay lines, namely, IM,,, to implement a
1D chain with staggered couplings (w and v) of the SSH model. The intracavity IM, namely, IM, enables both PBCs and OBCs. ¢, With all four delay lines,
the network can implement a 2D square lattice. The PMs in the +£4T, delay lines, namely, PM_,, produce the time-reversal symmetry-breaking couplings of
the HH model, whereas IM_; enforces OBCs along the ‘vertical’ direction. IM. enables PBCs or OBCs along the ‘horizontal’ direction.
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Fig. 3 | Observations of the SSH edge state and topological phase transition. a, For 50 round trips, we excite the SSH edge state corresponding to a
coupling ratio of w/v=2 in our time-multiplexed network as we tune the delay-line couplings to induce a topological phase transition between the trivial
and topological phases of the SSH model. b, For the first 25 round trips, we set the network coupling ratio to the trivial phase (w/v=1/2), and we observe
that the edge state diffuses away from the edge as it resonates in the network (indicated by the thick red arrows). ¢, After 25 round trips, we switch the
coupling ratio to the topological phase (w/v=2). The strong localization of the edge state in the topological phase (indicated by the thick green arrows)
suggests that the edge state is an eigenstate of the network and corroborates our observation of a dynamic topological phase transition. d, Depictions of

the SSH lattice corresponding to the trivial and topological phases.

As the pulses traverse the primary fibre loop (main cavity; Fig. 1b),
a portion of each pulse enters the network’s (N—1) delay lines.
These delay lines act analogously to the bus waveguides in Fig. 1a
by mediating unidirectional couplings between the network’
time-multiplexed resonators. The lengths of the (N —1) delay lines
are chosen so that each pulse couples to the other (N—1) pulses in
the network, and the electro-optic modulators (EOMs) in the delay
lines determine the strengths and phases of the couplings'’. By map-
ping the couplings of the network to a particular lattice model, our
network represents the connections of the model under study.
Although previous studies have realized time-multiplexed random
walks in synthetic photonic lattices’*'~**, these travelling-wave archi-
tectures relied on conservatively coupled fibre loops and functioned
like real-space waveguide arrays. Moreover, it has not been shown how
to extend these architectures beyond the nearest-neighbour coupling
or to higher than two dimensions. In contrast, the flexible site-to-site
couplings of our resonator-based design are akin to those of the origi-
nal optical Ising machine”, and furthermore, by simply adding more
delay lines, it is straightforward to realize long-range couplings, differ-
ent lattice types and additional synthetic dimensions with our network
architecture. In addition, our network may be reconfigured to realize
different lattice models or different parameter regimes by reprogram-
ming the modulator driving signals that control the strengths and
phases of the couplings. In this work, we demonstrate our network’s
ability to readily implement multiple synthetic dimensions, tunable
boundary conditions, dynamic and inhomogeneous couplings, and
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time-reversal symmetry-breaking gauge potentials. Simultaneously
achieving these behaviours presents a substantial challenge to existing
platforms for synthetic dimensions******. Furthermore, the dissipa-
tion introduced by our system’s dissipative couplings stands in sharp
contrast to the on-site gain and loss used to realize non-Hermitian
topology®>” or non-reciprocal couplings in previous, conservatively
coupled experiments™. It is our dissipative couplings that give rise
to topologically non-trivial bands of dissipation rates in our system
and that distinguish our work from previous works on topological
photonics.

To study the dissipatively coupled equivalents of the Su-
Schrieffer-Heeger (SSH)** and Harper-Hofstadter (HH)** models,
we construct a four-delay-line network (Fig. 2a) that hosts N=64
synthetic lattice sites and can implement one-dimensional (1D)
chains and two-dimensional (2D) square lattices either with open
boundary conditions (OBCs) or with periodic boundary conditions
(PBCs) along one dimension (Fig. 2b,c). The details of this setup are
described in Supplementary Section 1. We model the dynamics of
this network by the general Lindblad master equation

Here#H denotes the Hermitian Hamiltonian dynamics due to
conservative couplings between sites labelled by j (Fig. 1a, right).
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Fig. 4 | Robustness of the dissipative SSH edge state and its quality factor. a, Measured SSH edge state in a lattice without intentional disorder. b,
Measured SSH edge state in the presence of disorder. In the presence of chiral-symmetry-preserving disorder, the SSH edge state persists, despite

the slight change in the eigenstate. Furthermore, we expect the dissipation rate of the edge state to be unchanged, which is a hallmark of topological
protection in our dissipatively coupled SSH lattice. We verify the robustness of the dissipation rate and the quality factor of the edge state by measuring
the total intensities of the unperturbed and the disordered steady states of the network, which, under our experimental conditions, allows a comparison
equivalent to comparing the dissipation rates. ¢, Distribution of the measured coupling strengths in the unperturbed lattice. Here the variation in the
couplings is due to experimental imperfections (w is the inter-dimer coupling; v is the intra-dimer coupling). d, Distribution of the measured coupling
strengths in the disordered lattice. We add disorder to each coupling that is drawn from the uniform distribution Unif(-0.1w, 0.1w). Comparing c and d
suggests that the additional disorder is considerably stronger than the disorder introduced by experimental imperfections.

Because our network possesses purely dissipative couplings (Fig. 1a,
left), we consider the case in which H=0. Instead, the dis-

sipators D[Lj|p = L; pL}r . {LJT Lj, p}/2, with jump operators

Li=vT (aj + e’ieaﬁl), completely describe the dissipative cou-
plings between our synthetic lattice sites'®. Here I represents a dis-
sipative coupling rate, and 0 is related to the coupling phases. In
Supplementary Section 5, we derive the jump operators for our net-
work’s delay-line architecture (Fig. 1b) and show how to implement
dissipatively coupled SSH and HH lattices. We also show how to
engineer the phases of the delay lines to emulate purely conservative
and hybrid conservative-dissipative dynamics with our network’s
dissipative couplings. Although our current experimental results can
be explained by the classical, mean-field behaviour of equation (2)
(as discussed below), the full quantum dynamics of equation (1)
may be applicable to future implementations with lower intrinsic
losses and greater nonlinearities. In this sense, our work represents
a step towards the experimental realization of photonic topologi-
cal open quantum systems, where there is an i nteresting interplay
between the dark states, quantum jumps and topology'”*"*!.

Starting from equation (1), we can express the evolution of the
mean-field pulse amplitudes a; as

da

" (K—y)a+P,

@)

where t represents the slow-time (round-trip-to-round-trip) evo-
lution of the network, y represents the intrinsic losses of resonators,
P models a coherent drive and K is the network’s coupling matrix.
Notably, our time-multiplexed resonator network can imple-
ment arbitrary amplitudes and phases for the coupling matrix
elements K,,, without any symmetry constraints. This is substan-
tially beyond the capabilities of previous synthetic-dimensional
architectures—either other time-multiplexed systems**>*'-* or
architectures that utilize alternative synthetic dimensions®>***>**,
By engineering K to implement the couplings of the SSH or HH
model, our dissipatively coupled network acquires a dissipation
spectrum identical to the topologically non-trivial band struc-
ture of the model under study. Moreover, the mean-field eigen-
states of equation (2) also become the eigenstates of the model
implemented by K. As the topological invariants of the SSH and
HH models depend solely on the models’ eigenstates, the topo-
logical invariants of our dissipatively coupled network are, there-
fore, identical to those of the familiar, conservatively coupled
systems; however, the topological invariants are now associated
with topologically non-trivial dissipation bands (Supplementary
Section 4). As a result, in the presence of OBCs, our network is
guaranteed to possess the same topological edge states as its con-
servatively coupled counterparts, and the edge states inherit the
same robustness against disorder in the system (Supplementary
Section 4).
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Fig. 5 | Measurements of the SSH band structure. a, To measure the SSH band structure at a given coupling ratio w/v, we excite the complete set of

Bloch-wave eigenstates in the network and measure the steady-state amplit

ude of each state. Using equation (2), we transform these amplitudes into

the SSH band structure. b,c, Measurements of the SSH band structure at the phase transition point (b) and topological phase (c). Using the best-fit
curves, we extract the coupling ratios for each measurement. We measure w/v~1.0 (expected w/v=1) and w/v~1.4 (expected w/v= V2 ~1.414) for the
measurements in b and ¢, respectively. Note that the error bars represent the standard errors of five measurements at each quasi-momentum.

Introducing a properly engineered coherent drive into our net-
work (P in equation (2)) allows us to probe the specific states in our
dissipative topological lattice. We generate the desired P by using
the modulators IM, and PM, in Fig. 2a to excite a specific state of
the network, and we track the state’s evolution to acquire informa-
tion about the underlying synthetic lattice. For instance, to probe
the network’s topological edge state, we program P to excite the
edge state. If the edge state is an eigenstate of the network, then the
edge-state excitation will remain localized as it resonates within the
network. On the other hand, if the edge state is not an eigenstate,
then the edge-state excitation will undergo diffusive dynamics dic-
tated by equation (2). Similarly, when we institute the network’s sin-
gle PBC, we can choose P to excite a lattice’s complete set of Bloch
eigenstates. Measuring the steady states of these eigenstates allows
us to reconstruct the 1D band structure of the model under study
(Supplementary Section 2).

To demonstrate purely dissipative topological phenomena, we
first program our network to implement the couplings of the SSH
model’**. The SSH model describes a 1D dimerized chain with
intra-dimer coupling v and inter-dimer coupling w (Fig. 3)*, and
the model’s band structure is characterized by a topological winding
number W. When w <v, W=0, and the system is in a topologically
trivial phase. However, when w>v, W=1, and the system is in a
topological phase that hosts mid-gap, topologically protected edge
states.

We probe the SSH model’s topological edge state by implement-
ing a 50site SSH lattice with OBCs and by inducing a topological
phase transition between the SSH model’s trivial and topological
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phases (Fig. 3a). In addition to allowing us to probe the SSH mod-
el’s trivial and topological phases in a single experiment, this mea-
surement highlights our networK’s ability to implement dynamic
couplings. For 50 round trips, we excite the network with the SSH
edge state corresponding to the coupling ratio w/v=2. For the
first 25round trips, we prepare our SSH lattice in the trivial phase
by setting the coupling ratio of the network to w/v=1/2; for the
remaining 25round trips, we switch the synthetic lattice into the
topological phase by changing the coupling ratio to w/v=2. As
shown in Fig. 3b, when the lattice’s couplings are in the trivial phase,
the edge-state excitation diffuses into the initially unoccupied states
of the lattice. In contrast, when the couplings are in the topologi-
cal phase, the edge-state excitation remains strongly localized in the
theoretically predicted edge state (Fig. 3c). This localization con-
firms the existence of a purely dissipative topological edge state in
our time-multiplexed resonator network.

We next investigate the robustness of the dissipative SSH edge
state in the presence of disorder in the couplings of the network. In
Fig. 4, we show the measured resonant steady states in a network
without coupling disorder (Fig. 4a,c) and in a network with addi-
tional coupling disorder drawn from Unif(-0.1w,0.1w) (Fig. 4b,d).
As discussed in Supplementary Section 4, in the presence of such
chiral-symmetry-preserving disorder, we expect the dissipation rate
of the disordered edge state to be identical to that of the edge state in
the unperturbed system. This corresponds to topological robustness
of the quality factor of the dissipative topological edge mode. We
verify this robustness by measuring the total intensities (I; sum of the
peak powers) in measurements of the edge state with and without
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the colour maps. d, When the delay-line PMs implement the coupling phases of the HH model with a=1/3, the edge state is an eigenstate of the network,
and it resonates in the system. e, When we turn off these coupling phases to achieve a=0, the edge state no longer resonates in the network. In particular,
notice that light leaks into the ‘bulk’ in the time trace of this measurement. f, Difference between the bulk-site occupation for the topological case (blue)
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rectangles), and hence, the contrast of bulk occupation in f provides a better comparison between the trivial and topological phases. Furthermore, note that

the colour maps in b-e are saturated to emphasize the contrast between the edges and bulk.

disorder. Under the right experimental conditions, this compari-
son is equivalent to comparing the dissipation rates (Methods).
In the unperturbed system, we find I,,,.,=0.377+0.001V,
whereas in the disordered system, we find I;;=0.378+0.001 V.
The agreement between these two measurements provides strong
evidence that the dissipation rate (and consequently the quality
factor) of the SSH edge state is protected against the presence of
chiral-symmetry-preserving disorder in the network.

Next, we experimentally reconstruct the dissipation bands of
our SSH lattice in the topological phase (w/v=+/2) and at the phase
transition point (w/v=1). For both coupling ratios, we implement
a 64site SSH lattice with PBCs. In each case, we sequentially excite
the network with each of its 64 Bloch eigenstates, and we measure
the steady-state amplitude of each state. Then, using the fit proce-
dure described in Supplementary Section 2B, we extract the dissipa-
tion spectra from the measured steady-state amplitudes (Fig. 5b,c).
To evaluate the quality of our band structure measurements, we

compare the coupling ratios, w/v, extracted from our fit procedure
with the expected coupling ratios. This comparison provides a suit-
able metric for the quality of our measurements because, up to a
constant, the SSH coupling ratio completely determines the band
structure®. For the band structure at the phase transition point
(expected w/v=1), we measure w/v= 1.0, whereas, for the band
structure in the topological phase (expected w/v=+/2~1.414),
we find w/v~1.4. The excellent agreement between the measured
band structures and our theoretical predictions confirms that our
network possesses a topologically non-trivial dissipation spectrum.

Finally, to showcase the scalability and flexibility of our
time-multiplexed network architecture, we reconfigure our syn-
thetic lattice to probe the topological edge state of the HH model.
The HH model describes a 2D square lattice subjected to a per-
pendicular magnetic field****’, whose strength is characterized by
a dimensionless magnetic-field parameter a. For rational a, the
bands of the HH model acquire a non-zero topological invariant
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known as the Chern number C, which gives rise to topologically
protected edge states’. In our network, we use the modulators PM,_,
(Fig. 2a) to achieve an effective magnetic field with a=1/3 in a
4x 10 synthetic HH lattice with OBCs (Fig. 6a). Because the dis-
sipative couplings of our network are time-modulated and unidi-
rectional, the synthetic magnetic field generated by the delay lines
breaks time-reversal symmetry—meaning that our network pos-
sesses truly nonzero Chern numbers (Supplementary Section 6).
This is in stark contrast with earlier optical implementations of the
HH model, which either do not break time-reversal symmetry* or
only break z-reversal symmetry”c.

As shown in Fig. 6d, when we excite a topologically protected
edge state of the HH model in the presence of the synthetic mag-
netic field, the edge state remains well localized. Interestingly, this
edge state is strongly localized at the edges of the 4x 10 lattice,
despite only two bulk sites separating the edges along the narrow
direction. On the other hand, when we excite the edge state in the
absence of the synthetic magnetic field (@ =0), the lattice repre-
sents a trivial insulator, and the edge state diffuses into the ‘bulk’
of the synthetic lattice (Fig. 6e). As the initial edge-state excita-
tion is prominent in the responses of both topological and trivial
networks (Fig. 6d,e), we plot only the occupation in the bulk sites
(Fig. 6f) to clearly show that the edge state remains localized in
the topological phase but not in the trivial phase. We quantify this
contrast between the trivial and topological phases by defining a
bulk occupation fraction

ﬁ)ulk = Z ‘an,ny

fy,ty ebulk

4

>

subject to the normalization

2

Z ’ W”x’”y

g,y

We calculate f77°=5.6x10"*and fiiy =2.2x 107 for the topologi-

cal and trivial phases, respectively. As our 4 10 lattice has 16 bulk

sites and 24 edge sites, fiiy/fih. ~4 indicates considerably stronger

penetration into the bulk for the lattice in the trivial phase. Based on
this observation, we conclude that our time-multiplexed synthetic
HH lattice hosts a multidimensional topological edge state.

From the non-trivial topology of the dissipatively coupled HH
model’s dissipation bands, we expect that the topological edge states
of dissipative HH lattices should be robust against the effects of
defects and disorder. We demonstrate this robustness by simulating
the evolution of a 4X 10 dissipatively coupled HH lattice with and
without a defect added to one corner of the lattice. The results of
these simulations are shown in Fig. 6b,c. In both cases, we find that
when we excite the dissipative HH lattice with one of its topological
edge states, the edge state remains localized in the initial excitation.
For the dissipative HH lattice with a corner defect (Fig. 6¢), this is
a clear manifestation of topological protection. The details of these
simulations are discussed in Supplementary Section 8.

Our dissipatively coupled implementations of the 1D SSH model
and 2D HH model experimentally demonstrate the existence of
topological phenomena in the presence of purely dissipative cou-
plings. We leverage our time-multiplexed network’s dissipative
dynamics for edge state and band structure measurements, and
we utilize the time-reversal symmetry-breaking nature of our dis-
sipative couplings to introduce nonzero Chern numbers. Our
time-multiplexed resonator architecture also offers a promising
platform for future work in synthetic dimensions. Our design can
be extended to lattices in higher than two dimensions*~"' and to
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lattices with long-range couplings*, can achieve dense connectiv-
ity between lattice sites, and can realize dynamic and inhomoge-
neous synthetic gauge fields”>—a combination that is not easy to
achieve with other experimental platforms. We anticipate that dis-
sipative couplings will enable new topological devices with applica-
tions to quantum computing and photonics. Immediate extensions
of our current experiments include exploring non-Hermitian®***
and nonlinear” topological behaviours in dissipatively coupled
time-multiplexed networks.
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Methods

Network architecture. The time-multiplexed optical network studied in this
work hosts N=64 time-multiplexed resonators and possesses four delay lines,
labelled +Ty and +4T; delay lines (Fig. 2a). Each delay line differs in length from
the corresponding section in the main cavity by an integer multiple of the pulse
repetition period Ty. The ‘=’ (‘4) indicates that the delay line is shorter (longer)
than the corresponding main-loop section, and the accompanying number
denotes the range of the coupling (for example, the +4T; delay lines implement
the fourth-nearest-neighbour coupling). As the separate +NT; delay lines provide
independent control over each direction of the Nth-nearest-neighbour couplings, it
is straightforward to implement non-reciprocal couplings between sites.

The SSH model only requires nearest-neighbour coupling; therefore, to study
the SSH model, we block the +4T; delay lines. We then map the pulses in the main
cavity to the 1D chain in Fig. 2b, where the colours of the couplings correspond to
the colours of the delay lines that implement them. The intensity modulators (IMs)
inserted in the +T; delay lines provide pulse-to-pulse control over the coupling
strengths of each delay line and enable us to implement the staggered couplings of
the SSH model. Moreover, although the topology of the main cavity lends itself to
periodic boundary conditions (PBCs), the intra-cavity IM, namely, IM. (Fig. 2a),
provides control over the boundaries of the synthetic 1D lattice. We can switch the
boundary conditions to open boundary conditions (OBCs) simply by using IM to
suppress the time slots in the main cavity (Fig. 2b).

To realize the HH model in the network (Fig. 2a), we use the +4T} delay
lines to define the nearest-neighbour couplings along the second dimension of a
synthetic square lattice’. By using the IMs in the +T; delay lines to suppress the
‘spiralling’ boundary condition along this second synthetic dimension, we arrive
at the lattices shown in Fig. 2¢, where, once again, IM. enables us to implement
either a strip with a single PBC or a square lattice with OBCs. To achieve the
time-reversal symmetry-breaking coupling phases of the HH model, we place
phase modulators (PMs) in the +4T; delay lines. We utilize our independent
control over each delay line to introduce a synthetic magnetic flux in each
plaquette of the synthetic lattice (Fig. 2c).

For the measurements presented in the main text, we probe the properties
of the network by exciting states in the network and recording the network’s
steady-state response. To excite the desired edge states and Bloch-wave eigenstates,
we use an IM (IM,) and a PM (PM,) at the input of the main cavity (Fig. 2a). These
modulators encode the intensities and phases of the desired state onto a stream
of pulses from a mode-locked laser. On entering the cavity, these pulses excite the
sites of the synthetic lattice (that is, the time bins of the network) with particular
amplitudes and phases. By repeatedly exciting each site over multiple round trips of
the network, we bring the cavity to a resonant steady state.

Measurement procedure. SSH band structure measurements. To measure the SSH
band structure, we generate the modulator driving signals to implement the desired
coupling ratio within the network (using IM,,) and the Bloch-wave excitations

at the input to the cavity (using PM,). By not using IM,, the network inherently
implements PBCs; therefore, we implement a 64 pulse (32 dimer) SSH lattice.

To perform the experiment, we excite each Bloch eigenstate in the network
and record the network’s steady-state response to each state. We repeat this
measurement five times for each Bloch wave and compile the data from the
different measurements to generate a plot of the mean steady-state amplitudes
versus the wavevector. We then solve equation (2) to relate the steady-state
amplitudes of the Bloch waves, |c(k)|? to the dissipation eigenvalues of the SSH
model. We find

05— —) @

(r — Assn)

where y is the network loss; Ass = /W? + v> + 2wv cos(k); and A and d account

for detector scaling and bias, respectively.

We fit the measured amplitudes with a rescaled version of equation (3) using
Markov chain Monte Carlo (MCMC) simulations”. We use the fit parameters
to transform the measured amplitudes into the SSH band structures shown in
Fig. 5b,c.

Edge-state measurements. Our edge-state measurements follow a procedure similar
to that used for our band structure measurements. To observe the HH model’s
edge state, we first generate modulator driving signals to implement the synthetic
gauge field of the HH model (using PM,,) and to produce the HH edge state

at the input to the network (using IM, and PM,). As suggested in Fig. 2a,c, we

use the delay-line IMs, namely, IM,, to create OBCs along one direction of the
lattice, whereas IM. produces OBCs along the other direction. The result is that
we implement a finite, 4 X 10 HH lattice with an effective synthetic magnetic field
corresponding to a=1/3.

To probe the topologically non-trivial state of our lattice, we excite the HH
edge state in the network and record the system’s steady state. In the presence of the
synthetic gauge field, the edge state is an eigenstate of the network; therefore, the
excited edge state resonates unperturbed within the network. This result is shown
in Fig. 6d.
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To confirm that the lattice hosts a 2D topological edge state, we next turn
off the synthetic gauge field by turning off the driving signals on PM_,. The
network then implements a trivial 4 X 10 square lattice. We excite the same
topological edge state in the trivial lattice and observe that the network’s
steady-state response deviates from the edge-state excitation (Fig. 6¢). This
confirms that, in the presence of the synthetic gauge field, the topological edge
state is an eigenstate of the network.

For the SSH model, we first observe the topological edge state in the context of
a dynamical topological phase transition between the trivial and topological phases
(Fig. 3a). We begin by generating the modulator driving signals to implement
the SSH model’s couplings and to excite the SSH edge state. In addition, we now
use IM,. to implement a 50 pulse SSH lattice with OBCs. We excite the SSH edge
state in the network for 50 round trips. For the first 25 round trips, we program
the couplings so that the network is in the trivial phase of the SSH model. In this
case, we observe that the steady-state response of the network deviates from the
excited edge state. For the final 25 round trips, we switch the coupling strengths so
that the network is in the SSH model’s topological phase. Now, we observe that the
network response remains strongly localized in the edge state. This indicates that
the topological edge state is an eigenstate of the network when the network is in the
topological phase.

We investigate the robustness of the SSH edge state using a similar procedure.
We first program the network’s couplings to implement the SSH model with
no disorder and then program the couplings to implement the SSH model with
additional disorder distributed according to Unif(—0.1w,0.1w). In each case, we
perform the edge-state measurement 40 times and average the results. In both
cases, we excite the network with the predicted SSH edge state for 15round trips
and record the steady state of the network on the 15th round trip.

Because we excite the network with eigenstates in the disordered and
unperturbed cases, equation (2) again reduces to a scalar equation, and its solution
can be written in the form
oA “

Cedge
! ¢ (7/ - Aedge)z

which is very similar to equation (3), but it is now specialized to the case of the
SSH edge state. During our calibration, we take care to ensure that the probed edge
states have the same normalization in both the disordered and the unperturbed
lattices so that the pump parameter (A in equation (3)) is the same for both

cases. Then, comparing the total intensities in the resonant steady states becomes
equivalent to comparing the dissipation rates with and without disorder. We

use this comparison to conclude that the dissipation rate of the dissipatively
coupled SSH edge state is robust against the chiral-symmetry-preserving disorder
introduced into the system.

Note that the time traces plotted in Figs. 3, 4 and 6 are normalized by rescaling
the time trace by the maximum value in the averaged trace. The data plotted in the
colour map shown in Fig. 3a is not normalized, and the reference level used to plot
these data in units of decibels is the maximum intensity in the entire dataset.

Data availability
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