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Abstract

Many developmental processes in biology utilize notch—delta signaling to construct an ordered
pattern of cellular differentiation. This signaling modality is based on nearest-neighbor contact, as
opposed to the more familiar mechanism driven by the release of diffusible ligands. Here, exploiting
this juxtacrine’ property, we present an exact treatment of the pattern formation problem via a
system of nine coupled ordinary differential equations. The possible patterns that are realized for
realistic parameters can be analyzed by considering a co-dimension 2 pitchfork bifurcation of this
system. This analysis explains the observed prevalence of hexagonal patterns with high delta at their
center, as opposed to those with central high notch levels (referred to as anti-hexagons). We show
that outside this range of parameters, in particular for low cis-coupling, a novel kind of pattern is
produced, where high delta cells have high notch as well. It also suggests that the biological system
is only weakly first order, so that an additional mechanism is required to generate the observed
defect-free patterns. We construct a simple strategy for producing such defect-free patterns.

1. Introduction

Biological cells can exist in a number of distinct phe-
notypes, even with a fixed genome. These phenotypes
arise via multi-stability of the underlying dynamical
network controlling cell behavior and allow cells to
take on differentiated roles in overall organism func-
tion. It is clear that developmental processes must
ensure that these phenotypes arise in the right place
and time, i.e., ensure the emergence of functional
phenotypic patterns.

A well-studied case of such a system is that
of notch—delta signaling [1]. Various cells contain
notch transmembrane receptors [2] that couple to
notch ligands such as delta or jagged on both the
same cell (cis-coupling) and neighboring cells (trans-
coupling). Because of the manner by which notch and
delta inhibit each other (see below), their interaction
typically leads to an alternating ‘salt and pepper’
structure. This type of patterning is seen in systems
ranging from eyes [3] and ears [4] to intestines [5]
and livers [6]. An example of such a pattern in shown
in figure 1 and for areview, see [7, 8]. Asa general rule,
the high delta cells are the most specialized ones (for

example, the photoreceptors [9]) and are surrounded
by less differentiated high notch supporting cells—in
what follows, these will be called hexogonal patterns.
Parenthetically, changes in the transcriptional regula-
tion utilizing the jagged ligand in place of delta may
be crucial for the role of notch in cancer metastasis
[10, 11], but here we focus solely on delta and its
interplay with notch.

Patterning in the notch—delta system has been
intensely studied [14-20], but questions remain
regarding the relationship of the different nonlinear
patterns seen and the role of the approximately hexag-
onal cell-layer geometry. There are also questions
regarding the patterning accuracy, which in some sys-
tems can be very high; for example, the chances of get-
ting two neighboring bristles (i.e. neighboring high
delta cells) in the case of Drosophila is estimated to
be less than 1% [21]. Also, the separation between
high delta cells seems to vary between systems; not all
cases look like the minimal pattern seen in the above
figure. These questions persist at least partially due
to the fact that even solving for the uniform state of
the system cannot be performed analytically. In addi-
tion, the parameter space is quite large, even after
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Figure 1. A regular alternating pattern of hair cells (bright
tufts) and supporting cells (outlined by their cortical actin).
Reproduced with permission from [12]. CC BY 4.0.

dimensional reduction. The approach we adopt here
is to perform a semi-analytical study, finding bifurca-
tion points numerically and performing the nonlinear
analysis around these points exactly. We combine this
with extensive numerics to translate the bifurcation
findings to the rest of the parameter space.

In this paper, we study the notch—delta system
on a 2d hexagonal array of cells. The motivation for
this choice is that epithelial layers consist of polygonal
cells that roughly form a hexagonal lattice, albeit with
some size dispersion and some defects (see figure 2).
It is worthwhile to first work out how pattern forma-
tion works in the more idealized case of the perfect
lattice and then afterwards consider possible effects
of the irregularities; we do note in passing that some
effort has already been devoted to understanding the
role of variations in cell size [22]. We first focus on
the existence and stability of hexagonal patterns in
this geometry, which allows an exact re-writing of
the (ordered) pattern-forming problem as a nine-
dimensional dynamical system. We numerically con-
struct the phase diagram of the system, showing the
variety of patterns that emerge. Many features of this
system can be understood by expanding about a co-
dimension two pitchfork bifurcation. Others can be
captured by examining various limiting cases of the
parameters. The second focus of our work is mech-
anisms for ordered patterns to emerge from generic
initial conditions. Here we identify a possible role for
an initiating wave, similar to what has been seen in at
least some biological realizations [23].

The notch—delta interaction is an example of
juxtacrine (i.e., contact-dependent) signaling. As
sketched in figure 3, ligands such as delta bind notch
receptors and, when this occurs between neighbor-
ing cells, it leads to the cleavage of the receptor and
release of its intracellular domain (NICD). NICD
translocates to the nucleus where it transcriptionally

Figure 2. Epithelial layer of cells from the folical
epithelium of Drosophila. Reproduced with permission
from [13]. © IOP Publishing Ltd. All rights reserved.

up-regulates notch and down-regulates delta. The lig-
and-receptor interaction between molecules on the
same cell leads to mutual annihilation with no NICD
release [15]. The combination of cis-annihilation and
NICD-mediated trans-repression is responsible for
the observed lateral inhibition of delta [14]. We will
use a baseline model [18] of this process involving
three concentrations, N (receptor), D (ligand) and I
(NICD),
N, = AH (I) — Ny (k-Dy + kD) — N,

x
Dx - >\DH7 (Ix) - Dx (chx + ktNxeXt) - ’ny
jx - kt>\11\]xDxeXt - ’VIIx~ (1)

Here, positions x refer to locations on an hexagonal
lattice (see figure 4) and the superscript ‘ext’ refers the
average over the six nearest neighbor sites of x. The
production terms H corresponding to the aforemen-
tioned transcriptional regulation are taken to be Hill
functions,

kg I+ 58 -

H+(I)=l+m; H_(I) =

n_

(2)
such that H;(0) = 1 and H is an increasing func-
tion that saturates at 1 + kz, while H_ is a decreas-
ing function that decays to 0 with increasing I. We
define a typical set of parameters taken from the liter-
ature [24]:7 = 0.1.7;, = 0.5,n; =n_ = 2,k. = 0.1,
ki = 0.04, A\ = 1,ky = 1,50 = 1, and primarily focus
on the role of Ay and A\p. Nevertheless, we will also
have occasion to investigate the effects of changing ky
and k.

The outline of the rest of this paper is as follows.
We first focus on uniform non-patterned solutions
so that we can identify regions of parameter space
in which these solutions become unstable. Because
we work on a hexagonal lattice, mimicking the actual
biological cell geometry, the first instability is to pat-
terns with hexagonal symmetry and we show that
these can be studied by an exact ODE reduction of
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Figure 3. Schematic showing delta, jagged and notch-NICD complexes on the cell membrane (I). Binding of notch on one cell to
delta on the other (II) leads to the freeing of the NICD, (III), which in turns leads to the enhancement of notch (IV) and jagged
(V) (which is irrelevant for our current concerns) and the suppression of delta (VI).
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Figure 4. Hexagonal lattice showing the three hexagonal
sublattices, where each A cell is surrounded by 3 Band 3 C
cells, each Bby 3 A and 3 C, and each Cby 3 A and 3 B.

the spatially-extended model. We derive the general
nature of the bifurcation and point out the relevance
of a specific co-dimension two point at which there is
an accidental symmetry between two families of solu-
tions, which we call ‘hexagons’ and ‘anti-hexagons’,
distinguished by the overexpressed (compared to the
uniform state) species in the central hexagons of the
honeycomb lattice comprising the pattern. We then
construct the weakly nonlinear amplitude equation
describing the system in the neighborhood of this spe-
cial point and compare the results of our model with
a simplified one-field version for which the acciden-
tal symmetry is replaced by a full symmetry of the
non-linear system. We then consider ‘exotic’ solutions
with overexpression of both notch and delta in the
central cells. Lastly we consider how one might solve
the problem of inhibiting defect formation. Algebraic
details are left to appendices so as not to interfere with
the flow of the manuscript.

2. Uniform patterns and the region of
instability

We start by considering the simplest type of solution
for this system of equations, namely one which is spa-
tially uniform. In general, solving for such a solution
requires the simultaneous solution of three nonlinear
equations for Ny, Dy and Ij. In appendix A, we show
that one can reduce the problem to the solution of

one rather complicated equation for Iy; this is given as
equation (A5). For general values of the parameters,
this last equation must be solved numerically.

We can gain some analytic insight into the solu-
tion space by considering various limiting cases (for
full details see appendices B and C). One convenient
such case is that of large Ap. In that limit, we expect Dy
to be large, which then forces Ny to be small to satisty
the condition arising from the last of equation (1),

ktA]NoDO = ’}/]Io.
From the notch equation, we have in this limit

~ AvHy(lo)

*7 (ke + ki) Dy

which then immediately leads to the condition

2
kA (1 + kHlf:Ig)
Yiko

Iy = R() = ) (3)
with kg = k. + k; and where we have specialized to
the case of Hill functions with ny = 2. From this
equation we can determine when there is a unique
solution versus when multiple solutions exist. The
details of this calculation are presented in appendix
D. For our purposes here, we note that the range of
parameters for which there is a unique uniform solu-
tion ranges over all reasonable values of the system
parameters.

We are interested here in hexagonal patterns on
our hexagonal lattice. These patterns arise as the uni-
form state becomes unstable with respect to spa-
tially varying perturbations. In fact, our numerical
experiments on equation (1) indicate that the first
instability of the uniform state for the set of param-
eters above is almost always to a hexagonal mode,
as that arrangement maximizes the average number
of ‘satisfied’ nearest neighbor inhibitory interactions.
This is of course a consequence of studying the model
on a hexagonal grid, as motivated by the biological
application. Then, the immediate question is where
in parameter space the uniform state is unstable to a
hexagonal pattern. The condition for this is presented
in equation (A7) in appendix A. Similar calculations
for other models of the notch—delta dynamics have
been performed by Formosa-Jordan et al [16, 25] and
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Negrete and Oates [20], and harken back to the orig-
inal stability calculation for a two cell system by Col-
lier et al [14]. The region of instability in the k;, A\p
plane is presented for various values of Ay, both for
kg = 2/3 in the left panel of figure 5 and for ky = 4/3
in the right panel. For each value of Ay considered,
the unstable region is that above the corresponding
curve, i.e. \p > A}, (k). For each value of Ay, the value
of A\, diverges at two values of k., with the instability
only possible between these two values. For kyy = 2/3,
the curve A}, (k;) doubles back on itself for low k;,
but not near the upper limiting value of k., whereas
for kg = 4/3, this doubling back happens on both
sides. This qualitative change in behavior is explained
in appendix C, and occurs at kg = 1. Clearly wher-
ever there is a hexagonal instability, a hexagonal solu-
tion exists. However, as we shall see, there is also the
possibility of coexistence of a stable uniform solution
with a hexagonal solution, so that hexagonal solutions
extend outside the region of linear instability of the
uniform state.

3. Hexagonally ordered patterns

We now turn to the construction of hexagonally
ordered patterns whose existence (but not stability) is
guaranteed by the linear instability discussed above.
These patterns are invariant under translation with
vectors £6x, +3x & 3\/§j/ where X and y are unit
vectors along the coordinate axes and the unit of
length is 1/2 the length of one of the hexagonal sides.
From figure 4, it is clear that the fields everywhere
are completely determined by their values on three
sub-lattices that we have labeled A, B and C. This
means that the entire problem of hexagonally ordered
patterns (and their stability with respect to modes
invariant under translation of the A—B—C unit cell)
is reduced to nine coupled ODE’s. A mapping of
the dynamics to a two-sublattice system, where the
fields are equal on the B and C sublattices was used
by Formosa-Jordan and collaborators to study the
existence of perfect hexagonal patterns in references
[16, 25]. The more complete three sublattice reduc-
tion was used in references [20, 25].

This exact mapping is very different than what
occurs for more traditional pattern formation prob-
lems [26], such as convection rolls [27], where the
reduction to a set of ODE’s is valid only as an approx-
imation near the bifurcation point. In the usual case,
the challenge of finding non-linear solutions with
high numerical accuracy and evaluating their stability
can be quite challenging. Here by contrast, the above
methodology enables the analysis to be accomplished
in a relatively straightforward manner even far from
the region of the bifurcation. As already shown, at
fixed Ay, the uniform solution with the fields taking
on the same values on all three sublattices becomes
unstable for A\p > AY(A\y) via a transcritical bifurca-
tion, i.e. an intersection with a nonuniform solution.

E Teomy et al

On this new branch, the respective values of the fields
on two sublattices (say B and C) are identical, differ-
ing from the values on the remaining (in this case, A)
sublattice. This hexagonally structured solution has
a six-fold hexagonal symmetry about any site on the
different (here, A) sublattice. The bifurcation is trans-
critical in general, because of the lack of any symmetry
between positive and negative deviations of the fields
from their uniform values. As already mentioned and
unlike convection, the transition to rolls does not take
place at the same parameter value as that to hexagons
as the roll pattern necessarily has a different wave-
length on the lattice; hence rolls do not compete with
hexagons, at least near the bifurcation. For complete-
ness, the six coupled equations that govern ordered
hexagonal patterns are given explicitly in appendix E.

4. The pitchfork bifurcation and its
unfolding: the Negrete—Oates model

To understand the nature of the origin of hexagonal
patterns in a hexagonal lattice system, Negrete and
Oates [20] introduced a simple one-field model con-
taining the same type of instability. The model is given
by

ity = —thy — Y1 + Qo + €lhexss (4)

where again uey, is the average of u on the six nearest-
neighbor sites. For sufficiently negative ¢, this model
has a lattice analog of a negative diffusion constant
and hence become unstable to hexagonal patterns. On
the three sites of the unit cell introduced above, this
system reduces to

A=—A— A+ Qo+ e(B+C)/2
B=-B— B +Q+eA+0C)/2
C=-C—71C+Q+eA+B)/2. (5

They noted the presence of a pitchfork bifurcation at
a specific value of the parameters, namely epp = —2,
Qpr = 0. The latter is directly dictated by the sym-
metry u <+ —u of their equations, which of course
only is present at )y = 0. The existence of this
pitchfork bifurcation point guarantees the existence
of two types of hexagonal patterns, which we call
‘hexagons’ (high delta surrounded by high notch) and
‘anti-hexagons’. In the Negrete—Oates model [20],
these two families of solutions are trivially related by
u— —uand Q — —. As we shall see, in our three-
field more biologically realistic model, the pitchfork
point exists for a wide range of parameters, and again
dictates the existence and stability properties of both
families of solutions in the vicinity of the pitchfork
point. However, as opposed to the Negrete—Oates
model, this more detailed model does not exhibit an
exact symmetry at the pitchfork point. Rather, the
symmetry exists only to linear order and is broken at
higher order. Nevertheless, given the relatively simple
structure of the Negrete—Oates model, it is very useful
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Figure 5. The onset of the uniform state instability, giving the critical value of A\, varying k;, for a sequence of (large) values of
An; the plots of the left, right correspond to ky = 2/3, 4/3. All other parameters are as stated in the text: v = 0.1, v, = 0.5,
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to go through the exercise of working out the weakly
nonlinear analysis (for an introduction to bifurca-
tions and weakly nonlinear analysis, see [28]) for this
model in the vicinity of the pitchfork point, as the
overall algebraic structure of our three-field model
is quite similar but significantly more complicated in
detail.

The homogeneous stationary state A =B =
C = H satisfies

0=—H—~vH>+ Qo+ eH (6)

with solution H ~ /(1 — €) for small . At the
critical value €. = —2 — 6vH?, the stability matrix
around the homogenous solution has two zero
modes, (0A,B,6C) = (—2,1,1) and (0,1, —1) and
the nonzero mode (1,1, 1), with eigenvalue —3. We
will be carrying out a weakly-nonlinear analysis in
the neighborhood of the co-dimension two pitchfork
bifurcation.point. To obtain this, we write

A:H—2C1+52
B=H+(Ci+C)+ 6,

C=H+ (C — G) + 0, (7)

where C; and G, are the O(€)) amplitudes of the zero
modes, and &, is an O(£2)® correction. Writing € =
€c + Ae, where Ae is O(£2))?, and expanding to third
order in €y, we obtain three equations for the time-
dependent amplitudes C; and C, (which vary on the
slow time scale Qé) and d;. Eliminating d,, we find the
two amplitude equations

. —C1Ac
e = 21 —3yC} — 4G, C2 + yH(BC: — C)
. —CAc
C, = ; -G = 37CiC, — 6YHC,Cy, (8)

where the time derivatives refer to variation on the
aforementioned slow time scale. It is easy to see that
all the terms in our equations are O(£2)°.

We start by looking for time-independent solu-
tions of these equations. One stationary state of the
system is the original homogeneous state with C;
C, = 0. There is a pair of solutions with C, = 0, with
C, satisfying the quadratic equation

A
0= —76 +39HC, — 37C2. 9)

These two solutions emerge from a saddle-node bifur-
cation occurring at C;, = H/2, Ae = 3yH?/2. This
lies on the stable side of the transition and thus the
saddle node bifurcation precedes the instability of
the homogenous state as € is decreased.. As Ae fur-
ther decreases from its saddle-node value, one of the
solution branches has increasing C;, while the other
approaches C; = 0, i.e., the homogeneous solution,
intersecting it at Ae = 0, the location of the homo-
geneous instability. It then crosses over to C; < 0, so
that here it has ‘polarity’ opposite to that of the other
branch emerging from the saddle-node bifurcation
that had C; > 0 and increasing.

There are other stationary solutions, having
C, # 0. Solving the C, =0 equation for C, and sub-
stituting in the C, = 0 equation yields C, = —x/2,
where x is the value obtained above for C; when
C, = 0. Substituting this back into the equation for
C, then reveals C, = +3x/2. For these solutions, the
leading order value of A — H is —2C; = x, which was
the leading order value of B— H= C— H in our
original solution. In addition, either B— Hor C — H
(depending on the sign of C;) equals x as well, with the
other equalling —2x, which was the value of A — H
in the original solution. Thus, all these new solu-
tions are simply the previous solutions translated to
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be centered on B or C, instead of A. At the linear
level, these new solutions are the linearly combina-
tions —1/2[(—=2,1,1) £ 3(0, 1, —1)] of the two zero
modes of the homogeneous solution. This crossing
of this inhomogeneous solutions with the original
homogeneous solution represents a two dimensional
transcritical bifurcation of the homogeneous solu-
tion; two-dimensional here because of the two zero
modes of the homogeneous solution. Precisely at {2pp,
i.e., 2y = 0, the saddle node merges with the trans-
critical point and the two branches meet symmetri-
cally at Ae = 0, i.e., €pr, as indicated by the vanishing
of the term linear in C; in equation (9).

We can also easily calculate the stability spectrum
of the non-trivial patterned states of this reduced
system. The homogeneous solution has a degenerate
pair of modes, with growth rates ; = 0, = —A¢/2,
so that is stable below the transition, Ae > 0 and
unstable above. Focusing on the C, = 0 inhomoge-
neous solution, it has two eigenvalues, §2; = 37C,
(H —2Cy) and 2, = —9vC, H. From this we can see
that (for 29 > 0) on the positive branch both modes
are stable. €2; crosses Oat the saddle node, and on
the second branch we have 1 stable and one unstable
mode. When the second of the non-uniform branches
crosses the homogeneous solution at the transcritical
point, both s cross zero and we remain with one
stable and one unstable mode, switched compared to
those on the previous side. The story for the other,
shifted, solutions is of course the same. This picture
is more intricate than for the standard co-dimension
one pitchfork, where the stable solution on one side
of the bifurcation gives rise to one unstable and two
symmetry-related stable solutions on the other side.

5. The pitchfork bifurcation and its
unfolding: the biological notch—delta
model

Numerical exploration of equation (1) confirms that
our more realistic notch—delta system also pos-
sesses a co-dimension 2 pitchfork bifurcation over a
wide range of parameters. For our standard parame-
ters, the pitchfork occurs at \bF = 2.758 2488, A\IF =
1.931 12. Specifically, for AL, as is the case for gen-
eral \y, only the uniform solution exists for A\p < A\Y
and itisstable. At )\g = 1.931 12, two additional solu-
tions are born, one a ‘hexagon’ (by definition, a solu-
tion where high D is surrounded by high N) and
one an ‘anti-hexagon’ (high N surrounded by high
D). What is interesting is that this point occurs not
only for physically possible (i.e. positive) values of the
parameters, but within the range of parameter val-
ues determined (at least roughly) by experiment [15].
Thus the unfolding of the bifurcation gives us detailed
information about the pattern formation possibilities
realizable in real physiological settings.

Many of the features in the vicinity of the pitch-
fork bifurcation of the Negrete—Oates model carry

E Teomy et al

over into our more complicated system. Specifically,
it can directly be shown by numerical analysis of
the nine-dimensional reduced system that the uni-
form state has 2 (degenerate) unstable modes above
the critical Ap. The emerging hexagon branch is
stable, whereas the anti-hexagon has one unstable
mode. The instability is with respect to a mixed mode
(defined as a mode with all three sublattices having
different values) which converts the anti-hexagon to
a shifted hexagon. This overall structure is shown
in figure 6(A), and indeed recapitulates the struc-
ture determined for the Negrete—Oates model via the
amplitude equation analysis.

At all other values of \y, the pitchfork breaks
up into a transcritical bifurcation and a saddle-node
(see figure 6(B)), also as in the Negrete—Oates model.
Again by direct numerical solution, we find that for
Anv > AXF, the uniform solution undergoes a tran-
scritical bifurcation with an unstable anti-hexagon
(with respect to a mixed-mode perturbation) on the
high Ap side and an unstable (with respect to a pure-
mode) hexagon on the low Ap side. The unstable
hexagon then undergoes a saddle-node bifurcation,
rendering the hexagon stable; this stable branch then
continues on as Ap increases. For A\p smaller than
the saddle-node value, no patterned solution exists.
Hence, there exists a range of parameters for which a
stable hexagon coexists with the stable uniform solu-
tion, a range which widens as Ay increases; we will
return to this point below. For example, for Ay = 3.5,
the transcritical bifurcation in which the uniform
state goes unstable is at Ap = 2.11356, whereas
the saddle node bifurcation is at A\p = 2.1097. An
example of a stable hexagon solution for Ay = 3.5,
Ap = 2.3 is shown in figure 7.

A similar bifurcation structure appears for
Av < ARE, where now the stable hexagon lies to
the right of the transcritical point and the unsta-
ble anti-hexagon lies to the left, and it is the one
that undergoes a saddle-node bifurcation (see
figure 8(A)). The anti-hexagon is born with 1 unsta-
ble mode at the transcritical point and turns stable
at the saddle-node bifurcation. However, unlike what
happened in the Negrete—Oates model [20], the stable
anti-hexagon branch loses stability to a mixed-mode
perturbation; this instability leads to a new pitchfork
bifurcation, which is a result of the B/C symmetry
breaking. The hexagon, on the other hand, is born
with one unstable mode and subsequently becomes
stable, also as a result of a mixed-mode pitchfork
bifurcation. An overall diagram of the stable phases
as a function of the two parameters Ay and Ap is
presented in figure 8(B). The mixed-mode solution
branch arising from the hexagon bifurcation is the
same solution which arises from the anti-hexagon
bifurcation. For example, at Ay = 2, the hexagon
becomes stable at A\p = 2.0477 and the anti-hexagon
becomes unstable at \p = 2.056. Thus, there is a very
small coexistence region between the hexagon and
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anti-hexagon solutions. Again, the only solution that
survives stably to higher values of Ap is the hexagon.
This is in accord with the general biological rule
given above that the high delta cells are surrounded
by high notch cells sufficiently far from AL and its
associated \Y. From the physics perspective, the
explicit lack of symmetry between notch and delta as
reflected in this model is not eliminated by working
close to the co-dimension two bifurcation since the
accidental symmetry at this point affects only the
leading order term in the amplitude equation, not

any of the higher-order ones. As mentioned above,
this feature is not captured by the simpler one-field
model where the model has an exact symmetry at
QO = 0.

We can again use weakly non-linear bifurcation
theory to flesh out these numerical findings, work-
ing in the immediate vicinity of the pitchfork bifur-
cation, the bifurcation analysis for this more compli-
cated system of nine equations can be performed, and
after eliminating the seven fast modes (as opposed
to just one previously), we get a set of amplitude
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2.3

equations for the two slow modes, parameterized
by 6p,c = Npc — No, where Ny is the homogeneous
notch level. Doing this, we get exactly the same bifur-
cation equations structure as in equation (8) with the
role of the symmetry breaking parameter {2y played
by d = Ay — A and the role of the other bifurcation
parameter Ae replaced by € = (Ap — Aj)) where \§,
is the location of the instability of the homogeneous
solution. Near \bF,

¢ & 1.931 + 0.2626 — 0.02360° 4 0.000 6765
(10)
so that \(, increases with Ay. We can write the final
amplitude equations as

Ci = aC, +0(3CE — C3) + uC(3C + C3)
C, = aC, — 0(6C,Cy) + pCy(C2 +3C%).  (11)

In term of these bifurcation parameters ¢ and ¢, the
amplitude equation coefficients are

o =0.04440¢; 0 = 0.0003825; y = —0.000 3063.
(12)

This system is of course identical in structure to that
we received in the Negrete—Oates model. The new
information is the connection of the perturbations
Cy, G, to the deviations from homogeneity of the
physical fields N, D, and L.

The analysis of these equation thus follows directly
from our previous analysis. Here, the saddle-node
point is at € = —0.008 0767, again below the transi-
tion, with CPN = 0.6244 4, so that for § > 0 the B
and C sites has high notch, so that the A site has
low notch. From the solution for the fast modes, we
have D4 = Dy + 0.0276C;, and the A site has high
delta. Thus the saddle-node solution is what we enti-
tle a ‘hexagon’ solution, which of course a distinction
that is meaningless in the one-field model. On the
other side of the transcritical point, C; changes sign,
and so the A site there has low notch and high delta,
i.e. an anti-hexagon. For § < 0, i.e. Ay < AR, things
are reversed, and the saddle node has C; < 0, so that
the saddle-node solution is an anti-hexagon, and the
solution on the other side of the transcritical pointis a
hexagon. This is of course consistent with our detailed
numerical findings.
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Checking the stability, both homogeneous modes
have growth rate o, and so are stable for A\p < Af, and
unstable above the transition. For the § > 0 hexagon,
one mode, with growth rate €2, is stable on the upper
branch C; > C; gy and unstable for C; below the sad-
dle node. The other mode, with growth rate €2, is
stable both above and below the saddle node. Thus,
the hexagon on the upper branch is stable and on the
lower branch is once unstable. Across the transcrit-
ical point, the two modes switch signs, and the anti-
hexagon also has one unstable mode. For § < 0 on the
other hand, the bottom antihexagon is stable and the
top antihexagon and the hexagon are once unstable.
Precisely at \y = AL, ©; and ©, both vanish and one
has to go to higher order to see that the antihexagon is
the unstable solution. Also, the instability of the anti-
hexagon to the mixed mode is not present to this order
of the amplitude equation analysis.

6. Exotic solutions

The aforementioned exact mapping of the ordered
pattern equations to a coupled ODE system allows
as well for the analytic understanding of a surprising
type of pattern not heretofore investigated. If we solve
our system at alow value of k, = 107*, with Ay = 3.5,
Ap = 10 and all other parameters at standard val-
ues, we find a hexagonal structure with Ny = 52.7 >
Np = 51.0, whileasusual D4, = 0.558 > Dy = 0.215.
We refer to this type of solution as ‘high-high’, as cells
with high delta also have high notch (‘high’ here is rel-
ative to the neighboring cells). However, we did not
find any evidence for this possibility over the range
of cis -inhibition parameters proposed by Sprinzak,
et al for typical developmental processes; this is shown
in a numerically computed phase diagram (figure 9).
This might explain why such patterns have not been
seen experimentally to date. To better understand the
phase diagram, we show in appendix F how one
can analytically derive the boundary between regu-
lar hexagons and high-high solutions in the large Ap
limit. Specifically, an accurate approximation for the
vertical line in the figure is k¥ = k;/2(1 + kpy), which
equals 0.01 with our typical choices. This result shows
that hexagonal patterns are not dependent on hav-
ing high cis-inhibition but that the anti-correlation
between delta and notch cannot be taken for granted
in its absence.

7. Initial value problem

The existence of stable ordered hexagons leaves open
the question of how these patterns can be gener-
ated in the noisy biological system with plausible ini-
tial conditions [19, 29]. In particular, it is easy to
check numerically that, starting with no pattern for
a set of parameters for which the uniform state is
linearly unstable, the presence of noise, either in the
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initial data or in the time evolution, will lead to disor-
dered states with many domain boundaries between
hexagon patterns centered on different sublattices.
One way out is based on the fact we have shown above
that there could exist a parameter range for which
there is a subcritical bifurcation to stable hexagons
in which case a local perturbation which nucleates
the pattern can spread in an ordered manner; this
is a standard scenario in many non-living systems
[26]. Crucially, the bifurcation analysis suggests that
for biological systems studied to date, there is no
significant range of physiologically relevant parame-
ters where propagation would occur into a metastable
state. Intuitively, we believe that most biological sys-
tems exhibit insufficient parameter control and too
high a level of stochasticity for this to be a robust
strategy. In some, coupling to additional components
could alter the bistability range. There could also
be more complex biological mechanisms that, for
example, would provide downstream checks that pre-
vent neighboring cells from both developing the same
phenotype even if there is some initial defect in the
notch—delta structure [30].

A more physics-based possibility is that the sys-
tem is not put all at once into the unstable state. This
possibility was examined by Formosa-Jordan and col-
laborators [25, 31], who introduced an additional
morphogen field which served as a propagating pre-
cursor wave immediately behind which the system is
found in the unstable homogeneous state. The pri-
mary focus of this earlier work was on the nature
of the precursor wave and the finding of an insta-
bility of the wave pattern to transverse perturbations
under certain conditions. In addition they noticed
that the resulting pattern became more disordered
as the wave spread increased, but did not systemati-
cally investigate this effect. To better understand this
finding, we imagine that the system is initially in a
regime of parameter space for which the uniform state
is stable. Then some external mechanism (such as the
morphogen dynamics above) induces a propagating
wave, behind which the parameters are in the unsta-
ble region. To exhibit this possibility, we assume that
only \p is affected by this wave, and A\p = 2 ahead
of the wave and \p = 3.5 behind the wave. For sim-
plicity, we do not concern ourselves here with the ori-
gins or dynamics of this initiation wave, and rather
choose a standard tanh waveform, and vary the wave
speed v. In figure 10, we show a pair of simulations
of our model augmented by quenched noise. The
wave in \p propagates radially outward from an initial
point creating an expanding region inside of which
the system exhibits notch—delta patterning. At large
v, the parameter shift is essentially instantaneous over
a large spatial region and the noise nucleates incom-
mensurate patterns in different parts of the lattice,
leading to obvious defects. If the parameter wave is
slowed down, the leading edge of the pattern has suf-
ficient time to align itself with the preceding rows
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before having to itself act as a template for the next
radial row. Therefore, any wave speed below a criti-
cal threshold would be sufficient to obtain the disor-
der reduction. An estimate of the speed of one such
wave (the morphogenetic furrow during Drosophila
eye development [32]) is well below this threshold.
One can do this as well in a planar geometry, (where
a linear front traverses the system from one side,
see below), as is suggested by some biological data
[3]. This scenario, in which the bistable dynamics is
decoupled from the patterning dynamics, is an alter-
nate route to constructing a model of the precursor
wave than the above-mentioned morphogen dynam-
ics, which is assumed to be driven by the developing
pattern.

One extension of this analysis considers the fact
that biological tissue will in general differ from per-
fectly hexagonal cellular organization [33]. To get
some sense of the importance of this disorder, we
have generated three lattice configurations, ranging

from small to moderate disorder as measured by the
number of non-hexagonal cells. For comparison, we
note that in many cases the measured number of
hexagons is around 50% [33], although in some cases
the percentage can be even smaller. These were gen-
erated using the continuous random network (CRN)
approach [34, 35]; for details, see appendix G. In
figure 11, we show (in this case for the planar geome-
try) that the precursor wave idea is still very effective
at generating ordered structures. This finding can be
seen directly by examining the D field patterns and
can be quantitated by measuring the number of times
two neighboring cells both exhibit high D values. A
more detailed analysis of the effects of disorder will
be presented elsewhere.

Parenthetically, the above approaches differ from
the ideas presented in references [32, 33], there, they
propose a templating mechanism for the produc-
tion of the final ordered pattern and compare to
data for the Drosophila eye system. Our approach,

10
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Figure 11. The pattern (of D, the patterns of N and I are similar) created by a linearly propagating initiation wave raising Ap
from its initial value of 2 to a final value of 3. Left top panel: propagation into a system with roughly 10% non-hexagonal cells. We
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the number of hexagons equal to roughly 50%, the basic ‘salt and pepper’ pattern is maintained. The speed of the wave was

0.01 s — 1, where the lattice spacing is 4. Ay = 3.5. All other parameters are standard.
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on the other hand, builds on the known interaction
in the notch—delta pathway and does not require a
pre-patterned template. Another proposed solution
involves the presence of carefully adjusted time-delays
in the signaling network [19].

One last remaining pattern selection question
concerns the fact that, in some systems, multiple less-
differentiated cells separate the fully differentiated
high delta ones. The pattern is still hexagonal but
with a wavevector that is smaller than the maximum
allowed by the lattice structure. Such patterns exist in
our model, but would not be selected by any simple
initial value problem. This is because as been shown
here and elsewhere, the most unstable wavevector is
the largest one, i.e. lies at the end of the Brillouin
zone. Possible mechanisms could include the more

complex initial value templating of [33] or having the
inhibition from the high delta cells extend beyond
their nearest neighbors. Such an extension mecha-
nism involving filopodial appendages was demon-
strated by Cohen and co-workers [34]. A related
possibility is coupling the notch—delta juxtacrine pro-
cess to paracrine signaling, either by having some dif-
fusible notch ligand (such as is known to occur for
Jagl [35]) or via coupling to a different molecular
inhibitor. In all of these extended inhibition scenar-
ios, it is easy to show that the most unstable mode for
the homogeneous pattern moves to lower wavevec-
tor. Investigation this possibility in detail must, how-
ever, await future studies. A final possibility is that
the less differentiated cells continue to divide after the
notch-dependent patterning process is completed.

11
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8. Summary

In conclusion, we have studied the problem of ordered
pattern formation for the realistic notch—delta sys-
tem. Our main findings are as follows:

e Showing that the quasi-realistic notch—delta
biological model leads to an explicit nine
dimensional ODE system for ordered patterns

e Demonstrating that the exact reduction leads
to an interesting co-dimension two bifurcation,
which shows how the tradeoffs between hexag-
onal and anti-hexagonal patterns are affected by
the symmetry (or lack thereof) of the ODE sys-
tem. The breakdown of symmetry between the
unfolding of hexagon and anti-hexagon solu-
tions is suggested to have important biological
consequences.

e The exact reduction also allows us to find ana-
Iytic treatments showing the existence and sta-
bility of heretofore unrecognized solutions with
correlated (instead of anti-correlated) notch
versus delta patterns.

e Demonstrating that the problem of defects can
in principle be solved by spatiotemporally mod-
ulating the parameters governing the transition
to the patterned state.

We have argued that the presence of a pitchfork
bifurcation value A close to the physical relevant
parameter range organizes the existence and stabil-
ity of high-delta centered hexagon pattern as well
as the high-notch centered anti-hexagon pattern and
guarantees that the former is the generic stable struc-
ture. Thus, models built on our current understand-
ing of molecular mechanisms do help explain this
recurring feature of tissue development. The impor-
tance of this is highlighted by the fact that outside the
physical range of parameters, alternative correlations
between notch and delta are possible. Furthermore,
we have seen that creating a perfect pattern is a sig-
nificant challenge in the vast majority of parameter
space where the transition from the uniform state to
the patterned state is second order. As already men-
tioned, we demonstrated that coupling a parameter
to an initiation wave could provide a way to meet this
challenge.

We have focused our study on the baseline pat-
terning process enabled by the notch—delta system
operating alone. In any given biological realization,
there is undoubtedly coupling between this path-
way and others. There are also different version
of the notch receptor and different notch ligands,
used to differing effect in. These disparate set-
tings and creating a more complex but probably
more versatile system than the one we have stud-

E Teomy et al

ied here; one can of course dive into one very spe-
cific example and construct a much more complete
model. We have adopted a complementary approach,
analyzing in detail what occurs in the simplest case
and thereby identifying the aspects of these sys-
tems that follow directly from physics and iden-
tifying those that require additional evolutionary
innovation.
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Appendix A. Uniform state reduction to
a single equation

When discussing uniform steady-states, it is conve-
nient to reduce the set of three equations to a single
nonlinear equation. For simplicity, we will special-
ize the following discussion to the case of the Hill
coefficients n. equal to 2. We first introduce the
notation

- I?
A=A (1+kg—2=);
N N<+H1+I§>7

- AD

Ap 1412 (A1)

In terms of these, we have

kt )\I
V1

Iy =

NoDy, (A2)

where we have also introduced
ko = k. + k. (A3)

Solving for Ny and Dy yields
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—ko (S\D - 5\N) - 72

+ \/{ko (S\D + S\N) + ’VZT - 4k35\D5\N

No =

>

2koy
by — ko (S\D — 5\N) -7+ \/[koz]gj: + S\N) + 72}2 - 4k(2)5‘D5\N’ A
so that I, satisfies |
. ks —ko (S\D + S\N) -7 - \/{ko (S\D + 5\N) + 72]2 — 43 Ap Ay R (A5)

We next consider the stability condition for
a hexagonal perturbation, which in line with the
Negrete—Oates model has the form Ny = Ny + 6y,
Ngc = Ny — 361, Da=Dy + 6p, Dpc = Dy — 30p,
IA = I() + (5[, IB,C = I() — %5[ The Stability matrix

My, is then
d\
—koDo — (—ke + ki /2)No FN
1y
My = d\
N O e T
0
ke ArDy —(k;/2)\(No -1
(A6)

The instability sets in when Det My = 0, i.e., when

dy
dly

= 4ypy [v + ko (Do + Np)]
+ 37NoDok: (ko + 3k.)

kiADo [4y + 3(ko + kc)No] ———

dA
2-2P R ANy (7 + 3k.Dy) . (A7)
dly
To derive the condition for the bifurcation point to
be a pitchfork, we consider a general nonlinear sys-
tem of steady-state equations, f;(xj, p) = 0, where

d\
471 (y + koNo) + 2k A INOTD
k: d\
xR = —4y; (k — 2) Dy + 4k, \;Dy dI()D 5

k¢ ArDo (4’7 +6 (kc + I;) No)

L

s 2k;

the functions f; depend on the variables x; and the
bifurcation parameter pi. The steady-state at the bifur-
cation point, /i, is denoted x;o. At a slightly shifted
value of = py+ Ap, the solution is given by
xj = xj + ex;1. Expanding the steady-state equation
to first order in p and third order in € yields

O & of;
0= 81 1+Eaa x]1k1+A/~L8
e 0, of;
+ g 8xj8xk8xl 1 %k1 011 + GAM axja,uxJ b

(A8)

where repeated indices are summed over and all
derivatives are evaluated at the unperturbed solu-
tion. At the critical point, x;; is given by the right
zero-mode eigenvector of the linear stability opera-
tor g—ﬁ;, X1 = xJR. At a pitchfork bifurcation, the sec-
ond derivative terms have no projection on the zero-
mode, so that

(A9)

The right and left eigenvectors are given by

k¢ ArDo (47 +6 (kc + ?) No)

=2k A\tNy(7y + 3k.Dy)
4~* + 4koy(Do + No) + 3k: (ko + 3k:)DoNy

(A10)

13



Phys. Biol. 18 (2021) 066006

E Teomy et al

Substituting this, the condition for a pitchfork bifurcation reads

d?Np
I3

-
0=9 AZN
dlg

K \iDg 4y + 3(ko + k)N ]® — 2

&
dI,

— 8k ArDo(7y + 3kcDo)(2y 4 3k:No) | 2k Ar

For completeness, we note that the condition for a
saddle-node bifurcation is in general

Pfi .

0
bl
op

0x;0xx0x

=3

fi 1 xr P 1 ox
o akai X; X o auxmxn. (A12)

Using the expressions for the eigenvectors above, one
can use this to derive a fairly lengthy expression for
the saddle-node condition.

Appendix B. The large Ap limit and the
region of hexagonal instability

We showed in the main text the region of hexag-
onal instability in the k., Ap plane for various An.
One striking feature of this diagram is that the phase
boundaries become vertical at two critical values of k.,
so that A\, (k.) diverges at these values. We can derive
this analytically by solve the steady-state equations in
the large A\p limit.

In this limit, Dy < 1 and Ny < 1, we have
AN il

NoDy = — =
0T T kN

(B1)

finite, which provides a closed equation for Iy. Then,
the stability condition equation (A7) reduces to

d1n My

. 3kedIn Ap
dlnIo

2k0 dIn IO '

(B2)

Doing the algebra, we find that the critical I, satisfies
the equation

3vi(1+ I = Mdw [I5 (1 + 2I5) (1 + ku) — 1] .
(B3)

This equation typically has two positive roots for
Iy, which when substituted back into equation (A5)
yields the critical value of ko/k. = 1 + k;/k.. We also
see that the critical k;/k. only depends on the lumped

kg AL Dy No (v + 3keDo) [47 + 3(ko + k)No ]

— Y1(2ke — ki) dly

d\
[kt)\lNoD + 271(y + koNo) | -

(All)

parameter £ = M\ Ay/7; and ky. For large &, things
simplify further and we find the solutions

12
1[ ky + 9 ]
_ _l S
2|V +1

2
Iy =~ 55(1 + kir); Iy =~

(B4)
corresponding to
1/2
&%2' &zl—’_kH kH+9—1]
ke ’ k. 13 \/ kg +1 '
(B5)

In figure B1, we plot the two solutions for k,/k. as a
function of Ay for the standard parameters ky = 1,
Ar = 1,9, = 1/2. We see that for £ 2 1, there are two
critical values of k;/k., one near 0 and the other near
2, between which the uniform solution is unstable to
a hexagonal pattern. This behavior is manifest in the
numerical unstable region plotted in figure 5 in the
main text.

Appendix C. Thelarge Ay limit and the
region of hexagonal instability

Similarly, we can compute the region of hexagonal
instability for large Ay. Here, Nj is large and Dy is
small, with the product being of order 1:

Ao Iy
NoDy ~ — = . Cl
oDy ko Y (CnH
Then, the stability criterion reads
din Ap  3(k.+ko)dIn Ay
= -2 2
dIn I() 2k0 dIn I() (C )
which reduces to
B 3Bk (k. + k) -

1= .
1+ 2ke(1+ 1)1+ (1 +kn)

Eliminating k. /k, yields an equation for Iy in terms of
ky and the lumped parameter ¢ = ApA;/v;

3Lk =2 [1+ I5(1 + 2ku)] ¢ (C4)
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Figure B1. The two critical values of k;/k, as a function of £ = Ay\;/7,, for ky = 1 in the large \p limit. We see that in line with
our analytic calculation, for large xi, the critical k;/k, either approaches 2 or 0.

yielding for Iy,

B 2k,
 ke(dky —2) + ke(ky —2)°

P (C5)

Substituting this into equation (C1) and solving for ¢
yields

ki + k. 3/2
ky

k(4ky —2) + ki(ky — 2)

(Co)
This solution, which specifies the critical value of
¢ (or Ap for given A; and ~;) is physical only if
ke/k > (2 — k) /2(2ky — 1). This relation, plotted
in figure 5 for kg = 2/3 and kg = 4/3 shows that ¢
decreases from infinity as k; increases from 0, reaches
a minimum and then increases, diverging as k./k.
approaches (2 — ky)/2(2ky — 1). The graph is sim-
ilar for all 1/2 < kg < 2. For ki < 1/2 there is no
critical A\p for large Ay, whereas for ki > 2, there is
a critical Ap for all k,/k,.

It should be noted that our results for large \p
indicated that that the point of divergence of \p is
close to k; = 2k, for large Ay. However, our cur-
rent large Ay calculation indicates that \p diverges at
k; = [(2 — ky)/2(2ky — 1)]k.. This indicates that the
large \p and large Ay limits do not commute. This is
reflected especially in the right panel of figure 5 in the
main text, where for ky = 4/3, we see that for large
finite Ay, Ap appears to be diverging at the location
predicted by the large Ay calculation, but once Ap is
sufficiently large, it turns back at the curve eventually
approaches the k. = 2k, line.

Appendix D. Multiple uniform states

We have found through numerical experiments
parameter regions that show the existence of mul-
tiple uniform states. Here we want to clarify where
in parameter space such solutions exist. We start by

again assuming large Ap. We get, following the same
scaling as above,

2
kAw (1 +kH1ﬁI§)

Iy = R() =
ko

(D1)

There are either 1 or 3 solutions of this nonlinear
equation. The bifurcation point is where these three
solutions collapse to 1. At this point,

0=R —-1="R". (D2)
Denoting Q = ]i;ﬁj;’ , this reads
Iy
1=2Qky———,
Qir +I2)?
1312
0=2Qky—%. D3

Thus, from the second of these, at the bifurcation,
I; = \/3/3. The first then implies k}; = %f. Plugging
these into equation (D1) gives

Q* = 40 (D4)

so that
5= 8. (D5)

To see how things look in the vicinity of the bifur-
cation point, we write Q = Q" + g, ky = kj; +
Ok, Ip = I; + dr. Expanding to third order in ¢y,
equation (D1) translates to

0 = 1/36(V/38, + 10850 + 96dq)
+1/8(8k + 2430 + 3v/38:00)0
—3/32(8 + & + 24V/380 + 3v/36190)6; -
(D6)

In the last term, we can drop all the dx, dq pieces as
being higher order. Then, for the second term to be
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the same order as the third, we have to have that dy,
dq are both of order 67, and we can drop the last piece
of the second term. To make the first term also of the
same order, its leading contribution must vanish, so
that o = —+/3/1086; + 045,3/2. Then, the equation
reduces to

_ 1 32y 1 (2 _ 3
0= 5 (10800] )+8<35k>51 =8, (07)

To have three solutions, we must have §; > 0, so
that the derivative of this equation has two solu-
tions. Then, then are solutions in a band around
8q = —/3/1086}, which is negative. Performing the
numerical solution for large but finite Ap yields the
same conclusions, with kj; rising as Ap, falls. As we take

E Teomy et al

Ap smaller and smaller, k7; continues to rise, and even-
tually diverges at a finite value of Ap. This is shown in
figure D1. We will calculate this value momentarily,
but the implication is clear: there are only multiple
uniform solutions for ky > 8, which is much larger
than physical. This is all the more so since Ap is finite,
and the multiple uniform solution lower bound on kg
is thus in fact much higher.

Our last task is to determine the minimal value, A},
below which multiple uniform solutions are impossi-
ble. The numerics show that as Ap approaches its crit-
ical value, I} approaches 0 as kj; diverges, with kj; (I5)?
remaining finite. In this limit, denoting x = kHI(%, we
have

AN koA

A
RoUo)Z% —D+7D7N+1+x—\/<

We introduce the notation o = 21X, A = i—” +
0N N

c+1,B= 4?—3 and rewrite

Ro(Iy) = % (A—l—x— VA +x?—B( +x)) .

AD | VDN
o Eohy

4)\D(1+X)

K (D8)

2
+1+x> —

At the bifurcation point, we have Ry (Iy) = 0, Ry(Ip) =
0, and Ry (Iy) = 0, where the derivatives are not w.r.t.
x. Proceeding, we find the solution

(D9)
|
4A? 33
X" =A/3; B"'=—(1—-A/9); = D10
/ S -Am: Q= (D10)
2
Given B, since i—D = [1 + 01/3] . {2 — 01/3} . (D13)
N
DN .. . . .
1+ koA =A—-B/4 (D11) Examining this, we see that there is a maximum of

we have that

A=3(1+[a]1/3). (D12)

This corresponds to a critical value of Ap /Ay at which
ki, diverges of

/\NO' /\NO'

Ky =

Ap/ Ay for o = 1. Also, there is a change of behavior
for 0 > 8. Above this value, k}; remains finite down
to Ap = 0, and Ap = 0 it is a decreasing function of
o, approaching 10 + 4+/6 from above as ¢ — oo, In
general, as o gets large, kj; is a monotonically decreas-
ing function of A\p/(Ano), going between 10 + 41/6
at \p/o — 0and 8 as \p/o — oc:

)\NO'

2 3 2 2
320+464AAN—DU+160(A—D) +7<A—D) +\/96+96AAN—DU +9<§V—”g) (32+32§V—DU+3<A—D)>

2
2(1+52) (16+ 16,2+ (2) )

(D14)
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Figure D1. The critical value k}; above which multiple uniform solutions are possible (for some range of Q). 0 = 21N =1,1/8,

10 100

T koAN

Appendix E. Hexagonal symmetry
steady-state equation

As discussed in the main text, one can reduce the
full system of equations to a coupled ODE system. If
we specialize to the case of steady-state patterns with
hexagonal symmetry, so that the B and C sublattices
are equivalent, we obtain the six-dimensional system

0 = ANH4(In) — Na (k-Da + k:Dp) — YNy
0 = ApH_(I4) — Dy (kcNy + kiNg) — 7Dy
0 = k{NuDp — vila
k
0=mm@%N%M%+gm+mQ
— VN5
ky
0= ApH_(Ig) — Dp | kcNy + E(NB + Na)
—Dg

k
0=é&Mﬂ%+Dw—%h. (E1)

Appendix E. Hi—Hi solutions

In the main text, we discussed the fact that the model
as presented can support anomalous solutions in
which the levels of notch and delta are positively
correlated in the different sub-lattice sites instead of

I n+/m?—12

W=
3

I SnF VP — 12

p=——"_
6

being anti-correlated. To study this in more detail, we
look analytically at the large Ap limit and look for
the critical curve along which notch on the A and B
sublattice sites are equal. This curve should demar-
cate the boundary between regular hexagonal solu-
tions and what we are calling Hi—Hi solutions. Study-
ing the numerics (data not shown), we see that D4 and
Dg are large, of order A\p and Ny = Ny = N is small,
of order 1/\p. Writing Ny = Ny = No/Ap, Da =
ApDao, D = ApDpo and specializing to the case of
Hill coefficient 2 in the transcriptional/regulation
terms, we have to solve the system

kI3
>\N 1+ H—Az = kTNODBO + chODAO>
1+ B

AN (l + kHIé) = 1kTNo(DAo + Dpo)
1+ 13 2
+ k.NoDgg,
1
Iy = YD o,
1
T+ = vDgpo,

keAiNoDgy = Y114,
1
Ekt/\INO(DAO + Dpo) = vilp. (F1)

Here we have chosen units such that s; = 1. This

system admits two exact solutions, in terms of =
ANA(A+kp) .
ol '
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1
Dyo= ————r
YT+ B)
Dro — 1
L0+ )
I(1 + I3
NOZ’WI A(k + 1)
t

P n*(17 — kyy) & 3kun/nm? — 12 & 2kyn® /12 — 12+ 4(1 + ky) + 204 (2 + k)
c — M .

E Teomy et al

(F2)

2044+ nA) (1 +49?)(1 + kpr)

The two solutions merge at 7 = /12 and do not
exist for n < V12. One key result is that the critical
k. is proportional to k.. For large 7, which is typi-
cal for our parameters where v = 0.1, things simplify
tremendously and we have for the ‘—’ branch:

2
IA:—<<1,
n
IB:’I7>>1,
1
DA0:7)

1
Dpy = — <1,
N

2yym
N, = 1,
=Nk
ke
k= — . F3
2(1 + kgy) (£3)

In fact, for n = /12 which is its lower limit, we
get k./k; = (14 + 5kyy) /28 /(1 + ky), which is only
slightly higher than the infinite ) result.

Going off this border line numerically, we find that
the solution to the left of the line is a Hi—Hi solu-
tion, whereas to the right is a regular hexagon. The
branch starting from the ‘—’ border is stable whereas
starting from the ‘4 border is unstable. Thus, the two
solutions are completely distinct, even in the region to
the right of both borders. The region of stable Hi—Hi
solutions extends all the way down to k. = 0. The rel-
evant phase diagram is shown in figure 9. We show
the line above which stable Hi—Hi solutions exist, and
below which stable Hi-Lo hexagons exist, both of
which coexist with a stable uniform solution. We also
show the saddle-node bifurcation line, below which
only the uniform solution is stable.

Appendix G. Disordered lattice
Our baseline model takes the form

Ny = AH(I) — Ni (kcDy + kD) — YN
D, = A\pH_(I,) — Dy (keNy + k:N) — 4D,
Iy = Kk ANDS — I, (G1)

Here, positions x refer to locations on an hexagonal
lattice and the superscript ‘ext’ refers the average over
the six nearest neighbor sites of x.

We now want to allow for the possibility of a
disordered lattice. Let us continue to define all the
variables, N, Dy and I, as the total number of these
molecules for a cell with center point x. Then, the
form of the three decay terms and the N and D pro-
duction terms do not need to be changed. For the cis
and trans interaction interaction term, let us define
the ‘intensive’ parameters IAcc and lAct. Starting with the
cis term, and assuming uniform concentrations along
the membrane, we have for cell x

~ Ny D,
ek (3:) ()

where /,; is the length of the ith edge of cell x and
L. =), {; is the perimeter of cell x. Since nothing
depends on 7, we immediately obtain

We then define k. = (L,)k. ({-) means average over
the lattice) to ensure that the regular lattice limit
agrees with the original model. The final expression

is then
k.(Ly)
Ly

N,.D,.

The trans term is treated the same way. The basic
expression is

7 Nx Dx;i
ek (i) (22)

where the notation x; i refers to the neighboring cell
that shares edge i with the cell at x. Using the same
reparameterization k;, = (L, )k, we obtain

Nx Dx'i
Zéx,ikt<LX> (L) (L) .

Next, we discuss how we generate disordered lat-
tices. Specifically, we use the idea of a CRN that was
originally introduced to model semiconductors [34].
We introduce a set of n ‘atoms’ each of which is con-
nected by bonds to three neighbors with which it
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interacts. The interaction energy is given by

n 3
Ea=Y3" | kil -

j=1 i=1

1 2\’
+ Ek(; (cos 0ji — cos :)

We start from a perfect honeycomb lattice. We pick
two nearby bonds, and attempt to reattach them so
that the first bond now connects on of the atoms on
its ends with an atom on the end of the second bonds,
and vice versa, following the Monte Carlo scheme
originally devised in reference [34]. We accept the
change with probability unity if it lowers the energy
and with probability exp(—AE/T) if it raises the
energy. The final result is a perturbed lattice, with a
number of the perfect-lattice hexagons replaced by
pentagons, heptagons and the occasional quadrilat-
eral and octagon.

In our simulations, we chose a = 4, k, = ky = 1,
and attempted 2000 bond exchanges. The more
ordered lattice, used in figure 11(a), used T = 0.3,
resulted in roughly 10% nonhexagonal cells and the
more disordered lattice in figure 11(b) used T = 0.6,
yielding roughly 25% nonhexagonal cells. In the third
simulation panel we used T = 1.1. In addition, we
generated a system slightly larger than that presented
in the figure, and then eliminated the outermost row
of cells on each side, in order to obtain a more accu-
rate measure of the fraction of hexagons. For the
less-disordered systems, this proved unnecessary. The
speed of the wave was chosen as v = 0.01 in all cases,
in units where (L) = 24.

(G2)
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