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Kinetic observables such as the Tafel slope, apparent activation energy, and apparent reaction orders all
provide mechanistic fingerprints for electrocatalytic processes. Here, we show how each of these quan-
tities is related to the generalized degree of rate control (DRC). We find that the apparent transfer coef-
ficient, an inverted form of the Tafel slope, is a weighted average of the number of electrons transferred to
generate each intermediate or product species in a mechanism, where the weighting factor is the DRC.
We similarly show that the apparent activation energy and apparent reaction orders (with potential
dependence) can also be written in simple terms of the DRC. Since DRCs can further be related with
microscopic quantities such as fractional coverages of intermediates, these relations can be used to
improve intuition about possible operative mechanisms of complex electrocatalytic processes. Final dis-
cussions address the possible impacts of various nonidealities such as electric field effects, adsorbate
interactions, and approximations related to the form of electrochemical rate constants.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction ing a number of adsorbed intermediates on the surface of the elec-
The Tafel slope, apparent reaction order, and apparent activa-
tion energy describe how the rate of reaction is affected by changes
to the applied potential, reactant/product concentration, and tem-
perature, respectively. While apparent reaction orders and activa-
tion energies are common to both electrochemical and thermal
reactions, the Tafel slope is unique to electrochemistry. When the
reaction is far from equilibrium, the Tafel slope is generally defined
by a linear phenomenological relationship between applied poten-
tial and logarithmic current density:

g ¼ aþ blogðiÞ ð1Þ
where g is the applied overpotential (g ¼ E� EEQ where E is the

applied potential and EEQ is the equilibrium potential), i is the cur-
rent density, a is a constant related to the (extrapolated) exchange
current density at equilibrium, and b is the Tafel slope [1]. This
relationship describes the empirical observation that the current
density of electrochemical reactions at large overpotential tends
to increase exponentially with the applied potential, absent ohmic
or mass-transport related losses. For electrocatalytic reactions,
which are typically characterized by complex mechanisms involv-
trode/catalyst, the rate is not always a simple exponential function
of the potential, nor is the Tafel slope a constant as the applied
potential changes [2,3]. As highlighted by previous works, the Tafel
slope relates to various characteristics of a reaction, such as the
coverages of adsorbates, their isotherms, and the identity of the
rate-determining step(s) (RDS), all of which may be potential-
dependent [4–7]. If these factors are taken into account through
microkinetic modeling, then the Tafel slope can provide insight
into the mechanism of an electrocatalytic process [8–11]. While
the Tafel slope is typically reported in units of mV=dec, this infor-
mation is more usefully compared in microkinetic models by
way of its inverted form, the apparent transfer coefficient
[12,13]. For an electrochemical process operating far from equilib-
rium, the apparent transfer coefficient can be written as:

a ¼ RT
F

@ ln ij j
@E

ð2Þ

where R is the ideal gas constant, T is the temperature, and F is the
Faraday constant. Accordingly, the Tafel slope and the apparent
transfer coefficient are related by:

b ¼ @E
@ log ij j ¼

2:3RT
aF

ð3Þ

While the apparent transfer coefficient is similar to both the
apparent activation energy and apparent reaction order in that it
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is experimentally observable, its connection to the degree of rate
control concept has not been developed. Campbell’s generalized
degree of rate control (DRC) is a sensitivity analysis that describes
how the rate of reaction toward a given product is affected by a
small perturbation to the standard-state Gibbs free energy (G0) of
a given species (including intermediates, transition states, and
products) in the kinetic pathway, holding all other standard-state
Gibbs free energies constant [14,15]. Relationships have been iden-
tified between the apparent activation energy and the degree of
rate control, but to the best of our knowledge, similar connections
have not been made for the apparent transfer coefficient [16,17].
Formally, the DRC is written as:

Xi ¼ @ ln rð Þ
@ �G0

i =RT
� �

������
Go
j–i

ð4Þ

where G0
i is the standard-state Gibbs free energy of the ith species in

the mechanism (referenced relative to the standard-state
stoichiometrically-combined reactants), and G0

j–i indicates that the
standard-state Gibbs free energies of all other species are held con-
stant. In other words, the DRC is a measure of the change in the
magnitude of the rate of reaction per RT decrease in the standard-
state Gibbs free energy of a given species. A positive value indicates
that stabilizing the species would result in an increase in the rate,
while a negative value indicates that destabilizing the species
would increase the rate. The sum of all transition state DRCs has
been proven to be equal to 1 [18]), while stable adsorbed interme-
diates exhibit DRCs that are related to their fractional site coverage
and typically take on negative values (i.e inhibition) [19]. Naturally,
a DRC of 0 indicates that the energy of the species does not affect
the rate (i.e for transition states the corresponding elementary step
is ‘‘fast”, and for stable intermediates the extent of rate inhibition is
minimal).

Recently, Mao and Campbell derived a general equation for the
apparent activation energy of arbitrary reaction mechanisms. They
found that the apparent activation energy can be written as RT plus
a weighted average of the standard-state enthalpies of all interme-
diates (including transition states and products), where the
weighting factor is the DRC [17]. In this work, we extend the con-
cept to electrochemistry, first via expressions for the apparent
transfer coefficient of a general electrocatalytic mechanism. The
resultant equation takes a similar form to that for the apparent
activation energy: the apparent transfer coefficient equals the
weighted number of electrons transferred (relative to the reac-
tants) to reach each intermediate or product species, where the
weighting factor is the DRC of the respective species. Additionally,
we provide derivations for the apparent reaction order and the
apparent activation energy in terms of the DRC for a generalized
electrocatalytic mechanism. We first present the derivations, then
provide examples showing the validity of the equations for several
electrocatalytic mechanisms. Finally, we discuss the possible
impacts of various nonidealities such as electric field effects, adsor-
bate interactions, and approximations related to the form of elec-
trochemical rate constants, as well as implications toward
improved mechanistic insight for electrochemical reactions.
2. Derivations

2.1. Apparent transfer coefficient

As previously stated by others [17], the total rate of a composite
reaction can be written within transition state theory as the pro-
duct of two contributions (for convenience in notation, we will
work with the reduced standard Gibbs free energy: gi ¼ �G0

i =RT):
234
r ¼ kBT
h

� f g1; g2; � � � ; gN ; a1; a2; � � � ; aMð Þ ð5Þ

where the second term is a general function, f , which depends on
the standard-state Gibbs free energies of all species (including
intermediates, products, and transition states) as well as the activ-
ities of all fluid-phase reactant/product species. Here, the gi terms
define the rate and equilibrium constants of all elementary steps.
By plugging this rate term into the definition of the apparent trans-
fer coefficient (and noting that the current density of an electro-
chemical process is proportional to the rate of reaction) one may
write:

a ¼ RT
F

@ ln kBT
h

� �
@E

þ @ ln fð Þ
@E

2
4

3
5 ð6Þ

where the first term disappears since it has no dependence on the
potential. One may then apply the chain rule to the second term
to separate out the explicit dependence of each gi on the applied
potential:

a ¼ RT
F

X
i

@ ln fð Þ
@gi

@gi

@E

" #
ð7Þ

where a summation is run over all of the intermediates, transition
states, and products. The first term inside the summation is equiv-
alent to the DRC, which allows us to write:

a ¼ RT
F

X
i

Xi
@gi

@E

" #
¼ RT

F

X
i

Xi
@ð�G0

i =RTÞ
@E

" #
ð8Þ

In electrochemical mechanisms, the formation of various inter-
mediates is associated with the transfer of some number of elec-
trons either into (oxidation) or out of (reduction) the electrode.
The standard-state Gibbs free energy of species }i} with ni elec-
trons transferred to produce that species (relative to the reactants)
can be written as follows:

G0
i ¼ G0

i;ref þ H0
i � H0

i;ref

� �
� T S0i � S0i;ref

� �
� niF E� Eref

� � ð9Þ

Here, Eref is an arbitrary reference potential, while H0
i;ref and S0i;ref

are the standard-state enthalpy and entropy, respectively, of the
species i evaluated at the reference potential. It can be convenient
to set Eref equal to a standard reference electrode potential or the
equilibrium potential of the overall reaction, but ultimately the
choice is arbitrary. H0

i and S0i represent the standard-state enthalpy
and entropy of species i at the operating potential, E. In this formu-
lation, electrons are not explicitly counted among the i species, but
rather they are associated with a given species as the number
transferred (relative to the reactant state) to yield that species;
their energy deviations from the reference potential are accounted
solely by the potential energy contribution in the final term. We
will first assume that the standard enthalpies and entropies of
chemical species do not change with potential (nonidealities such
as electric field effects on chemical adsorbates will be considered
in Section 3.4) such that the only contribution to the potential
dependence of G0

i is due to the free energy of the ni electrons asso-

ciated with the formation of species i. Therefore, DH0
i ¼ DS0i ¼ 0

leaving the expression:

G0
i ¼ H0

i;ref � TS0i;ref � niF E� Eref

� � ð10Þ
It is important to note that reaction intermediates, products,

and transition states are all counted among the i species. This
can be interpreted in a Butler-Volmer framework, where the elec-
trochemical symmetry factor, bi, can be effectively considered an
extent of partial charge transfer between the reactant and



A. Baz and A. Holewinski Journal of Catalysis 397 (2021) 233–244
transition state of a given elementary electron transfer step [20–
22]. Therefore, ni for intermediates will be an integer value, while
for transition states it may contain fractional contributions. There
is also an implicit assumption here that the symmetry factor does
not change as a function of potential. This is generally a sufficient
approximation as bi values usually vary slowly over wide potential
windows, and they will be essentially constant when considering
the small perturbation of potential to get a local transfer coefficient
at any given potential [23]. Deviations such as those captured in
Marcus theory are discussed in Section 3.4. Using the aforemen-
tioned framework, the apparent transfer coefficient can then be
written as:

a ¼ RT
F

X
i

Xi

@
�H0

i;ref

RT þ S0i;ref
R þ niFðE�Eref Þ

RT

� �
@E

2
664

3
775 ð11Þ

which reduces to:

a ¼
X
i

Xini ð12Þ

Therefore, for ‘‘ideal” cases where the potential only affects the
free energy of the electrons associated with the formation of a
given species, the apparent transfer coefficient is the sum of the
number of electrons associated with each species, weighted by
the respective DRC of that species.

2.2. Apparent activation energy

The apparent activation energy describes how the rate of reac-
tion changes given a change in the temperature and can be for-
mally written as the following:

Eapp ¼ �R
@ ln rð Þ
@ð1=TÞ

� �
¼ RT2 @ ln rð Þ

@ Tð Þ
� �

ð13Þ

Campbell and Mao previously provided a comprehensive
derivation of the apparent activation energy in terms of the DRC
for a general reaction mechanism [17]. Taking the same approach
as above but using the appropriate temperature derivative, this
reduces to:

Eapp ¼ RT þ
X
i

XiH
0
i ð14Þ

To show the potential dependence of their equation in an elec-
trocatalytic mechanism, we separate the free energy of ni electrons

associated with the ith species, keeping the same ‘‘ideal” conditions
as described in Section 2.1:

Eapp ¼ RT þ
X
i

Xi G0
i þ TS0i;ref

h i
ð15Þ

Converting back to molecular units and simplifying:

Eapp ¼ kBT þ
X
i

Xi H0
i;ref � ni E� Eref

� �h i
ð16Þ

Recognizing that the apparent transfer coefficient can be writ-
ten as

P
iXini, we identify a direct relationship between the appar-

ent activation energy and the apparent transfer coefficient, written
as:

Eapp ¼ kBT þ
X
i

XiH
0
i;ref

" #
� a E� Eref

� � ð17Þ

The diagnostic use remains the same as always in terms of find-
ing consistency between an apparent activation energy and mech-
anism, though some additional corroboration may be gained by
determining the apparent activation energy at variable potential.
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2.3. Apparent reaction order

Evaluation of the apparent reaction order (di) involves varying
the thermodynamic activity of the fluid-phase reactants or prod-
ucts and observing the resulting change in the rate of reaction
(current):

di ¼ @ ln ij j
@ ln aið Þ ð18Þ

where ai is the activity of species i. Practically, this involves varying
the fluid-phase species’ pressure or concentration, and we will only
consider the case of ideal gases and ideal solutions, where the dis-
tinction with activity is inconsequential. A change in a fluid-phase
species’ activity produces a change in its Gibbs free energy:

Gi ¼ G0
i þ kBT ln ai ð19Þ

Thus, changing the reduced standard-state Gibbs free energy,
G0
i

kBT
, by one unit has the same impact on the overall free energy of

a species as changing the activity by one unit of ln aið Þ. However,
considering Eqs. (18) and (19) in relation to the DRC raises two
mild predicaments: first, the DRC is defined with respect to per-
turbing the standard state, as given in Eq. (4), rather than per-
turbing the activity; second, the zero-energy reference state is
normally taken to be the stoichiometrically-combined reactants
at the standard state, requiring consideration of the consequences
of a shifting reference system.

The analysis is simplest for intermediate or product species,
which are already counted among the i species in a DRC analysis
and do not affect the reference state. Here we can recognize that,
within transition state theory, every elementary rate term (for-
ward or reverse) is derived from an equilibrium between the initial
and transition states, and thus has the form:

rn / amii
Y
j–i

a
mj
j exp g0;z

TS � mig0
i � Rmj–ig0

j–i

� �
ð20Þ

where mi is the stoichiometric coefficient of species i in the elemen-
tary step n. In this case, perturbing the reduced standard-state
Gibbs free energy and perturbing the natural logarithm of the activ-
ity have the same magnitude of impact on the rate:

@ ln rð Þ
@ �G0

i =kBT
� �

������
Go
j–i

¼ � @lnðrÞ
@ ln ai

ð21Þ

Since every term in a system of coupled rates will be influenced
to the same degree by the two modes of perturbation, it can be
expected that the system as a whole will react identically and Eq.
(21) is general. The effects could also be illustrated to propagate
term-wise through closed-form composite rate laws. Thus the
DRC for fluid-phase intermediate and product species can be seen
as equivalent to the negative apparent reaction order, which has
been identified by others [18,19]:

Xi ¼ �di ð22Þ
The apparent reaction order with respect to reactant species

must be treated differently, since the stoichiometrically-
combined reactants are considered as the zero-energy reference
state. If we were to consider the free energy of all species relative
to an absolute reference state, perturbing a reactant’s activity
would be no different than for a product, and we would arrive
again at Eq. (22). If the reactant state is ‘‘re-zeroed” after the per-
turbation of an activity, we can view this as an effective perturba-
tion on all the other states relative to a fixed point representing the
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reactants. Each species’ free energy undergoes an apparent move to
a value (noted as Gi

0) in accordance with the changes in moles of
reactant to form that species:

G
0
i ¼ H0

i;ref � TS0i;ref þ mj2G0
f ;i

� �
k
B
T ln aj � niF E� Eref

� � ð23Þ

where mj2G0
f ;i
is the stoichiometric coefficient of reactant j (nega-

tive by convention) appearing in the formation energy of interme-
diate or product species i. In some works, this is also framed in
terms of adjusting the reference energies of a linearly-
independent basis set, conveniently chosen as all atomic species
present in the mechanism [24]. A shift in the energy of the reac-
tants (i.e. a shift in the reference) produces a commensurate shift
in the energies of all species in the mechanism containing atomic
species whose energies were defined by that reference. A detailed
example of this is shown in the Supporting Information.

To define an apparent reactant order in the shifting reference
basis, we follow the same approach as was taken for the apparent
transfer coefficient and activation energy. We separate the rate
into its contributions from the frequency factor and the function
f which contains the standard-state Gibbs free energies and activ-
ities of each of the species in the mechanism:

dj ¼
@ln kBT

h

� �
@ lnðajÞ þ @ln fð Þ

@ lnðajÞ ð24Þ

The frequency factor is independent of the activity, and the sec-
ond term can be expanded in terms of apparent shifts in the free
energies of the species in the mechanism. We note that it is arbi-
trary whether we assign the perturbations in free energy as an
apparent change in each species’ standard-state Gibbs free energy
(mirroring the approach of previous sections) or if we take Eq. (23)
to suggest apparent changes in activity due to the form of the term

mj2G0
f ;i

� �
k
B
T ln aj. These are mathematically equivalent assignments,

per Eq. (21). We frame the expansion in terms of apparent activi-
ties (ai’) so that the reaction order becomes:

dj ¼
X
i

@lnðf Þ
@ ln ai 0

@ ln ai 0

@ ln aj
ð25Þ

Eq. (23) then identifies the second term of each product as the
reactant stoichiometric factor:

@ ln ai 0

@ ln aj
¼ mj2G0

f ;i
ð26Þ

Combining with the equivalence between orders and DRC found
in Eq. (22) we arrive at:

dj ¼ �
X
i

mj2G0
f ;i

� �
Xi ð27Þ

Therefore, the apparent reaction order of the jth reactant species
is the negative of the summation of the DRCs of each of the species
in the pathway, multiplied by the reactant stoichiometric coeffi-
cient in the formation of the species.

3. Results and discussion

In this section we first provide analytical examples of the appar-
ent transfer coefficient and reaction orders for sample mechanisms
calculated explicitly, and with the DRC expressions derived in this
work. Apparent activation energies are not analytically derived as
they are merely application of formulas derived in other works,
but analysis of activation energies will be shown in comparing
236
with full numerical analyses later in the section. We close with dis-
cussion of ‘‘secondary” potential effects that can impact the mea-
sured kinetic parameters, such as electric field effects and
adsorbate–adsorbate interactions.

3.1. Two-step mechanism with quasi-equilibrium – Analytical solution

We first consider the following generalized two-step mecha-
nism (to be referred to as Mechanism 1), producing oxidized spe-
cies O from reduced form R via adsorbed intermediate I* (overall
reaction R $ Oþ 2e�):

Rþ �ð Þ $ I� þ e� (M1.1)
I� $ Oþ e� þ ð�Þ (M1.2)
Step (M1.1) is assumed to be quasi-equilibrated, with step

(M1.2) being an irreversible rate-determining step, allowing one
to write the following rate law (assuming a Langmuir adsorption
isotherm):

r ¼ k2hI ¼ k2K1aR
1þ K1aR

ð28Þ

Above, hI is the surface coverage of I*, and the Butler-Volmer
rate constant for an activated electrochemical elementary step
may be written as:

k2 ¼ kBT
h

exp
� DG0;z

ref ;2 � b2FðE� Eref Þ
� �

RT

0
@

1
A ð29Þ

where DG0;z
ref ;2 is the standard-state Gibbs free energy of activation at

the reference potential Eref , b2 is the electrochemical symmetry fac-
tor for elementary step 2, and the other terms have their usual
meaning. This can also be written in terms of the standard state
Gibbs free energies of the intermediates and transition states in
the mechanism as:

k2 ¼ kBT
h

exp
� G0

ref ;TS;2 � G0
ref ;I

� �
RT

0
@

1
A exp

b2F E� Eref

� �
RT

	 

ð30Þ

where G0
ref ;i is the standard state Gibbs free energy of intermediate i

at the reference potential Eref . This can be further simplified as:

k2 ¼ kBT
h

exp gref ;TS;2

� �
expð�gref ;IÞ exp

b2F E� Eref
� �
RT

	 

ð31Þ

where it may be noted that the even more compact expression
kBT
h exp gTS;2

� �
exp gIð Þ could be written, but it is more illustrative

to keep the potential dependence explicitly shown. The equilibrium
constant can also be written similarly:

K1 ¼ exp
� DG0

ref ;1 � F E� Eref

� �� �
RT

0
@

1
A

¼ exp
� G0

ref ;I � G0
ref ;R

� �
RT

0
@

1
A exp

F E� Eref

� �
RT

	 


¼ expðgref ;IÞ exp
F E� Eref

� �
RT

	 

ð32Þ

Plugging into the rate law gives:

r ¼
kBT
h exp gref ;TS;2

� �
exp

b2F E�Erefð Þ
RT

	 

aR exp

F E�Erefð Þ
RT

	 


1þ expðgref ;IÞ exp
F E�Erefð Þ

RT

	 

aR

ð33Þ
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The apparent transfer coefficient can then be evaluated as:

a ¼ RT
F

@lnðrÞ
@E

¼ RT
F

b2F
RT

þ F
RT

� F
RT

exp gref ;I

� �
aR exp

F E�Erefð Þ
RT

	 


1þ expðgref ;IÞ exp
F E�Erefð Þ

RT

	 

aR

2
664

3
775

2
664

3
775

¼ b2 þ 1� hI ð34Þ
We may similarly evaluate the apparent reaction order with

respect to aR:

dR ¼ @lnðrÞ
@ ln aRð Þ ¼ 1� hI ð35Þ

We now show that one can arrive at the same expressions by
using the DRC equations identified in this work. The DRC of each
intermediate species can be written as:

XI ¼ @lnðrÞ
@ðgIÞ

¼ @lnðrÞ
@ gref ;I

� � ¼ �
exp gref ;I

� �
exp

F E�Erefð Þ
RT

	 

aR

1þ exp gref ;I

� �
exp

F E�Erefð Þ
RT

	 

aR

2
664

3
775 ¼ �hI

ð36Þ

XTS;2 ¼ @lnðrÞ
@ gTS;2

� � ¼ @ ln rð Þ
@ gref ;TS;2

� � ¼ 1 ð37Þ

while the DRC terms for the other species in the mechanism are

equal to 0. Above, we have noted that @lnðrÞ
@ gref ;ið Þ ¼

@lnðrÞ
@ðgiÞ since

@ gið Þ
@ gref ;ið Þ ¼ 1

and it is desirable to keep the rate law in the same form as previ-
ously for illustration. Plugging these terms into the equation for
the apparent transfer coefficient yields:

a ¼
X
i

Xini ¼ XIð Þ nIð Þ þ XTS;2ð Þ nTS;2ð Þ

¼ �hIð Þ 1ð Þ þ 1ð Þ 1þ b2ð Þ ¼ b2 þ 1� hI ð38Þ
which is identical to what was evaluated explicitly above. Sim-

ilarly for the apparent reaction order:

dR ¼ �
X
i

mj2G0
f ;i

� �
Xi ¼ � �1ð Þ XIð Þ þ �1ð Þ XTS;2ð Þ½ �

¼ �hIð Þ þ 1ð Þ ¼ 1� hI ð39Þ
which is also identical to that evaluated explicitly from the rate

law above. We note that in this mechanism where arbitrary reac-
tant species R; I; and O are used, the reactant stoichiometric coef-
ficients are the trivial case of �1 for all species. Examples where
maintaining atomic balance is required are outlined in Section 3.3
and the Supporting Information.

We now consider the scenario for the same oxidation mecha-
nism, but instead with step (M1.1) as the irreversible RDS, and step
(M1.2) assumed to be quasi-equilibrated. The rate law can be writ-
ten as:

r ¼ k1K2aR
K2 þ aO

ð40Þ

Plugging Butler-Volmer and Nernst equations in for the rate and
equilibrium constants in the rate law gives:

r ¼
kBT
h exp gref ;TS;1

� �
exp

b1F E�Erefð Þ
RT

	 

exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 

aR

exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 

þ aO

ð41Þ
which allows the apparent transfer coefficient to be written as:
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a¼RT
F

@ ln rð Þ
@E

¼RT
F

b1F
RT

þ F
RT

� F
RT

exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 


exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 

þaO

2
664

3
775

2
664

3
775

¼b1þ1� 1�hIð Þ¼b1þhI

ð42Þ
The apparent reaction order can be similarly evaluated as:

dR ¼ @lnðrÞ
@ ln aRð Þ ¼ 1 ð43Þ

The generalized DRCs for each of the species are:

XI ¼ @lnðrÞ
@ gIð Þ ¼ @lnðrÞ

@ gref ;I

� �

¼ �1� �
exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 


exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 

þ aO

0
BB@

1
CCA

¼ �1þ 1� hIð Þ ¼ �hI ð44Þ

XO ¼ @lnðrÞ
@ gOð Þ ¼ @ ln rð Þ

@ðgref ;OÞ

¼ 1�
exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 


exp gref ;O

� �
exp �gref ;I

� �
exp

F E�Erefð Þ
RT

	 

þ aO

0
BB@

1
CCA

¼ 1� 1� hIð Þ ¼ hI ð45Þ

XTS;1 ¼ @lnðrÞ
@ gTS;1

� � ¼ @lnðrÞ
@ gref ;TS;1

� � ¼ 1 ð46Þ

while the DRC terms for the other species in the mechanism are
equal to 0. Applying the equation for the apparent transfer
coefficient:

a ¼
X
i

Xini ¼ XIð Þ nIð Þ þ XOð Þ nOð Þ þ XTS;1ð Þ nTS;1ð Þ

¼ �hIð Þ 1ð Þ þ hIð Þ 2ð Þ þ 1ð Þ b1ð Þ ¼ b1 þ hI ð47Þ
which is identical to the result found explicitly above. Applying

Eq. (27) for the apparent reaction order we also find:

dR ¼ �
X
i

mj2G0
f ;i

� �
Xi ¼ � �1ð Þ XIð Þ þ �1ð Þ XTS;1ð Þ þ �1ð Þ XOð Þ½ �

¼ �hIð Þ þ 1ð Þ þ hIð Þ ¼ 1 ð49Þ
which is identical to that calculated explicitly above.

3.2. Two-step mechanism with no RDS assumption

In the preceding example, we solved for the apparent transfer
coefficient, apparent reaction orders, and generalized degrees of
rate control analytically, which was made easier by assuming
one RDS with the other step quasi-equilibrated. For more compli-
cated mechanisms, it is usually not possible to write analytical
expressions for the rate law and kinetic quantities of interest,
instead requiring solution of the full microkinetic model numeri-
cally (although in some cases, techniques such as analysis of max-
imum rates can be used to circumvent this) [25,26]. One can then
perform a sensitivity analysis on the standard-state Gibbs free
energies of each of the intermediates, transition states, and
products to measure the DRC of each state. Similarly, one may
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numerically calculate the steady-state rate of reaction at a series of
different applied potentials, temperatures, and reactant/product
activities to measure the apparent transfer coefficient, activation
energy, and reaction orders, respectively. In this example, we solve
the full microkinetic model for the same simple two-step oxidation
(Mechanism 1) with no assumed RDS, then numerically calculate
the macro-kinetic observables and DRCs for all species. Afterward,
we compare the result of applying the DRC equations derived in
Section 2 to determining the kinetic observables with the direct
simulation method in order to illustrate the robustness of the
DRC equations derived in this work.

For Section 3.1 Mechanism 1, the rate of change of the coverage
of I can be written and set equal to 0 by applying the pseudo-
steady state approximation [27]:

dhI
dt

¼ k1;f aRh� � k1;rhI � k2;f hI þ k2;raOh� ¼ 0 ð52Þ

with the corresponding site balance:h� ¼ 1� hI . Rate constants
and equilibrium constants for each step are written in the same
form as before (Eqs. (29) and (32)) and the algebraic equation
describing the steady-state coverage of I is then solved by applying
a Newton root-finding algorithm using the Julia NLsolve library. For
all cases in this section, the conditions are set to aR ¼ 1, aO ¼ 1e�5,
and T ¼ 298:15K . We consider two hypothetical electrocatalysts
with the energetic parameters summarized in Table 1. Case 1 gives
the first reaction step a lower sensitivity to potential than the sec-
ond, with electrochemical symmetry factors of b1 ¼ 0:3 and
b2 ¼ 0:7. The values (and thus the potential sensitivities) are
reversed for the second scenario. These parameters are chosen
Table 1
Energetic parameters for Case 1 and Case 2, corresponding to the simulation results in
Fig. 1 and Fig. 2, respectively. These parameters are not representative of any
particular material or catalyst, but are chosen to produce scenarios where the DRC of
various species are illustratable as functions of potential.

Case 1 b1 ¼ 0:3; b2 ¼ 0:7ð Þ Case 2ðb1 ¼ 0:7;b2 ¼ 0:3Þ
Species H0

ref eVð Þ S0ref eV=Kð Þ H0
ref eVð Þ S0ref eV=Kð Þ

Rðf Þ 0 0 0 0
TS;1ð�Þ 0:85 �0:0005 0:90 �0:0005
Ið�Þ �0:5 �0:001 �0:1 �0:001
TS;2ð�Þ 0:90 �0:0005 0:85 �0:0005
Oðf Þ 0 0 0 0

Fig. 1. (a) Gibbs free energy diagram corresponding to the energetics in Table 1 (Case 1) (
(d) Simulated and DRC-predicted apparent activation energy (e) Simulated and DRC-pre
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(within reasonable physical ranges) such that in each case, the
transition state with the highest DRC changes as the potential is
increased. For Case 1, the species with the highest DRC shifts from
TS2 to TS1 as the applied potential is increased, primarily due to
the fact that b1 < b2. The standard-state Gibbs free energy diagram
corresponding to this case is shown in Fig. 1 (a), where it can be
seen that the barrier of step 2 is more strongly affected by increas-
ing the applied potential than the barrier for step 1. Fig. 1(b) shows
the DRC of each species in the mechanism as a function of the
applied overpotential (using equilibrium as the reference poten-
tial). The range of potentials shown are chosen in order to operate
where the reaction is far from equilibrium for ease of comparison
to the analytical results from Section 3.1. At low potentials, TS2
has a DRC of 1, I has a DRC of �1, and the other species have DRCs
equal to 0. Under these conditions, the forward rate could be
enhanced by either lowering the Gibbs free energy of (i.e stabiliz-
ing) TS2 or increasing the Gibbs free energy of (i.e destabilizing)
the adsorbed intermediate, I. At higher potentials, the trend shifts,
such that TS2 and I no longer have appreciable DRCs, while TS1
adopts a DRC of 1.

Fig. 1(c) shows the explicitly-simulated (i.e. evaluated by com-

puting the rate at a series of potentials and approximating RT
F

@lnðrÞ
@E

using finite differences) apparent transfer coefficient overlaid with
the apparent transfer coefficient calculated using Eq. (12). It can be
seen that the DRC equation captures the potential-dependent
change in the transfer coefficient and matches the explicitly-
computed value, highlighting the robustness of Eq. (12) outside
of the limiting cases studied in Section 3.1. Similarly, Fig. 1(d)
shows that the explicitly-simulated apparent activation energy
matches the apparent activation energy predicted by Eq. (16) over
the entire potential range. Finally, Fig. 1(e) shows that the
explicitly-simulated apparent reaction order (with respect to aRÞ
also matches the reaction order predicted by Eq. (27). These results
suggest that the DRC equations for the apparent transfer coeffi-
cient, activation energy, and reaction order capture the kinetic
behavior of the system even over wide potential ranges where
the DRCs of various species change appreciably.

For Case 2 in Table 1, the major differences compared to Case 1
are that this hypothetical material binds intermediate I more
weakly and exhibits a smaller barrier (at the reference potential)
for the second elementary step. Also in this case, b1 ¼ 0:7 and
b2 ¼ 0:3, which means that the barrier for step 1 is more strongly
affected by the applied potential than the barrier for step 2. This
b) DRC of each species (c) Simulated and DRC-predicted apparent transfer coefficient
dicted apparent reaction order with respect to.aR



Fig. 2. (a) Gibbs free energy diagram corresponding to the energetics in Table 1 (Case 2) (b) DRC of each species (c) Simulated and DRC-predicted apparent transfer coefficient
(d) Simulated and DRC-predicted apparent activation energy (e) Simulated and DRC-predicted apparent reaction order with respect to.aR
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is clearly shown in the Gibbs free energy diagram in Fig. 2(a). These
parameters produce the results shown in Fig. 2(b), where it can be
seen that the transition state with the highest DRC shifts from TS1
to TS2 as the potential is increased. It may also be observed that the
DRC of intermediate I shifts from 0 to �1 as the potential is
increased, which is opposite to the trend observed for Case 1. This
is due to the steady-state coverage of I increasing as the potential is
increased. As was shown for Case 1, the DRC-calculated apparent
transfer coefficient (Fig. 2(c)), activation energy (Fig. 2(d)), and
reaction orders (Fig. 2(e)) all match the values that were explicitly
calculated by a full simulation of the microkinetic model. Interest-
ingly, Case 1 and Case 2 show qualitatively different behavior for
the apparent activation energy as a function of potential. For Case
1, the apparent activation energy is monotonically decreasing as
potential is increased, while for Case 2 it switches from decreasing
to increasing between 0.5 and 0.8 V, before decreasing again. This
is due to the increase in the coverage of I� that occurs over the mid-
dle potential range, which introduces a competing effect with the
barrier decreasing versus overpotential.

3.3. Case study: CO electro-oxidation

Next, we apply the relations between the DRC and the various
macro-kinetic observables (transfer coefficient, activation energy,
and reaction order) to analyze a model reaction of practical rele-
vance, namely the CO electro-oxidation reaction under alkaline
conditions. We consider the following steps (Mechanism 2):

CO aqð Þ þ �ð Þ $ CO �ð Þ (M2.1)
OH� aqð Þ þ �ð Þ $ OH �ð Þ þ e� (M2.2)
CO �ð Þ þ OH �ð Þ $ COOH �ð Þ þ �ð Þ (M.2.3)
COOH �ð Þ þ OH�ðaqÞ $ CO2 aqð Þ þ �ð Þ þ H2O lð Þ þ e� (M2.4)
Table 2
Energetic parameters for the CO electro-oxidation model outlined in Mechanism 2. The ele
COOHð�Þ by OH� the only activated electrochemical step which is assigned a symmetry fa

Species H0
ref eVð Þ S0re

CO aqð Þ 0 0
CO �ð Þ �0:75 �0
OH� aqð Þ 0 0
OH �ð Þ �0:35 �0
CO �ð Þ � � �OH �ð ÞTS �0:4 �0
COOH �ð Þ �0:65 �0
COOH �ð Þ � � �OH�ðaqÞTS �0:55 �0
CO2 aqð Þ 0 0
H2O lð Þ 0 0
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corresponding to the overall reaction CO aqð Þ þ 2OH� aqð Þ $
CO2 aqð Þ þ H2OðlÞ þ 2e�. We use the overall reaction equilibrium
potential as the reference and assign a set of arbitrary, but
physically realistic, standard enthalpies and entropies for the inter-
mediates to parameterize the model, shown in Table 2. Therefore,
the kinetic predictions are not necessarily representative of a
particular catalyst, but are instead used to illustrate that the DRC
equations derived in this work will match explicit calculations
for a complex mechanism—in this case, one with parallel paths that
converge in a coupling step. A free energy diagram corresponding
to the parameters in Table 2 is shown in Fig. 3(a). The net rate of
the forward reaction is written according to the mean-field
approximation [28]:

rn ¼ kf ;n
Y
j2aIS

aj
Y
j2hIS

hj � kr;n
Y
j2aFS

aj
Y
j2hFS

hj ð53Þ

where rn is the forward rate of the nth elementary step, kf ;n and kr;n
are the forward and reverse rate constants of the nth elementary

step, aj are the activities of the jth species in the initial state or final
state of the nth step, and hj are the coverages in the initial state or
final state of the nth step. Using the pseudo-steady state approxima-
tion, the rate of change of each surface intermediate can be written
as:

dhj
dt

¼
X
n2rFS

mnrn �
X
n2rIS

mnrn ¼ 0 ð54Þ

where mn is the stoichiometric coefficient of the jth intermediate in
elementary step n. The activities of all species are set to the
following: aCO ¼ 1, aOH� ¼ 0:1, aCO2 ¼ 1e�5, and aH2O ¼ 1, while the
ctrochemical adsorption of OH� is treated as barrierless, making the deprotonation of
ctor of b ¼ 0:5.

f eV=Kð Þ mCO aqð Þ2G0
f ;i

mOH� aqð Þ2G0
f ;i

N/A N/A
:001 �1 0

N/A N/A
:001 0 �1
:002 �1 �1
:002 �1 �1
:002 �1 �1

�1 �1
0 �1



Fig. 3. (a) Gibbs free energy diagram at T ¼ 298:15K corresponding to the energetics listed in Table 2 at a series of applied potentials (b) DRC of each species (c) Simulated
and DRC-predicted apparent transfer coefficient (d) Simulated and DRC-predicted apparent activation energy (e) Simulated and DRC-predicted apparent reaction order (with
respect to aCO) (f) Simulated and DRC-predicted apparent reaction order (with respect aOH� ).
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temperature is set to T ¼ 298:15K. The results of the analysis are
presented in Fig. 3. Fig. 3(b) shows the DRCs of each of the species
in the mechanism, except for COOH� � � �OH�

ðaqÞ, CO2ðaqÞ, and H2OðlÞ,
which each have DRC equal to zero at all potentials and are there-
fore excluded from the plot for readability. It can be seen that the
CO� � � �OH� transition state has a DRC of 1 at all potentials, as it is
the sole rate-determining transition state in the mechanism. The
DRC of the CO� adsorbate shifts from �2 at low potentials to 0 at
higher potentials, which comes from the hCO� changing from 1 to 0
over that potential range. Similarly, the DRC of the OH� adsorbate
shifts from 0 to �2 as the potential is increased due to its increasing
coverage from 0 to 1 over the potential range. Fig. 3(c) shows the
apparent transfer coefficient, which shifts from 1 to �1 as the
potential is increased, with the major change occurring when the
DRCs (and therefore the coverages) of the CO� and OH� adsorbates
change their values over the 0.4–0.6 V potential range. The negative
transfer coefficients can be understood in terms of a decrease in rate
at high potential, which is caused by an overpopulation of OH� elec-
trochemically driven onto the surface; the values predicted by Eq.
(12) match the explicitly-calculated transfer coefficients over the
entire potential range. Fig. 3(d) shows the apparent activation
energy, which decreases when hCO� is high (the 0 to 0.4 V range)
and then increases when hOH� is high (0.6 to 1.0 V range). Prediction
by the DRC formula (Eq. (16)) again matches the explicitly-
computed values at all potentials. Finally, Fig. 3(e) and (f) show
the apparent reaction orders with respect to COaq and OH�

aq. dCOaq

takes on a value of �1 when hCO� saturates, and similarly dOH�
aq

equals �1 when hOH� saturates. Both dCOaq and dOH�
aq
approach unity

when the coverages of CO� and OH� are close to 0, respectively.
The reaction orders predicted by Eq. (27) indeed also match those
explicitly determined from the solution of the microkinetic model.
The above analysis further illustrates the reliability of the DRC
expressions derived in this work to predict the macro-kinetic
observables for a wide variety of electrocatalytic reactions.

3.4. Secondary effects

3.4.1. Electric field effects
In the derivation of the macro-kinetic observables in Section 2,

it was assumed that the effect of the applied potential on the free
energy of a given species was solely due to the electrons trans-
ferred to form that species. However, in many cases the standard
enthalpy and entropy of chemical intermediates can also be
potential-dependent. One way this can be manifested is through
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electric field effects, which can change the binding enthalpy of
adsorbates due to their surface dipole moment and polarizability
[29]. This will be accounted in pure electrostatic terms, neglecting
additional small shifts, for example by changing vibrational fre-
quency, that would also slightly affect entropy. Reproducing Eq.
(9), the Gibbs free energy of species i at a given potential is:

G0
i ¼ H0

i;ref � TS0i;ref þ H0
i � H0

i;ref

� �
� T S0i � S0i;ref

� �
� niF E� Eref

� �
ð55Þ

Now, H0
i is a function of the changing electric field as the poten-

tial is varied. The strength of the electric field at the electrode–
electrolyte interface is approximately proportional to the differ-
ence between the potential-of-zero-charge (pzc) and the operating
potential [30–35], permitting the expression:

H0
i ¼ H0

i;pzc þ DH0
i;EF ð56Þ

where H0
i;pzc is the standard enthalpy of species i at the pzc (i.e. in

the absence of an electric field) and DH0
i;EF is the change in the stan-

dard enthalpy of species i due to the electric field. If we estimate the
thickness of the double layer to be ~ 1Å and assume that the entire
potential drop occurs roughly linearly over this region, then we may
further write (for surface-adsorbed intermediates):

DH0
i;EF ¼ �l0;iðE� EpzcÞ � 1

2
pi E� Epzc
� �2 ð57Þ

where l0;i is the adsorbate dipole moment in eÅ and pi is the polar-

izability in eÅ
2
V�2 [36]. After incorporating this into the total Gibbs

free energy of species i, simplifying, and keeping the entropy term
constant (i.e. S0i ¼ S0i;ref at all potentials), we may write:

G0
i ¼ H0

i;pzc �l0;i E� Epzc
� �� 1

2
pi E� Epzc
� �2	 


� TS0i;ref � niF E� Eref

� �
ð58Þ

The DRC equation for the apparent transfer coefficient can then
be adapted to account for these electric field effects:

a ¼ RT
F

X
i

Xi

@
� H0

i;pzc�l0;i E�Epzcð Þ�1
2pi E�Epzcð Þ2

� �
RT þ S0i;ref

R þ niFðE�Eref Þ
RT

� �
@E

2
664

3
775

¼ RT
F

X
i

Xi l0;i þ pi E� Epzc
� �þ ni

h i
ð59Þ
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Similarly, the apparent activation energy can be written as:

Eapp ¼ kBT

þ
X
i

Xi H0
i;pzc�l0;i E�Epzc

� ��1
2
pi E�Epzc
� �2�ni E�Eref

� �	 
" #

ð60Þ
The apparent reaction order equation remains unaffected since

it contains no explicit dependence on the standard enthalpies of
the species in the mechanism outside of the DRC terms themselves.

We can now examine how the field effects produce deviations
from the idealized behavior for the simple two-step oxidation
mechanism from Section 3.2 (specifically, using the ‘‘Case 1” ener-
getic parameters). We assign the intermediate I� physically reason-

able values of l0;I ¼ �0:133eÅ and pI ¼ 0:083eÅ
2
V�2 (calculated by

others to be representative of the CO* adsorbate on Pt (111) [36]),
and also assume that the pzc is identical to the reference potential
on this hypothetical material for simplicity. Fig. 4(a–c) shows the
transfer coefficient, apparent activation energy, and apparent reac-
tion order for both the idealized case (black lines - simulated, red
markers – DRC equations) and the case with electric field effects
(blue lines - simulated, yellow markers – DRC equations). It can
be seen that all three observables deviate in a somewhat signifi-
cant manner from the ideal scenario when these secondary effects
are accounted. In this particular example, the I� adsorbate’s bind-
ing enthalpy is weakened due to the electric field as the potential
is increased, which has the effect of decreasing the apparent acti-
vation energy relative to the ideal case. Indeed, the ideal and
non-ideal cases match at high potentials where hI� is low and
therefore the binding energy of I�is inconsequential to the rate of
reaction. However, we note that for all observables, for both the
ideal and non-ideal cases, the predictions of the DRC equations
derived in this work match exactly the explicitly calculated param-
eters, indicating that the DRC expressions can be modified as
shown in Eqs. (59) and (60) to capture electric field effects.

It is important to also note that the electric field can have many
other effects, for example in the ordering of interfacial solvent
molecules. In aqueous systems, interfacial water may adopt prefer-
ential orientations depending on the strength and direction of the
electric field [37], which has been shown, for example, to affect the
pH-dependent kinetics of the hydrogen evolution reaction [31,35].
Near the pzc, the interfacial water adopts a configuration of ‘‘max-
imum entropy” since there is no field imposing an orientation [38].
These configurational influences will not only affect the reorgani-
zation energy of electron transfers but also change the extent to
which water stabilizes various chemical species through hydrogen
bonding [39]. A further implication is that solvation energies of
adsorbates are not expected to be constant across different materi-
als, since their work functions and thus pzc’s can vary and lead to
Fig. 4. (a) Apparent transfer coefficient (b) apparent activation energy and (c) apparen
values – black line, DRC-calculated values – red ‘‘x” markers) and the case of electric field
– yellow ‘‘x” markers). The dipole moment of the intermediate ‘‘I” was set to �0.133 eÅ,
other parameters match the ‘‘Case 1” energetics from Table 1. (For interpretation of the r
this article.)
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different electric field strengths at a given applied potential. Given
these considerations, it is clear that there does not yet exist a gen-
eral quantitative description of how the potential is expected to
change the Gibbs free energy of the chemical intermediates in
the mechanism—especially those interacting strongly with solvent.
Naturally, further effects can be built in to the framework here
with additional energy terms and appropriate parameterization,
and more accurate modeling might be achieved by the use of free
energies directly calculated by ab initio approaches, for which
grand canonical (fixed potential) simulations and large scale
molecular dynamics for solvation are becoming more accessible
[20,40,41]. The examples here and in the following section simply
serve to illustrate the general approach to incorporating these
effects and the degree to which a subset of realistic nonidealities
can cause deviations from the predictions of basic mechanistic
models.
3.4.2. Potential-dependent symmetry factors
We next consider the fact that the symmetry factor of an ele-

mentary charge-transfer step can be potential-dependent. This lar-
gely relates to the transition state becoming earlier or later with
respect to changing potential and can still be interpreted in terms
of an extent of partial charge transfer at the transition state. To
capture the potential-dependence, we may write a linear approxi-
mation for the number of electrons transferred to reach the state
as:

ni ¼ ni;ref þ ci;e� E� Eref

� � ð61Þ

where ci;e� is a linear scaling parameter capturing the extent to
which the elementary symmetry factor changes with the applied
potential. Marcus theory is an example of a model which predicts
a symmetry factor that is a linear function of the applied overpoten-
tial; in the simplest version it suggests the form [42]:

bi ¼
1
2
þ Fgi

2ki
ð62Þ

where ki is the solvent reorganization energy (usually up to a
few eV) corresponding to the elementary step forming transition
state i, and gi is the overpotential with respect to the equilibrium
of that step. In this case, the linear scaling parameter is:

ci;e� ¼ F
2ki

ð63Þ

While the linearity only strictly applies to outer-sphere electron
transfers and can in particular deviate under large electronic over-
lap and hybridization between intermediates and the electrode
[43], Eq. (63) provides a means to estimate a reasonable magnitude
for ci;e� . We also note that the linear scaling parameter is equal to
t reaction order for Mechanism 1 (Section 3.2) for both the idealized case (explicit
effects as described in Section 3.4.1 (explicit values – blue line, DRC-calculated values
the polarizability to 0.083 eÅ

2
V�2 and the pzc was set to the reference potential. All

eferences to colour in this figure legend, the reader is referred to the web version of
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zero for intermediates with integer ni in their respective formation
energies, as only transition states are associated with a symmetry
factor.

Incorporating potential-dependent symmetry factors into the
total Gibbs free energy of each species, and assuming that no other
nonidealities are present, we may write:

G0
i ¼ H0

i;ref � TS0i;ref � ni;ref þ ci;e� E� Eref
� �� �

F E� Eref
� � ð64Þ

The adapted equation for the apparent transfer coefficient is
then written as:

a ¼ RT
F

X
i

Xi

@
�H0

i;ref

RT þ S0i;ref
R þ ni;refþci;e� E�Erefð Þð ÞFðE�Eref Þ

RT

� �
@E

2
664

3
775

¼ RT
F

X
i

Xi ni;ref þ 2ci;e� E� Eref

� �h i
ð65Þ

while the apparent activation energy can be written in the fol-
lowing way:

Eapp ¼ kBT þ
X
i

Xi H0
i;ref � ni;ref þ ci;e� E� Eref

� �� �
E� Eref
� �h i

ð66Þ

To demonstrate the impact of potential-dependent symmetry
factors, we consider again the simple two-step oxidation mecha-
nism from Section 3.2 using the energetics outlined as Case 1 in
Table 1. Fig. 5 (a-c) similarly show all three macro-kinetic observ-
ables for the ideal case, as well as the case where the barriers for
both steps are treated as having potential-dependent symmetry
factors according to Eq. (61). We choose a value of ce� ¼ 0:166
for both of the elementary step transition states, which would cor-
respond to a reorganization energy of 3 eV, reasonable for elec-
trode adsorption/desorption processes [44]. Both the transfer
coefficient and the apparent activation energy deviate noticeably
from the ideal cases, while the apparent reaction orders with
respect to aR are identical (they perfectly overlap each other which
makes only one set of markers visible). The reason why the reac-
tion order remains unaffected relative to the ideal case is due to
the fact that both TS1 and TS2 were made ‘‘equally non-ideal”,
yielding the same balance in the coverage of I� as in the ideal case.
Ultimately the example shows that the DRC equations again are
valid for predicting all of the explicit macro-kinetic observables.
3.4.3. Adsorbate-adsorbate interactions
Finally, perhaps the most universal nonideality across all areas

of surface kinetics can come from changes to the adsorption energy
of a given species, induced by the coverages of adsorbates on the
surface. A Frumkin adsorption isotherm is one estimation of this
effect, which approximates the standard Gibbs free energy of a
Fig. 5. (a) Apparent transfer coefficient (b) apparent activation energy and (c) apparent
line, DRC-calculated values – red ‘‘x” markers) and the case of potential dependent symm
All parameters were assumed to be ideal except the linear partial charge transfer scaling
energy of 3 eV. All other model parameters are identical to ‘‘Case 1” from Table 1. (For int
the web version of this article.)
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single intermediate as a function of that intermediate’s coverage
(at a given potential) as:

G0
i ¼ G0

i;hi¼0 þ zihi ð67Þ
where zi is an interaction parameter specific to species i more gen-

erally written as zi ¼ dG0
i

dhi

� �
. Positive and negative values represent

repulsive and attractive interactions, respectively. The coverage-
dependent equilibrium constant associated with adsorption of an
intermediate i obeying a Frumkin-type isotherm can then be
expressed as:

K hið Þ ¼ exp
� DG0

i þ zihi
� �

kBT

0
@

1
A ¼ Khi¼0 exp

�zihi
kBT

	 

ð68Þ

where Khi¼0 is the equilibrium constant in the limit of zero coverage
of }i}. We once again apply nonideality, here through a Frumkin-
type isotherm for I�, to the simple two-step oxidation mechanism
with the energetics outlined as Case 1 in Table 1. This yields the fol-
lowing corrections to the desorption rate constants associated with
intermediate I� (while the non-adsorbed species are unaffected):

k1;r hIð Þ ¼ k1;r;hI¼0 exp
zIhI
kBT

	 

ð69Þ

k2;f hIð Þ ¼ k2;f ;hI¼0 exp
zIhI
kBT

	 

ð70Þ

Since both the apparent reaction order and apparent transfer
coefficient are functions only of the DRCs of the various species
in the mechanism and the number of electrons in a given state,
the only macro-kinetic observable requiring an explicit adjustment
in its written form is the apparent activation energy, which
becomes:

Eapp ¼ kBT þ
X
i

Xi ðH0
i;ref þ zihiÞ � ni E� Eref

� �h i
ð71Þ

which accounts for the effect of the coverage on the standard-
state enthalpy of a given species. Fig. 6 shows examples of the
three macro-kinetic observables for a few different cases of repul-
sive interactions among species I�. As the interaction parameter
increases in magnitude, each of the observables begins to deviate
significantly from its respective low coverage limiting behavior.
As expected, imposing repulsive interactions to the I� intermediate
results in a decrease in the apparent transfer coefficient and appar-
ent activation energy at potentials where hI� is significant (while
the apparent reaction order with respect to Rðf Þ increases due to
a mitigation of the inhibitory effects of I�). At high potentials where
hI� is low, the ideal and nonideal cases are identical since I� has a
low DRC under those conditions. However, in all cases the DRC-
predicted values again match exactly the explicitly-simulated
reaction order for Mechanism 1 for both the idealized case (explicit values – black
etry factors (explicit values – blue line, DRC-calculated values – yellow ‘‘x” markers).
parameter, ce� , set to 0.166 for both TS1 and TS2, corresponding to a reorganization
erpretation of the references to colour in this figure legend, the reader is referred to



Fig. 6. (a) Apparent transfer coefficient (b) apparent activation energy and (c) apparent reaction order for Mechanism 1 with varying values of the Frumkin interaction
parameter zI . All energetic parameters other than the Frumkin correction parameter correspond to ‘‘Case 1” from Table 1. The four values of zI shown above are, in increasing
order, [0, 0.05, 0.10, 0.25].
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values. Therefore, we conclude that, while accounting for adsor-
bate–adsorbate interactions may be necessary to correctly capture
the behavior of electrocatalytic systems that operate at high cover-
ages, the DRC equations can still apply to these cases incorporating
only the small change made in the description of the apparent
activation energy above.
4. Conclusions

The equations derived herein provide simple descriptions of
various macro-kinetic observables in terms of the DRCs of each
of the species in an electrocatalytic mechanism. Since the thermo-
dynamic DRCs of reaction intermediates can be directly related to
their surface coverages, these expressions can provide a direct link
between the macro-kinetic behavior of a reacting system (Tafel
slopes, activation energies, and reaction orders) and microkinetic
quantities which can also be experimentally interrogated (e.g. cov-
erages). It is worth noting that experimental coverages can also be
used to infer the likely transition states with high DRCs – for exam-
ple, high-coverage intermediates are typically followed, as opposed
to preceded, by high-DRC transition states in a given pathway.
Moreover, since it is typical that only a few species in the mecha-
nism have non-negligible DRCs, these expressions can greatly sim-
plify the process of formulating hypotheses about reaction
mechanisms and comparing the resultant predictions to experi-
ment. It is interesting to note that each of these macro-kinetic
observables are also correlated in a well-defined way, in the sense
that they each depend on a common set of variables which are the
DRCs of each of the species in the mechanism. Considering both the
inherent complexities of multistep mechanisms as well as possibil-
ities of significant nonidealities, we advocate that a holistic
approach should be taken to identify likely mechanisms of electro-
chemical processes, specifically incorporating reaction data across
a wide range of potentials, temperatures, and reactant activities in
order to compare to the predictions of microkinetic models using
the equations derived in this work.
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