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Abstract—We  propose a novel compute-in-memory
(CIM)-based ultralow-power framework for probabilistic
localization of insect-scale drones. Localization is a critical
subroutine for path planning and rotor control in drones, where
a drone is required to continuously estimate its pose (position
and orientation) in flying space. The conventional probabilistic
localization approaches rely on the 3-D Gaussian mixture model
(GMM)-based representation of a 3-D map. A GMM model with
hundreds of mixture functions is typically needed to adequately
learn and represent the infricacies of the map. Meanwhile,
localization using complex GMM map models is computationally
intensive. Since insect-scale drones operate under extremely
limited area/power budget, continuous localization using GMM
models entails much higher operating energy, thereby limiting
flying duration and/or size of the drone due to a larger battery.
Addressing the computational challenges of localization in an
insect-scale drone using a CIM approach, we propose a novel
framework of 3-D map representation using a harmonic mean
of the “Gaussian-like” mixture (HMGM) model. We show that
short-circuit current of a multiinput floating-gate CMOS-based
inverter follows the harmonic mean of a Gaussian-like function.
Therefore, the likelihood function useful for drone localization
can be efficiently implemented by connecting many multiinput
inverters in parallel, each programmed with the parameters of
the 3-D map model represented as HMGM. When the depth
measurements are projected to the input of the implementation,
the summed current of the inverters emulates the likelihood of
the measurement. We have characterized our approach on an
RGB-D scenes dataset. The proposed localization framework
is ~25x energy-efficient than the ftraditional, 8-bit digital
GMM-based processor paving the way for tiny autonomous
drones.
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I. INTRODUCTION

PATTALLY intelligent devices can autonomously traverse

and explore their application domain, thereby opening
intriguing prospects for sensors and embedded systems. For
example, in an agriculture field, flying cameras can locate
infected plants to prevent disease spread [3], [4]; flying gas
sensors can identify gas leaks in an industrial plant [5],
[6]; during earthquakes, autonomous cameras can assist in
search and rescue missions by navigating through building
debris [7], [8]; and inside a home, a flying camera can
actively monitor fire breakouts and intruders [9], [10]. Thus,
most embedded systems, enlivened by spatial intelligence,
can have dramatically elevated use cases. However, the fly-
ing devices must also be small enough to be nonintrusive
to people in the flying spaces and be able to navigate
through constricted spaces. Recently, impressive progress has
been made in miniaturizing drones. The so-called insect-
scale drones studied in [1] and [11]-[13] weigh less than
a gram and are smaller than a penny as shown in Fig. 1.
Meanwhile, since an insect-scale drone can only carry the
payload of a tiny battery, minimizing power dissipation of
on-board processing for spatial intelligence becomes extremely
critical [14]. Our motivation for exploring ultralow-power on-
board processing of robotic tasks such as localization comes
from recent insect-scale drone designs [1], [2], [15], [16]
where power requirements for flights have already scaled down
to levels comparable to necessary for drone autonomy. For
example, RoboFly [1] weighs only 100 mg with a wingspan
of 30 mm and requires only ~50 mW power for hover-
ing. Meanwhile, current custom-designed state-of-the-art chips
require tens of milliwatt power for drone localization and
odometry [14], [17]. In Fig. 1, we consider further scaling
trends for insect-scale drones considering two approaches.
In the first mass scaling approach, only drone weight is scaled
down. For example, lighter drone materials such as graphene
can be used [2]. In the second mass and wing-span scaling
approach, both weight and wing-span are proportionally scaled
down. Considering simple physics laws [18], the necessary
power for drone hovering scales down as ~m*/?/r where
m is the drone mass and r is its wingspan radius. In the
figure, with 50% reduction in RoboFly’s weight, the necessary
hovering power reduces to ~20 mW. Therefore, to support the
continued scaling of insect-scale drones, disruptive approaches
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Fig. 1. Power with scaling down of drone’s mass and dimensions. The

insect-scale drones, RoboFly [1] (inset figure), and RoboBee [2] weigh less
than a gram and are smaller than a penny.

to support ultralow-power localization will be necessary. While
the cloud can be leveraged to circumvent the above on-board
processing challenges, in many applications, reliable contin-
uous connectivity to the cloud cannot be assumed. Cloud-
based control may also suffer from unpredictable latency.
Moreover, continuous transmission of drone’s video stream to
cloud itself is energy hungry [19]. Hence, on-board ultralow-
power processing capacity for self-navigation is indispensable.
The most basic operation for self-navigation is to determine
the position and orientation (i.e., pose) of a drone during
its flight. Path planning objectives such as motion tracking
and obstacle avoidance require one to continuously assess
the drone’s pose. Therefore, drone localization must also be
evaluated in real-time. Additionally, since the flying space
of a drone is dynamic, drone localization must be robust
against dynamic variations in the flying space. For example,
in an indoor application, there will be movement of people
and changes in lighting conditions. Localization of a drone
must be robust against these variations. Bayesian probabilistic
inference is a promising approach for enhancing the robust-
ness of inference by extracting both the prediction and the
confidence of prediction [20]-[22]. A probabilistic framework
for drone localization models the likelihood of measurement
against a hypothesized drone’s pose model [23]. The pos-
terior probability of drone’s pose can be compared against
competing hypotheses to identify the most likely one. The
likelihood models can also estimate the prediction confidence
based on the variance of the prediction. A high confidence
prediction will have low variance in estimates and vice versa.
Nonetheless, current state-of-the-art probabilistic localization
models are quite computationally intensive. While predictive
robustness of a probabilistic localization is highly desirable
in an insect-scale drone, incorporating the same is quite
challenging due to limited computational resources as well
as the need to predict in the real-time. Overcoming the above
challenges, this work makes the following key contributions:
1) We propose a novel representation of 3-D maps using a
harmonic mean of a “Gaussian-like” mixture (HMGM)

model. We show that, unlike a Gaussian mixture model
(GMM), HMGMSs can be computed with much higher
efficiency and enable a similar localization accuracy as
GMM. We also discuss an expectation maximization
(EM)-based learning procedure for HMGM s extraction.
2) We use the key property that the short-circuit current of
a multi-input floating gate (FG) CMOS inverter circuit
follows the harmonic mean of Gaussian-like (HMG)
functions. Therefore, by emulating the key computing
kernels in our localization approach directly at the
transistor level, we are able to minimize computing
workload and data movements in the processing, and
thereby energy demand for the computing. Using the
proposed implementation illustrated in Fig. 2, the local-
ization model is evaluated with high parallelism, and
therefore, timing and energy constraints for real-time
predictions that were hard to achieve are now feasible.
3) We have characterized our localization approach using
an RGB-D dataset for 12 scenes. The maximum local-
ization error in our hardware-based approach is 1.56 m
from the ground truth for Scene-08 which is only slightly
worse than software-based error, viz. 1.39 m. Our
localization framework, meanwhile, is ultralow power.
Our approach consumes ~2.1 pJ when processing a
depth pixel in 20 ns to compute log-likelihood of
a hypothesized pose in particle-filtering (PF). Com-
paratively, a customized 8-bit digital processor con-
sumes ~358 pJ energy which is 170x higher than our
approach. We have also rigorously analyzed the impact
of process variability and limited precision in our design
and document methodologies to mitigate their impact.

II. OVERVIEW OF PROBABILISTIC LOCALIZATION

Localization of an autonomous mobile agent invites uncer-
tainties in its pose estimates. A probabilistic localization
framework can rigorously account for such modeling and
measurement uncertainties to not only predict the estimated
pose but also the confidence of prediction, which is expressed
by the variance of the predicted estimate. Extracting prediction
confidence along with the prediction itself allows for a risk-
aware navigation, wherein the drone can seek additional
measurements if the prediction confidence is low.

Using Bayes’ rule, the posterior probability of pose (x) of
a drone is given by
P (z|x) P (x)

P(z)

Here, P(z|x) is the likelihood of measurement z and P (x)

is the prior probability of pose belief. A maximum likelihood

estimate (MLE) of drone’s pose maximizes the likelihood of
the current measurement, that is,

P(x|z) = 1)

2

Meanwhile, the maximum a posteriori estimate (MAP)
of pose searches for the estimate that maximizes posterior
probability of the pose, that is,

XMLE = argmax P (z|x).

Xmap = argmax P (z|x)P(x).

3
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CIM-based ultralow-power Monte Carlo localization framework for insect-scale drones. The framework inputs sequential depth projections. CIM is

programmed with HMGM model parameters. CIM computes likelihood of depth measurements corresponding to hypothesized pose which is further used in

particle filtering (PF) to predict the pose of drone.

Under global localization, when the drone is completely
uncertain about its pose, MAP and MLE are equivalent. Other-
wise, MAP estimate allows for a systematic way to account for
prior belief. Using probabilistic localization, a drone can also
recursively integrate sequential measurements in a systematic
framework to reduce its estimation uncertainties. Bayesian
Jiltering [24] is a well-established localization method for this
purpose where the belief of drone’s pose can be estimated
using a recursive flow of Bayes’ rule as

bel(x) = > P(xi[ue, Xe—1)bel(xi—1)

X1

bel(x¢) = nP (z|x)bel(xy).

(42)

(4b)

Here, bel(x¢) in (4a) is the drone’s new pose belief at
iteration “t.” bel(x¢_1) is the pose belief at previous iteration
“t — 1.” uq is the control input to the drone. P(X¢|u¢, X¢—1) is
the probabilistic motion model exploiting Markov assumption
where belief of x; depends only on the previous state’s
belief, and the most recent control signal u;. Equation (4b)
is the correction on the new pose belief based on the sensor
measurements.

Particle filtering [25], [26] allows a practical implementation
of Bayesian filtering under arbitrary likelihood and belief
function profiles by using a Monte Carlo method. Instead of
relying on analytically defined likelihood and belief functions,
the method considers a set of hypotheses (aka particles) sam-
pled based on the underlying density functions. Each particle
has an associated weight index which is updated based on the
measurements following the above equations. Unlikely parti-
cles with low likelihood are sequentially filtered out with each
measurement. Various uncertainties, such as in drone’s motion
control, are accounted for by regenerating a new particle set
from the current, where children particles represent stochastic
deviations corresponding to motion control uncertainties.

Although Bayes’ rule-based probabilistic localization allows
a systematic framework to seamlessly integrate single-shot

MLE/MAP estimates of drone poses as well as sequential
localization steps (Bayesian filtering) as discussed above,
the procedure can be quite computationally intensive. The
most dominant complexity is the estimation of likelihood term
P (z|x) itself since the measurements (images/depth maps) are
high dimensional and models correlating drone’s pose with the
measurements can be quite complex depending on the size and
intricacies of the 3-D map.

A popular approach to extract P(z|x) is by modeling
the 3-D map using a GMM [27]-[29]. Using 3-D scanning
devices, such as Microsoft Kinect [30], [31], a point-cloud
data-based 3-D map of the domain can be captured. A GMM
is synthesized to model the point-cloud data which essen-
tially represents the density of “matter” in the 3-D map.
To adequately model intricacies of the 3-D map, a sufficient
number of mixture functions in the GMM are necessary.
During flight, depth sensors in a drone capture a depth map
of its current observation. Although depth sensing is energy
expensive, recent works such as [32] have shown energy-
efficient, small form-factor depth sensors, suited for insect-
scale drones. Based on the current pose belief, the scan z of
N nonzero depth map pixels {zy, z2,...,zn} is projected to
3-D via the camera’s projection model

Ce = ¢ (5a)

Cw = [Cc — Tew]Rey- (5b)

Here, Cy, Cy, and C, are the point coordinates in 3-D
space. Their 2-D perspective projection in the camera frame
is (f(Cy/Cy), f(Cy/Cy)). C. is the depth pixel coordinate
matrix in camera frame mounted on the insect-scale drone. f is
the focal length, and o, and oy are optical offsets. T,y and Rey
are translation and rotation matrices, respectively, transforming
depth scans in camera frame to the world frame based on
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the pose belief. Thereby, P(z|x) is estimated by evaluating
P (Zproj (X, Z); ©), where Zproj(-) is the projection function
of measurements z to 3-D space based on pose belief x. © are
the GMM parameters.

In a typical evaluation of pose localization, the likelihood
Pomm(Zproj (X, Z); ©) is computed for hundreds of nonzero
depth pixels and over hundreds of mixture functions in
the GMM model. Therefore, the computational workload of
P(z|x) is excessive. Moreover, during a flight, the drone needs
to continuously localize itself; hence, the timing constraints
on P(z|x) are also stringent. In Section III, we discuss a
novel approach to considerably minimize the energy demand
for measurement likelihood evaluation which eventually leads
to a viable low power probabilistic localization approach for
insect-scale drones.

In Fig. 3, we show the computational breakdown of various
steps in a Monte Carlo localization algorithm which are
discussed elaborately in Section V. In the figure, we con-
sider hundred pose-hypotheses (particles), hundred mixture
components, and depth image of 640 x 480 pixel reso-
lution for a 3-D localization test case. The computational
breakdown is extracted by considering the total number of
operations in each step, whereas each operation consists of
an addition, subtraction, multiplication, division, or memory
access. As evident in the figure, likelihood evaluations are
the most computationally expensive step in a Monte Carlo
localization algorithm. The workload of likelihood evaluation
increases further with more mixture components (necessary for
a more extensive flying space) and more particles (necessary
for higher robustness). Therefore, in this work, we have mainly
focused upon exploring alternative processing procedures to
minimize the workload of likelihood evaluations.

ITII. ULTRALOW-POWER PROBABILISTIC LOCALIZATION

Prior works [27]-[29] use a GMM to probabilistically
represent a 3-D space, that is, model the density of matter
in the 3-D map. However, evaluation of likelihood models
based on GMM is computationally intensive. A dimension of
each mixture function in GMM requires subtractions, multi-
plications, additions (to compute the exponent of a Gaussian
function) as well as look-ups (to add exponents using a log-
ADD table [33]-[35]). Since these operations are repeated on
all dimensions, mixture functions as well as the hypotheses,
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likelihood evaluation of a typical depth map may require tens
of thousands of arithmetic operations and hundreds of memory
look ups to evaluate the likelihood of a single measurement.

A. Mixture of HMG Functions

We discuss a novel representation of 3-D maps which can
considerably simplify the computation of measurement like-
lihoods. Consider the six transistor inverter design controlled
by three input voltages, Vx, Vy, and Vz, in Fig. 4(a). The
transistors in the inverter comprise an FG to program threshold
voltage (VTH) [36]-[38]. Therefore, by programming the
charge density in the FG, the VTH of transistors can be
programmed in a nonvolatile manner. In Fig. 4(b), the inverter
current, Iyy, through series-connected transistors emulates a
Gaussian-like function. The figure shows Iy when varying
one of the input voltage—Vy, Vy, or Vz—while keeping the
others fixed.

Notably, the Gaussian-like nature of inverter’s short-circuit
current can be understood by representative transistor’s current
equations. In Fig. 4(b), close to the peak, inverter’s short-
circuit current is governed by equating nMOS and pMOS
current in the saturation regime, that is,

Iy sar ~ %me (1 + 2, Vour) (6a)
Ipsar =~ )3_2,0 V}r,p(l + 4p,(Vop — Vour)). (6b)
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Here, V4rn = Vin — Vrm, is nMOS’s drive voltage and
Vir,p = Vob — Vin — Vr,p is pMOS’s drive voltage. Vry »/p
is the VTH of nMOS/pMOS, Viy is the input voltage to the
inverter, 4 is the channel length modulation (CLM) parameter,
and f, and f, are the transconductance coefficients of nMOS
and pMOS, respectively. Since Iy sat = Ip sat, Vour. and Viy
are related as

ﬂp Vd?r,p(l 4 '?'P Vop) — ﬂ-"* der‘u
’:l'ﬂﬁﬂ der,rx + ’?'Pﬁp Vd?r,p
Therefore, inverter’s short-circuit current near the peak is
determined by applying Vour expression from (7) to (6a).
Under the setting, f, = f, and negligible CLM, inverter’s
current near the peak is given by

)

Vour =

V2

2
v dr,p

dr,n
2 2 ®
Vdr,u + Vdr, i

Therefore, the peak current voltage, Vpea, is centered at
Vdr‘n = Vd,‘p, that is, (VDD —+ VTH,n — Vmp)ﬂ At VTH,n ]
Vru,p» Vpeak i8 at Vpp/2. Vpeax can be modulated by A amount
by programming inverter’s VIHs as Vg, — V. + A and
Vrup, — Vrup — A. Under these settings, the peak current
magnitude is the same, and only Vjeax modulates. Also, note
that close to the peak, IiNvnear peax has a quadratic dependence
to Vin, just like a Gaussian function has to the input variable
near its peak.

Away from the peak, the inverter’s current is governed by
nMOS’s (pMOS’s) subthreshold current, that is,

Var,
I & ID‘ner( - ‘;: ) &)

Here, Vr is the thermal voltage and I, is the leakage
current at Vy., = 0. Therefore, at the tail, the inverter’s
current decays exponentially. However, unlike in a Gaussian
function, the exponent is linearly dependent on the argument
variable (V). Therefore, we can model the inverter’s short-
circuit current using a “Gaussian-like” function defined as

(Vin — p)? )
oa+|Vin— D)
Here, x4 is the input voltage where the inverter’s short-
circuit current peaks and depends on Vg, and Vry,p. a is a
fitting parameter that models the transition from quadratic to
exponential dependence of Iyy at increasing/decreasing Vin.
o models the variance of Iyyy and it depends on the thermal
voltage and transistor’s ideality factor n. Fig. 4(b) shows
the correlation between the inverter current model in (10)
and HSPICE-simulated inverter’s short-circuit current in linear
and log domains. Fig. 4(c) shows the modulation of u by
programming Vry, and Vg p in the inverter design.

Fig. 4(d) and (e) shows the contour and surface plots,
respectively, of Iyyv when varying two gate voltages at a
time. At sufficiently higher supply voltage (VDD), under
CLM, the peak current of an inverter linearly follows the
voltage drop AV across the inverter, that is, Inyv oc AV.
Therefore, when multiple inverters are connected in series,
as in the 6-T inverter design in Fig. 4(a), the overall current
of multiinput inverter follows 1/(1/Iiv,1 + /Iy 2 + 1/nv3)

®)

I INV.near_peak ~ ﬁn

Iy =~ Io‘INveKP(— (10)

which is equivalent to the harmonic mean of currents from the
constituent inverters. Under a multivariate control of inverter’s
current, that is, when more than one input voltages vary
simultaneously, the characteristics of Iy are, therefore, more
closely represented by an HMG function in (10) where each
constituent 1-D function is controlled by input Vyx, Vy, and V7.
The column current in the design follows a harmonic mean
of Gaussians since current through each stacked inverter is
proportional to a Gaussian-like function. Therefore, vertically
stacking them accumulates their currents through Kirchhoff’s
law, leading to harmonic mean of Gaussian dependence to the
overall column current. The column current can be expressed
as

Iomvap
Vi )
2iexv,z exp(ﬂ'z{a'HVi—P-iD)

Here, puyx, py, and pz are the respective mean of
Gaussian-like functions which are controlled by the VTH of
transistors connected with the input voltage Vx, Vy, and Vz,
respectively.

Notably, compared to a multivariate Gaussian function,
the implementation and evaluation of HMG in Fig. 4 is much
simplified. While a digital implementation to evaluate mul-
tivariate Gaussian will require multiplier, adder, and look-up
tables for exponential or log-ADD function [39]-[41], HMG
in Fig. 4 is implemented using only six transistors and can
be evaluated by applying analog voltages Vy, Vy, and V7.
Also, compared to [42], the model can be implemented using
FG CMOS transistors and does not require modifications in
transistor design and processes. As we will discuss later, for
drone localization, Vy, Vy, and Vz will correspond to depth
pixel’s projection along 3-D spatial dimensions. A model with
mixtures of HMG functions can also be simply implemented
by connecting many multiinput inverters in Fig. 4(a) in paral-
lel, each corresponding to a mixture component, and sharing
their gate-input terminals. The total current from the parallel
inverters will thus emulate the likelihood of measurements
applied at the gates.

The likelihood of 3-D projection of depth scan, dpe,s, for
localization can, therefore, be computed using HMGM as

an

Inv =

N M

E(dmeas|©®) = D 0 D>~ A Iy (Vy, Vi, Vis py, 03, 05). (12)
i=1  j=1

Here, [V} V] V%] is the 3-D projection of ith depth pixel
to the world frame. Projection of depth scan to world frame
was discussed in (5). © represents the parameter set for
HMGM, comprising of 4; (mixing proportion), u; (mean),
o; (standard deviation), and a; (fitting parameter) for each
respective mixture component i.

B. EM for HMGM

Parameters of HMGM (©) can be learned by adapting
EM [43] procedure as shown in Algorithm 1. We begin
with randomly initializing ©. In the E-step, we compute
the expected value of the log likelihood of 3-D map’s
point cloud dataset dpc, that is, £(dp|©;). In the M-step,
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Algorithm 1 EM for HMGM Representation

Input: dpc (Point-cloud co-ordinates)
@init (Initial HMGM parameters)
(o and o are tied to be same for all mixture
components simplifying hardware complexity)
o and o (predetermined from inverter characteristics)
7 (EM tolerance)
Ir (Learning rate)
N (Total point-cloud data points for EM)
M (Number of HMGM components to learn)
while AE > 7 do
E-step:
fori=11to N do
Compute:
Membership probability, M(d%.|©(*)):
Mp=0
for j =110 M do
M; = M1 + A Imv(dpe; pj, 0, @)
Ipyv(-) — expressed in (11)
end
Expected log hkeh]mod(fp rtlonaltoI‘rNg
)+ )

odi.|0M) = y(dist e In M(d}, |©
end
Expectation, £(t) = £(dpc|O))
M-step:

ot+1) = arg maxg £(dpc|©®))
end )
OQOutput: @eptimal (oyiracted HMGM parameters)

we compute optimal parameters @+ that maximizes the
expected log likelihood formulated in the E-step, that is,
O™ = argmaxg £(dy|©;). E-M steps are repeated until
the log-likelihood of HMGM converges.

Under full programmability, variance oj of each mixture
function can be learned independently. However, in our sim-
plified implementation, the variance of each mixture function
is dictated by the technology and transistor parameters (width,
length, etc.). Conversely, the proposed scheme can easily
implement a larger number of mixture functions with lim-
ited resource/power overhead. Therefore, we exploit a larger
number of mixture components in our implementation to
compensate for the lack of flexibility due to a tied variance.
In Algorithm 1, only the mean and weights of mixture com-
ponents are learned, therefore, and a predetermined o based
on 6T-inverter characteristics is used.

Fig. 5(a) illustrates the fitting of Scene 1 in RGB-D
dataset [44] using our HMGM-based model implemented
through inverter array. We use “model score” to quantify the
goodness of fit. The model score (MS) is evaluated as the
average of HMGM function’s value on point cloud data, dy.,
in the negative log domain, that is,

e ZIHZA Invy (dpe; ©Y).
i=1 j=1

A higher model score indicates a better representation
of point cloud data. Fig. 5(b) shows that the model score
for HMGM increases with EM iterations and then plateaus.
Fig. 5(b) also shows the model score for GMM which shows
similar fitting profile. In Fig. 5(c), the model score is plotted
at increasing number of mixture components for both HMGM
and GMM models. The model score for both models improves
with more mixture components and then plateaus. Although

(13)

73

2 2.5
£o % 2.0
a2 b
$-2 g1
=]
£, z Model
1.0 w— HMGM
— GMM
-6

o =1-1-1-1-1-1-]-T-7-7-T-]-1-]-]
MmO~ eRoHNMmT N
-

# Mixture components

(c)

Fig. 5. (a) HMG mixture (HMGM) function representation of an indoor scene
point cloud. (b) Model scores of HMGM and GMM during EM iterations to
optimize model parameters over the point cloud. (c) Model scores improve
with increase in the number of mixture components.
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Fig. 6. (a) Architecture of the FG transistor-based CIM based on HMGM to
evaluate pose likelihood. (b) Logarithmic ADC converting fi|. into digitized
log likelihood.

the model score of the conventional GMM model is better than
our HMGM model, the former model is much more complex
to implement; meanwhile, each mixture in our HMGM model
only requires six transistors.

C. CIM Likelihood Estimator

Fig. 6(a) shows the architecture of a compute-in-
memory (CIM) implementation based on the HMGMs for
ultralow-power likelihood evaluations. The architecture com-
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prises of parallel columns, each constituting a multiinput
inverter design in Fig. 4. The gate voltages, Vx, Vy, and Vz,
are shared among columns. Each column injects a current
proportional to HMG to /i, line at the top. The current of all
column lines are summed to produce the net current mimicking
the likelihood estimation which is then converted to digital
domain using an analog-to-digital converter (ADC). Since
each column in Fig. 6(a) comprises transistors of identical
dimensions, the effect of mixture function weight is accom-
modated by mapping mixture functions with higher weights
on proportionally more number of columns as shown in the
figure.

By passing current-mode likelihood estimates from our FG
inverter array to a log ADC, logarithm of the likelihood
estimates can be performed during digitization itself and
an additional digital-domain logarithm operation will not be
needed. Therefore, instead of a linear ADC, we have chosen a
logarithmic ADC. The architecture of N-bit logarithmic ADC
is shown in Fig. 6(b) that converts an analog input voltage
(Vin) into digital bits based on the following equation [45]:

W by_12N "' +...+b
log,, (Vr:ge x 10‘7) =N 2: i ]

Here, C is the code efficiency factor where larger values of
C emphasize smaller signals, resulting into higher dynamic
range. The logarithmic adaptation of a conventional linear
ADC would replace squaring operations with multiplication
by 2 and similarly division with subtraction. Therefore, log-
ADC is not computationally cumbersome avoiding complex
operations like squaring and exponents. To convert analog
current, Iiy, representing likelihood of depth scan for the
pose hypothesis, into analog voltage, we use an Op-Amp
with resistive feedback as shown in Fig. 6(b). This also adds
voltage bias to the inverter columns. Furthermore, by adjusting
the feedback resistance, the same log-ADC can be used for
different workloads.

The architecture in Fig. 6 considerably simplifies likelihood
evaluations. Since the current of mixture functions is added
over a wire, a dedicated adder is not needed. Although the
implementation requires data converters: ADC and digital-to-
analog converter (DAC), the overheads of ADC/DAC amortize
on a larger scale processing architecture comprising many
parallel columns. Note that the workload of ADC/DAC does
not increase even when the HMG columns in the processing
array are increased to operate on higher complexity maps.

(14)

D. Programming of the Likelihood Estimator

Transistors in the likelihood estimator array in Fig. 6(a)
require VTH (Vy) programming to map the respective HMG
function. As we discussed earlier, the voltage for peak current
of the inverter can be programmed by A along X, Y, and Z
input dimensions by programming Vry of the corresponding
nMOS and pMOS transistors as Vrg, — Vru. + A and
Vru,p — Vrg,p — A. Notably, programming of our likelihood
estimator is similar to NAND flashes [46]-[48]. However, our
design requires several key modifications since each column
combines transistors of both n and p-types, whereas NAND
flashes are based on n-type transistors alone.

In Fig. 7(a), to increase Vrg of nMOS, we select the
respective column by applying a high voltage, VDP, across
it. Unselected columns are held at a voltage Vippipii. A pro-
gramming pulse is applied at the gate of the selected nMOS.
A passing gate potential, Vp.s, is applied to the gate of
unselected transistors. Vippinie and Vpass are chosen so that the
gate to channel potential is not high enough in the unselected
transistors to induce a carrier tunneling. These design consid-
erations for Vigninir and Vpass in our case are similar to NAND
flashes. Under the above programming configurations, electron
in the selected nMOS inject to its FG through hot carrier
injection (HCI) [49], thereby increasing its Vry. To decrease
V. the source end of the selected transistor is left floating and
high programming pulse is applied at the drain. Due to a higher
negative voltage drop between the FG and drain, electrons are
detrapped by tunneling to the high-voltage drain terminal.

In Fig. 7(b), pMOS is programmed by applying potential
between the gate and n-well body voltage. Each column has
separate n-wells and body terminals. Source-drain terminals
in the selected column are left floating during programming.
Vi of the selected pMOS is decreased by applying program-
ming pulses at the gate of the selected transistor and keeping
the body grounded. Due to a high voltage between the gate and
the channel, majority carrier electrons tunnel from n-well body
to the FG. pMOS rows are unselected by applying a passing
gate potential Vg, similar to the case in Fig. 7(a). Inverter
columns are unselected by applying a inhibitory potential
Vinniic at the body terminal so that the potential between
gate and channel is not enough to induce tunneling. Vry of
pMOS is increased by applying programming pulses at the
body terminal, thereby detrapping electrons from FG to drain
terminal.

Notably, pMOS’s programmability in the above scheme
requires separate n-wells for each column which affects the
area efficiency of inverter array. However, this is not a critical
concern for most applications since only a few thousand
minimum-sized transistors are needed even for complex maps
in our approach. Moreover, while our previous discussion
considers FG CMOS for mean programmability, the schemes
can also be extended to charge trap transistors (CTTs). CTT
based on HfO,-metal gates was recently demonstrated [50],
programmable under 2 V. Due to lower voltage operation,
with CTT, the programming circuits of inverter array can be
simplified to improve overall area efficiency of the array.

VTH programming from TCAD simulations is shown
in Fig. 7(c)(f). Fig. 7(c) shows the TCAD schematic of an FG
nMOS, where 3-nm thick poly-silicon FG is stacked between
I-nm thick tunneling oxide (SiO;) (between the FG and
Si substrate) and a 4-nm-thick blocking oxide (HfO;) between
the FG and polysilicon gate on 6-nm thickness. Electron
charging of the FG is governed by HCI [49] increasing the
VTH of FG-nMOS. FG is discharged by Fowler—Nordheim
tunneling [51] reducing the VTH of FG-nMOS. Fig. 7(d)
illustrates the charging (programming) and discharging (eras-
ing) at the FG and corresponding changes in the VTH.
To program FG-nMOS in Fig. 7(e), we apply a drain pulse
of 1V, the source and substrate terminals are grounded, and
VTH programming is shown in the figure for three different
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(a) Methodology for HSPICE and Python-based simulations of the proposed localization framework based on FG inverter array to compute log

likelihood of pose during particle filtering (PF). (b) Close correspondence between behavioral and circuit simulation trajectories using 10 pose particles and

same random seed.

gate pulses (2, 2.5, and 3.3 V) with duration of the pulses.
For the unselected column, programming in inhibited when
we short drain and source to 1 V. Similarly, in Fig. 7(f),
we illustrate FG-nMOS in erase configuration, where a 1 V
pulse is applied at drain—source and substrate terminals are
grounded and erasing of FG is shown for three distinct gate
pulses (—1, —1.5, and —2.3 V) with the pulse duration.
Compared to programming, erasing requires a longer duration
pulse at the gate and the drain terminals. Erasing is inhibited
for the unselected columns when drain and source terminals
are at the same potential. Therefore, the TCAD results show
that the FG inverter array can be programmed to intended
specifications using row-wise gate programming pulses and

column-wise source/drain potential-induced inhibition of uns-
elected columns.

IV. SiMULATION METHODOLOGY

Fig. 8(a) our simulation methodology which integrates
HSPICE-based circuit simulations and Python-based func-
tional simulations for power-performance analysis of proba-
bilistic drone localization based on the proposed framework.
First, a multiinput 6T inverter in Fig. 4(a) is simulated
in HSPICE to extract its HMG switching current against
multivariate gate voltage inputs using predictive technology
models (PTMs) in 45-nm CMOS process [52]. Extracted
characteristics are then curve-fitted based on the proposed
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model in (11). From the curve fitting, we get a and o para-
meters of the switching current model. Using the switching
current model, x and A parameters of HMGM-based likelihood
function in (12) are learned from Python-based functional
simulations of EM procedure in Algorithm 1. Essentially,
p determines the VTH (Vqy) that need to be programmed
on FG inverter array, and A determines how many columns of
inverter array are used to map the respective mixture function.
Since Vqy programmability of FG is limited in precision,
we map the learned p parameter as u, to FG inverter array
with varying degrees of lower precision cases. Our character-
ization of drone localization on these varying lower precision
cases is also discussed in Section VI. Similarly, considering
that the inverter array has N columns, the mixture function
weight parameter A also needs to be quantized. To map 4 on
the inverter array, round(4A x N) inverter columns are used,
therefore, the relation 4, = round(4 x N)/N determines the
corresponding quantized value. Since circuit-level simulations
for trajectory extraction are prohibitively expensive—for hun-
dreds of particles and entire depth frames, FG inverter array
in Fig. 6(a) needs to be simulated millions of times—we use
behavioral simulations using (12). In Fig. 8(a), our behavioral
simulation setup is first validated against HSPICE simula-
tions by comparing the prediction for ten particles and with
reduced depth frame precision in Fig. 8(b). A very close
correspondence between behavioral and circuit simulations
can be seen. Even with the ten particles, FG inverter array
is simulated thousands of times on widely varying inputs.
Therefore, the average power for this case is a good statistical
predictor to estimate the power performance characteristics of
the entire path trajectory using behavioral simulations. For the
trajectory in Fig. 8(b), the output current of inverter array
is digitized in log-domain to extract log-likelihood (LL) of
various 3-D-projected depth maps. DAC and log-ADC units
used in our design are based on prior works [45], [53].
A functionally ideal operation of DAC/ADC is considered.
However, since DAC operates on highly capacitive gate rows
of inverter array, intermediate analog-mode voltage buffers are
considered along with the inverter array. Finally, the remaining
steps of particle filtering iteration (model scoring, weight
updates, and particle resampling) are simulated functionally
again, since our proposed design assumes that these steps are
performed in a microcontroller.

V. CHARACTERIZATION ON BENCHMARK DATASET

We use 12 scenes from the RGB-D Scenes Dataset v2 [44]
to characterize our proposed localization framework. Each
scene in the dataset is a 3-D reconstructed point-cloud formed
by aligning a set of video frames. The dataset also contains
true camera poses for each frame. The camera pose constitutes
the orientation expressed as quaternions (g, w, p, r), and posi-
tion as (x, y, z) coordinates.

We estimate drone’s pose using the particle filtering (PF)
approach under both global and relative localization. Under
global localization, the drone is completely uncertain about its
pose to begin with. By accumulating sequential depth measure-
ments, the drone tracks its movements using PF. Under local

localization, the drone is aware of the initial pose. However,
since the motion model of drone is stochastic, it needs to track
its movements based on depth measurements and a known
initial pose as it navigates through the flying space. Under
global localization, we initialize our PF setup with hundreds
of hypothesized poses (i.e., particles) uniformly distributed
throughout the map. All particles (say K in number) are
initialized with the same weight (1/K) quantifying that each
hypothesis is equally likely. We then project the scanned
depth frame to 3-D world coordinates based on a particle
J using (5). Corresponding to each particle, a unique 3-D
projection of depth scan, ) eas, is determined. A model score
M S (dimeas| ®) for each particle-measurement pair is computed
using our inverter array-based likelihood estimator in Fig. 6.
By accumulating model score of particles, their weights are
updated as

MSE(doeas|©

> ‘

=1 MS (thaew©)

Wj =

(15)

To eliminate less likely particles with each measurement,
we resample them from the current particle set based on their
weights while keeping the total number of particles same as K,
similar to [54]. The weight-update followed by resampling
results into an updated estimate of drone’s pose with uncer-
tainty in the pose illustrated by the variance of resampled
particles. We then reassign equal weights to new particles
and reiterate all steps from weight-update till resampling for
each subsequent depth scan. With this recursive Bayesian
estimation, the particles eventually converge resulting into
pose prediction with higher confidence. Fig. 9(a) shows such
particle filtering in action. A critical goal of this article was
to explore mutually suited hardware and learning models.
Implementation of GMM-based probabilistic inference models
is quite complex for analog computing framework that we have
considered here. Although switching current of inverters can
emulate the characteristics of a Gaussian current, to represent
a GMM model, switching currents from multiple inverters
need to be multiplied through analog multipliers which will
eclipse simplicity and efficiency of our scheme. Meanwhile,
HMGM models can be easily implemented in our analog
scheme by stacking inverters in a column and accumulating
their switching resistance using Kirchhoff’s law. On the other
hand, implementation of HMGM-based probabilistic inference
is quite cumbersome for digital implementation since it will
require divisions and floating-point (FP) operation. There-
fore, for a fair comparison between both schemes, we have
considered appropriate learning models: HMGM for analog
computing and GMM for digital computing.

Fig. 9(b)-(e) shows the trajectory tracking results on
Scene-01 based on the approach. Fig. 9(b) shows the point
cloud map of Scene-01 along with sample RGB and depth
scans from the drone. Fig. 9(c) shows the trajectory tracking
under global and relative localization for our approach and
the conventional GMM-based approach. Notably, the tracking
accuracy of our approach is similar to the conventional
approach. Fig. 9(d) shows the confidence in pose estima-
tion corresponding to every input depth frame. Under global
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(a) Particle filtering (PF) on Scene-01 of RGB-D dataset. (b)~(f) Trajectory tracking results on (b) Scene-01. (c) Drone’s pose under both global

and local (or relative) localization based on both HMGM and GMM. (d) Lower and upper bounds of pose hypotheses with sequential depth scans. (e) Pose
error under both global and local localization. (f)—(g) RMSE plots of FP GMM, 8-bit fixed precision GMM and 4-bit fixed precision HMGM-based drone
localization in (f) global, and (g) relative (initial position known) settings. The three frameworks are characterized over 12 scenes in the RGB-D dataset.

localization, due to high initial uncertainty, variance bounds
on pose particles are high. However, with each increasing
measurement, the drone is able to minimize its uncertainty
by particle filtering and using the proposed HMGM-based
map representation. The bounds converge with subsequent
scans illustrating improvement in prediction confidence. The
error in position estimates within the scenes for every depth
scan is shown in Fig. 9(e) with an upper error limit of
~0.8 m. The rigorous characterization over multiple scenes
is shown in Fig. 9(f)«(g). The localization root mean squared
error (RMSE) of an FP GMM-based framework is smaller than
that based on fixed-precision GMM for all the scenes. The
maximum RMSE of 1.56 m in global localization [Fig. 9(f)]
corresponds to HMGM-based framework in scene 8. In relative
localization [Fig. 9(g)], the maximum RMSE of 0.37 m
corresponds to fixed-precision GMM in scene 6. Note that,
the initial pose is known in relative localization unlike in
the global localization and hence the pose errors in relative

localization are significantly (~60%) lower. Our proposed
HMGM-based localization framework performs close to the
existing benchmarks based on FP and fixed precision GMMs.

VI. IMPACT OF LOW PRECISION AND
PROCESS VARIABILITY

We next analyze the implications of quantization on pose
tracking of drone. The lower the operating precision, the lower
is the area/power requirement which is critical for a drone with
limited resource budget. However, excessively low precision
can significantly degrade the accuracy of pose prediction.
Fig. 10 shows the impact of quantization of DAC, logarithmic-
ADC, and VTH (mean) programming on the pose estima-
tion. DAC precision quantizes the 3-D depth projection to
inverter array, that is, Vx, Vy, and Vz. Log-ADC precision
quantizes the digitized log likelihood evaluated by the inverter
array. Precision on transistor thresholds quantize the mean of
HMGM mixture components and depends on the precision of
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Fig. 12. Transient waveform of analog likelihood computation by an FG
inverter array with 500 6T-inverter columns corresponding to a specific choice
of multivariate inputs and same VTH across all NFETs and PFETs for the
purpose of clear illustration of transitions.

FG memory in the inverter array. Compared to FP precision,
the RMSE of predicted poses at lower operating precision is
higher as shown in the figure. Our simulation results indicate
a nonmonotonic change in RMSE at increasing precision,
although a higher precision generally helps in reducing RMSE.
Nonetheless, even with very low precision in mean encoding,
DAC, and ADC (such as 2, 4, and 4-bit, respectively), the pose
estimation accuracy is competitive to the FP precision.

design. Furthermore, Vry-induced variability of an FG inverter
array can be addressed during the programming stage itself.
During the programming, a sequence of write-read—verify
steps can be performed where the programming pulsewidth
can be adjusted if the transistors have innate Vg deviation
from the typical and such Vry variability can be corrected by
adjusting the programming pulsewidth.

VII. ENERGY-PERFORMANCE CHARACTERIZATION

Fig. 12 shows an example transient current (/1;) profile
from the inverter array when applying depth pixel projections
as step input sequences. In our design, the total time to process
one depth pixel projection by the inverter is 5 ns. Considering
100 pose hypotheses (particles) in PF and on average ~60%
nonzero depth pixels in a 640 x 480 resolution depth frame
from the RGB-D scenes dataset (note that only nonzero depth
pixels are projected and considered for likelihood evaluation),
our framework takes ~19 ms on average to process entire
depth frame, achieving the speed of 52 fps (frames per sec-
ond). The statistics of nonzero depth pixels is based on the
considered RGB-D dataset. The likelihood evaluations by
our proposed inverter array will not be a bottleneck to the
speed. High performance is enabled by parallel processing
in an inverter array which processes all components of map
representation model simultaneously. Multiple instances of the
inverter array would further enhance depth frame processing
speed.

The energy consumption of the proposed framework and
comparison with digital GMM processor is shown in Fig. 13.
Fig. 13(c) shows the power breakdown for the measurement
likelihood estimation in our approach. The total energy con-
sumption (with 500 inverter columns emulating 100 mixture
components) for the likelihood estimation is 374 fJ
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(at 45-nm CMOS process technology). We do not consider
energy contribution from the front-end digital processing to
project depth pixels to the 3-D space, since the workload for
the likelihood estimations is the dominant component (Fig. 3),
exceeding by the orders of magnitude than the front-end
processing. Log-ADC with several comparators and Op-Amps
at multiple pipeline stages consumes 46% of the total energy.
The three DACs at the gate inputs contribute to 17.6% and
the 500 column inverter array consumes 36.4% of the total
energy as shown in the figure. Table I shows the projection
of energy of reference designs to our design specifications.
The focus of this work is to explore alternative processing
schemes for log-likelihood computations using inverter arrays.
The respective energy is extracted from HSPICE simula-
tions. The energy consumption of peripheral ADC/DAC is
from the referenced designs [40], [48]. Under ideal energy
scaling, we have assumed Energy oc (45 nm/TechNodeggr)?,
Energy o (1 V/VDDggr)?, and Energy oc 2(-Precisionser)
thereby the corresponding energy estimates are extracted. The
energy breakdown also indicates that with even more complex
map representation model (i.e., the ones requiring more than
100 HMGM mixture functions or more than 500 inverter
columns to implement), the total power dissipation in our
approach will not increase significantly from the current.
To implement a more complex HMGM model, only more
inverter columns will be needed and three DACs and one
log-ADC will suffice as in the present configuration.

Fig. 13(a) shows a comparative digital pipeline implement-
ing a GMM [39] to evaluate likelihood of depth projections.
The design uses dual-port dedicated SRAM modules for mean
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TABLE I
ENERGY PROJECTEDTO 1 V, 45 nm CMOS, 4-BITS AND 50 MHz

Components Power (reference)

2.54mW @ 1.62 V, 0.18 pm,
8-bits, 22 MS/s [40]

27mW @ 1.2V, 0.13 pm,
10-bits, 1.6 GHz [48]

INV columns =

Energy (proposed design)

Log-ADC 172 11

DAC 66 £J (for 3 DACs)

130 7

and inverse variance storage. In each clock cycle, two square
and two multiply and accumulate (MAC) units compute expo-
nent terms in a GMM. Exponents of two mixture functions
are combined using a log-ADD lookup table to iteratively
compute the net log-likelihood. The original design in [39]
was implemented in 65-nm CMOS process. Using power con-
sumption estimates of different blocks in datapath from [55]
for 45-nm CMOS process, the 8-bit digital GMM processor
consumes 9.2 pJ and operating for 30 mixture functions in
a 3-D GMM. Comparatively, as shown in Fig. 13(b), our
proposed framework’s power efficiency is 25x higher even
with 100 mixture functions in HMGM.

VIII. CONCLUSION

Energy-efficient, low-latency, on-board processing of
self-navigation algorithms is imperative in insect-scale drones.
Our proposed FG CIM (FG-CIM) framework performs
confidence-aware localization of the drone with ultralow-
power consumption. The framework uniquely represents the
domain map with the 3-D HMGM density model, charac-
teristic of the inverter columns that construct FG-CIM. The
scalable design processes depth frames for a large number of
pose hypotheses at very high speed due to massive parallelism,
paving the way for robust, ultralow-power spatial intelligence
in insect-sized drones.
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