
A Hybrid Adjacency and Time-Based Data
Structure for Analysis of Temporal Networks

Tanner Hilsabeck, Makan Arastuie, and Kevin S. Xu

Electrical Engineering and Computer Science Department,
University of Toledo, Toledo, OH 43606, USA,
Tanner.Hilsabeck@rockets.utoledo.edu,
Makan.Arastuie@rockets.utoledo.edu,

Kevin.Xu@utoledo.edu

Abstract. Dynamic or temporal networks enable representation of time-
varying edges between nodes. Conventional adjacency-based data struc-
tures used for storing networks such as adjacency lists were designed
without incorporating time. When used to store temporal networks, such
structures can be used to quickly retrieve all edges between two sets of
nodes, which we call a node-based slice, but cannot quickly retrieve all
edges that occur within a given time interval, which we call a time-based
slice. We propose a hybrid data structure for storing temporal networks
with timestamped edges, including instantaneous edges such as messages
on social media and edges with duration such as phone calls. Our hy-
brid structure stores edges in both an adjacency dictionary, enabling
rapid node-based slices, and an interval tree, enabling rapid time-based
slices. We evaluate our hybrid data structure on many real temporal
network data sets and find that they achieve much faster slice times
than adjacency-based baseline structures with only a modest increase in
creation time and memory usage.

Keywords: dynamic graph structure, dynamic network, interval tree,
adjacency dictionary, timestamped network, relational events

1 Introduction

Relational data is often modeled as a network, with nodes representing objects or
entities and edges representing relationships between them. Dynamic or temporal
networks allow nodes and edges to vary over time as opposed to a static network.
Temporal networks have been the focus of many research efforts in recent years
[13–15, 21]. Many advancements have been made in temporal network analysis,
including development of centrality metrics [27], identification of temporal motifs
[29], and generative models [1, 18].

While research on the analysis of temporal networks has advanced greatly, the
data structures have seemingly lagged behind. A common approach to storing
temporal networks is to adopt a static network structure, such as an adjacency
list or dictionary, and save timestamps of edges as an attribute, e.g. using the
NetworkX Python package [10,11].
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Fig. 1. Illustration of proposed hybrid data structure on a sample network.

In this paper, we design an efficient data structure for temporal networks to
enable rapid slices of three types:

– Node-based slices : Given two node sets S and T , return all edges at any time
between nodes in S and nodes in T . Node sets may range from a single node
to all nodes in the network. Retrieving all temporal edges that contain node
u is an example of a node-based slice.

– Time-based slices : Given a time interval [t1, t2), return all edges between
any two nodes that occur in [t1, t2). Creating an instantaneous snapshot of
a network at a specified time t is an example of a time-based slice.

– Compound slices : Given two node sets S and T as well as a time interval
[t1, t2), return all edges that meet both criteria. This can be done by first
conducting a node-based or a time-based slice. Creating a partial snapshot
of a network containing only a subset of nodes is an example of a compound
slice.

While adjacency list or dictionary structures are excellent for node-based slices,
they must iterate over all pairs of nodes to perform a time-based slice. We
find a conflict between node- and time-based slices for data structures. That
is, choosing a data structure that enables rapid node-based slices, such as an
adjacency dictionary, results in slow time-based slices, while choosing one that
enables rapid time-based slices, such as a binary search tree, results in slow
node-based slices. This is a limitation of using a single data structure.

Our main contributions in this paper are as follows:

– We propose a hybrid data structure that stores temporal networks using
both an adjacency dictionary and an interval tree, as shown in Figure 1.

– We develop a predictive approach for optimizing compound slices by pre-
dicting whether first conducting a node- or time-based slice would be faster
given some basic network properties.
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– We demonstrate that our proposed hybrid data structure achieves much
faster slice times than existing structures on a variety of temporal network
data sets with only a modest increase in creation time and memory usage.

2 Background and Related Work

2.1 Temporal Network Representations

Temporal networks are typically represented in one of 3 ways [3, 13]:

– Snapshot graph: a sequence of static graphs, in which an edge exists between
nodes u and v if there is an edge active during the time interval [t1, t2).

– Interval graph1: a sequence of tuples (u, v, t1, t2) denoting edges between
node u and node v during the time interval [t1, t2).

– Impulse graph: a sequence of tuples (u, v, t) denoting edges between node u
and node v at the instantaneous time t. This representation is also called a
contact sequence [13] or a link stream [3,22].

Snapshot graphs are useful for their ability to quickly restore access to all avail-
able static network analysis techniques within each snapshot. Snapshots are
usually taken at regular time intervals (e.g. every hour) so that finer-grained
temporal information is lost within snapshots.

We consider a varying length snapshot representation by creating a snapshot
upon each change in the temporal network. This concept can be expanded by
distinguishing a node, n, per point in time, ntx , and drawing connections between
ntx and ntx+1 [20,36]. Nodes and edges within temporal networks can also possess
both presence and latency functions. Presence indicates the active duration of
an object, while latency represents the temporal cost of traversals [2].

2.2 Data Structures for Networks

The two main structures for storing a static graph are the adjacency matrix and
the adjacency list. For a network of n nodes, an adjacency matrix requires O(n2)
space complexity and is thus generally used only for small networks. Adjacency
lists are typically used instead in many network analysis libraries such as SNAP
[25]. Adjacency lists can be further improved in average time complexity of most
operations (at the cost of a constant factor increase in memory) by using hash
tables rather than lists. This is sometimes called an adjacency dictionary and is
the standard data structure in the popular Python package NetworkX [10,11].

Static graph structures can be used to store temporal networks by saving
time information in edge attributes. Such structure prioritizes retrieving edges
via node-based slices and require iterating over all pairs of nodes to conduct a
time-based slice, which is slow.

1 Not to be confused with the other use of interval graph as a graph constructed from
overlapping intervals on R [9].
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2.3 Related Work

Hybrid Data Structures Hybrid data structures, which combine different
kinds of data structures into one, have a long history in the data structures
literature for tasks including searching and sorting [5,19,28]. Such hybrid struc-
tures have also recently been proposed for graph data structures, including the
use of separate read- and write-optimized structures [33] and a compile-time op-
timization framework that benchmarks a variety of data structures on a portion
of a data set before choosing one [32].

Temporal Network Data Structures Most prior work on temporal network
data structures has focused on the streaming setting, where the main objective
is to design data structures to enable rapid updates to graphs as edges arrive
over time in a high-performance computing setting where millions of edges may
be changing per second [8]. These types of data structures for massive stream-
ing networks are typically optimized for rapid edge insertions. Their objectives
differ significantly to those of “off-line” analysis of dynamic network data that
we consider, where a key objective is to rapidly slice the history of the graph,
e.g. what edges were present at a specific time. Indeed it has been found that
such high-performance streaming graph structures may be even worse than sim-
ple baselines such as adjacency dictionaries for common network analysis tasks
including community detection [33].

While the focus of this paper is on time-efficient data structures for temporal
networks, there has also been prior work on space-efficient structures. A fourth-
order tensor model proposed by Wehmuth et al. [36], which can be expressed
by an equivalent square matrix with an index for each time event and elements
consisting of a traditional adjacency matrix, is capable of storing dynamic graphs
with a memory complexity that scales linearly with the number of edges in a
network. Cazabet [3] considers encoding temporal networks for data compression
using the three temporal network representations discussed in Section 2.1. We
note that it is possible to use both time- and space-efficient structures as part of
a complete workflow by storing data using the more space-efficient format, while
loading it into memory to be analyzed using the more time-efficient format.

3 Proposed Hybrid Data Structure

Our proposed data structure to store temporal networks is a hybrid data struc-
ture consisting of an adjacency dictionary and interval tree, as shown in Figure
1. Our main objective in designing the hybrid data structures for temporal net-
works is to rapidly retrieve edges that meet specified criteria, which we call
slicing. In the off-line analysis setting that we target, finding edges is the main
operation dominating computation time of network analysis tasks [33], so rapid
slices are more important than rapid insertions or deletions. It should be men-
tioned that, although we utilize two data structures, memory location pointers
are used to avoid duplicating the data; therefore, memory usage is only modestly
increased to store the data structure itself.
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3.1 Interval Tree: Time-based Slices

The first novel component of our hybrid data structure is an interval tree to store
edges using the edge time duration [t1, t2) as the key. For instantaneous edges,
we use the trivial interval [t, t]. Interval trees can be implemented as an extension
of a variety of popular trees, including red-black trees and AVL trees [4]. For our
purpose, we select the AVL tree as the base representation of our interval tree in
hopes of maximizing performance during slices due to its more rigid balancing
algorithm. The size of the interval tree is equal to the number of unique intervals
and impulses in a data set.

We use the interval tree structure to perform time-based slices, which retrieve
all edges between any two nodes with times [t1, t2) that overlap a given search
interval [s1, s2). Once the tree is traversed, each edge time determined to be
overlapping with the search interval yields all edges stored within. Given a tem-
poral network with m unique edge times, the interval tree has space complexity
O(m) and search time complexity of O(logm+ k), where k denotes the number
of edges that meet the search criteria [23].

3.2 Adjacency Dictionary: Node-based Slices

The second part of our hybrid structure is an adjacency dictionary, an adjacency
list-like structure implemented using nested hash tables rather than lists, sim-
ilar to the NetworkX Python package [10, 11]. The outer table stores the keys
associated with the an edge’s first node, and the inner table stores keys repre-
senting an edge’s second node. The inner table’s values hold a list of all edge
times containing the corresponding node pair. For directed networks with edges
from u to v, two separate nested hash tables are created: the first with outer
keys u and inner keys v, the second with outer keys v and inner keys u.

We use the adjacency dictionary to perform node-based slices, which retrieve
all edges at any time between two node sets S and T . Either of the sets could
range from a single node to the set of all nodes. For example, if S denotes
a single node while T denotes the set of all nodes, then the node-based slice
is enumerating all edge times with neighboring nodes of S. Since the nested
dictionary contains a list of all edge times, the space complexity of this structure
is O(m), and the search time complexity is O(k).

3.3 Compound Slices

A compound slice retrieves all edges between two node sets S and T with times
[t1, t2) that overlap a given search interval [s1, s2). It combines both the criteria
of the time-based and node-based slices. A compound slice can be performed
in two ways. The first is to perform a node-based slice using the adjacency
dictionary, returning all edges between node sets S, T , and then filter the edges
based on the search interval. The second is to perform a time-based slice using the
interval tree, returning all edges overlapping the search interval [s1, s2) between
any two nodes, and then filter the edges based on the node sets. Depending on
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Table 1. Data sets used for evaluation. Edges refer to temporal edges. Edge durations
shown are the mean over all pairs of nodes with at least one edge.

Data set Nodes Edges Resolution Directed? Edge Duration

Enron [30,31] 184 125,235 1 second Yes 0 (Impulses)
Bike share [34] 793 9,882,954 1 minute Yes 21.1 minutes

Reality Mining [6, 7] 6,809 52,050 1 second Yes 176.1 seconds
Infectious [16] 10,972 198,198 20 seconds No 41.97 seconds

Wikipedia links [26] 43,509 160,797 1 second Yes 2.63 years
Facebook wall [35] 43,953 852,833 1 second Yes 0 (Impulses)

Ask Ubuntu [24,29] 159,316 964,437 1 second Yes 0 (Impulses)

the node sets and search interval, one approach for compound slicing may be
faster than the other. Therefore, when tasked with a compound slice, an ideal
hybrid structure should attempt to predict the correct sub-structure to use in
order to achieve optimal time efficiency.

We train a logistic regression model using compound slices with a varying
number of nodes and length of interval. From these compound slices, we compute
four features. The first two features, percentOfNodes and percentOfInterval,
correlate to the number of nodes and length of interval, respectively, specified
by the slice. The next feature is sumOfDegrees, representing the number of
temporal edges returned by a node-first slice. Lastly, a lifespan is calculated
for each node by normalizing the time between a node’s first and last appearance
with respect to the network’s trace length.

4 Experiments

4.1 Data Sets

We evaluate the proposed models using the real temporal network data sets
shown in Table 1. These data sets span a wide range in terms of size, time
resolutions, and duration of events, ranging from networks with very few nodes
but lots of short temporal edges (London bike share), to networks with lots of
nodes and extremely long duration temporal edges (Wikipedia links).

4.2 Comparison Baselines

Four other data structures will serve as our baselines for comparison with our
proposed hybrid structure. The first structure is a MultiGraph in NetworkX
[10, 11], with intervals stored as edge attributes, representing the de facto stan-
dard for network structures in Python. This structure is representative of per-
formance using only an adjacency dictionary. The second structure, Snapshot-
Graph, is the variable window snapshot technique described in Section 2.1. Snap-
shots are stored in a SortedDictionary from Python package Sorted Contain-
ers [17]. The third structure, AdjTree, is an adjacency dictionary with internal
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elements consisting of an interval tree for each node-pair. This baseline rep-
resents a simplified single structure approach (rather than the hybrid that we
propose). The last baseline, TVG, is the fourth-order tensor model by Wehmuth
et al. [36] described in Section 2.3. In order to assist with slicing, the matrix
representation has been adapted into dictionary equivalents. As implemented,
the structure consists of a SortedDictionary storing t1 keys, with values pointing
to SortedDictionaries containing t2. The second dictionary points to a standard
adjacency dictionary.

4.3 Basic Operations

We are primarily interested in the off-line analysis setting where an entire net-
work is first loaded into memory and then different analysis tasks are performed
by slicing the data structure. We are interested in two metrics to evaluate the ef-
fectiveness of our proposed hybrid data structure: the times required to compute
a time-based slice and a compound slice. Since our adjacency dictionary structure
is almost identical to a typical adjacency dictionary, e.g. in NetworkX [10,11], we
do not evaluate node-based slices. Of secondary interest are the creation (load)
time from a text file and memory usage, both which we expect to be slightly
higher than the comparison baselines due to maintaining two data structures.
Unless otherwise specified, each structure and data set combination is recorded
and averaged 100 times in order to reduce variance in CPU clock rate between
measurements2.

Compound Slice Time The training data for the logistic regression model is
obtained by performing 5,000 iterations of randomly selected nodes and interval
length, varying independently from (0, 50]% of the network’s nodes and trace
length, respectively. Once the features have been calculated, both the adjacency
dictionary and interval tree within the hybrid structure will be sliced and times
recorded. Iterations are randomly divided according to a 5% train, 95% test split
in order to determine the model’s suitability. The extremely low percentage of
training samples is selected to mimic a realistic setting with minimal training.
An individual model is trained for each data set.

4.4 Case Study

In an ideal world, a data analyst would spend the majority of his or her time
analyzing data. However, in reality, an increasing large portion of time is spent
creating and slicing the data before analysis can even begin. In this case study,
we will evaluate the computation time of a sample data analysis workflow using
IntervalGraph and NetworkX on the London Bikeshare data set. To begin the

2 All experiments were run on a workstation with 2 Intel Xeon 2.3 GHz CPUs, to-
taling 36 cores, and 384 GB of RAM on Python version 3.8.3. Code to reproduce
experiments is available at https://github.com/hilsabeckt/hybridtempstruct

https://github.com/hilsabeckt/hybridtempstruct
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Fig. 2. Time-based slice times for 1% and 5% time slices across all data sets. The
proposed hybrid interval tree structure has significantly lower slice times on most data
sets.

analysis, a one-time upfront computation cost must be paid in order to create
the additional data structures of IntervalGraph and NetworkX.

Analysts often wish to determine how network metrics change over time,
which requires frequent slicing of the data set. In this example, we wish to
calculate the daily betweenness centrality across all nodes, so 365 slices are
required. Slice time represents the total time required to retrieve all edges for all
slices. Only once the slicing of the data structure occurs can the analysis begin.
While the analysis task performed in this case study is betweenness centrality
via the NetworkX package, it should be noted that the exact analysis task has no
impact on performance as the slicing process returns an identical list of edges.

5 Results

5.1 Basic Operations

Time-Based Slices Figure 2 compares the time to return all edges within 1%
and 5% time slices of the network duration. On such small time slices, especially
at 1%, our proposed interval tree-based structure, IntervalGraph, is far superior
to the other structures on almost all of the data sets. The exception is for the
Wikipedia data, which is quite different from the other data sets in that the
mean edge duration is about 2.6 years or 27% of the length of the total data
trace. This is extremely large compared to the Reality Mining data, which is
a more typical data set, where the mean edge duration is about 3 minutes or
0.002% of the trace length.

Compound Slices Recall that there are two ways to perform a compound slice:
a node-based compound slice using the adjacency dictionary and a time-based
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Fig. 3. Compound slice times for different approaches on IntervalGraph. Our proposed
predictive slicing approach performs better than using only node- or tree-based slices.

compound slice using the interval tree. In Figure 3, we compare the compound
slice times using 3 strategies: always using a node-based slice, always using a
time-based slice, and using our prediction of which slice is faster. We compare
these to the minimum and maximum times, i.e. always selecting the faster or
slower approach respectively, that would be could be achieved (which are not
known in practice).

Upon analysis, we find that node-only strategy is faster than the tree-only
strategy across all tested data sets. However, for some individual slices, time-
based slicing is faster, which is why the node-only time is not necessary the
minimum time. Our proposed predictive compound slice approach is faster than
the other 2 strategies on 3 data sets: Enron, Infectious, and Reality Mining.
On the remaining data sets, our predictive approach is only slightly slower than
always choosing node-based slices. Accuracy of our predictions varied from 68%
to 93%, with the best performance on the Reality Mining and worst on the
Facebook wall posts data set. This can be seen qualitatively in Figure 3 as the
difference between minimum and prediction time.

Creation Time and Memory Usage With its lack of sorted edges with
respect to time, NetworkX has a creation time of 10-100x faster than the second
fastest data structure, SnapshotGraph. SnapshotGraph struggles to efficiently
store edges that extend across a large number of snapshots, resulting in a memory
usage of over 49 GB on the Wikipedia data set! The remaining three structures
(IntervalGraph, AdjTree, and TVG) tend to have creation times between ±10%
of each other, depending on the data set. This trend continues when examining
memory usage of each structure, where these three structures continue to be
within ±10% of each other on most data sets. However, the difference in memory
usage between NetworkX and these three structures shrinks to a factor of 2-3x.



10 Tanner Hilsabeck, Makan Arastuie, and Kevin S. Xu

0 500 1000 1500 2000 2500 3000
Time (s)

IntervalGraph

NetworkX

Creation
Slice
Analysis

Fig. 4. Computation time per stage on the London Bikeshare data set.

5.2 Case Study

Computation times per stage for our proposed hybrid IntervalGraph structure
and NetworkX are located in Figure 4. IntervalGraph’s creation time is much
longer than the NetworkX implementation due to its tree sub-structure. How-
ever, it is important to remember this cost must only be paid once as the object
may be loaded from permanent storage once the temporal edges are sorted. For
small analysis tasks requiring little slicing, IntervalGraph’s ability to more effi-
ciently retrieve temporal edges may not outweigh this large upfront cost. With
the 365 slices performed in this case study, IntervalGraph is almost 3 times
faster than NetworkX after creation and slicing! This speed up translates to
a 25% reduction in computation time over the entire workflow, including the
analysis time. Depending on the size of the network, we find that IntervalGraph
becomes more efficient at completing the overall workflow in anywhere from 5 to
100 slices. We believe this number of slices is low enough to make IntervalGraph
more efficient than NetworkX in most use cases, especially during the exploratory
analysis stage where a wide variety of snapshot lengths may be sliced.

6 Conclusion

Temporal networks have the unique capability of capturing the spread of infor-
mation throughout a network with respect to time. Analysis of temporal aspects
of a network using a dynamic structure can lead to deeper insights that are
lost in translation when these networks are flattened into static graphs. In the
interest of increasing our understanding of temporal networks, we propose a hy-
brid structure that is able to efficiently slice temporal edges using a dimension
inaccessible by currently available structures. Due to its hybrid nature, the pro-
posed structure is still able to benefit from algorithms and techniques developed
for static graphs. The proposed structure achieves a synergistic relationship be-
tween its sub-structures by successfully predicting efficient slicing across multiple
dimensions. While these contributions come at the expense of increased mem-
ory usage, the increase is not significant enough to limit viability. By proposing
this new structure, we hope to spark research interests in techniques associated
with temporal networks. We have implemented our proposed hybrid structure in
the IntervalGraph class of the DyNetworkX Python package [12] for analyzing
dynamic or temporal network data.
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