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It is challenging to locate small-airway obstructions induced by chronic obstructive pul-
monary disease (COPD) directly from visualization using available medical imaging
techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic
method to detect obstruction locations using computational fluid dynamics (CFD) and
convolutional neural network (CNN). Specifically, expiratory airflow velocity contours
were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One
case representing normal airways and 990 cases associated with different obstruction
sites were investigated using CFD. The expiratory airflow velocity contours at a selected
cross section in the trachea were labeled and stored as the database for training and test-
ing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation
mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calcu-
lated to classify small-airway obstruction locations and pulmonary airflow pattern shifts
and highlight the highly correlated regions in the contours for locating the obstruction
sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visu-
alize based on the comparisons of CFD velocity contours. CNN results show strong rele-
vance exists between the locations of the obstruction and the expiratory airflow velocity
contours. The two CNN-based models are both capable of classifying the left lung, right
lung, and both lungs obstructions well using the CFD simulated airflow contour images
with total accuracy higher than 95.07%. The two automatic classification algorithms are
highly transformative to clinical practice for early diagnosis of obstruction locations in
the lung using the expiratory airflow velocity distributions, which could be imaged using
hyperpolarized magnetic resonance imaging. [DOI: 10.1115/1.4053651]

Keywords: noninvasive airway obstruction diagnosis, computational fluid dynamics
(CFD), convolutional neural network (CNN), gradient-weighted class activation mapping
(Grad-CAM), ResNet50, YOLOv4 (Darknet53)

1 Introduction

According to the National Vital Statistics Report [1], chronic
obstructive pulmonary disease (COPD) is the third leading cause
of death in America. COPD causes severe breathing difficulty due
to airway stiffening, loss of airway deformation capability, and
airway blockage induced by inflammation, especially in small air-
ways, which are regarded as the silent zone in the respiratory sys-
tem [2–4]. Inhalation of therapeutic nano-/microparticles is one of
the standard COPD treatments. However, the long-standing bar-
rier of the pulmonary drug administration via inhalation therapy
has been the inability to deliver a sufficiently high dose of thera-
peutic nano-/microparticles to obstruction sites in small airways
to further improve the drug bio-availability and achieve desired
therapeutic outcomes [3].

To overcome such a barrier, it is important to first detect the
obstruction locations in small airways of COPD patients at an
early stage and optimize the inhalation therapy to achieve targeted
drug delivery to designated obstruction sites, instead of healthy
airway tissues, for better therapeutic outcomes and reduced side
effects. However, there is strong evidence to suggest that most
patients are not aware of their small airway obstruction conditions
at the early stage, due in part to the invasive nature of conven-
tional diagnostic methods [5–7]. Specifically, traditional methods
to diagnose pulmonary diseases involve costly and invasive proce-
dures such as X-ray screening and bronchoscope. Thus, it is
imperative and beneficial to detect the obstruction locations in
peripheral lung precisely with noninvasive diagnostic methods.

To pave the way to a noninvasive and automatic diagnostic
method based on additional clinically measurable human data,
i.e., intrathoracic expiratory airflow velocity distributions [8–11],
this study proposes and tests the feasibility of a new diagnostic
methodology using both computational fluid dynamics (CFD) and
convolutional neural networks (CNN), i.e., “the expiratory airflow
pattern analysis,” to identify the obstruction location in left or
right lung deeper than generation 6 (G6) by automatic detection
of the clinically measurable intrathoracic airflow pattern shifts
using hyperpolarized magnetic resonance imaging (MRI) [8–11].
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Such a method was driven by a central hypothesis enlightened by
existing preliminary studies [12], i.e., the small airway obstruction
will lead to detectable velocity distribution pattern shift of the
expiratory airflow in the trachea. Specifically, based on the train-
ing and test data generated using the CFD simulation results of
expiratory airflows in a subject-specific human tracheobronchial
tree (trachea to G6), two CNN-based classification models were
developed using open-source codes ResNet50 [13] and YOLOv4
(Darknet53) [14]. The modified ResNet50 model is a 50-layer
residual network, and it was the winner of the ImageNet large
scale visual recognition challenge in 2015. The main goal of the
residual network is to build a deeper neural network without the
problem of vanishing gradients. To further analyze which regions
suggest the obstruction locations, gradient-weighted class activa-
tion mapping (Grad-CAM) was applied to produce a coarse local-
ization map highlighting the important regions [15]. The results
were also validated by Darknet53 that acts as a backbone for the
YOLOv4 object detection approach [16–19].

Although several diagnostic methods, i.e., computed tomogra-
phy images-based measurements, respiratory acoustics-based
approaches, spirometry, and forced oscillation techniques, have
been applied on lung disease detection combined with machine
learning [20–24], they did not attempt to achieve local or regional
obstruction detection. To the best of our knowledge, the only two
existing efforts in combining machine learning and computational
lung aerosol dynamics method for lung disease diagnosis were
made by Xi et al. [25,26], focusing on categorizing exhaled aero-
sol patterns that were simulated by CFD with different asthma
conditions using fractal analysis and support vector machines
(SVMs) classification as well as random forest. Therefore, this
study is the first to develop two CNN-based classification models
to automatically detect and locate airway obstructions in small air-
ways based on airflow velocity distributions in the trachea. As the
prototype of the noninvasive diagnostic method, CNN algorithms
have the potential to be extended to locate small airway obstruc-
tions that may not be detectable via existing pulmonary health
tests. By continuously extending the CNN training with additional
subject-specific human respiratory configurations and airflow pat-
terns, physicians only need to input the medical image of the air-
flow velocity contour at the predetermined cross section in the
trachea measured by hyperpolarized MRI, and the obstruction
locations will be automatically detected.

Accordingly, the objective of this study is to address the current
diagnosing deficiency, i.e., the incapability to identify the obstruc-
tion locations in left or right lungs, by proposing and testing the
feasibility of an innovative noninvasive diagnostic method to
assist in the detection of obstruction locations in the peripheral
lung using CFD and CNN methods. Two CNN-based models, i.e.,
modified ResNet50 and YOLOv4, are trained by CFD expiratory
velocity contours in a subject-specific 3D tracheobronchial (TB)
tree with 990 obstruction conditions at small airway terminals to
automatically classify COPD airway obstruction locations. Grad-
CAM and hue-value-saturation (HSV) thresholding techniques
were employed to classify COPD obstruction locations and veloc-
ity contour pattern shifts in the lung and highlight the highly cor-
related regions in the contours for locating the obstruction sites.
Velocity contours and Pearson correlation coefficients between
(1) different obstruction locations and (2) true and false positive
cases were also compared to analyze the significance of airflow
pattern shifts. Specifically, false positive indicates that obstruction
locations diagnosed by the CNN-based models are not correct.

2 Method

2.1 Study Design. Based on the central hypothesis, the work-
flow of the training and test of the two CNN classification models
are shown in Figs. 1(a) and 1(b). A subject-specific TB tree from
the trachea to G6 was employed for the expiratory flow simula-
tions using CFD. An experimentally validated CFD model [27]

was employed to predict expiratory intrathoracic flow velocity
distributions through the TB tree with 990 airway obstruction con-
ditions. Using the airflow velocity distribution data labeled by the
obstruction locations, two CNN-based classification models were
trained and tested.

2.2 Expiratory Flow Simulations Using Computational
Fluid Dynamics

2.2.1 Airway Geometry and Mesh. As the first effort to test
the feasibility of using CNN-based models to detect small airway
obstruction locations, only one subject-specific TB tree geometry
was employed in this in silico case study. Specifically, the geome-
try covers from the trachea to G6 (see Fig. 2). The TB tree con-
tains 44 small airway openings in total. Polyhedral mesh with
prism layers was used for mesh generations. The final mesh deter-
mined by the mesh independence test contains 1,255,200 elements
and 3,853,278 nodes. CFD models [27,28] have been employed to
simulate the expiratory flow patterns with a fixed total expiratory
flow rate at the mouth (i.e., 60 L/min) and different obstruction
sites at the 44 small airway terminals, preparing the training and
test image database. Case statistics of obstruction locations of all
cases are summarized in Fig. 3.

2.2.2 Governing Equations. The airflow dynamics of the
respiratory tract are always unsteady and driven by the pressure
differences under the action of the cyclic breathing process. In
this study, the expiratory flow rate is assumed to be constant with
a total expiratory flow rate Qin¼ 60L/min, consistently for all
obstruction conditions. The conservation laws of mass and
momentum that solved can be written in tensor form, i.e.,
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where uj represents the airflow velocity, p is the pressure, gj is the
gravity, and lt is the turbulent viscosity. With Qin¼ 60L/min, the
expiratory airflow regime in the TB tree is laminar-to-turbulence
transitional flow. Therefore, the transition shear stress transport
(SST) model [29] was adapted for this study, predicting “laminar-
to-turbulent” transition onset and providing a better balance
between computational efficiency and accuracy when compared
to large eddy simulations proved in the open literature [30,31].

2.2.3 Boundary Conditions. The 44 small G6 airway terminal
openings (see Fig. 2) were assigned as velocity inlets. With the 1
or 2 designated obstructions in G6 airway openings from case to
case, the total inlet area was slightly changed, and the inlet airflow
velocities were also changed accordingly to match the condition
that the total expiratory flow rate Qin¼ 60L/min. The trachea
opening (see Fig. 2) was assigned as the pressure outlet with zero
gauge pressure. Airway walls were assumed to be static and
nonslip.

2.2.4 Computational Fluid Dynamics Model Validations. The
accuracy of the transition SST model has been experimentally
validated by previous studies [27,28]. The use of the transition
SST model was also validated with 3D velocity distributions in a
physical model of a subject-specific human respiratory system
measured experimentally [30]. Therefore, it can be justified that
the pulmonary airflow simulated by the CFD model can represent
the flow characteristics in human respiratory systems.

2.2.5 Training and Testing Database Preparation. As shown
in Figs. 1(a) and 1(b), the preparation of the training and test data-
base used the CFD simulation results for the expiratory flow field
predictions with different obstruction conditions in the subject-
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specific TB tree (see Fig. 2). Specifically, only 1 or 2 of the 44
small airway openings were blocked for each simulation case in
order to mimic the minimum changes in obstruction conditions in
the human lung compared with the obstructions of multiple open-
ings in left, right, or both lungs. The structure of the labeled train-
ing and test images is shown in Fig. 3.

The velocity contours used for training and testing the two
CNN-based models were acquired at a selected cross section
(x¼ 0.1 m) for all CFD simulation cases. The cross section was
selected based on two rationales, i.e., (1) the available locations in
the chest where the airflow velocity distributions can be measured
by hyperpolarized MRI, and (2) the location that is closer to
the obstruction sites at 44 small airway terminals. Specifically, the
closer the selected cross section and the obstruction sites are, the
more negligible the dissipation effect will be, and the more identi-
fiable shifts of the airflow velocity distributions can be maintained

due to the variation in deeper lung expiratory flow conditions
induced by the obstruction. An example of the expiratory velocity
contour at x¼ 0.1m can be found in Figs. 1(a) and 1(b). All con-
tours were stored in Microsoft Windows Bitmap Format (BMP)
format as the training and test database. The BMP images labeled
by the obstruction sites can be found in Supplemental Material S1
on the ASME Digital Collection. The images were partitioned
into training and testing sets for each obstruction class, with an
approximately 80% to 20% split and five-fold cross-validation.

2.3 Obstruction Classification Using Two Convolutional
Neural Network-Based Models. Convolutional neural network
has been applied successfully in many areas, especially in object
detection [32–35]. In this study, two open-source CNN algo-
rithms, i.e., ResNet50 and YOLOv4 (Darknet53), were employed

Fig. 1 Workflows of CNN development to diagnose obstructed locations in the human lung based on expiratory flow pat-
terns: (a) ResNet50 and (b) YOLOv4 (Darknet53)
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to recognize the lung obstruction locations, including left lung,
right lung, and both lungs.

2.3.1 Resnet50. As shown in Fig. 1(a), ResNet50 is a 50-layer
residual network. The main goal is to build a deeper neural net-
work based on a modified ResNet50 without encountering the
vanishing gradient problem [36]. The error gradients are com-
puted at the end of the network. Backpropagation [37] is used to
propagate the error gradients backward through the network.
Using the chain rule [37], multiplying terms with the error gra-
dients have to be kept as the networks go backward. However, in
the long chain of multiplication, the gradient becomes very small
as networks approach the earlier layers in a deep architecture.
This small gradient is an issue because network parameters cannot
be updated by a large enough amount and the training is very
slow. To avoid the vanishing gradient problem, ResNet50 stacks
these residual blocks together where an identity function is used
to preserve the gradient. It is also called skip connection since the
origin input is added to the output of the convolution block
directly. The structure of the skip connection is shown in Fig. 4
[13].

As shown in Figs. 1(a) and 5, the input image goes through the
first layer with 64 filters with a filter size of 7� 7. Next, it goes
through the max pooling layer, which helps reduce the spatial size
of the convolved features and also helps reduce the over-fitting

problem. Then, it goes through 48 convolutional layers with skip
connection, and finally reaches the fully connected layer that helps
learn nonlinear combinations of the high-level features outputted
by previous layers. In the modified ResNet50 model employed in

Fig. 2 Geometry and mesh details of the subject-specific human TB tree

Fig. 3 Data structure of the training and test images prepared using CFD

Fig. 4 The residual learning building blocks: (a) regular block
and (b) residual block
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this study, parameters of the pretrained convolutional layers on
the IMAGENET dataset [38] were used. The final pooling and fully
connected layer in the original ResNet50 model were replaced by
global average pooling and a dense output layer to connect the
dimensions of the previous layers with the new layers for making
classification for our own dataset. Regularization methods (i.e.,
Batch normalization and dropout) and optimizers were used to
avoid overfitting and reduce computational time [13].

2.3.2 Yolov4 (Darknet53). One popular state-of-the-art CNN-
based model for detecting objects in an image is “You Only Look
Once” or YOLO [39]. YOLO version 3 (v3) expands on its previ-
ous version, i.e., YOLOv2, by utilizing a Darknet53 (53 convolu-
tional layers) as its backbone in contrast to YOLOv2, which
utilized Darknet19 (19 convolutional layers) [40,41]. Although

the precision has been greatly improved in YOLOv3 compared
with YOLOv2 due to the more convolutional layers, the resul-
tantly increased computational complexity also makes YOLOv3
computationally more expensive. To optimize the balance
between precision and computational efficiency, YOLOv4 has
been developed to improve both the precision and speed of
YOLOv3. YOLOv4 is considered one of the most accurate real-
time neural network detectors to date [14]. YOLOv4 has been suc-
cessfully applied in various industries, including autonomous
driving, agriculture, electronics, and public health [16–19]. In this
study, YOLOv4 of recognizing was employed and tested for clas-
sifying the lung obstruction locations, including left lung, right
lung, and both lungs.

As shown in Fig. 1(b), YOLOv4 consists of three main blocks,
including the “backbone”, “neck”, and “head” [14]. The
“backbone” acts as feature extraction. The model implements the
cross stage partial network (CSPNet) backbone method to extract
features [42], containing 53 convolutional layers for accurate
image classification, also known as CSPDarknet53. The “neck” is
a layer between the “backbone” and “head,” acting as feature
aggregation. Specifically, YOLOv4 uses the path aggregation net-
work (PANet) for feature aggregation [43] and spatial pyramid
pooling method to set apart the important features obtained from
the “backbone” [43]. The “head” used in YOLOv4 is the same as
the one in YOLOv3, which uses dense prediction for anchor-
based detection that helps divide the image into multiple cells and
inspect each cell to find the probability of having an object using
the postprocessing techniques [41].

It has been shown that, with a clean (clean annotations) set of
full-resolution images, object recognition can be more accurate,
especially by exploiting more feature-level information [38].
Therefore, high-resolution velocity-contour figures (2048
pixels� 1536 pixels) were acquired from CFD simulation results
and labeled as the training and test database (see Fig. 3). A total
of 990 images, i.e., the expiratory airflow velocity contour at the
selected cross section (x¼ 0.1 m), were generated from the CFD
modeling, including 153 of left lung obstructions, 378 of right
lung obstructions, and 459 of both lung obstructions. All images
were annotated utilizing Yolo_mark, which allows for objects to
be marked within the images. The program was compiled in
Microsoft Visual Studio 2019 to run on windows operating system
with OpenCV. A text file was created with a list of the names (or
classes) and locations (X- and Y-coordinates, and height and width
of the bounding box) of each class. The annotated images were
then used for training the YOLOv4 model for detection.

2.4 Gradient-Weighted Class Activation Mapping. In prac-
tice, deep learning models are treated as “black box” methods. To
enhance the fundamental understanding of where the CNN-based
models are “looking” in the input image, a simple modification of
the global average pooling layer combined with Grad-CAM [44]
allows the classification-trained CNN to both classify the image
and localize class-specific image regions. The gradient of the cho-
sen convolutional layer is converted to weight. Then the 1D vector
that stored the number of filters is reshaped to the image shape.
After the layer output and weight are computed and normalized,
the heat map showing the highly correlated regions of input for
predictions is created. By generating such visual explanations,
Grad-CAM makes the CNN-based model more transparent and
insightful.

3 Numerical Setup

To obtain the expiratory airflow fields with different obstruction
locations, CFD simulations were performed using ANSYS FLUENT

2021 R1 on a local 64-bit Dell 7910 workstation (dual processors,
32 cores 3.1GHz, and 256GB RAM) and the supercomputers in
the High Performance Computing Center at Oklahoma State Uni-
versity (e.g., Cowboy cluster machine with 252 standards compute

Fig. 5 Modified ResNet50 architecture
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nodes with dual Intel Xeon E5-2620 “Sandy Bridge” hex core
2.0GHz CPUs, with 32 GB of 1333MHz RAM). All variables,
including velocity components, pressure, and turbulence varia-
bles, are located at the centroids of the discretized mesh cells. An
improved Rhie–Chow interpolation method [45] was employed to
obtain the velocity components, pressure, and turbulence on the
control volume faces from those at the control volume centers. A
quadratic upwind differencing scheme, which is third-order accu-
rate in space, will be used to model the advective terms of the
transport equations. The typical single-CPU time to complete one
simulation is approximately 1.3 h. The modified ResNet50 model
was coded and compiled in KERAS 2.4.3. It was run on windows
operating system with graphic processing unit GeForce RTX 2080
with 16 GB-VRAM. The training computation is approximately
12 s per epoch with 19min and 10 s in total. The YOLOv4-based
CNN model was compiled in Microsoft Visual Studio 2019
(Microsoft Corporation, Albuquerque, NM) and run on windows
operating system with graphic processing unit (GeForce GTX
1660 Ti with 16 GB-VRAM), CUDNN_HALF, and OpenCV for
accelerating the training. For Test 2 shown in Table 1, the training
computation is approximately 10 s per iteration with batch size of
64, subdivisions (or mini batch-size) of 64, and 6000 iterations in
total; therefore, the training computation performance is approxi-
mately 130 s per epoch with 18 h and 17min in total.

4 Results and Discussion

4.1 Classification Performance of the Modified ResNet50
Model. The performance of the modified ResNet50 model is
visualized by both the histogram of prediction scores (see Fig. 6)
and the confusion matrix heat map (see Fig. 7). The prediction
scores of all test cases for left lung, right lung, and both lung
obstructions are shown in Figs. 6(a)–6(c), respectively. The high
score in each category indicates that the model has a high cer-
tainty, and the case will be classified based on the highest predic-
tion score’s class. As shown in Figs. 6(a)–6(c), most of the test
cases have the highest prediction scores in the class with the same
obstruction locations, which indicates the reliability of the predic-
tion score system. Furthermore, as shown in Fig. 7 and Table 1,
the testing dataset performance quantified by the average preci-
sion (AP) at a threshold of 0.5 is

� Left lung obstructed: AP¼ 89.27%,
� Right lung obstructed: AP¼ 93.89%, and
� Both lungs obstructed: AP¼ 98.43%.

The total accuracy converges to 95.1% after 20 epochs. Based
on the testing result, the modified ResNet50 model is a reliable
classifier to identify whether the obstruction is in the left lung,
right lung, or both lungs with high sensitivity. The no obstruction
case (i.e., normal airways) was studied, and the scores for both
obstructions, left obstructions, and right obstruction are 0.3785,
0.3337, and 0.2878, respectively. Thus, the model is able to

distinguish between obstruction cases and the healthy no-
obstruction case.

4.2 Classification Performance of the YOLOv4 Model. To
validate the modified ResNet50 model for classification and com-
pare the sensitivity of AP to different CNN-based models, the
YOLOv4 model was trained with two tests conducted (see
Table 1). In the first test (i.e., test 1), to have a similar number of
images for each class during training, we randomly selected 153,
153, and 153 images for left, right, and both lung obstructions,
respectively. The values of precision (P), recall (R), and F1 score
are listed in Table 1. Specifically, precision (P) represents the
ability of the classifier to identify relevant data points that were
classified as true and that were actually true. Recall (R) is

Table 1 Evaluation metrics of modified Resnet50 and YOLOv4 models

Evaluation metrics ResNet50 testa YOLOv4 test 01b YOLOv4 test 02c

Macro-precision P ¼ TP=ðTPþ FPÞ 93.86% 93.00% 96.00%
Macro-recall R ¼ TP=ðTPþ FNÞ 95.27% 94.00% 97.00%
F1 score F1 ¼ 2P � R=ðPþ RÞ 94.56% 93.00% 96.00%
AP (left lung obstructed) 89.27% 100% 100%
AP (right lung obstructed) 93.89% 96.78% 97.74%
AP (both lungs obstructed) 98.42% 93.85% 96.29%

aResnet50 Test: 153 images for left, 378 images for right, and 459 images for both lung obstructions.
bYOLO Test 01: 153 images for left, 153 images for right, and 153 images for both lung obstructions.
cYOLO Test 02: 153 images for left, 378 images for right, and 459 images for both lung obstructions.
TP¼ true positive, FP¼ false positive, FN¼ false negative.

Fig. 6 Prediction scores for: (a) left lung obstructions, (b) right
lung obstructions, and (c) both lungs obstructions

081206-6 / Vol. 144, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/144/8/081206/6862027/fe_144_08_081206.pdf by O

klahom
a State U

niversity user on 08 M
arch 2022



described as the ability of the classifier to find all relevant data
points. Maximizing P often comes at the expense of R and vice
versa. The F1 score is considered as a parameter that can be more
objectively reflecting both P and R. Determining the F1 score is
useful in this assessment to ensure optimal precision (P) and recall
scores (R) can be achieved. As shown in Table 1, the precision,
recall, and F1 score are 0.93, 0.94, and 0.93 at a threshold of 0.5
for test 1, respectively. By checking the AP for each class, the rec-
ognition of right (AP¼ 96.78%) and both (AP¼ 93.85%) lungs
obstructions were not as good as recognition of the left lung
obstruction (AP¼ 100%). Therefore, the second test (i.e., test 2)
doubled the “right lung obstructed” images (from 153 to 378), and
tripled the “both lung obstructed” images (from 153 to 459). APs
slightly increased for the two classes (i.e., from 96.78% to 97.74%
for right lung obstructions, and from 93.85% to 96.29% for both
lung obstructions). Thus, the overall YOLOv4 model trained in
test 2 is slightly better than test 1, with P increased from 0.93 to
0.96, R increased from 0.94 to 0.97, and F1 score increased from
0.93 to 0.96. The comparison of evaluation results between the
modified ResNet50 and YOLOv4 models summarized in Table 1

shows that both models can be used as classifiers for the obstruc-
tion location identifications. Considering the computational costs
shown in Sec. 3, ResNet50 is more efficient than YOLOv4.

4.3 Postprocessing Via Gradient-Weighted Class Activa-
tion Mapping Model and Hue-Value-Saturation. As shown in
Fig. 8, the Grad-CAM model is combined with the modified
ResNet50 model to output the heat map visualization of the
important region. The HSV thresholding technique is applied to
the heat map plot of the Grad-CAM model [15]. The HSV color
space is a cylindrical coordinate representation of points in an
RGB color model. It represents the human perception using Hue
(the dominant color as perceived by an observer), Saturation (the
amount of white light mixed with a Hue), and Value (the chro-
matic notion of intensity) [46]. The highlighted regions were
detected by filtering out the color that suggests a low correlation
with the obstructions. As shown in Fig. 9, the highlighted regions
for cases within the same obstruction class (i.e., left lung, right
lung, or both lungs) were blended with the same weight, for find-
ing the most important regions to identify different obstructions.
The brightness of the color shows the importance of the region for
classification. It can be observed that the area of the bright red
region for both lung obstructions is larger than that for left or right
lung obstruction cases. It indicates that the determination of both
lung obstructions requires more information.

4.4 Expiratory Airflow Velocity Contours: Flow Pattern
Versus Obstructed Site. Although both the modified ResNet50
and YOLOv4 models can classify the obstruction locations well,
more insights are still needed to be generated to answer the fol-
lowing two questions, i.e.,

(1) Is it necessary to employ CNN-based models for the
obstruction location classification? In other words, if the
expiratory velocity contours have significant pattern shifts
between different obstruction classes that can be directly
observed by the contour comparisons, then CNN-based

Fig. 7 Confusion matrix heat map for prediction

Fig. 8 HSV thresholding technique procedure

Fig. 9 Blended highlight regions of construction for: (a) left lung, (b) right lung, and (c) both lungs

Journal of Fluids Engineering AUGUST 2022, Vol. 144 / 081206-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/144/8/081206/6862027/fe_144_08_081206.pdf by O

klahom
a State U

niversity user on 08 M
arch 2022



models are not necessary to employ for accurate
classifications.

(2) What is the fundamental explanation for the high correlated
regions shown in Fig. 9 used by the CNN-based model to
classify the obstruction locations?

Therefore, to assess the airflow flow pattern shifts among the
three categories of obstruction types (, , i.e., left lung, right lung,
and both lung), velocity contours at the selected cross section
(x¼ 0.1 m in Fig. 2) are visualized and compared. For each
obstruction class, 5 true positive cases were randomly selected
with the correct diagnosis using the two CNN-based models (see
Fig. 10). In addition, those false positive cases were also selected
and their velocity contours are visualized in Fig. 11. The case
numbers and their prediction scores are listed in Table 2. To fur-
ther quantify the velocity magnitude, velocity profiles along two
lines (L1 and L2 shown in Fig. 2) are shown in Figs. 12 and 13. L�1
and L�2 are normalized lengths ranging from 0 to 1. Velocity con-
tours for the other cases that were not listed in Table 2 can be
found in Supplemental Material S1 on the ASME Digital
Collection.

Figure 10 shows the velocity contours for randomly selected
true positive cases with scores, providing direct visualizations of

the contour differences among left obstructed, right obstructed,
and both obstructed cases. Gray levels of the background indicate
the ranges of the prediction scores for the contours. It can be
found that no distinguished pattern shifts in velocity contours can
be visually observed between cases with obstructions in different
lungs. In addition, the quantitative comparisons of cases with high
prediction scores (>0:90) shown in Figs. 12(a) and 13(a) can also
support the above-mentioned observations. Specifically, no signif-
icant shifts in the velocity profiles shown in Figs. 12(a) and 13(a)
can be identified among cases with different obstruction classes.
Furthermore, it is also interesting to notice that although the pre-
diction scores are close between case 989 (0.97) and case 875
(0.98) within the class of both lungs obstructed, their velocity pro-
files shown in Figs. 12(a) and 13(a) are significantly different
from each other at 0:05 < L�1 < 0:5 and 0:05 < L�2 < 0:45.
Figures 12(b)–12(d) and 13(b)–13(d) show that the velocity pro-
files are also not significantly different between cases with the
same obstructed lungs but different prediction scores. Based on
the comparisons mentioned above, it can be concluded that veloc-
ity contours and selected velocity profiles cannot show distin-
guished shifts between cases with different obstruction locations
in small airways, indicating the necessity to involve CNN-based
models to achieve accurate classifications.

Figure 11 visualizes the velocity contours of false positive
cases. Compared with true positive cases shown in Fig. 10, some
false positive cases show similar velocity distributions while
others show noticeable differences. For example, the velocity con-
tour of false positive case 027 (left obstructed, false positive as
right obstructed) shows a similar high-velocity region near the left
bottom corner similar to the true positive cases (i.e., cases 358 and
512) with right lung obstructed. In contrast, the contour of case
027 is more deviated from other true positive cases with left lung
obstructed. However, case 310 (right obstructed, false positive
both) has a velocity contour, which is highly different from the
cases with right lung obstructed and cases with both lungs
obstructed. Figures 12 and 13(b)–13(d) can also support such
inconsistent observations between true and false positive cases.
Specifically, Figs. 12 and 13(b)–13(d) compare the velocity pro-
files along lines L1 and L2 for cases grouped by their output
classes based on the CNN-based results. For the cases identified
as left obstructed or right obstructed, including both true and false
positive scenarios (see Figs. 12–13(b) and 13(c)), the velocity pro-
files are similar to each other with minor differences. For the cases
identified as both obstructed, including both true and false positive
scenarios (see Figs. 12(d) and 13(d)), the velocity profiles are sig-
nificantly different. Therefore, it can be concluded again that it is
not possible to directly identify the obstruction locations in small
airways from velocity contours and the velocity profiles without
the assistance of CNN-based models.

4.5 Similarity Measurement of Velocity Contours Using
Pearson Correlation. Since Sec. 4.4 demonstrates that the air-
flow velocity pattern shifts cannot be identified directly from the
contours, the difference between flow patterns among cases with
different obstructed locations is quantified using the Pearson cor-
relation coefficient [15]. For similarity analysis between two
velocity contours, N ¼ 152 equally spaced monitoring points
were selected at the particular cross section x¼ 0.1 m (see Fig. 2)
for the correlation coefficient calculation [47]. The correlation
coefficient r can be calculated by

r ¼

X
i

VA;i � �VA

� �
VB;i � �VB

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

VA;i � �VA

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

VB;i � �VB

� �2r i 2 0;N½ � (3)

where VA;i and VB;i are the velocity magnitudes at particular moni-
toring point i in case A and case B. Specifically, the monitoring
points will be numbered as an 1� N array. Indices i’s for all

Fig. 10 Velocity contours (x5 0.1 m) of true positive cases
with different obstruction sites
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monitoring points are shown in Fig. 2. �VA and �VB denote the
mean velocities of arrays VA;i and VB;i, respectively. As also
shown in Fig. 2, the monitoring points in the shaded region are
also selected as the “filtered” points of interest, based on the

regions that have a high correlation with the obstruction locations
(see Fig. 9). The correlation coefficient r is also calculated on the
“filtered” points, in order to evaluate the similarity without the
influence of the monitoring points in the region of low correlation

Fig. 11 Velocity contours (x5 0.1 m) of false positive cases with different obstruction sites

Table 2 Cases selected for the comparisons of airflow field shifts

True positive cases

Left lung obstructed Right lung obstructed Both lungs obstructed

Case no. Prediction score Case no. Prediction score Case no. prediction score

001 0.53 206 0.53 612 0.77
107 0.60 138 0.59 533 0.90
069 0.70 024 0.79 701 0.96
256 0.84 358 0.96 989 0.97
290 0.91 512 0.99 875 0.98

False positive cases

Left lung obstructed Right lung obstructed Both lungs obstructed

Case no. Prediction score Case no. Prediction score Case no. Prediction score

027 0.04 (left) 0.69 (right) 310 0.09 (right) 0.91 (both) 586 0.23 (both) 0.77 (left)
405 0.20 (right) 0.78 (both) 621 0.024 (both) 0.98 (right)
017 0.44 (right) 0.56 (both) 976 0.26 (both) 0.73 (right)
133 0.45 (right) 0.54 (both) 544 0.32 (both) 0.68 (right)

936 0.35 (both) 0.64 (right)

Journal of Fluids Engineering AUGUST 2022, Vol. 144 / 081206-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/144/8/081206/6862027/fe_144_08_081206.pdf by O

klahom
a State U

niversity user on 08 M
arch 2022



(see Fig. 9). It is worth mentioning that high similarity is indicated
if r is close to 1.0.

Tables 3–5 listed the r values for monitoring points in the unfil-
tered and filtered regions at the cross section (x¼ 0.1 m) among
cases listed in Table 2. It can be observed from Tables 3–5 that
the r values are close to or higher than 0.9 for “unfiltered” moni-
toring points, indicating the relatively high similarities between
the velocity contours using the whole cross section area for cases
with different obstruction locations. The exceptions, i.e., r < 0:8,
are for the comparisons against the false positive case 310 and

case 133, are due to the fact that their velocity contours (see
Fig. 11) are significantly different from other cases (see Figs. 10
and 11). In contrast, the r values for the “filtered” monitoring
points (see Fig. 11 and the shaded region in Fig. 2) are all less
than 0.3, indicating the more significant shifts in velocity contours
exist in the highly correlated regions shown in Figs. 9 and 11. The
lower r values for the “filtered” region also show evidence of why
it has a high correlation with the obstruction locations identified
by Grad-CAM with HSV.

Fig. 12 Velocity profiles along line L1: (a) selected cases with
prediction scores higher than 0.9, (b) true positive cases versus
false positive case (left obstructed), (c) true positive cases ver-
sus false positive cases (right obstructed), (d) true positive
cases versus false positive cases (both obstructed)

Fig. 13 Velocity profiles along line L2: (a) selected cases with
prediction scores higher than 0.9, (b) true positive cases versus
false positive case (left obstructed), (c) true positive cases ver-
sus false positive cases (right obstructed), (d) true positive
cases versus false positive cases (both obstructed)
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5 Conclusions

The prototype of the novel, effective, and noninvasive tool for
early diagnosis of deeper airway obstructions has been developed
using CFD and two CNN-based models. The important regions
have been determined by Grad-CAM and HSV thresholding tech-
niques, and confirmed by the Pearson correlation coefficient cal-
culations between CFD velocity contours. The reason for the
falsely classified cases was analyzed based on the comparisons of
fundamental airflow dynamics in the intrathoracic region. Key
conclusions are summarized as follows:

(1) The two CNN-based models (i.e., modified ResNet50 and
YOLOv4) can detect small airway obstruction locations
based on measurable expiratory airflow patterns in the
intrathoracic region well with all evaluation scores higher
than 93%, including precision, recall, F1 score, and average
precisions. YOLOv4 is slightly better in classification per-
formance than the modified ResNet50 but requires a higher
computational cost. Furthermore, the results of the two
CNN-based models validate each other very well. The bag-
ging or boosting ensemble method can be applied to
achieve better overall prediction accuracy.

(2) The comparisons of expiratory velocity contours show
minor flow field pattern shifts with the variations of
obstruction sites, and demonstrate the necessity of employ-
ing CNN algorithms for the effective diagnosis of

obstructions. In addition, the Pearson correlation coeffi-
cients show much lower similarities of the velocity
contours in the highly correlated region identified by
CNN-based models than the velocity contours of the whole
cross section, which explains why the Grad-CAM and HSV
technique relies more on the high correlated regions to
identify the obstruction locations.

This prototype of the diagnostic algorithms paves the way for
the development of noninvasive and effective diagnostic tools
with classification algorithms to effectively diagnose COPD at an
early stage and provide high-resolution information for precise
treatment (i.e., targeted drug delivery to the identified obstruction
sites) with better therapeutic outcomes. No CFD knowledge is
needed for users (i.e., physicians) to use the classification algo-
rithm, which increases the transformative impact of the CNN-
based models for clinical practice.

6 Limitations of this Study

This study developed a prototype of the diagnostic algorithm to
identify lung obstruction locations via the expiratory airflow dis-
tributions in the trachea, integrating CFD and CNN. Limitations
of the study are listed as follows:

(1) Only one subject-specific TB tree configuration was
employed in the CFD simulation for the preparation of

Table 3 Similarity measurements based on the Pearson correlation coefficient against expiratory velocity magnitude contours at
the selected cross section (x5 0.1 m): Left obstructed cases versus right obstructed cases

Case no. 206 (right) 138 (right) 024 (right) 358 (right) 512 (right)

001 (left) Unfiltered: 0.95 Unfiltered: 0.92 Unfiltered: 0.93 Unfiltered: 0.87 Unfiltered: 0.95
Filtered: 0.29 Filtered: 0.20 Filtered: 0.28 Filtered: 0.23 Filtered: 0.28

107 (left) Unfiltered:0.95 Unfiltered: 0.92 Unfiltered: 0.93 Unfiltered: 0.88 Unfiltered: 0.95
Filtered: 0.28 Filtered:0.20 Filtered: 0.27 Filtered: 0.24 Filtered: 0.28

069 (left) Unfiltered: 0.96 Unfiltered: 0.95 Unfiltered:0.93 Unfiltered: 0.92 Unfiltered: 0.95
Filtered: 0.27 Filtered: 0.19 Filtered: 0.25 Filtered: 0.23 Filtered: 0.26

256 (left) Unfiltered: 0.96 Unfiltered: 0.92 Unfiltered: 0.94 Unfiltered: 0.88 Unfiltered: 0.95
Filtered: 0.29 Filtered: 0.21 Filtered: 0.28 Filtered: 0.24 Filtered: 0.28

290 (left) Unfiltered: 0.92 Unfiltered: 0.89 Unfiltered: 0.91 Unfiltered: 0.83 Unfiltered: 0.91
Filtered: 0.29 Filtered: 0.21 Filtered: 0.28 Filtered: 0.23 Filtered: 0.28

027 (left) (false right) Unfiltered: 0.97 Unfiltered: 0.96 Unfiltered: 0.94 Unfiltered: 0.93 Unfiltered: 0.97
Filtered: 0.27 Filtered: 0.20 Filtered: 0.25 Filtered: 0.24 Filtered: 0.27

Table 4 Similarity measurements based on the Pearson correlation coefficient against expiratory velocity magnitude contours at
the selected cross section (x5 0.1 m): both obstructed cases versus left obstructed cases

Case no. 001 (left) 107 (left) 069 (left) 256 (left) 290 (left)

612 (both) Unfiltered: 0.93 Unfiltered: 0.95 Unfiltered: 0.99 Unfiltered: 0.96 Unfiltered: 0.91
Filtered: 0.24 Filtered: 0.24 Filtered: 0.24 Filtered: 0.25 Filtered:0.24

533 (both) Unfiltered: 0.91 Unfiltered: 0.93 Unfiltered: 0.97 Unfiltered: 0.94 Unfiltered: 0.90
Filtered: 0.23 Filtered: 0.24 Filtered: 0.23 Filtered: 0.25 Filtered: 0.24

701 (both) Unfiltered: 0.93 Unfiltered: 0.94 Unfiltered: 0.98 Unfiltered: 0.95 Unfiltered: 0.93
Filtered: 0.23 Filtered: 0.23 Filtered: 0.23 Filtered: 0.24 Filtered: 0.24

989 (both) Unfiltered: 0.93 Unfiltered: 0.94 Unfiltered: 0.97 Unfiltered: 0.95 Unfiltered: 0.91
Filtered: 0.26 Filtered: 0.26 Filtered: 0.25 Filtered: 0.27 Filtered: 0.26

875 (both) Unfiltered: 0.89 Unfiltered: 0.89 Unfiltered: 0.89 Unfiltered: 0.90 Unfiltered: 0.88
Filtered: 0.22 Filtered: 0.21 Filtered: 0.19 Filtered: 0.22 Filtered: 0.23

586 (both) (false left) Unfiltered: 0.98 Unfiltered: 0.98 Unfiltered: 0.96 Unfiltered: 0.97 Unfiltered: 0.94
Filtered: 0.26 Filtered: 0.26 Filtered: 0.24 Filtered: 0.26 Filtered: 0.26
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Table 5 Similarity measurements based on the Pearson correlation coefficient against expiratory velocity magnitude contours at the selected cross section (x5 0.1 m): right obstructed
cases versus both obstructed cases

310 (right) 405 (right) 017 (right) 133 (right)
Case no. 206 (right) 138 (right) 024 (right) 358 (right) 512 (right) (false both) (false both) (false both) (false both)

612 (both) Unfiltered: 0.96 Unfiltered: 0.93 Unfiltered: 0.93 Unfiltered: 0.91 Unfiltered: 0.94 Unfiltered: 0.49 Unfiltered: 0.97 Unfiltered: 0.67 Unfiltered: 0.3
Filtered: 0.27 Filtered: 0.19 Filtered: 0.25 Filtered: 0.23 Filtered: 0.26 Filtered: -0.09 Filtered: 0.26 Filtered: -0.0024 Filtered: 0.22

533 (both) Unfiltered: 0.92 Unfiltered: 0.97 Unfiltered: 0.91 Unfiltered: 0.92 Unfiltered: 0.94 Unfiltered: 0.57 Unfiltered: 0.96 Unfiltered: 0.76 Unfiltered: 0.99
Filtered: 0.26 Filtered: 0.20 Filtered: 0.24 Filtered: 0.22 Filtered: 0.26 Filtered: -0.07 Filtered: 0.26 Filtered: 0.027 Filtered: 0.23

701 (both) Unfiltered: 0.92 Unfiltered: 0.97 Unfiltered: 0.91 Unfiltered: 0.90 Unfiltered: 0.93 Unfiltered: 0.59 Unfiltered: 0.95 Unfiltered: 0.76 Unfiltered: 0.99
Filtered: 0.25 Filtered: 0.19 Filtered: 0.24 Filtered: 0.21 Filtered: 0.25 Filtered: -0.08 Filtered: 0.25 Filtered:0.017 Filtered: 0.22

989 (both) Unfiltered: 0.98 Unfiltered: 0.89 Unfiltered: 0.96 Unfiltered: 0.89 Unfiltered: 0.93 Unfiltered: 0.38 Unfiltered: 0.97 Unfiltered: 0.59 Unfiltered: 0.90
Filtered: 0.30 Filtered: 0.20 Filtered: 0.28 Filtered: 0.25 Filtered: 0.28 Filtered: -0.11 Filtered: 0.28 Filtered: -0.002 Filtered: 0.22

875 (both) Unfiltered: 0.91 Unfiltered: 0.87 Unfiltered: 0.96 Unfiltered: 0.81 Unfiltered: 0.86 Unfiltered: 0.43 Unfiltered: 0.93 Unfiltered: 0.59 Unfiltered: 0.87
Filtered: 0.23 Filtered: 0.17 Filtered: 0.25 Filtered: 0.17 Filtered: 0.21 Filtered: -0.09 Filtered: 0.24 Filtered: -0.02 Filtered: 0.18

621 (both) Unfiltered: 0.97 Unfiltered: 0.94 Unfiltered: 0.94 Unfiltered: 0.24 Unfiltered: 0.96 Unfiltered: 0.46 Unfiltered: 0.97 Unfiltered: 0.66 Unfiltered: 0.96

(False right) Filtered: 0.28 Filtered: 0.20 Filtered: 0.26 Filtered: 0.91 Filtered: 0.28 Filtered: -0.09 Filtered: 0.27 Filtered: 0.001 Filtered: 0.23

976 (both) Unfiltered: 0.90 Unfiltered: 0.90 Unfiltered: 0.89 Unfiltered: 0.82 Unfiltered: 0.91 Unfiltered: 0.47 Unfiltered: 0.90 Unfiltered: 0.62 Unfiltered: 0.91

(False right) Filtered: 0.27 Filtered: 0.19 Filtered: 0.26 Filtered: 0.22 Filtered: 0.26 Filtered: -0.09 Filtered: 0.25 Filtered: -0.02 Filtered: 0.21

544 (both) Unfiltered: 0.92 Unfiltered: 0.95 Unfiltered: 0.90 Unfiltered: 0.89 Unfiltered: 0.94 Unfiltered: 0.53 Unfiltered: 0.94 Unfiltered: 0.69 Unfiltered: 0.96

(False right) Filtered: 0.25 Filtered: 0.19 Filtered: 0.24 Filtered: 0.21 Filtered: 0.25 Filtered: -0.08 Filtered: 0.24 Filtered: -0.005 Filtered: 0.21

936 (both) Unfiltered: 0.91 Unfiltered: 0.91 Unfiltered: 0.90 Unfiltered: 0.84 Unfiltered: 0.93 Unfiltered: 0.46 Unfiltered: 0.92 Unfiltered: 0.62 Unfiltered: 0.92

(False right) Filtered: 0.27 Filtered: 0.19 Filtered: 0.26 Filtered: 0.22 Filtered: 0.26 Filtered:-0.096 Filtered:0.25 Filtered: -0.02 Filtered: 0.20
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training and test images, which did not consider the inter-
subject variability effect and the influence of airway defor-
mation kinematics.

(2) Obstructions were assumed to only appear in either the left
lung, the right lung, or both lungs in the training and test
images, which could be more specific to different lobes.

(3) The airway was assumed to be rigid, which neglected the
effect of airway expansion and contraction in the real-
world breathing process.

(4) The input image was produced by the CFD instead of real-
world MRI images.

7 Future Work for Clinical Practice Transformation

To address the limitations of this study, and further develop a
diagnosis algorithm that can be ready for clinical practice, future
work includes:

(1) More subject-specific airway configurations with airway
deformation kinematics [48] will be obtained and employed
in the CFD simulations to prepare the training and test
images with the effect of inter-subject variabilities, which
will enhance the generalized predictability of the CNN
algorithm.

(2) Lobe-specific obstruction diagnosis will be achieved by
improving the training process of the two CNN-based
models.

(3) Noises and missing parts could be added to mimic the real-
world MRI images first, then replaced by hyperpolarized
MRI images to further improve the accuracy and realism of
the CNN algorithms.

The long-term goal is to provide physicians with a computa-
tionally efficient diagnosis algorithm, which can identify the
obstruction locations in human lungs based on the pulmonary air-
flow velocity distributions that are measurable using hyperpolar-
ized MRI [8–11].
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