
1.  Introduction
Recent airborne radar-sounding surveys revealed a 31 km-wide impact crater beneath Hiawatha Glacier, 
part of the northwestern Greenland Ice Sheet (Kjær et al., 2018). These radar data were collected with a 
new ultrawideband (UWB) radar sounder that revealed the glacier's bed topography and internal structure 
in unprecedented detail (Wang et al., 2016; Yan et al., 2017). Within these data, Kjær et al. (2018) also iden-
tified a distinct reflection beneath the ice–bed interface that was unusually flat and specular, which they 
hypothesized to be the groundwater table. However, this observation has yet to be confirmed by radiometric 
or hydrologic analyses, and the intervening material sandwiched between the glacier and this reflection was 
not characterized.

The unique geologic setting of a subglacial complex impact crater could be partly responsible for this reflec-
tion. While the deglaciated region immediately adjacent to Hiawatha Glacier (Inglefield Land) is composed 
of highly metamorphosed Paleoproterozoic rock (Kjær et  al.,  2018), unconsolidated impact breccias are 
expected to be widespread within the crater floor surrounding the central uplift (Osinski & Pierazzo, 2013). 
Debris-rich ice is observed outcropping along the base of ice cliffs along the western margin of Hiawatha 
Glacier, and Kjær et al. (2018) hypothesized that basal material is being actively entrained within Hiawatha 
Glacier, based on the UWB radar sounding data. A possible second large subglacial impact crater has also 
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Plain Language Summary  Recent radar sounding of the Hiawatha Glacier, which overlies 
a large impact crater, also found an unusually flat, bright surface about 10 meters beneath the bottom of 
the ice. This surface was suspected to be the groundwater table, which has never been directly detected by 
radar beneath an ice sheet, but was not studied in detail. We used two three-layer geologic models to test 
this hypothesis using the strength of the radar returns. We found that the layer between the ice bottom 
and this lower surface is likely either debris-laden ice or fractured, well-drained bedrock. This surface's 
shape and brightness are also consistent with a groundwater table and follow expected patterns of water 
pressure. Our results confirm the detection of a groundwater table beneath Hiawatha Glacier and show 
the potential for future radar surveys to further probe subglacial groundwater systems.
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been identified in Greenland (MacGregor et al., 2019), but no comparable subglacial reflection was reported 
there, although the ice is thicker and that structure is likely older.

Radar sounders are widely deployed to study subglacial and englacial water bodies (e.g., A. Wright & Sieg-
ert, 2012; Chu et al., 2018; Jordan et al., 2018; Kendrick et al., 2018; Oswald et al., 2018). This method often 
succeeds because the complex permittivity contrast between ice and water is large and because such bodies 
are often specular reflectors (e.g., Schroeder et al., 2015). Subglacial lakes are now regularly found beneath 
the Antarctica and Greenland ice sheets and inform our understanding of their subglacial hydrology (A. 
Wright & Siegert, 2012; Livingstone et al., 2019). Groundwater sources are also an important component 
of glacier hydrology; they can drive water into till, elevate porewater pressures, reduce shear strength and 
significantly influence ice-sheet dynamics (Boulton et al., 1995; Gooch et al., 2016; Key & Siegfried, 2017; 
Siegert et al., 2018). However, relatively few studies have reported detecting the subglacial groundwater 
table (Christoffersen et  al.,  2014; Mikucki et  al.,  2015) despite ground-penetrating radar surveys being 
well-established as a method for identifying groundwater in deglaciated environments (e.g., A. Neal, 2004; 
Woodward & Burke, 2007).

Radar-sounder designs range from ground-based impulse and frequency-modulated continuous-wave sys-
tems to multi-channel chirped airborne systems (Li et al., 2019). The UWB chirped radar system developed 
by the Center for Remote Sensing Ice Sheets and deployed by Kjær et al. (2018) is a relatively new version 
of the Multi-channel Coherent Radar Sounder (MCoRDS v5) characterized by a much larger bandwidth 
than previous versions, weaker sidelobes and a higher signal-to-noise ratio (SNR) (Rodríguez-Morales 
et al., 2013; Wang et al., 2016). The technical advances of MCoRDS v5 raise the possibility that its capabili-
ties alone are what enabled the detection of the hypothesized subglacial groundwater table.

A reflection from a subglacial groundwater table ought to posses a radiometric signature distinct from 
off-nadir bed reflections, because the dielectric contrast that induces the reflection should be due to the 
contrast between unsaturated and saturated sediment, rather than between ice and more typical subglacial 
interfaces (marine sediment or bedrock). This reflection's subglacial depth should also be consistent with 
the predicted hydrology of groundwater flow through such systems. If the interface is indeed a water table, 
then it should also be conformal to isopotential contours of hydraulic head (Flowers, 2015; Rutishauser 
et  al.,  2018; Wright et  al.,  2008). Here we test the hypothesis that the subglacial reflection at Hiawatha 
Glacier is indeed that of a groundwater table using both radiometric and hydrologic analyses. These tests 
inform an assessment of the cause of this reflection, prospects of its detectability elsewhere and provide 
a framework for future investigations of subglacial groundwater systems beneath glaciers and ice sheets.

2.  Data and Methods
The MCoRDS v5 data used in this study were collected in May 2016 (Kjær et al., 2018). The radar system 
is described in detail by Wang et al. (2016) and consists of three eight-element arrays, operating between 
150–520 MHz at a 10 kHz pulse repetition frequency. These arrays were mounted on the Alfred Wegener 
Institute's Polar 6, a Basler BT-67 aircraft. After pulse compression and synthetic aperture processing, the 
data have a vertical (range) resolution of 0.5 m and an along-track (azimuth) resolution of 15 m. Figure 1 
shows the four flight tracks and radargrams from this survey where the putative groundwater table was 
detected. The peak power of the putative groundwater-table reflection was extracted using a local depth 
window that was selected manually to bound this reflection. This depth window was also used to re-track 
some regions where the original ice–basal layer peak power picks corresponded with the hypothesized 
groundwater table.

2.1.  Radiometric Analysis

Our radiometric analysis aims to test whether the received power from the ice–basal layer and hypothesized 
basal layer–groundwater interface, along with the dielectric loss within the intervening basal layer, are con-
sistent with subglacial groundwater table. We assume that this system can be represented by a three-layer 
dielectric model, where the relative complex permittivity,     j    is uniform within each layer, where 
j2 = −1 and tan δ = ϵ″/ϵ′ is the loss tangent (dielectric loss). Two different models for the basal layer are 
explored in parallel, and in each case the basal layer is described by a three-component mixture. We show 
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below that the combination of reflectivity difference between the ice–basal layer and subglacial reflections 
and tan δ within the basal layer provide dual constraints upon b .

For our first model, the top layer is polar ice with an assumed permittivity   3.15(1 0.0062)ice j  expressed 
in the form   (1 tan )j   (Fujita et al., 2000; Peters et al., 2005). The middle layer sandwiched between 
the ice–basal layer interface and the putative groundwater table has an unknown permittivity b  and is 
assumed to be a mixture of granitic sand, groundwater-saturated till and ice (with initially unknown vol-
ume fractions). The bottom layer (groundwater table) is modeled using the dielectric properties of thawed, 
groundwater-saturated granitic till   25(1 0.0118)gwt j  (Christianson et al., 2016). These assumed layer 
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Figure 1.  Radargrams from the 2016 Hiawatha Glacier survey and location of the hypothesized groundwater table. Panels a–d show full radargrams across 
the crater (20160517_03_008, 20160512_02_009, 20160516_02_006 and 20160512_02_007, respectively). Panels e–h are portions of a–d zoomed in on the 
hypothesized groundwater table. The vertical scale bar in e–h corresponds to the depth range in ice (assuming ϵ′ = 3.15), not sediment or rock. Panel i shows 
the bed topography (Morlighem et al., 2017) overlain by all the 2016 survey flights over the crater (white), with black segments (panels a–d) representing those 
with a potential subglacial groundwater table beneath a portion thereof (colors, panels e–h).
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compositions were selected a posteriori by testing a range of plausible subglacial permittivity values to max-
imize overlap between the dual constraints. We note that the dielectric contrast between the middle layer 
and the putative groundwater table is so great that our conclusions are not significantly affected by the 
plausible range of permittivity values for the middle layer.

The second model again includes a top layer of polar ice ice  and an unknown middle layer, but differs in 
assuming the bottom layer is a groundwater aquifer in porous or fractured granitic rock (rather than an un-
sorted till) with higher water content and thus higher permittivity ( gw ). In this case, the middle basal layer 
is assumed to be a mixture of fractured bedrock, water and air (rather than ice).

These two distinct models effectively test whether detection of the subglacial reflection is due to a ther-
mal transition from frozen to thawed material (model 1), or due to a hydraulic transition from drained to 
saturated bedrock (model 2). Only their differences in the assumed composition of the bottom layer affect 
the resulting mixture ratios for the sandwiched basal layer. We consider these two cases to be the most 
plausible, with the primary goal of testing for the existence of the groundwater table rather than robustly 
identifying nature of the middle layer. For simplicity, the following sections use equations with subscripts 
and descriptions for model one only, but the analysis for model two is the same except using groundwater 
gw instead of groundwater-saturated till gwt.

The difference in received power between the basal layer–groundwater till (b–gwt) and the ice–basal layer 
(ice–b) reflectors is given by

 Δ[ ] Δ[ ] [ ],bP R L� (1)

where Δ[P] = [Pb−gwt] − [Pice−b], Δ[R] = [Rb−gwt] − [Rice−b] is the reflectivity difference between the basal 
layer–groundwater and the ice–basal layer reflections, [Lb] is the dielectric attenuation within the basal 
layer material, and the notation [X] = 10 log 10X is used for power in decibels. For this relation, birefringence 
loss and the radar system performance cancel out (Fujita, 2006; Haynes, 2020; Matsuoka et al., 2012). VHF 
birefringence within subglacial materials has not been reported so we neglect this possible confounding 
factor (Jordan, et al., 2020). Given the small traveltime differences and plausible range of permittivities, 
suggesting a basal layer ∼10 m thick, the difference in geometric spreading loss between the ice–basal layer 
interface and groundwater interface is negligible and also ignored. To assess the potential effect of interface 
roughness upon reflection scattering loss and how it might impact interpretation of Δ[R], we compared 
the spread of the reflectivity distributions for the ice-basal layer interface and the basal layer-groundwater 
interface (see supplement) (Grima et al., 2019; Jordan et al., 2016).

Spatial variation in the thickness of the basal layer between the ice–basal layer interface and the putative 
groundwater table can be further exploited to estimate the mean dielectric attenuation rate within this layer 
(Campbell et al., 2008). This regression assumes that (linear) power decays exponentially with travel time 
t (equivalent to layer thickness for uniform  b), resulting in a linear relationship between Δ[P] and t. This 
method also assumes that tan δb is uniform, that volume scattering within the layer is negligible, and that 
roughness-induced scattering losses and [Rb−gwt] are uncorrelated with t. By neglecting volume scattering 
within this middle layer, our estimate of water content in the basal layer is a conservative upper bound. [Lb] 
is obtained for each along-track sample using the regression slope (−Δ[P]/Δt) and Δ[R] is obtained using 
Equation 1. The loss tangent of the sandwiched basal layer is thus




             

22

10

Δ
tan 2 1 1,

40 log ( ) Δb
P

c e t
� (2)

where λ is the radar wavelength in the vacuum (0.9 m), c is its speed in the vacuum and Δt is the two-way 
travel time (Campbell et  al.,  2008). This approach differs from the typical procedure to estimate engla-
cial attenuation rates, where power is regressed against ice thickness for an assumed value of  ice (Jacobel 
et al., 2009). The rationale for our approach, which was originally applied to the subsurface of Mars (Camp-
bell et al., 2008), is that we cannot assume a value for  b a priori.
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The derived values of Δ[R] and tan δb provide two independent constraints upon b  and hence its compo-
sition. To relate these constraints to b , we consider a three-component mixture of granite (considering a 
range of granitic sand to rock permittivities), ice, and groundwater-saturated till using a power-law mixing 
model of the form

         
1 11 1

gran gran ice gwt gwtb ice ,   � (3)

where gran  is the complex permittivity of granite and ϕgran, ϕice, ϕgwt are the fractional volumes of granite, 
ice and groundwater-saturated till, respectively (Wilhelms, 2005; Nerozzi & Holt, 2019). We assume γ = 3 
following Looyenga (1965) and a range of values for gran  between 5(1 − j6.8 × 10−5) and 9(1 − j0.068), with 
a mean value of 7(1 − j0.034). These values were determined by converting electrical conductivity σ values 
for granite from between 10−5 − 10−2 S m−1 (Bogorodsky et al., 1985) and considering a real permittivity 
range of 5–9 (Martinez & Barnes, 2001; Nerozzi & Holt, 2019), i.e.,   gran   gran granf/ ( )2 0  where f is the 
radar center frequency (335 MHz), ϵ0 is the permittivity of the vacuum and  

gran
 5 to 9. Expected values 

of Δ[R] and tan δb were modeled using Equation 3, assuming a specular Fresnel reflection for Δ[R], and 
evaluated for all possible fractional combinations of ϕgran, ϕice and ϕgwt to produce a ternary diagram for each 
constraint.

2.2.  Hydraulic Analysis

Hydraulic head is a measure of liquid potential and its spatial pattern determines where groundwater flows 
(Freeze & Cherry,  1979). Here, we apply a traditional Darcian approach of evaluating the aquifers. We 
assume flow in one direction and a homogeneous aquifer in both models. For model 1, the total potential 
at the potentiometric surface (the elevation of the water table) is evaluated assuming the groundwater till 
aquifer is confined and partially driven by pressure from the top and middle layers (frozen basal layer and 
the overlying ice sheet). Model 2 considers flow through fractures dominated by gravity. While flow through 
such fractures is not well described by a simple Darcian model, for our purposes these simple hydraulic 
models enable the examination of the range of depths and shapes of the groundwater potential compared 
to the groundwater echo, rather than robustly modeling or supporting either of the two hydraulic scenarios.

To determine isopotential contours of hydraulic equilibrium, we calculate the hydraulic head as a function 
of elevation head and pressure head (neglecting velocity head) as

      1Φ ( ) ( ),gwt gwt ice surface b b b gwtgz g z z g z z� (4)

2Φ ,gw gwgz� (5)

where z is elevation, ρ is density and g is the acceleration due to Earth's gravity (Rutishauser et al., 2018; 
Shreve, 1972). Because the basal layer is thin (∼10 m), uncertainty in the density of the basal layer does 
not significantly affect the hydraulic head calculation and is neglected. We assume the basal layer density 
is comparable to granite (ρb = 2700 kg m−3) used in prior studies of northwest Greenland and note that 
granitic sand at lower densities would produce similar results (Corbett et al., 2015; Vermassen et al., 2019). 
The density of groundwater-saturated till (ρgwt) and groundwater (ρgw) are both assumed to be 997 kg m−3 
assuming the till will not flow (see supplement). To bound these two end members, both possibilities are 
shown in Figure 2.

2.3.  Radar System Analysis

We evaluate the performance parameters of MCoRDS v5 against those of other commonly deployed radar 
sounders to address whether MCoRDS v5 itself is responsible for the detection of a subglacial reflection. 
The characteristic bandwidths, center frequency, pulse length and windowing techniques are incorporated 
to generate and compare the sidelobe patterns of HiCARS (Peters et al., 2007), MCoRDS v3 (Shi et al., 2010) 
and MCoRDS v5 (see Table S1 for radar-system parameters used). This comparison tests whether the ob-
served subglacial reflections are likely to be “visible”, or stronger than the sidelobes from basal layer echoes.
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Figure 2.  Radiometric data analysis for profiles shown in Figure. 1e–h. Panels a–d show power loss in the basal layer material versus two-way travel time. The 
loss tangents are obtained from the regression slopes. Reflectivity difference between the basal layer–groundwater and ice–basal layer reflectors are shown in 
e-h and isopotential hydraulic head contours for the putative groundwater table in i-l.
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3.  Results
For our radiometric analysis, the four profiles where the subglacial reflection was detected were initially 
analyzed separately (Figure 1). Best-fit loss tangents range between 0.0102 and 0.0128 (Figure 2). The re-
flectivity difference between the ice–basal layer and basal layer–groundwater reflection, Δ[R], and hydraulic 
head are shown for each track section in Figure 2. The mean reflectivity difference (Δ[R]) for all four profiles 
is 11.1 ± 6.8 dB, accounting for both the standard deviation of each segment and the propagated error in 
[Lb] from the regression slope. The four reflectivity distributions all satisfy Lilliefors and Jarque-Bera tests 
for normality, and their mean spread (one standard deviation about Δ[R]) is 6.0 dB.

To estimate the subglacial material composition, we first used the arithmetic mean to combined the individ-
ual profile-mean estimates of tan δb and Δ[R], yielding tan δb = 0.0115 ± 0.0013 and Δ[R] = 11.1 ± 6.8 dB. 
The regions of the ternary diagrams consistent with these estimates are shown in Figure 3. The upper and 
lower bounds for the volume fractions consider the intersection of the outlined regions in Figures 3b and 3c 
and Figures 3e and 3f, which account for the full ranges of uncertainty in tan δb, ΔR and possible complex 
permittivity values of granite and groundwater till.

The first hypothesized model (Figure  3a) results in material volume fractions of ϕgwt  =  16  ±  9%, 
ϕice  =  74  ±  10%, ϕgran  =  10  ±  7%. Substituting these volume fractions into Equation  3, we derive 

    4.67(1 0.007) 2.99(1 0.001)b j j . Using the estimates for ϵb′ and the mean travel times (Figures 2a–
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Figure 3.  (a) Three-layer dielectric model of ice, a basal layer (constrained by the radiometric analysis), and groundwater-saturated till. (b) Ternary diagrams 
for tan δb and (c) ΔR. The second row shows (d) a second hypothesized three-layer dielectric model of ice, bedrock, and groundwater. (e) Ternary diagrams  
for tan δb and (f) ΔR with respect to the second model. Black outlined regions show most likely basal layer volume fractions, and dotted white outline  
showing the overlapping area of both the loss-tangent- and reflectivity-analysis probability regions. These ternary diagrams assume  gran 7(1 0.034)j ,  

 gwt 25(1 0.0188)j  and  gw 80(1 0.2482)j  (Christianson et al., 2016), but the outlined regions encompass permittivity and conductivity ranges 
    5

gran5(1 6.8 10 ) 9(1 0.068)j j  (Bogorodsky et al., 1985; Martinez & Barnes, 2001; Nerozzi & Holt, 2019) and    gwt20(1 0.005) 30(1 0.015)j j  
(Christianson et al., 2016).
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2d), the mean thickness of the basal layer between the ice and ground-
water table, averaged over the four sections, is 13  ±  4.7  m. Both this 
loss and reflectivity analysis indicate the presence of a debris-lad-
en basal ice layer above a groundwater table. The second hypoth-
esized model (Figure  3d) resulted in material volume fractions of 
ϕgw = 1 ± 1%, ϕice = 39 ± 23%, ϕgran = 60 ± 23%, bedrock permittivity 
of     5.39(1 0.009) 5.15(1 0.045)b j j , and indicate the presence of 
drained, fractured bedrock 9.8 ± 2.8 m thick. While the two models differ, 
both are consistent with a groundwater table located ∼10 m below over-
lying material of either (1) ice-cemented debris or (2) drained, fractured 
bedrock.

Equipotential hydraulic head lines were compared against the ground-
water interfaces for all segments, and the interfaces often followed iso-
contours (Figure.  2i-l). Thus, the interfaces are qualitatively consistent 
with a groundwater table in hydrologic equilibrium. The deviations from 
these isopotential lines appear to be related with deviations of the flight 
tracks from the local ice-flow direction, especially toward the northwest-
ern margin of the ice sheet. The lateral extent of the groundwater system 
is ∼15 km2.

Analysis of sidelobe patterns shows the potential of MCoRDS v5 and 
other systems to detect similar subglacial groundwater tables (Figure 4). 
MCoRDS v3 could plausibly detect nearly all Hiawatha subglacial ground-

water reflections, but many would be on the edge of detectability for HiCARS due to its narrower bandwidth 
(15 MHz). This is because the subglacial groundwater table reflections only slightly exceed the sidelobes 
generated by basal layer echoes from these two systems. However, for MCoRDS v5 these subglacial reflec-
tions are consistently tens of decibels higher than the sidelobes. Therefore, the combination of high SNR 
and wide bandwidth–resulting in faster sidelobe fall-off–is likely a significant factor in explaining why the 
subglacial groundwater table was detected beneath a portion of Hiawatha Glacier. The lack of detection of 
the subglacial groundwater table in other regions of the crater could be because: 1. No groundwater table is 
present there; 2. The basal layer is insufficiently frozen or drained to permit substantial radio-wave penetra-
tion; 3. The groundwater table is not sufficiently contiguous to identify in the radargrams; or 4. The interface 
is too deep to be detected.

4.  Discussion and Conclusions
Both our radiometric and hydrologic analysis are consistent with the anomalous subglacial reflection orig-
inating from a groundwater table beneath either a well-drained or partially frozen basal layer within the 
Hiawatha impact crater floor. Our radiometric analysis shows the groundwater-table reflection is typically 
over 10 dB stronger than the overlying ice–basal layer reflection, strongly indicative of the presence of wa-
ter-saturated material, i.e., a groundwater aquifer.

Our first hypothesized model (Figure 3a) indicates that an ice-cemented debris layer lies above thawed, sat-
urated groundwater till, consistent of a mixture of groundwater till, granite, and ice, with ratios of approx-
imately 16%, 10%, and 74%, respectively. In this model, water can exist both above and below the aquitard 
of the frozen basal layer, and the low attenuation rate of the basal layer is the result of its thermal state, i.e., 
the pores are filled with ice rather than water. The underlying thawed layer might also be trapped by frozen 
layers above it, a feature observed in firn hydrology (Koenig et al., 2014; Chu et al., 2018). This layer could 
be liquid because it is confined and pressurized (Steinbrügge et al., 2020), due to refreezing, heat advected 
by subglacial water flow or higher salinity (Rutishauser et al., 2018).

Our second hypothesized model (Figure 3d) indicates a basal layer of porous, well-drained rock above the 
groundwater table consisting of 1% groundwater, 60% granite, and 39% ice. In this case, the low-loss basal 
layer is the result of efficient vertical drainage rather than freezing. The impact should have produced a 
thick layer of impact breccia, which would be permeable and conducive to rapid subglacial drainage from 
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Figure 4.  Antenna patterns for three radar systems (Table S1) compared 
against the putative groundwater echoes as a function of traveltime 
through the basal layer. The groundwater echoes are shown as in 
Figures 2a–2d. For each radar system, the potential detectability of the 
any echo increases with the difference in power between the echo and the 
radar system's antenna pattern, for example at a traveltime of 0.1 μs, the 
putative groundwater echoes are ∼70 dB above the noise floor of MCoRDS 
v5, but < 15 dB above that of HiCARS.
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the overlying glacier into a groundwater system, and this second model indirectly assumes that this layer 
is still present. Thus, the unique detection of this subglacial groundwater table could be in part due to the 
uniqueness of its geologic setting.

The radar profiles where the groundwater table was detected are found close to each other, within the 
northwestern section of the crater (Kjær et al., 2018). A map of the ice–basal layer reflectivity from the 
2016 survey indicates increasing relative reflectivity from the southeastern corner of the crater toward its 
northwestern corner (Fig. s3). Our hydrologic analyses are also consistent with this drainage pattern, in that 
deviations of the observed groundwater table depth from equipotential hydraulic contours show a pattern 
of decreasing pressure gradient toward the northwest. This pattern suggests that groundwater is indeed 
flowing through the crater toward the ice-sheet margin in the same direction indicated by Kjær et al. (2018). 
Further investigation into character and flow of the subglacial and groundwater hydrology of the Hiawatha 
Glacier region of Greenland will require more sophisticated modeling, such as considering variations in 
hydraulic conductivity and intrinsic permeability.

As ​unique as the geologic setting of Hiawatha Glacier may be, observation of its groundwater was also 
partly enabled by the large bandwidth and SNR of the MCoRDS v5 system. Additional surveys by simi-
lar wideband sounders over other sites with known or hypothesized groundwater, or surveys of Hiawatha 
Glacier region by other radar sounders could validate the potential for wider applications of this work. 
This conclusion raises the possibility that other subglacial groundwater systems could be mapped using 
wideband radar sounders, providing new insights into the poorly understood role of groundwater in the 
subglacial hydrology of Greenland, Antarctica and other glaciated regions (Key & Siegfried, 2017; Siegert 
et al., 2018; Williams et al., 2020).

Data Availability Statement
Datasets used for this study are available through CReSIS (2016) and Morlighem et al. (2017). Ternary plot 
code is courtesy of Ulrich Theune, Statoil's Research center in Trondheim (Theune, 2020). Figure 1i was 
created with the Antarctic Mapping Tools (Greene et al., 2017).

References
Bogorodsky, V. V., Bentley, C. R., & Gudmandsen, P. E. (1985). Radioglaciology (Vol. 1). D. Riedel.
Boulton, G. S., Caban, P. E., & Van Gijssel, K. (1995). Groundwater flow beneath ice sheets: Part I - Large scale patterns. Quaternary Science 

Reviews, 14(6), 545–562. https://doi.org/10.1016/0277-3791(95)00039-R
Campbell, B., Carter, L., Phillips, R., Plaut, J., Putzig, N., Safaeinili, A., et al. (2008). SHARAD radar sounding of the Vastitas Borealis For-

mation in Amazonis Planitia. Journal of Geophysical Research, 113(E12) E12010. https://doi.org/10.1029/2008JE003177
Christianson, K., Jacobel, R. W., Horgan, H. J., Alley, R. B., Anandakrishnan, S., Holland, D. M., & DallaSanta, K. J. (2016). Basal condi-

tions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. J. Geophys. Res. Earth Surf., 121(11), 
1954–1983. https://doi.org/10.1002/2015JF003806

Christoffersen, P., Bougamont, M., Carter, S. P., Fricker, H. A., & Tulaczyk, S. (2014). Significant groundwater contribution to Antarctic ice 
streams hydrologic budget. Geophysical Research Letters, 41(6), 2003–2010. https://doi.org/10.1002/2014GL059250

Chu, W., Schroeder, D. M., & Siegfried, M. R. (2018). Retrieval of Englacial Firn Aquifer Thickness From Ice-Penetrating Radar Sounding 
in Southeastern Greenland. Geophysical Research Letters, 45(21), 11770–11778. https://doi.org/10.1029/2018GL079751

Corbett, L. B., Bierman, P. R., Lasher, G. E., & Rood, D. H. (2015). Landscape chronology and glacial history in Thule, northwest Greenland. 
Quaternary Science Reviews, 109, 57–67. https://doi.org/10.1016/j.quascirev.2014.11.019

CReSIS (2016). 2016 greenland polar6 data. Retrieved from https://data.cresis.ku.edu/data/rds/2016_Greenland_Polar6/
Flowers, G. E. (2015). Modeling water flow under glaciers and ice sheets. Proc. R. Soc. A., 471(2176), 20140907. https://doi.org/10.1098/

rspa.2014.0907
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-hall.
Fujita, S., Maeno, H., & Matsuoka, K. (2006). Radio-wave depolarization and scattering within ice sheets: A matrix-based model to link radar 

and ice-core measurements and its application. Journal of Glaciology, 52(178), 407–424. https://doi.org/10.3189/172756506781828548
Fujita, S., Matsuoka, T., Ishida, T., Matsuoka, K., & Mae, S. (2000). A summary of the complex dielectric permittivity of ice in the mega-

hertz range and its applications for radar sounding of polar ice sheets. In Physics of ice core records (pp. 185–212). Retrieved from http://
hdl.handle.net/2115/32469

Gooch, B. T., Young, D. A., & Blankenship, D. D. (2016). Potential groundwater and heterogeneous heat source contributions to ice 
sheet dynamics in critical submarine basins of East Antarctica. Geochemistry, Geophysics, Geosystems, 17(2), 395–409. https://doi.
org/10.1002/2015GC006117

Greene, C. A., Gwyther, D. E., & Blankenship, D. D. (2017). Antarctic mapping tools for MATLAB. Computers & Geosciences, 104, 151–157. 
https://doi.org/10.1016/j.cageo.2016.08.003

Grima, C., Koch, I., Greenbaum, J. S., Soderlund, K. M., Blankenship, D. D., Young, D. A., et al. (2019). Surface and basal boundary conditions 
at the Southern McMurdo and Ross Ice Shelves, Antarctica. Journal of Glaciology, 65(252), 675–688. https://doi.org/10.1017/jog.2019.44

BESSETTE ET AL.

10.1029/2020GL091432

9 of 11

Acknowledgments
We thank the Stanford Summer Under-
graduate Research in Geoscience and 
Engineering Program and R. Culberg 
for making this work possible. DMS 
was supported, in part, by an NSF 
CAREER Award and by NASA grant 
NNX16AJ95 G. TMJ acknowledges 
support from EU Horizons 2020 Grant 
747336-BRISRES-H2020-MSCA-IF-2016.

https://doi.org/10.1016/0277-3791(95)00039-R
https://doi.org/10.1029/2008JE003177
https://doi.org/10.1002/2015JF003806
https://doi.org/10.1002/2014GL059250
https://doi.org/10.1029/2018GL079751
https://doi.org/10.1016/j.quascirev.2014.11.019
https://data.cresis.ku.edu/data/rds/2016_Greenland_Polar6/
https://doi.org/10.1098/rspa.2014.0907
https://doi.org/10.1098/rspa.2014.0907
https://doi.org/10.3189/172756506781828548
http://hdl.handle.net/2115/32469
http://hdl.handle.net/2115/32469
https://doi.org/10.1002/2015GC006117
https://doi.org/10.1002/2015GC006117
https://doi.org/10.1016/j.cageo.2016.08.003
https://doi.org/10.1017/jog.2019.44


Geophysical Research Letters

Grima, C., Schroeder, D. M., Blankenship, D. D., & Young, D. A. (2014). Planetary landing-zone reconnaissance using ice-penetrating radar 
data: concept validation in antarctica. Planetary and Space Science, 103, 191–204. https://doi.org/10.1016/j.pss.2014.07.018

Haynes, M. S. (2020). Surface and subsurface radar equations for radar sounders. Annals of Glaciology, 61(81), 135–142. https://doi.
org/10.1017/aog.2020.16

Jacobel, R. W., Welch, B. C., Osterhouse, D., Pettersson, R., & MacGregor, J. A. (2009). Spatial variation of radar-derived basal conditions on 
Kamb Ice Stream, West Antarctica. Annals of Glaciology, 50(51), 10–16. https://doi.org/10.3189/172756409789097504

Jordan, T. M., Bamber, J. L., Williams, C. N., Paden, J. D., Siegert, M. J., Huybrechts, P., et al. (2016). An ice-sheet-wide framework for eng-
lacial attenuation from ice-penetrating radar data. The Cryosphere, 10, 1547–1570. https://doi.org/10.5194/tc-10-1547-2016

Jordan, T. M., Besson, D. Z., Kravchenko, I., Latif, U., Madison, B., Nokikov, A., & Shultz, A. (2020). Modeling ice birefringence and 
oblique radio wave propagation for neutrino detection at the south pole. Annals of Glaciology, 61(81), 84–91. https://doi.org/10.1017/
aog.2020.18

Jordan, T. M., Williams, C. N., Schroeder, D. M., Martos, Y. M., Cooper, M. A., Siegert, M. J., et al. (2018). A constraint upon the basal 
water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. The Cryosphere, 12, 2831–2854. https://doi.
org/10.5194/tc-12-2831-2018

Kendrick, A. K., Schroeder, D. M., Chu, W., Young, T. J., Christoffersen, P., Todd, J., et al. (2018). Surface meltwater impounded by seasonal 
englacial storage in West Greenland. Geophysical Research Letters, 45(19), 10–474. https://doi.org/10.1029/2018GL079787

Key, K., & Siegfried, M. R. (2017). The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics. 
Journal of Glaciology, 63(241), 755–771. https://doi.org/10.1017/jog.2017.36

Kjær, K. H., Larsen, N. K., Binder, T., Bjørk, A. A., Eisen, O., Fahnestock, M. A., et al. (2018). A large impact crater beneath Hiawatha 
Glacier in northwest Greenland. Science Advances, 4(11). https://doi.org/10.1126/sciadv.aar8173

Koenig, L. S., Miège, C., Forster, R. R., & Brucker, L. (2014). Initial in situ measurements of perennial meltwater storage in the Greenland 
firn aquifer. Geophysical Research Letters, 41(1), 81–85. https://doi.org/10.1002/2013GL058083

Li, J., Rodríguez-Morales, F., Arnold, E., Leuschen, C., Paden, J., Shang, J., et al. (2019). Airborne snow measurements over alaska moun-
tains and glaciers with a compact FMCW radar. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 
3906–3909. https://doi.org/10.1109/IGARSS.2019.8900034

Livingstone, S. J., Sole, A. J., Storrar, R. D., Harrison, D., Ross, N., & Bowling, J. (2019). Brief communication: Subglacial lake drain-
age beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects. The Cryosphere, 13(10), 2789–2796. https://doi.
org/10.5194/tc-13-2789-2019

Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401–406. https://doi.org/10.1016/0031-8914(65)90045-5
MacGregor, J. A., Bottke, W. F., Jr, Fahnestock, M. A., Harbeck, J. P., Kjær, K. H., Paden, J. D., et al. (2019). A possible second large sub-

glacial impact crater in northwest Greenland. Geophysical Research Letters, 46(3), 1496–1504. https://doi.org/10.1029/2018GL078126
MacGregor, J. A., Li, J., Paden, J. D., Catania, G. A., Clow, G. D., Fahnestock, M. A., et al. (2015). Radar attenuation and temperature within 

the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 120(6), 983–1008. https://doi.org/10.1002/2014JF003418
Martinez, A. L., & Barnes, A. P. (2001). Modeling dielectric-constant values of geologic materials. Midcontinent Geoscience, 247, 1–16.

Retrieved from https://journals.ku.edu/mg/article/view/11831
Matsuoka, K., MacGregor, J. A., & Pattyn, F. (2012). Predicting radar attenuation within the Antarctic ice sheet. Earth and Planetary Sci-

ence Letters, 359–360. 173–183. https://doi.org/10.1016/j.epsl.2012.10.018
Mikucki, J. A., Auken, E., Tulaczyk, S., Virginia, R. A., Schamper, C., Sørensen, K. I., et al. (2015). Deep groundwater and potential subsur-

face habitats beneath an Antarctic dry valley. Nature Communications, 6(1), 1–9. https://doi.org/10.1038/ncomms7831
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., et al. (2017). BedMachine v3: Complete bed topography and 

ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research 
Letters, 44(21), 11–051. https://doi.org/10.1002/2017GL074954

Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Science Reviews, 66(3–4), 
261–330. https://doi.org/10.1016/j.earscirev.2004.01.004

Neal, C. S. (1982). Radio echo determination of basal roughness characteristics on the ross ice shelf. Annals of Glaciology, 3, 216–221. 
https://doi.org/10.1017/S0260305500002809

Nerozzi, S., & Holt, J. W. (2019). Buried ice and sand caps at the north pole of mars: Revealing a record of climate change in the cavi unit 
with SHARAD. Geophysical Research Letters, 46(13), 7278–7286. https://doi.org/10.1029/2019GL082114

Osinski, G. R., & Pierazzo, E. (2013). Impact cratering: Processes and products. Blackwell Publishing Ltd.
Oswald, G. K. A., Rezvanbehbahani, S., & Stearns, L. A. (2018). Radar evidence of ponded subglacial water in Greenland. Journal of Gla-

ciology, 64(247), 711–729. https://doi.org/10.1017/jog.2018.60
Peters, M. E., Blankenship, D. D., Carter, S. P., Kempf, S. D., Young, D. A., & Holt, J. W. (2007). Along-track focusing of airborne radar 

sounding data from West Antarctica for improving basal reflection analysis and layer detection. IEEE Transactions on Geoscience and 
Remote Sensing, 45(9), 2725–2736. https://doi.org/10.1109/TGRS.2007.897416

Peters, M. E., Blankenship, D. D., & Morse, D. L. (2005). Analysis techniques for coherent airborne radar sounding: Application to West 
Antarctic ice streams. Journal of Geophysical Research, 110(B6). B06303. https://doi.org/10.1029/2004JB003222

Rodríguez-Morales, F., Byers, K., Crowe, R., Player, K., Hale, R. D., Arnold, E. J., et al. (2014). Advanced multifrequency radar instru-
mentation for polar research. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2824–2842. https://doi.org/10.1109/
TGRS.2013.2266415

Rutishauser, A., Blankenship, D. D., Sharp, M., Skidmore, M. L., Greenbaum, J. S., Grima, C., et al. (2018). Discovery of a hypersaline sub-
glacial lake complex beneath Devon Ice Cap, Canadian Arctic. Sci. Adv., 4(4, eaar4353). https://doi.org/10.1126/sciadv.aar4353

Schroeder, D. M., Blankenship, D. D., Raney, R. K., & Grima, C. (2015). Estimating subglacial water geometry using radar bed echo spec-
ularity: Application to Thwaites Glacier, West Antarctica. IEEE Geoscience and Remote Sensing Letters, 12(3), 443–447. https://doi.
org/10.1109/LGRS.2014.2337878

Shi, L., Allen, C. T., Ledford, J. R., Rodríguez-Morales, F., Blake, W. A., Panzer, B. G., et al. (2010). Multichannel coherent radar depth 
sounder for NASA operation ice bridge. In 2010 ieee international geoscience and remote sensing symposium (pp. 1729–1732). https://doi.
org/10.1109/IGARSS.2010.5649518

Shreve, R. L. (1972). Movement of water in glaciers. Journal of Glaciology, 11(62), 205–214. https://doi.org/10.3189/S002214300002219X
Siegert, M. J., Kulessa, B., Bougamont, M., Christoffersen, P., Key, K., Andersen, K. R., et al. (2018). Antarctic subglacial groundwater: A 

concept paper on its measurement and potential influence on ice flow. Geological Society, London, Special Publications, 461(1), 197–213. 
https://doi.org/10.1144/SP461.8

BESSETTE ET AL.

10.1029/2020GL091432

10 of 11

https://doi.org/10.1016/j.pss.2014.07.018
https://doi.org/10.1017/aog.2020.16
https://doi.org/10.1017/aog.2020.16
https://doi.org/10.3189/172756409789097504
https://doi.org/10.5194/tc-10-1547-2016
https://doi.org/10.1017/aog.2020.18
https://doi.org/10.1017/aog.2020.18
https://doi.org/10.5194/tc-12-2831-2018
https://doi.org/10.5194/tc-12-2831-2018
https://doi.org/10.1029/2018GL079787
https://doi.org/10.1017/jog.2017.36
https://doi.org/10.1126/sciadv.aar8173
https://doi.org/10.1002/2013GL058083
https://doi.org/10.1109/IGARSS.2019.8900034
https://doi.org/10.5194/tc-13-2789-2019
https://doi.org/10.5194/tc-13-2789-2019
https://doi.org/10.1016/0031-8914(65)90045-5
https://doi.org/10.1029/2018GL078126
https://doi.org/10.1002/2014JF003418
https://journals.ku.edu/mg/article/view/11831
https://doi.org/10.1016/j.epsl.2012.10.018
https://doi.org/10.1038/ncomms7831
https://doi.org/10.1002/2017GL074954
https://doi.org/10.1016/j.earscirev.2004.01.004
https://doi.org/10.1017/S0260305500002809
https://doi.org/10.1029/2019GL082114
https://doi.org/10.1017/jog.2018.60
https://doi.org/10.1109/TGRS.2007.897416
https://doi.org/10.1029/2004JB003222
https://doi.org/10.1109/TGRS.2013.2266415
https://doi.org/10.1109/TGRS.2013.2266415
https://doi.org/10.1126/sciadv.aar4353
https://doi.org/10.1109/LGRS.2014.2337878
https://doi.org/10.1109/LGRS.2014.2337878
https://doi.org/10.1109/IGARSS.2010.5649518
https://doi.org/10.1109/IGARSS.2010.5649518
https://doi.org/10.3189/S002214300002219X
https://doi.org/10.1144/SP461.8


Geophysical Research Letters

Steinbrügge, G., Voigt, J. R. C., Wolfenbarger, N. S., Hamilton, C. W., Soderlund, K. M., Young, D. A., et al. (2020). Brine Migration and Im-
pact-Induced Cryovolcanism on Europa. Geophysical Research Letters, 47(21), e2020GL090797. https://doi.org/10.1029/2020GL090797

Theune, U. (2020). Ternary plots. MATLAB central file exchange. Retrieved from https://doi.org/10.5771/9783748905110
Vermassen, F., Wangner, D. J., Dyke, L. M., Schmidt, S., Cordua, A. E., Kjær, K. H., et al. (2019). Evaluating ice-rafted debris as a proxy for 

glacier calving in Upernavik Isfjord, NW Greenland. Journal of Quaternary Science, 34(3), 258–267. https://doi.org/10.1002/jqs.3095
Wang, Z., Gogineni, S., Rodríguez-Morales, F., Yan, J. B., Paden, J., Leuschen, C., et al. (2016). Multichannel wideband synthetic aperture 

radar for ice sheet remote sensing: Development and the first deployment in antarctica. IEEE J. Sel. Top. Appl. Earth Observations Re-
mote Sensing, 9(3), 980–993. https://doi.org/10.1109/JSTARS.2015.2403611

Wilhelms, F. (2005). Explaining the dielectric properties of firn as a density-and-conductivity mixed permittivity (DECOMP). Geophysical 
Research Letters, 32(16). L16501. https://doi.org/10.1029/2005GL022808

Williams, J. J., Gourmelen, N., & Nienow, P. (2020). Dynamic response of the Greenland ice sheet to recent cooling. Scientific Reports, 10 
1647. https://doi.org/10.1038/s41598-020-58355-2

Woodward, J., & Burke, M. J. (2007). Applications of ground-penetrating radar to glacial and frozen materials. Jeeg, 12(1), 69–85. https://
doi.org/10.2113/JEEG12.1.69

Wright, A., & Siegert, M. (2012). A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24(6), 659–664. https://doi.org/10.1017/
S095410201200048X

Wright, A. P., Siegert, M. J., Le Brocq, A. M., & Gore, D. B. (2008). High sensitivity of subglacial hydrological pathways in Antarctica to 
small ice-sheet changes. Geophysical Research Letters, 35(17). L17504. https://doi.org/10.1029/2008GL034937

Yan, J. B., Gomez-García Alvestegui, D., McDaniel, J. W., Li, Y., Gogineni, S., Rodríguez-Morales, F., et al. (2017). Ultrawideband FMCW 
radar for airborne measurements of snow over sea ice and land. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 834–843. 
https://doi.org/10.1109/TGRS.2016.2616134

References From the Supporting Information
Grima, C., Koch, I., Greenbaum, J. S., Soderlund, K. M., Blankenship, D. D., Young, D. A., et al. (2019). Surface and basal boundary con-

ditions at the Southern McMurdo and Ross Ice Shelves, Antarctica. Journal of Glaciology, 65(252), 675–688. https://doi.org/10.1017/
jog.2019.44

MacGregor, J. A., Li, J., Paden, J. D., Catania, G. A., Clow, G. D., Fahnestock, M. A., et al. (2015). Radar attenuation and temperature within 
the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 120(6), 983–1008. https://doi.org/10.1002/2014JF003418

Neal, C. S. (1982). Radio echo determination of basal roughness characteristics on the ross ice shelf. Annals of Glaciology, 3, 216–221. 
https://doi.org/10.1017/S0260305500002809

BESSETTE ET AL.

10.1029/2020GL091432

11 of 11

https://doi.org/10.1029/2020GL090797
https://doi.org/10.5771/9783748905110
https://doi.org/10.1002/jqs.3095
https://doi.org/10.1109/JSTARS.2015.2403611
https://doi.org/10.1029/2005GL022808
https://doi.org/10.1038/s41598-020-58355-2
https://doi.org/10.2113/JEEG12.1.69
https://doi.org/10.2113/JEEG12.1.69
https://doi.org/10.1017/S095410201200048X
https://doi.org/10.1017/S095410201200048X
https://doi.org/10.1029/2008GL034937
https://doi.org/10.1109/TGRS.2016.2616134
https://doi.org/10.1017/jog.2019.44
https://doi.org/10.1017/jog.2019.44
https://doi.org/10.1002/2014JF003418
https://doi.org/10.1017/S0260305500002809

	Radar-Sounding Characterization of the Subglacial Groundwater Table Beneath Hiawatha Glacier, Greenland
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data and Methods
	2.1. Radiometric Analysis
	2.2. Hydraulic Analysis
	2.3. Radar System Analysis

	3. Results
	4. Discussion and Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


