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In response to various pathological stimuli, such as oxidative and energy stress accompanied
by high Ca?*, mitochondria undergo permeability transition (PT) leading to the opening of
the non-selective PT pores (PTP) in the inner mitochondrial membrane. Opening of the
pores at high conductance allows the passage of ions and solutes <1.5 kD across the
membrane, that increases colloid osmotic pressure in the matrix leading to excessive
mitochondrial swelling. Calcium retention capacity (CRC) reflects maximum Ca?* overload
of mitochondria that occurs just before PTP opening. Quantification of CRC is important
for elucidating the effects of different pathological stimuli and the efficacy of pharmacological
agents on the mitochondria. Here, we performed a comparative analysis of CRC in
mitochondria isolated from HO9c2 cardioblasts, and in permeabilized H9c2 cells in situ to
highlight the strengths and weaknesses of the CRC technique in isolated cell mitochondria
vs. permeabilized cells. The cells were permeabilized by digitonin or saponin, and the Ca?*-
sensitive fluorescence probe Calcium Green-5N was used in both preparations. Results
demonstrated the interference of dye-associated fluorescence signals with saponin and
the adverse effects of digitonin on mitochondria at high concentrations. Analysis of the CRC
in permeabilized cells revealed a higher CRC in the saponin-permeabilized cells in comparison
with the digitonin-permeabilized cells. In addition, the mitochondrial CRC in saponin-
permeabilized cells was higher than in isolated mitochondria. Altogether, these data
demonstrate that the quantification of the mitochondrial CRC in cultured cells permeabilized
by saponin has more advantages compared to the isolated mitochondria.

Keywords: permeabilized cells, mitochondria, calcium retention capacity, permeability transition pore,
mitochondrial swelling

INTRODUCTION

Mitochondria are the cell powerplants that provide over 90% of ATP required for cell metabolism.
Also, mitochondria play a pivotal role in the maintenance of ion homeostasis, cell growth,
redox signaling, and cell death. The metabolism and function of mitochondria are regulated
by changes in the matrix volume associated with ion fluxes, particularly Ca®*, across the inner
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mitochondrial membrane. At low concentrations, Ca** induces
negligible matrix swelling (Ichas and Mazat, 1998) and stimulates
mitochondrial bioenergetics through fatty acid oxidation,
tricarboxylic acid cycle, and oxidative phosphorylation (Halestrap,
1994; Tarasov et al., 2012). However, high Ca* causes excessive
mitochondrial swelling leading to mitochondrial dysfunction
and cell death. The main mechanism of mitochondrial swelling
involves the opening of non-selective channels known as
permeability transition pores (PTPs) in low-conductance
(physiological) and high-conductance (pathological) modes in
the inner mitochondrial membrane (Ichas and Mazat, 1998;
Kwong and Molkentin, 2015). Mitochondrial swelling is driven
by a high colloid osmotic pressure in the matrix of mitochondria
exerted by high Ca® and non-diffusible matrix proteins.
Quantification of the extent of mitochondrial swelling is important
for the analysis of mitochondrial damage in response to various
pathological stimuli.

The Ca** retention capacity (CRC) is broadly used to
quantify the extent of PTP opening since CRC indicates the
maximum Ca?* uptake that mitochondria reach before PTP
opening. Therefore, the amount of external Ca*" that induces
Ca’ release through the PTP reflects the CRC of mitochondria
that corresponds to the maximum mitochondrial swelling.
The CRC can be quantified in isolated mitochondria and
intact cells (without isolation of mitochondria). Although the
fundamental knowledge on the structural organization,
metabolism, and function of mitochondria, as well as their
response to a wide range of diseases, was acquired using
isolated cell or tissue mitochondria, the use of isolated
mitochondria has several disadvantages (Kuznetsov et al., 2008;
Dedkova and Blatter, 2012; Salabei et al., 2014). First, the
isolation of mitochondria requires a relatively large quantity
of cells or tissues since some parts are lost in the isolation
process (centrifugation and washing). Second, isolated
mitochondria do not represent all populations of mitochondria
since mitochondria localized in certain subcellular
compartments (e.g., intrafibrillar mitochondria) are not isolated
by homogenization. Third, mitochondria, especially
dysfunctional (fragile) mitochondria from pathological cells/
tissues are partially damaged or lost during the isolation
process. Fourth, isolation from the essential intracellular
environment has severe effects on the morphology, metabolism,
and function of mitochondria and changes their sensitivity
to exogenous factors.

In this study, we evaluated the CRC in intact cells in situ
permeabilized by two different biological detergents and in
mitochondria isolated from the cultured cells to clarify the
advantages and disadvantages of each technique.

MATERIALS AND METHODS

Animals

Adult Sprague Dawley male rats (275-325g) were purchased
from Taconic (Hillside, NJ, United States). All experiments
were performed according to protocols approved by the UPR
Medical Sciences Campus Institutional Animal Care and Use

Committee and conformed to the National Research Council
Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (2011, eighth edition).

Cells

H9c¢2 embryonic rat cardioblastic cells were cultured according
to the manufacturer’s recommendations (American Type Culture
Collection, Manassas, VA). Briefly, the cells were cultured in
DMEM based modified media containing 4 mM L-glutamine,
4.5g/L glucose, 1mM sodium pyruvate, and 1.5g/L sodium
bicarbonate supplemented with 10% fetal bovine serum and
1% antibiotic solution (HyClone) and maintained in 95% air
and 5% CO2 at 37°C. Cells maintained within 80-90%
confluence from passages 3-10 were used for experiments.

Isolation of Mitochondria From Rat Hearts

The isolation of mitochondria was adopted and modified from
previous studies (Chapa-Dubocq et al, 2020). Briefly, heart
ventricles were cut and homogenized using a Polytron
homogenizer in ice-cold sucrose buffer containing (in mM):
300 sucrose, 20 Tris—-HCI, and 2 EGTA, pH 7.2, and supplemented
with 0.05% BSA. The heart homogenate was centrifuged at
2000x g for 3min to remove cell debris. The supernatant was
centrifuged at 10,000x g for 6min to precipitate mitochondria
and then washed again under the same conditions in sucrose
buffer (BSA-free). The final pellet containing mitochondria was
resuspended in 300pl of sucrose buffer.

Isolation of Mitochondria From Cells

To isolate mitochondria from cultured cells, H9c2 cells were
trypsinized and pelleted at 200xg for 7min (Jang and Javadov,
2018). Pellet was resuspended in ice-cold sucrose buffer containing
(in mM): 300 sucrose, 10 Tris-HCIl, and 2 EGTA; pH 74.
Cells were centrifuged at 2,500 g for 5min at 4°C, the pellet
was resuspended in the sucrose buffer. To disrupt the plasma
membrane and expose mitochondria, cells were plunged using
a 27G needle until all cells were successfully lysed. The cell
lysate was then centrifuged at 400xg for 5min and the supernatant
was collected. The mitochondria were concentrated by
centrifugation at 10,000 xg for 5min and finally dissolved with
sucrose buffer.

Permeabilization of Cells

The basic principles of the cell permeabilization technique
for analysis of mitochondrial function in situ have been
described in detail elsewhere (Kuznetsov et al., 2008; Dedkova
and Blatter, 2012; Salabei et al, 2014). Cells were freshly
harvested using trypsin-EDTA then permeabilized in sucrose
buffer (300mM sucrose, 10mM Tris-HCl, 2mM EGTA, pH
7.4) containing saponin or digitonin for 10min on ice. After
the permeabilization, cells were washed with equilibration
buffer (100mM sucrose, 10mM Tris-HCI, 10pM EGTA, pH
7.4), then resuspended in incubation buffer (200mM sucrose,
10 mM Tris-MOPS, 5mM a-ketoglutarate, 2mM malate, ] mM
Pi, 10pM EGTA-Tris, pH 7.4) containing 100nM Calcium
Green-5N.
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Fluorescence Imaging

To evaluate the effects of permeabilization on mitochondrial
function, live H9¢2 cells grown to 70-80% confluence were
treated with saponin or digitonin for 10min. Then, the cells
were further incubated for 30min with 300nM DAPI for
visualization of the nucleus and 30nM Mitotracker Red, a
membrane potential-dependent dye. As a positive control, 0.1%
Triton X-100 was applied to induce irreversible permeabilization
of the plasma membrane leading to structural collapse of the
cells. Cell images were captured by an Olympus IX73 microscope
with LUCPLFLN10X objective using Cellsense Dimension
(Olympus) software.

CRC Assay

The CRC was quantified by the Ca**-sensitive fluorescence dyes
Oregon Green 488 BAPTA-1, Calcium Green-5N, or Fluo-5N
that measure extramitochondrial Ca** fluorescence in the assay
buffer. Briefly, freshly isolated mitochondria (0.5mg/ml) or
permeabilized fresh cells were incubated at 37°C in 0.1ml of
incubation buffer (200mM sucrose, 10mM Tris-MOPS, 5mM
a-ketoglutarate, 2mM malate, 1 mM Pi, 10uM EGTA-Tris, pH
7.4) containing one of the fluorescence dyes. Calcium was
added to increase matrix Ca** load and the fluorescence intensity
was recorded by CLARIOStar microplate reader (BMG Labtech).

Mitochondrial PTP Opening

The swelling of mitochondria as an indicator of PTP opening
in the presence or absence of Ca** was determined freshly
isolated mitochondria (50pg) by monitoring the decrease in
light scattering at 525nm as previously described, with minor
modifications (Rodriguez-Graciani et al.,, 2020). The swelling
buffer contained (in mM): 125 KCI, 20 MOPS, 10 Tris-HCI,
0.001 EGTA, and 2 KH,PO,, pH 7.1. The swelling curves were
normalized to control and presented as an absorbance ratio.

Statistical Analysis

Data values are presented as mean=SE. Students t-test was
used to compare differences between two groups. p<0.05 was
considered as statistically significant. The number of biological
samples but not technical replicates were used as a sample size.

RESULTS

Analysis of Mitochondrial CRC by Different
Ca?*-Sensitive Fluorescent Dyes

In the first set of experiments, we assessed the sensitivity of
three different fluorescent dyes to Ca** in isolated heart
mitochondria. The CRC was measured in 50 pg of mitochondria
by using Oregon Green 488 BAPTA-1, Calcium Green-5N or
Fluo-5N that possess a dissociation constant (K; for Ca**) of
0.17puM, 15pM, or 90 pM, respectively (Figure 1). Results exhibited
a different sensitivity of the dyes to Ca*". The Oregon Green
488 BAPTA-1 dye was the most sensitive and CRC reached
the maximum at ~60puM Ca* (Figure 1A) whereas Calcium
Green-5N  demonstrated the maximum CRC at 200pM.

(Figure 1B). The CRC of mitochondria was less sensitive to
Fluo-5N and could not reach the maximum at 280 pM (Figure 1A).
Moreover, inhibition of the mitochondrial swelling by sanglifehrin
A, a PTP blocker that inhibits cyclophilin D activity, affected
differently the fluorescence intensity of the dyes; inhibition of
the CRC was more obvious in the presence of Calcium Green-5N
or Fluo-5N (Figures 1B,C) suggesting that the inhibitory effect
of sanglifehrin A on mitochondrial swelling depends on the
sensitivity of the dyes to Ca** as well as on the concentration
of Ca?*. It should be noted that decreased CRC was associated
with increased PTP opening in the isolated cardiac mitochondria
(Figures 1D-F). Ca** induces inner membrane expansion and
outer membrane rupture (Strubbe-Rivera et al., 2021), leading
to the swelling of mitochondria. The increase in matrix volume
is accompanied by a decrease in the intensity of light scattered
(Tedeschi and Harris, 1955). Thus, these data demonstrate that
due to differences in K, for Ca?', the different Ca*'-sensitive
fluorescent dyes can be applied for measurement of the CRC
at low (Oregon Green 488 BAPTA-1: K;=170nM), medium
(Calcium Green-5N: Ky=14pM), or high (Fluo-5N: Ky=90pM)
concentrations of Ca**. Moreover, we experimentally demonstrated
the relationship between mitochondrial swelling and Ca®* efflux
in response to Ca**-induced PTP opening.

The Effects of Permeabilization on
Mitochondria
Based on the sensitivity to Ca** (Figures 1A-C), we used Calcium
Green-5N to assess the permeabilization capabilities, potential
effects of digitonin and saponin, and the CRC in H9¢c2 cardioblasts.
DAPI, a nuclear staining dye that does not enter non-permeabilized
cells, was used to estimate the effectiveness of the detergents
to permeabilize the cells. Analysis of permeabilization capabilities
demonstrated that both biological detergents at high concentrations
have toxic effects on mitochondria, inducing loss of membrane
potential (Figures 2A,C,D). The optimal concentrations of the
detergents to induce permeabilization of the cells with no effects
on mitochondrial functional activity were different for saponin
and digitonin. Quantification of DAPI fluorescence to total cells
found that saponin levels of 25pg/ml or higher and all digitonin
levels used were capable of permeabilizing the cellular membrane
(Figures 2A-C). Analysis of Mitotracker Red displayed
mitochondria viability ranging from 5 to 100 pg/ml of saponin
as well as digitonin levels between 5 and 10pg/ml. Saponin
effectively permeabilized the cells at concentrations 25, 50, and
100 pg/ml (Figure 2A), whereas optimal permeabilization of the
cells by digitonin was observed at 5 and 10pg/ml (Figure 2C).
To determine whether the detergents have interference with
Calcium Green-5N (Figure 3; Supplementary Figures S2A,B),
the fluorescence intensity of the dye was measured in the
assay buffer (no cells) by adding digitonin or saponin at
concentrations of 50, 100, and 200 ug/ml. Saponin at 200 pg/
ml demonstrated interference with Calcium Green-5N as
evidenced by saturated fluorescence signal in the absence of
Ca’* (Figure 3A; Supplementary Figure S2A) whereas digitonin
had no interference with the dye at all concentrations (Figure 3B;
Supplementary Figure S2B).
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FIGURE 1 | CRC analysis in mitochondria isolated from adult Sprague Dawley rat hearts. The CRC was measured using the Ca?* sensitive fluorescent dyes,
100nM Oregon Green 488 BAPTA-1 (A), 100nM Calcium Green-5N (B), and 500nM Fluo-5N (C). Mitochondria (50 pg) were exposed to repetitive application of
20uM (2 nmol) of Ca?* every 2min (arrows) to increase matrix Ca®* load. The PTP dependence of the CRC was determined by adding 0.5 uM sanglifehrin A (SfA, a
cyclophilin D inhibitor) to the incubation media. *p <0.05, *p<0.01, **p<0.001 vs. control (Con). n=3 per group. (D-F) CRC and mitochondrial swelling analysis in
mitochondria isolated from adult Sprague Dawley rat hearts. The CRC was measured using the Ca?* sensitive fluorescent dyes, 500nM Fluo-5N. Mitochondria

(50 ng) were exposed to 100 (D), 200 (E), and 300 (C) pM (10, 20, 30nmol) of Ca** at 5min (arrows) to increase matrix Ca* load. n=3 per group.
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FIGURE 2 | The effects of permeabilization by saponin and digitonin on mitochondria in live H9c2 cells. The cells were grown to 70-80% confluence and
incubated with saponin (A) or digitonin (C) at indicated concentrations for 10min. Then, the cells were incubated for 30 min with DAPI (blue, 300nM) to visualize
the nucleus, as a marker of permeabilization, and with Mitotracker Red (red, 30nM), which is dependent on membrane potential, for visualization of functional
mitochondria. Triton X-100 (TX100, 0.1%) was used as a positive control to induce the structural collapse of the cells due to irreversible permeabilization. Images
were captured by an Olympus IX73 microscope with LUCPLFLN10X objective using Cellsense Dimension (Olympus) software and quantified using image J for

saponin (B) and digitonin (D). Data were divided by total cell count and represented as percent of control from live image count. n=3, * p<0.05, ** p<0.01, ***
p<0.001 vs. control (Con).
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FIGURE 3 | Analysis of interference between Calcium Green-5N and saponin or digitonin. The fluorescence intensity of Calcium Green-5N was measured in the
cell-free assay buffer in the presence of 50, 100, and 200 pg/ml saponin (A) or digitonin (B). Ca* was added every 3min (arrows) by increments of 2 nmol/injection.
n=6 per group. Saponin at 200 ug/ml had interference with Calcium Green-5N as evidenced by saturated fluorescence signal without added Ca?* (A) whereas
digitonin at all concentrations had no interference with the dye (B).
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Analysis of the CRC in Permeabilized H9¢c2
Cardiomyocytes and Isolated
Mitochondria

Next, we analyzed the CRC in permeabilized cells in situ and
in isolated mitochondria in vitro to choose the technique which
can be used for accurate quantification of mitochondrial CRC
in cultured cells. First, we measured the CRC in H9c2
cardiomyocytes permeabilized by saponin or digitonin
(Figure 4A; Supplementary Figure S2C). The cells permeabilized
by digitonin at all concentrations (10, 50, and 100 pg/ml) had
lower CRC than saponin-permeabilized cells. The cells
permeabilized with 50 and 100pg/ml saponin required
approximately 9 and 10nmol Ca®, respectively, to induce a
massive release of Ca** whereas nearly 6, 7, and 8nmol Ca*
were required to open the PTP/Ca* release from mitochondria
of cells permeabilized by 10, 50, and 100pg/ml of digitonin,
respectively.

Considering the negative effects of digitonin on the CRC
of mitochondria (Figure 4A; Supplementary Figure S2C), in
the next set of experiments, we used saponin-permeabilized
cells for comparison of mitochondrial CRC in the permeabilized
cells versus isolated mitochondria. An equal number of H9c2
cells (0.6x10°) were used for permeabilization of cells and
isolation of mitochondria. Notably, mitochondrial mass was not
decreased significantly (<7%, p<0.974) in isolated mitochondria
in comparison with the permeabilized cells as evidenced by
citrate  synthase activities in both samples. Results
demonstrated that the CRC in permeabilized cells was higher
compared to the isolated mitochondria (Figure 4B;
Supplementary Figure S2D); 10nmol Ca** was required to

trigger PTP opening/massive Ca** release in the cells permeabilized
with 50 pg/ml saponin whereas isolated mitochondria started
swelling at 6nmol Ca® indicating at their lower CRC.
Thapsigargin, a non-competitive inhibitor of the SERCA, was
used to estimate the contribution of sarcoplasmic reticulum to
the CRC of mitochondria. The mitochondrial CRC of saponin-
permeabilized cells was slightly reduced in the presence of 1 pM
thapsigargin. As expected, it had no effect on the CRC of the
isolated mitochondria (Figure 4B; Supplementary Figure S2D).

DISCUSSION

In this study, we attempted to compare two techniques for
the measurement of the CRC of mitochondria in cultured
cells. Results showed that mitochondrial CRC measured in
permeabilized cells is higher than that in isolated mitochondria.
Also, we found the optimal concentrations of the biological
detergents saponin and digitonin required for effective
permeabilization of the H9c2 cells with no toxic effects on
mitochondrial function (AY,).

A few techniques have been developed for the quantification
of mitochondrial PTP/CRC in vivo in cells and tissues.
2-deoxy[*H] glucose (DOG) entrapment technique can be applied
to measure PTP opening in isolated perfused hearts in vivo
(Javadov et al., 2005; Ciminelli et al., 2006). In cultured cells,
mitochondrial PTP/CRC can be measured directly in intact
cells by calcein, a cell-permeant fluorescent probe, the intensity
of which is quenched strongly by metal ions, such as Co*,
in the cytosol. Hence, the fluorescence quenching in response

A
100 1
e Saponin 50 pyg/mL
= == Saponin 100 pg/mL
= 80 Digitonin 10 pg/mL
% J
e Digitonin 50 pg/mL
© Digitonin 100 pg/mL
3
— 60 4
©
c
R
»
8
c 40
[0}
o
73
o
o
S
r 20 4
) -

0 eSS T
Pttt

3 min

N

represent the averages. n=6 per group.

FIGURE 4 | CRC analysis in permeabilized cells in situ and isolated mitochondria in vitro. (A) CRC in H9c2 cells permeabilized by saponin or digitonin. The cells
were permeabilized by saponin (50 and 100 pg/ml) or digitonin (10, 50, and 100 ug/ml) for 10min in sucrose buffer on ice. n=3-6 per group. (B) Comparative
analysis of CRC in permeabilized cells vs. isolated mitochondria in the presence or absence of 1 pM thapsigargin (TG). Ca?* was added every 3min (arrows) by
increments of 1 nmol/injection. 0.6 x 10° H9c2 cells were used for each well. Permeabilized cells were washed off the detergents before the analysis. Curves

B
100 A
— Cell
/>'<\ Mito
© 804 ===Cell+TG
€ Mito + TG
-
5]
2
< 60 1
C
>
w
o
e
S 40
Q
(7]
o
o)
=)
T 20 - Moo
o !
*’Aﬂyﬂ
Inj

ttrtttttttrt

3 min

Frontiers in Physiology | www.frontiersin.org

December 2021 | Volume 12 | Article 773839


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Jang et al.

Analysis of Mitochondrial CRC in Cells

to Ca’" release from mitochondria through the PTP can allow
quantifying the extent of pore opening (Petronilli et al., 1999;
Hernandez et al., 2014; Teixeira et al., 2015). However, the
technique for analysis of the PTP by calcein has several
weaknesses. First, Co® is a heavy metal and has toxic effects
on cells. Second, the technique does not allow to specify
whether calcein quenching occurs due to its release through
mitochondrial PTPs or results from Co** entry into mitochondria.
For example, incubation of cells with calcein in combination
with a red-fluorescing potentiometric dye demonstrated that
cytosolic calcein can be released from normal mitochondria
but enters them upon PTP opening (Jones et al., 2002). Third,
calcein-AM entering mitochondria is not cleaved in all cell
types such as hepatocytes (Lemasters et al., 1998).

Advantages of the technique for quantification of the CRC
in permeabilized cells in situ compared to isolated mitochondria
can be explained with the fact that during permeabilization
intracellular structural organization of the cells is preserved,
allowing to analyze all subcellular populations of mitochondria
(Harisseh et al, 2019). Analysis of several types of primary
cells and cell lines revealed that mitochondria within individual
cells are morphologically heterogeneous with varying sizes, are
differently distributed, and they may even have distinct functions
(Collins et al., 2002). In contrast, analysis of PTP opening,
mitochondrial swelling, and the CRC in isolated mitochondria
have certain limitations. Homogenization and centrifugation
during the isolation procedure damage mitochondria and induce
their swelling (Morikawa et al., 2014). In addition, isolated
mitochondria do not present all populations of mitochondria
localized in different subcellular compartments.

A large number of studies used permeabilized cells,
particularly cardiomyocytes, to investigate mitochondrial
bioenergetics and respiration rates (Eimre et al,, 2008; Xu
et al., 2014), CRC (Harisseh et al., 2019), membrane potential
(Keane et al.,, 2016), ROS (Pham et al., 2000; Keane et al.,
2016), and ions (Na*, Ca®"; Donoso et al., 1992; Dedkova
and Blatter, 2009) in situ. Permeabilized cardiomyocytes and
cardiac muscle fibers have been shown to maintain natural
structural organization and mitochondrial bioenergetics (Kay
et al,, 1997; Saks et al., 1998), which are consistent with
our findings (Supplementary Figure S1). Likewise, intracellular
morphology and mitochondrial function of H9¢2 cardioblasts
remained unaffected by permeabilization (Szalai et al., 2000;
Medepalli et al., 2013; Namekata et al., 2017). Mostly, two
biological detergents digitonin and saponin were used for
the permeabilization of cells. Digitonin disrupts the plasma
membrane bilayers by targeting lipid rafts while saponins
permeabilize plasma membranes by selectively removing
cholesterol from the membranes without affecting membrane
proteins. The intracellular environment including the structural
and functional integrity of subcellular organelles, and
interactions between them remain almost intact in
permeabilized cells. Interestingly, thapsigargin had no
significant effect on the CRC in permeabilized cells
(Figure 4B). This can be explained by the low concentration
of ATP (due to its dilution in the assay buffer upon
permeabilization), which is not sufficient to activate SERCA

and stimulate Ca** uptake by sarcoplasmic reticulum.
Apparently, permeabilization efficacy and toxic effects of
saponin and digitonin at given concentrations can be varied
for different cell types.

In conclusion, this study highlights the advantages of the
quantification of mitochondrial CRC in permeabilized cells
compared to isolated mitochondria and establishes optimal
concentrations of two biological detergents that are widely used
for the permeabilization of cells. The results of the study can
be taken into consideration during the quantification of
mitochondrial CRC in live cells.
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