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ABSTRACT: The human genome is organized within a nucleus
where chromosomes fold into an ensemble of different conforma-
tions. Chromosome conformation capture techniques such as Hi-C
provide information about the genome architecture by creating a 2D
heat map. Initially, Hi-C map experiments were performed in human
interphase cell lines. Recently, efforts were expanded to several
different organisms, cell lines, tissues, and cell cycle phases where
obtaining high-quality maps is challenging. Poor sampled Hi-C maps

parse Hi-C Map Open-MiChroM In silico Hi-C

High Signal

Low Signal Chromatin Dynamics

present high sparse matrices where compartments located far from the main diagonal are difficult to observe. Aided by recently
developed models for chromatin folding and dynamics investigation, we introduce a framework to enhance the compartments’
information far from the diagonal observed in experimental sparse matrices. The simulations were performed using the Open-
MiChroM platform aided by new trained parameters in the minimal chromatin model (MiChroM) energy function. The simulations

optimized on a downsampled experimental map (10% of the original

data) allow the prediction of a contact frequency similar to that

of the complete (100%) experimental Hi-C. The modeling results open a discussion on how simulations and modeling can increase
the statistics and help fill in some Hi-C regions not captured by poor sampling experiments. Open-MiChroM simulations allow us to
explore the 3D genome organization of different organisms, cell lines, and cell phases that often do not produce high-quality Hi-C

maps.

B INTRODUCTION

In eukaryotes, the genome is organized within a nucleus
enclosed by a nuclear envelope formed by lipids and proteins.’
The bare nuclear DNA interacts with several different proteins
packing the genome as chromatin fibers that are arranged at
different levels of structural organization.2 In the past decade,
experiments using DNA—DNA ligation performed in human
cell lines were able to capture information about the genome
architecture by creating a 2D heat map named Hi-C.” Hi-C
data support the organization of chromosomes in territories
and identified that the overall genome organization could be
described by two main compartments termed A and B.’
Compartmentalization is often related to epigenetic informa-
tion and gene expression. Compartment A correlates with
regions of the genome containing highly expressed genes. On
the other hand, compartment B is associated with hetero-
chromatin, where the chromatin fiber organization is densely
packed.” ™ Hi-C maps reveal self-interacting partitions in the
order of megabases named topologically associating domains
(TADs).® Additionally, the loci contact frequency decays as a
function of the genomic separation presenting a less intense
signal for interactions far from the main diagonal.”” Physical
modeling helps to understand the compartmentalization
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pattern formation and associates the compartments with
phase separation of chromatin type A—B. Additionally,
chromatin dynamics relate the decay function with the
polymer compaction, chromosome territory formation, and
loop extrusion mechanism.”®~"* Initially, Hi-C maps experi-
ments were performed in human interphase cell lines.”
Recently, those efforts were expanded to several different
organisms, cell lines, tissues, and cell cycle phases.4’7’16_18 In
these cases, obtaining high-quality maps is challenging for
several reasons, such as the number of sequencing reads,
sequencing coverage, the number of cells, cell phase
synchronization, and the reference genome for the alignment.
The poor sampled Hi-C maps present high sparse matrices
where compartments located far from the main diagonal are
difficult to observe. In this work, we propose chromatin
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EXTRACT EIGENVECTORS

Perform the eigenvector decomposition
from the Hi-C correlation matrix and
use the first principal component to

determine the chromatin types A or B.

>
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software on the downsampled Hi-C map.

CHROMATIN DYNAMICS

Perform the chromatin dynamics using
Open-MichroM to generate the
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structures using GPUs.

Figure 1. Workflow for performing the chromosome modeling based on poor-sampling Hi-C data. A high-quality Hi-C map is downsampled to test
the model capability of using low-quality data. The compartments’ annotations are obtained from the eigenvectors based on the downsampled
maps. Using the PC1 annotations, the chromatin type A and B interactions are trained in the MiChroM energy function. Once the type-to-type
interactions are trained, the IC parameters are optimized. Using the complete MiChroM model, the simulations are performed to generate the
ensemble of chromosomal 3D structures. The contact probabilities of each loci pair along the trajectory are averaged to create the in silico 2D Hi-C

map.

dynamics modeling to enhance the compartments’ information
far from the diagonal observed in sparse matrices. We used the
experimental data from cell line GM12878.” We employed
different techniques to partially downsample the Hi-C data to
mimic poor sampling experiments. The simulations were
performed using the Open-MiChroM platform, and new
trained parameters were applied to the minimal chromatin
model (MiChroM) energy function as described in Figure 1.
The set of parameters for the chromatin type A or B
interactions is extracted from the first component of the
eigenvector of different levels of degradation of the
experimental Hi-C. The simulations applying the trained
parameters of the most downsampled experimental map (10%
of the original data) present similar contact frequencies when
compared with the complete experimental data set. The
modeling results open a discussion on how simulation can
increase the statistics and help fill in some Hi-C regions not
captured by poor sampling experiments.
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B METHODS

Workflow for Enhancing the Compartmentalization
Signal. Theoretical approaches to chromatin modeling have
been successfully employed to generate the ensemble of
chromosome structures that are consistent with Hi-C experi-
ments.'”™*' To perform the 3D modeling, these models
require high-quality experimental data to obtain information
about the interaction of a loci pair. Methods using the
maximum entropy approach such as MiChroM® (minimal
chromatin model) use chromatin dynamics where the in silico
map correlates R = 0.96 with the experimental Hi-C. The
MiChroM energy function is built on two main assumptions:
(1) the phase separation between chromatin types A and B and
(2) the motor activity related to the polymer chain
compaction, ie., the ideal chromosome term.>7** (See the
MiChroM model section for details.) Notwithstanding the
accuracy of using the MiChroM energy function, the parameter
optimization was trained using a high-quality Hi-C at 50 kb
resolution. Here we propose to optimize the MiChroM energy
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Figure 2. Downsampled Hi-C maps for chromosome 18 from GM12878 cell line. (a) Different levels of downsampling the Hi-C data (upper
matrix) compared to the original Hi-C map (lower matrix). (b) Comparison of different methods for downsampling Hi-C maps; Random,
Weighted-log(p) and Weighted-p, yellow, green, and blue borders, respectively. (c) Contact probability as a function of the genomic distance. The

decay curve changes based on different downsampling techniques.

function in low-quality data to explore the limitation of this
approach. Figure 1 presents the methodology workflow.

In the first step, to mimic low-quality data, the Hi-C maps’
from the GM12878 cell line are downsampled. Three different
algorithms were explored to reduce the number of counts in
the Hi-C matrix. (See the Downsampling section.) In the
sparsest matrix, Hi-C was reduced to 10% of the initial map.
Next, the first principal component of the correlation matrices
is extracted and associated with compartment annotations A
and B with positive and negative values, respectively. Using
chromatin types A and B, the optimization of the type-to-type
energy parameters is performed using the Open-MiChroM
software package. The optimization of the type-to-type
parameters is related to the checkerboard patterns observed
in the Hi-C. After the convergence of the type A—B
interactions, training is performed in the Ideal Chromosome
(IC) parameters. The IC energy function is associated with
polymer compaction, where the function is calibrated to match
the experimental scaling decay curve. The IC parameters
optimization is the last step of the training process. Open-
MiChroM uses the trained parameters to perform chromatin
dynamics that generate an ensemble of 3D chromosomal
structures over time. The average of the contact probability of
each loci pair generates the in silico Hi-C map that is consistent
with the experimental full Hi-C matrices.

Procedures for Downsampling the Hi-C Maps. The
quality of a Hi-C map is associated with the number of counts/
reads obtained from the high throughput sequencing used to
generate the 2D heatmap after the alignment with the
reference genome. For example, the Hi-C maps of the B-
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lymphoblastoid cell line (GM12878) obtained by Aiden Lab.”
have around 1S5 billion reads. In this work, the experimental
Hi-C map of chromosome 18 from the GM12878 was used for
training the MiChroM parameters. Five different training of
MiChroM energy function were performed in Hi-C maps with
varying degrees of downsampling. Figure 2a shows the original
(100%) Hi-C data compared to different levels of down-
sampling (80%, 50%, 20%, and 10%).

Additionally, it was employed three different methods for
reducing the Hi-C data. Figure 2b presents the 50%
downsampled Hi-C map generated by these three procedures.
In the first approach, named "Random - no weight,” all Hi-C
contacts have the same probability of being removed (Figure
2b - yellow border). Weaker interactions located far from the
main diagonal have the same chance of being removed as
stronger interactions close to the diagonal. Figure 2c presents
the contact probability decay as a function of the genomic
distance. By employing the "Random” approach (yellow
curve), the curve decays similarly to the 100% data (red
curve). However, there is a significant increase in the noise
generated by the lack of statistics in each genomic segment.

In the second approach called "weighted - p,” the probability
pi; of maintaining the loci pair (i, j) interaction is selected
based on the number of counts C;; of that contact, and it is
defined as follows:

(1)

https://doi.org/10.1021/acs.jpcb.1c04174
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Figure 2b (blue border) presents the downsampled Hi-C map
employing this second technique. There is a significant
decrease in the number of reads in regions far from the main
diagonal. Figure 2c (right panel) show a significant deviation in
the scaling curve when compared the data from the full Hi-C
(red curve) with the downsampled data (blue curve). The
third approach is called “weighted - log(p),” where the
probability p;; of maintaining the loci pair (i, j) interaction is
defined as

log(ci,j)

B 2,-,]- log(ci,j) (2)
Figure 2b (green border) presents the downsampled Hi-C map
generated by the third method. Figure 2c (middle panel)
shows the contact probability as a function of genomic distance
for the original map (red curve) and the downsampled data
(green curve). There is a slight deviation in the scaling for
regions far from the main diagonal, i.e., interactions between
segments that are far in the genomic separation. This work will
employ the “weighted - log(p)” approach for training the
MiChroM energy function. The choice is based since the third
approach present less noise than the first ("Random”), and
minor deviation of the scaling decays in comparison with the
second (“weighted - p”)

MiChroM Energy Function Based on the Maximum
Entropy Approach. MiChroM physical potential considers
the chromosome chain as a homopolymer with beads
connected by springs. In order to create a polymer model to
reproduce the experimental Hi-C contact frequencies, we
assume a homopolymer potential with an additional term
associated with a observable function (¢)(r)). A simulation in
the canonical (NVT) ensemble gives the following value

/¢(7)e—ﬂUﬂl’(7) dr

¢HP = <¢(7)>UHP - fe_ﬂUHP(;) ar = /¢(?)”HP(7) dr

()

where 7 is the vector of positions in Cartesian space of all the
loci in the chromosome, 7'(7) is the probability density for
the homopolymer model and f = 1/kgT. Employin% the
Maximum Entropy approach introduced by Jaynes,™ we
consider the probability density 7"5(7) that reproduces the
experimental values of a set of n observables ¢,(7). eq 4 show
constraints that define the probability density:

o= /HME(7) dr — 1
¢ = f U 2VE(F) — %kaT

Cidata — /¢(7) ”ME(?) dr — ¢ieXP i=1,.,n (4)

Each of the constraint equations must be equal to zero. The
first constraint ¢, ensures that 7ME(7) is normalized, i.e., the
summation of the probabilities must be equal to one. The
second constraint ¢, determines the average potential energy to
be equal to the thermal energy 3NkzT/2. The last set of
constraints ¢*A™ where i can be related to n observables, and
the equations ensure that the expectation values and the
experimental values coincide. To determine the probability
density 7M(7) we maximize the information entropy
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§ = - [#"57) n(x"5(7)) o

(s)
subject to the constraints. This approach is based on the fact
that a constrained maximization of the entropy is equivalent to
minimizing the amount of additional information built into the
distribution other than the one contained in the constraints
themselves. Using Lagrange multipliers we obtain the following
condition

08, 0 0 zn:z.DaC"dm _ 0
aﬂ_ME Oaﬂ,ME laﬂ_ME ~ i aﬂME 6)
which leads to the probability distribution
e~ MUn(N =X 4 6(7)
ME/=\ _
=) = R TR )
fdf e MVHP =14 P (7)

Recognizing that A, coincides with 5, we can think of the
maximum entropy probability distribution 75(7) as the
distribution sampled from the maximum entropy potential
energy:

A7)

Upie(7) = Ugp(7) + %i:l

(8)

MiChroM energy function employed in this work has two
assumptions. First, chromosome loci are classified into
chromatin types A and B; each chromatin type contains
specific interaction patterns with the other types. The type-to-
type potential is related to the chromatin phase separation
associated with the compartmentalization observed in the Hi-C
maps. The second assumption is relative to the ideal
chromosome which there is a gain/loss of y(d) effective free
energy every time a pair of loci come into contact, and this
potential depends on the genomic distance d. These 2
assumptions are replaced in ™ from eq 4. The set of
constraint generated by all observables gives the following
expressions:

o= /ﬂ_MiChroM(?) dr—1

6= /UHP(;»)’[MiChroM(;») _ %NkBT

Crllil — /rl—lvd(?)ﬂ_MiChroM(T}) dr — Tkelxp
{ VK&, I€ types: | > k}

&= [GNAINE) dr - G573 <d < dyyg

)

These constraints define the MiChroM probability distribu-
tion, and the energy function is given by

Unticheom(7) = Upp(7) + Z Ay Z f(r)
k>Ik,I€types i€ {loci of type k}j€ {loci of type I}
deutoff
+ 2 @2 )
d=3 i (10)

The first term of Upgcpom(7) is related to the generic
homopolymer potentials. The second term represents the
type-to-type interaction resulting from the constraint ¢, and
the last potential is called Ideal Chromosome that comes from

https://doi.org/10.1021/acs.jpcb.1c04174
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the last constraint c&.. The function f(r;;) is the probability of
cross-link®” and can be written as

1
f(ri,;') = z(l + tanh[ﬂ(rc - ri,j]) (11)

where y ad r, are determined based on the experimental Hi-C
maps. The function f(r,-,j) must return 1 when two beads are in
contact (distance between the center of two beads is equal to
1, in reduced units ), e, f(1) = 1. f(r;;) also must decreases
monotonically with the distance and the minimum of the
experimental probabilities must match with the next nearest
neighbor, e.g, f(2)=min{P{¥,}. The parameters adjusted for
the Hi-C maps of GM12878 cell line” are y = 3.22 and r, =
1.78.° The Lagrange multipliers @ and y remain to be
determined. The optimization procedure for training the
parameters based on the experimental Hi-C maps is discussed
below.

Parameters optimization. The optimized values of the
Lagrange multipliers (in this work, @’s and y’s) can be obtained
via the minimization of the objective I'(1) defined as

Z(/l)] + ﬂi /1i¢iexp
i=1 (12)

20

where f# = 1/kgT, with kg as the Boltzmann constant and T as
the temperature. z(4) and z, are the partition functions for the
homopolymer with and without the maximum entropy
correction, respectively. The exact solution of this function is
a difficult statistical problem for an arbitrary value of 4,
however, a possible solution is to use an iterative method to
find an ensemble that satisfies the constraints. For this, the
ratio between the partition function of the I'(1) is simplified as
a cumulant expansion:

Z(ﬂ) 3 /e_/}UME(?) dr
Zy f eV g,
/ e PV BE_ 24 3,
/ PV gy

= (=B

n=lpl

rQ) = ln(

= <e_ﬂ an:lj'id)icxp>

U A8 (13)

The first two terms (n = 1 and n = 2) from the cumulant
expansion can be described as

—BY A (F))

=¢

cl

W)W NIRRT
S (14)

If we keep only these two terms of the expansion and insert the
eq 13 in eq 12, we have an approximate expression

ﬂz

rQ) = T/ITBA - BIE) — £2T2

(13)

where B is a Hermitian matrix with elements Bj;
Ffp—=a -

Following the approaches described in previous works,
eq 15 has its extreme value of I'(4) at

24,25
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i= B - f T

p (16)
By employing the cumulant approximation only to a generic
homopolymeric model, there is no guarantee that A solutions
would reproduce the experimental data. However, eq 16 is only
an approximate solution of A. If (f;) is not equal (f{*¥), we use
an iterative procedure to find more accurate values that
eventually would converge to reproduce experimental measure-
ments.”””” The iteration algorithm is as follow:”

I - Perform simulations with the potential energy U, (7)
to estimate the ensemble averages (f;) and the matrix B.

II - Check convergence of the iteration by calculating the
percentage of error defined as ) I{f) — (f™")I/ X £,
where || correspond to absolute values.

III - If the error is less than a tolerance value tol, the
iteration has converged and we stop the simulations.
Otherwise, we update A using the expression

=2 SGBT N G) — £7T), where 2

are the Lagrangian multipliers used in step I and
5€(0,1) is dampening parameter. Now with the updated
A1 values, we go back to step I and restart the iteration.

Simulations Details. Chromatin dynamics simulations
were performed usin% Open-MiChroM software package that
uses OpenMM APL”® The chromosome 18 model consists of
1561 beads at 50 Kb resolution. The input information for
training Open-MiChroM simulations uses chromatin types
annotations for determining the polymer sequence of beads A
or B. The types annotation was obtained by the first principal
component of the correlation matrix extracted from the Hi-C
map. Open-MiChroM receives the parameters o for Types and
y for IC in a configuration text file. A collapse run of 10° steps
is performed at a high temperature to randomize the initial
configuration of the sampling simulation. At this collapse run, a
harmonic potential term is used to accelerate the process. The
harmonic potential for collapsing the polymer is removed for
the trainig and long sampling simulations. The training
parameters simulations were carried out for 20 replicas over
1 X 107 steps for each iteration with a trajectory snapshot
saved at every 10° steps. Trajectories are stored in a binary
format .cndb (Compact Nucleome Data Bank file). The
training parameters are calculated based on all stored 3D
structures. Once the parameters optimization is converged,
more extended production simulations were performed for 30
replicas running for 1 X 10° steps and with a 3D structure
frame saved every 10° steps, leading to a total of 3 X 10°
structures. Contact probabilities of each loci pair are averaged
over the ensemble of 3D structures to generate the in silico Hi-
C map. Parameters for the homopolymer potential Uy follow
the same values described in Open-MiChroM study.”® Hi-C
maps are plotted using the juicebox software tool.”” The 3D
structure representation of the chromosome was made using
Chimera software.° Open-MiChroM package, trajectory data,
analysis scripts, simulation tutorials, .cndb file converter to
.pdb or .gro files are available at the Nucleome Data Bank
(NDB) server’’ (https://ndb.rice.edu).

B RESULTS AND DISCUSSION

Training MiChroM Types Parameters on Down-
sampled Hi-C maps. MiChroM energy function has two
main terms: the type-to-type and Ideal Chromosome

https://doi.org/10.1021/acs.jpcb.1c04174
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Figure 3. (a) In silico Hi-C maps generated using only the type-to-type trained parameters based on the downsampled Hi-C maps. (b) The first
principal component obtained from the correlation matrix from the in silico Hi-C and the experimental downsampled maps. (c) Saddle plots
comparing the compartmentalization signal from simulations and downsampled experiments. (d) Error calculation during the optimization process

in different iteration steps for different levels of downsampling.

interactions. These potentials have parameters to be optimized
based on experimental Hi-C maps (see Methods for details).
As mentioned in the simulation workflow, the first step
explored is the optimization of the type-to-type interactions.
The minimization procedure is performed to find optimum
parameters for the Lagrange multipliers & from the eq 10. The
parameter « is related to the phase separation between the
chromatin types A and B. Here, we employed a model with
three different chromatin beads: Type A, Type B, and NA
(nonspecific type). The sequence of compartmental types for
each chromosome is extracted from the first principal
component (PC1) of the eigenvector decomposition from
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the correlation matrix.” By convention, positive values of the
PC1 denominated to the chromatin type A and negative values
to type B. The same procedure for obtaining the chromatin
sequences is applied for all downsampled Hi-C maps and used
as input for simulations. The "Types” energy function training
includes the homopolymer chain potential and the type-to-type
interactions defined as

Uilthean() = Ue(®) + 0 aq 30 f()
k>1 i€ {loci of type k}
k,I€types j€{loci of type I}

(17)
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Figure 4. (a) Contact probability as a function of the genomic distance for different iteration steps of the ideal chromosome parameters training.
(b) Error value as a function of the number of iterations of the IC parameter optimization. (c and d) Contact probability as a function of the
genomic distance for different degrees of downsampling the experimental Hi-C maps, 10 and 100%, respectively. Each shaded area presents the

standard deviation for a genomic distance.

where the @ represents interactions between the chromatin
type k and ], i.e, A—A, A—B, A-NA, B—NA, and NA-NA.
Multiple iterations were performed until the error (described
in step II of the optimization section) drops below 10%. At this
point, we consider that the a;; values are converged. Figure 3a
presents the in silico Hi-C maps after the optimization of the
type-to-type parameters. Even though the simulations were
performed using only the “types” potential, there is
compartmentalization in regions far from the main diagonal
in the in silico Hi-C maps.

Figure 3b shows the PC1 signal for each locus along the
whole chromosome chain for both experiments and
simulations and different downsampling levels. The eigenvec-
tors extracted from the in silico maps present a stronger signal
in comparison with the experimental data. Interestingly, the
simulations used the experimental PC1 as input for
determining chromatin beads A and B. Even if the experiments
provide a weak signal for PCI that is strong enough to
distinguish between chromatin types A and B, the results
suggest that chromatin dynamics employing the MiChroM
energy function amplify the PC1 signal and, consequently, the
compartmentalization. Figure 3c presents the saddle plots for
both experiments and simulation for different degrees of
downsampling. The saddle plot is a heat map that highlights
the A/B compartments’ interaction strength. The strong
interactions of the same chromatin types AA and BB are
located in the matrix main diagonal corners. On the other
hand, weaker intercompartmental-type interactions AB are
situated on the corner of the antidiagonal.’”** The data
generated from simulations do not present significant differ-
ences in the saddle plots. On the other hand, the data extracted
from the downsampled Hi-C maps show a significant deviation
from the original data. This observation suggests that
downsampling the Hi-C data leads to a weaker compartmental-
ization signal, i.e., the eigenvector components still distinguish
between positive and negative values but the amplitude
decreases. The long production simulations can sample a
more extensive variety of chromosomal structures, which
results in a better sampled Hi-C map when averaging the
contact probabilities over multiple different structures. PC1
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shows a more robust signal even when using only 10% of the
original data for the training. However, to perform parameter
optimization on poorly sampled data, more iterations are
needed to converge the parameters. Figure 3d shows the error
value used in training as a function of the number of iterations.
The error threshold is set at 10% (dashed gray line). The
training simulation using the original Hi-C 100% (red curve)
reaches the threshold with less iterations than using the 50%
and 10% downsampled maps, yellow and blue curves,
respectively.

Training Ideal Chromosomes on Downsampled Hi-C
Maps. For parameter a on which the type-to-type interactions
are trained, the MiChroM potential is still not fully optimized.
As mentioned before, a is associated with the compartmental-
ization and phase separation of chromatin types A and B.
Although there is agreement between simulations and
experimental maps, the polymer scaling presents deviations.
The contact probability curve decay is associated with the
polymer chain compaction due to different motor activities in
the chromatin, which is considered to be an effective potential
named ideal chromosome (IC). The IC parameters y in the
MiChroM energy function need to be calibrated. The
procedure employed in y minimization is the same applied
for training a parameters but using the full MiChroM potential
described in eq 10, where a values are already optimized. The
IC parameters were set to y(d) = 0 in the first iteration for all
genomic distances d. The experimental values (f(d)*?) are the
average value over all probabilities for a given genomic distance
d in the experimental Hi-C maps. In the case of d = 3,

f(3)® = %Zi_gfp(i,HS)) where P;;,5 is the contact proba-
bility between the loci i and i + 3 and N is number of beads in
the chromosome chain. Figure 4a presents the contact
probability as a function of the genomic distance for different
training iterations. Iteration 1 (dotted yellow curve) shows a
more significant deviation of the decay curve than the
experimental data extract from the original Hi-C (solid red
curve). The method goes over different iteration along the
minimization process following the optimization protocol
presented in the Methods section. In the IC training, there
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Figure 5. In silico Hi-C maps generated by employing the complete trained MiChroM energy function. (a and b) Comparison between in silico
(top) Hi-C with the downsampled maps (bottom), 10 and 100%, respectively. The corner highlights regions of the Hi-C maps far from the main
diagonal. The in silico maps present compartmentalization signals even when using only 10% of the original data to optimize the MiChroM
parameters. At the bottom is presented a representative structure colored by chromatin type annotations A and B, red and blue, respectively.

are hundreds of Lagrange multipliers to be optimized. The
range of d goes from 3 to 500. In principle, the range limit of d
is the polymer chain length. Here, we used the same numbers
presented in the first MiChroM training. In the last iteration,
the simulation curve presents a smaller value of the error
calculation. Figure 4b shows the error value for different
iteration steps. The training process shows similar learning
rates to reach the threshold value (error below 10%) for using
the full Hi-C map (yellow curve) and the downsampled 10%
Hi-C (blue curve). Figure 4c,d shows the decay curve of the
simulations after the training compared to experiments 10 and
100%, respectively. There is agreement between simulation
and experiments, which suggests that the ensemble of 3D
structures generated by the MiChroM energy function has the
polymer compaction close to what is expended from
experiments. Figure 5 shows the converged in silico Hi-C
maps trained on the basis of downsampled experimental maps.
Simulations were performed by employing the complete
trained MiChroM energy function that includes the type-to-
type and IC potentials. The chromatin dynamics simulations
performed with Open-MiChroM*® generate an ensemble of
chromosomal 3D structures. The loci contacts formed in the
3D structures are averaged over the simulated trajectory and
mapped into the 2D in silico Hi-C. A total of 30 simulation
replicas were carried out with different initial loci positions and
velocities for sampling different configurations of the energy
landscape. There are compartments observed in the simulated
maps that are not seen in the 10% downsampled map,
especially for regions far from the main diagonal. This suggests
that the ensemble of 3D structures generated by the MiChroM
energy function employing only two terms related to the
chromatin phase separation and motor activity can enhance the
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compartmentalization. The enrichment of the compartments is
related to the better statistics obtained from the chromatin
dynamics simulations even when the parameter optimization
comes from the downsampled Hi-C data. The zoom-in region
of the Hi-C maps highlights these signal differences. Figure S
shows a representative structure of chromosome 18 of the
GM12878 cell line obtained from the trajectories generated by
Open-MiChroM based on the full experimental Hi-C map. It is
possible to observe a phase separation between chromatin
types A and B. Figure 6a shows the knots calculation
comparing simulations using the full MiChroM potential
with a homopolymer and MiChroM applying only the type-to-
type interactions.

Simulations using the complete training MiChroM energy
function show fewer knots along the trajectory compared to
the homopolymer simulation. As reported in previous
studies,””” the motor activity associated with the IC potential
leads the polymer to equilibrate by favoring short local
interactions. It is worth mentioning that the polymer physical
model allows chain crossing to consider topoisomerase II
activity. Interestingly, simulations employing only the type-to-
type interactions (blue curve) also present fewer knots than
the homopolymer. It suggests that the phase separation
between chromatin types A and B also allows the polymer to
become less entangled. Figure 6b presents Pearson’s
correlation as a function of the genomic distance for different
simulations with their respective 3D structure. The optimiza-
tion of the “types” potential significantly improves the
compartment sampling compared to the homopolymer
simulation baseline. The optimization of the type-to-type
parameters reduces the polymer energetic frustration where
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Figure 6. (a) Probability distributions of the minimal rope length
ratio that is a topological invariant. The calculation was performed
over a trajectory for different energy functions. The red and green
curves are the distributions using the complete training MiChroM
parameters with 100 and 10% of the original data, respectively. The
simulation using only the type-to-type interactions is presented in
blue, and the homopolymer results are presented in the yellow
distribution. (b) Pearson’s correlation as a function of the genomic
distance for different training sets. The red and green curves are
generated using the complete MiChroM training on 100 and 10% of
the original Hi-C map, respectively. The blue curve shows the results
using only the type-to-type interactions. The yellow curve presents the
simulations of a homopolymer that is used as a baseline for
comparison.

there is an increase in the number of favorable interactions
when phase separation occurs.

B CONCLUSIONS

Several computational studies perform chromosome modeling
employing physical models with parameters determined
utilizing experimental data extracted from Hi-C maps.”
These approaches apply different metrics for converting the
number of counts presented in the Hi-C to distances in the
structures.”* ">’ The 2D Hi-C heat maps are generated on the
basis of an ensemble of cells, and the number of reads or the
intensity of the signal in these maps is associated with a unique
value for the whole population of cells. Once generating the
3D modeling, most of these approaches lack a consideration of
the variability of chromosomal structures. Additionally, the
multidimensional reduction techniques applied in the distance
matrices lack more details about the physical properties of the
polymeric chain. On the other hand, physical modeling
approaches based on chromatin dynamics consider the
heterogeneity of the structures and shed light on the
underlying mechanisms of the loci phase separation and
motor activity such as extruders.* Notwithstanding the good
agreement between physical models of Hi-C maps and
experiments, a well-sampled experimental Hi-C map is
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required to optimize the loci interaction parameters. Here
we explore chromatin dynamics and modeling using poorly
sampled Hi-C maps. By training the MiChroM energy function
parameters using only the minimal information on locus
compartments A and B, the simulations enhanced the
compartmentalization signal of regions in the Hi-C map far
from the main diagonal, i.e., spatial contacts between regions
far from each other in sequence. The information extracted
from the first-principles component of the correlation matrices
from downsampled Hi-C seems to be enough for a physical
polymer model to characterize the loci interactions related to
phase separation and compartment formation. The prediction
capability of these models allows for optimizing parameters
even for downsampled Hi-C maps using only 10% of the
original data, and MiChroM chromatin dynamics generates an
ensemble of 3D structures consistent with the complete
experimental Hi-C map. This prediction power of the
MiChroM energy function provides the needed tool for
modeling chromosomal 3D structures based on poorly
sampled Hi-C data. MiChroM modeling allows us to explore
the 3D genome organization of different organisms, cell lines,
and cell phases that often do not produce high-quality Hi-C

maps.
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