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For Jacques Tilouine

The Ichino–Ikeda conjecture, and its generalization to unitary groups by N. Harris,
gives explicit formulas for central critical values of a large class of Rankin–
Selberg tensor products. The latter conjecture has been proved in full generality
and applies to L-values of the form L

( 1
2 ,BC(π)×BC(π ′)

)
, where π and π ′ are

cohomological automorphic representations of unitary groups U(V ) and U(V ′),
respectively. Here V and V ′ are hermitian spaces over a CM field, V of dimen-
sion n, V ′ of codimension 1 in V , and BC denotes the twisted base change to
GL(n)×GL(n− 1).

This paper contains the first steps toward constructing a p-adic interpolation
of the normalized square roots of these L-values, generalizing the construction
in my paper with Tilouine on triple product L-functions. It will be assumed that
the CM field is imaginary quadratic, π is a holomorphic representation and π ′

varies in an ordinary Hida family (of antiholomorphic forms). The construction
of the measure attached to π uses recent work of Eischen, Fintzen, Mantovan,
and Varma.
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1. Introduction

This paper is a continuation, after twenty years (!), of the author’s project [Harris
and Tilouine 2001] with Jacques Tilouine, whose official goal was the construction
of one branch of the square root of the anticyclotomic p-adic L-function for a triple
of classical modular forms. The unofficial goal of that paper was for this author to
benefit from Jacques’s patient instruction in Hida theory and p-adic L-functions.
To the extent that the author does understand anything about the subject, it is largely
a result of this collaboration.

Our paper was neither the first nor the last word on the topic of square root p-adic
L-functions. The bibliography of [Harris and Tilouine 2001] included references
to earlier work on anticyclotomic L-functions of Hecke characters of imaginary
quadratic fields, and of classical L-functions of modular forms in Hida families, as
well as a combination of the two that had been considered by Andrea Mori (finally
published, more than 20 years after its discovery, in [Mori 2011]). The specific
case of the triple product was vastly extended (and corrected) and put to good use
by Darmon and Rotger in a series of difficult papers on Euler systems and the
Birch–Swinnerton-Dyer conjecture over nonabelian extensions of Q (see [Darmon
and Rotger 2014]).

More recently, the construction has been generalized to Shimura curves in [Bar-
rera Salazar and Molina Blanco 2019]. In the meantime, Gan, Gross, and Prasad
had identified a natural setting that includes all these special cases [Gan et al. 2012],
and had formulated precise conjectures regarding the relative representation theory
of certain pairs of reductive groups over local fields. These conjectures were com-
pleted by the global conjecture of Ichino and Ikeda (for orthogonal groups) and
its analogue, due to N. Harris (for unitary groups) [Ichino and Ikeda 2010; Harris
(R. N.) 2014]. In these conjectures, G ⊃ H is a pair of groups — we consider
the case where G is the special orthogonal or unitary group of a vector space V
over a local or global field and H the stabilizer in G of an appropriate subspace
of codimension 1. The conjectures of [Gan et al. 2012] classify the irreducible
representations π of G× H over a local field that admit a linear form π→ C that
is invariant under H , with respect to the diagonal embedding. The conjectures of
[Ichino and Ikeda 2010; Harris (R. N.) 2014] concern the cuspidal automorphic
representations π of G × H over a number field, and express the central (anticy-
clotomic) values of certain L-functions L(s, π) as squares of periods of integrals
over the adèle group of H of elements of π — we call them Gan–Gross–Prasad
periods up to local and elementary factors.

The Gan–Gross–Prasad (GGP) conjectures have been proved by Waldspurger
[2012] (for orthogonal groups over p-adic fields) and Beuzart-Plessis [2020] (for
unitary groups, including the archimedean case). The Ichino–Ikeda–N. Harris
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(IINH) conjecture has now been proved for unitary groups by Beuzart-Plessis et al.
[2020; 2021] following earlier work of W. Zhang and Hang Xue. Ichino had al-
ready proved the conjecture for orthogonal groups in low dimensions, including
a refinement of the result of [Harris and Kudla 1991] on triple products that was
the starting point for [Harris and Tilouine 2001]. The main observation of [Harris
and Tilouine 2001] is that the period integrals in [Harris and Kudla 1991] admit
a p-adic interpolation over Hida families. The purpose of the present paper is to
apply the same observation to the period integrals that arise in certain cases of the
IINH conjecture when G and H are unitary groups.

Suppose G and H are the unitary groups of hermitian vector spaces V and V ′,
respectively, over a fixed imaginary quadratic field K,1 with dim V = n= dim V ′+1.
Stable quadratic base change from G× H to G :=GL(n)K×GL(n− 1)K [Labesse
2011; Mok 2015; Kaletha et al. 2014] attaches to a (stable) π a cuspidal automor-
phic representation 5=5n �5n−1 of G, and L(s, π) is then the Rankin–Selberg
L-function L(s,5n ⊗5n−1). Moreover, as Gα × Hα varies over inner forms of
G× H , with Hα ⊂ Gα, there is a collection 8(5)= {πα,β}, where each πα,β is a
cuspidal automorphic representation of Gα× Hα , all of which have the same stable
base change 5. We only consider the case where 5 is cohomological for G — i.e.,
it contributes to the cuspidal cohomology of the locally symmetric space for G with
appropriate local coefficients. Then the archimedean components πα,β,∞ all belong
to the respective discrete series of Gα(R)× Hα(R) whose infinitesimal character
corresponds to that of 5∞. The combination of the GGP and IINH conjectures
includes the assertion that if the central value L

( 1
2 ,5n ⊗5n−1

)
6= 0, then it (or

rather its ratio to a different special L-value) can be computed, up to elementary
and local factors, as a ratio of a product of period integrals (over the adèles of Hα)
of a unique πα,β ∈8(5). Specifically, the GGP conjecture, which is known in this
case, asserts that there is a unique group Gα(R)× Hα(R) and a unique discrete
series πα,β,∞ with the given infinitesimal character that admits a nontrivial linear
form

πα,β,∞→ C

that is invariant under the diagonal embedding of Hα(R).
As 5 varies in a p-adic family, the period integrals for the corresponding πα,β,∞

can be seen as distinct branches of a hypothetical square root p-adic L-function, the
relations between which have only begun to be explored; the example of [Darmon
and Rotger 2014] shows that these relations are subtle even in low-dimensional
cases. In this paper we treat the branch where the specialization of the p-adic
interpolation at a classical point of the Hida family is a cup product of a pair of

1One can consider more general CM quadratic extensions of totally real fields; the restriction to
the imaginary quadratic case is made for convenience.
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automorphic forms, one of which is holomorphic, the other antiholomorphic — in
other words, πα,β,∞=πn,∞⊗πn−1,∞, where πn,∞ (resp. πn−1,∞) is a holomorphic
(resp. antiholomorphic) discrete series representation of U(V )(R) (resp. U(V ′)(R)).
Here we treat only the simplest case of a function of a single p-adic variable, which
arises as a direct application of the construction of p-adic families of differential
operators in [Eischen et al. 2018]. A planned sequel with Ellen Eischen should
extend the results of the present paper to multidimensional Hida families. In sub-
sequent work with Eischen and Pilloni, we hope to treat cases of cup products in
coherent cohomology of higher degree. Most of the GGP periods, however, do not
have such an interpretation. The corresponding p-adic L-functions should exist
nonetheless, but we don’t see how to construct them.

A construction of p-adic Rankin–Selberg L-functions for cohomological auto-
morphic representations 5 of GL(n)× GL(n − 1) over Q has been known for
some time [Kazhdan et al. 2000]; its generalization to arbitrary number fields is a
more recent result of Januszewski [2016]. The method used there corresponds to
the “branch,” as in the previous paragraph, where the groups Gα(R) and Hα(R)
are definite unitary groups. This is precisely the case in which the methods of
the present paper give no p-adic variation at all, because there are no nontrivial
differential operators. In unpublished notes, Eric Urban has sketched the beginning
of a construction of a p-adic measure in this situation, again in the definite branch.
In any case, there is little overlap between the results of [Kazhdan et al. 2000;
Januszewski 2016], which treat general critical values of a single Rankin–Selberg
L-function and its cyclotomic twists, and those of this paper, which treats only the
central value but allows 5 to vary in a p-adic family.

The hardest steps in the construction of any p-adic L-function are the computa-
tion of the local factors at archimedean and p-adic places. We deal with these steps
in the present paper by avoiding them. The Ichino–Ikeda formula produces local
factors at such places and we do not attempt to interpret them explicitly. It follows
nevertheless from [Beuzart-Plessis 2020] that these factors can be computed in
terms of local Rankin–Selberg zeta integrals for GL(n)×GL(n− 1). These should
be easier to compute than the Ichino–Ikeda local integrals. We expect to return to
these computations in subsequent papers.

2. Unitary group Shimura varieties

We work over an imaginary quadratic field K; most of our results go over without
change to general CM fields, at the cost of more elaborate notation. The field K is
given with a chosen embedding ι : K ↪→ C; the complex conjugate embedding is
denoted c; with respect to ι, the group

U(1)= ker NK/Q : RK/Q GL(1)→ GL(1)
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can be attached to a Shimura datum (U(1), Y1), where Y±1 is the homomorphism

RC/R(Gm)C = C× 3 z 7→ z/z̄

if the sign is −1 and is the trivial map if the sign is +1. The sign is +1 (resp. −1)
if we consider U(1) to be the unitary group of a 1-dimensional vector space over K
endowed with a hermitian form of signature (0, 1) (resp. (1, 0)); see the discussion
in [Harris 2021, §2.2] for details.

Let V be an n-dimensional vector space over K, endowed with a hermitian
form of signature (r, s) (relative to ι). Let U(V ) be the unitary group of V . We
define a Shimura datum (U(V ), YV ) as in [Harris 2021]; see also Section A.1 in the
Appendix. We choose a point y ∈ YV corresponding to an embedding of Shimura
data (U(1), Y±1 ) ↪→ (U(V ), YV ), and let K y ⊂ U(V )(R) denote its centralizer; in
other words, the homomorphism y factors through a rational subgroup of U(V )
isomorphic to U(1). Then there is an isomorphism K y −→

∼ U(r)×U(s), where
U(d) is the compact unitary group of rank d for any d. We fix a maximal torus
T = Ty ⊂ K y containing the chosen U(1); without loss of generality we may assume
T −→∼ U(1)r+s as algebraic groups over Q, with U(1)r ⊂U(r) and U(1)s ⊂U(s).

The Harish-Chandra decomposition of g= Lie(GV ) is given by

g= p+y ⊕ p−y ⊕ ky,

where ky = Lie(K y) and p+y and p−y are canonically isomorphic, respectively, to
the holomorphic and antiholomorphic tangent spaces to YV at y. Then dim p+y =

dim p−y = rs.

2A. Conventions for holomorphic automorphic forms. Irreducible representations
of U(d) are parametrized by d-tuples a1 ≥ a2 ≥ · · · ≥ ad , which are identified with
characters of some chosen maximal torus. Thus irreducible automorphic vector
bundles Eκ over the Shimura variety ShV := Sh(U(V ), YV ) are parametrized by
characters of Ty , and thus of (r, s)-tuples of integers(

b1 ≥ b2 ≥ · · · ≥ br ; br+1 ≥ br+2 ≥ · · · ≥ bn
)
. (2.1)

The Eκ whose global sections defined holomorphic automorphic forms in the dis-
crete series correspond to κ of the form

κ =
(
as+1− s, . . . , an − s; a1+ r, . . . , as + r

)
, (2.2)

where α is the dominant parameter

α : a1 ≥ a2 ≥ · · · ≥ an (2.3)

[Harris 1997, Proposition 2.2.7(iii)]. A κ satisfying (2.2) will be called of holomor-
phic type. We let Mκ denote the representation space of K y with highest weight κ ,
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and let
Dκ =U(g)⊗U(ky⊕p−) Mκ

be the corresponding holomorphic discrete series.
A κ for which Dκ is the (g, K y)-module attached to a discrete series represen-

tation will be called (for convenience) a holomorphic discrete series parameter. If
κ is the parameter of (2.2), it is determined by (2.3), and we write κ = κV (α).

We consider a codimension 1 hermitian subspace V ′ ⊂ V , of signature (r, s−1),
and we assume that the base point y ∈ YV ′ ⊂ YV , so that its centralizer K ′y ⊂
U(V ′)(R) is a maximal compact subgroup, isomorphic to U(r)×U(s − 1). We
write

g′ = p+,′y ⊕ p−,′y ⊕ k′y

for the Harish-Chandra decomposition of g′ = Lie(U(V ′)). As representation of
K ′y =U(r)×U(s− 1), the r -dimensional quotient space

n= p+y /p
+,′
y

is isomorphic to the representation Str⊗Triv, with parameter (1, 0, . . . , 0; 0, . . . , 0).
It follows from the recipe in [Harris 1986] that the restriction of Dκ to U(g′) can
be written

Dκ |U(g′) =
⊕
i≥0

⊕
Mκ′⊂Mκ⊗[Symi Str⊗Triv]

Dκ ′ . (2.4)

Here the notation ⊂ in the subscript means that the left-hand representation is an
irreducible constituent of the restriction to U(r)×U(s− 1) of the right-hand.

In what follows, we let T ′ = Ty ∩U(V ′)= Ty ∩K ′y . This is a maximal CM torus
in U(V ′) and the parameters in Lemma 2.5 below are relative to this torus. The
inclusion (U(V ′), YV ′)⊂ (U(V ), YV ) is not an embedding of Shimura data, but this
can be corrected by replacing U(V ′) by U(V ′)×U(1), where U(1) is the unitary
group of the orthogonal complement to V ′ in V . We ignore this for the purposes
of this paper.

Lemma 2.5. If κ =
(
as+1− s, . . . , an− s; a1+ r, . . . , as+ r

)
, then as i ≥ 0 varies,

the set of irreducible representations of K ′y contained in the above sum is given by

(b1, . . . , br ; c1, . . . , cs−1),

where
δj := bj + s− as+ j ≥ 0, 1≤ j ≤ r;

a1+ r ≥ c1 ≥ a2+ r ≥ c2 · · · ≥ cs−1 ≥ as + r.

The parameter arises in degree i exactly when
∑r

j=1 δj = i .
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Proof. The assertion for the bj follows from the Littlewood–Richardson rule [Good-
man and Wallach 2009, §9.3] for the tensor product of an irreducible representation
of U(r) with Symi Str , given our sign conventions; the assertion for the ck follows
from the usual branching formula for restriction from U(s) to U(s− 1). �

This proposition thus follows from [Harris 1986, Lemma 7.2]:

Proposition 2.6. Let κ be a holomorphic discrete series parameter. Let κ ′ be the
highest weight of an irreducible representation of K ′y . Then there is a holomorphic
differential operator

δκ,κ ′ : Eκ |Sh(V ′)→ Eκ ′

if and only if κ ′ satisfies the inequalities of Lemma 2.5.

The following lemma is then obvious.

Lemma 2.7. Suppose κ ′ satisfies the inequalities of Lemma 2.5. Then κ ′ is a holo-
morphic discrete series parameter for GV ′ , and is of the form κ ′ = κV ′(α

′) for the
dominant parameter α′ of GV ′ given by

α′ = (a′1 ≥ · · · ≥ a′n−1)=
(
c1−r ≥ · · · ≥ cs−1−r ≥ b1+ s−1≥ · · · ≥ br + s−1

)
.

Definition 2.8. We say δκ,κ
′

is of degree b if
∑r

j=1 δ j = b in Lemma 2.5.

2A1. Parameters and Hodge structures. Let α be the dominant parameter in (2.3).
Then α is the highest weight of an irreducible representation Wα of GV , or of
GL(n). As in [Harris 1997] we can attach to α a collection of Hodge numbers
(pi , qi )= (pi (α), qi (α)) with pi = ai + n− i and pi + qi = n− 1 for all i . We let
S= RC/RGm,C. For each i , let MC(pi ) denote the complex 1-dimensional vector
space on which S(C)−→∼ C××C× acts by the character

(z1, z2) 7→ z−pi (α)

1 z−n+1+pi (α)

2 ,

and let MC(α)=
⊕n

i=1 MC(pi ). Similarly, let M(pi ) denote RC/R MC(pi ); this is
a 2-dimensional vector space with action of S(R). Then M(α)=

⊕n
i=1 M(pi ) is

a real Hodge structure of dimension 2n. We denote M(α) by the shorthand list of
the pi :

M(α)=
(
a1+ n− 1, . . . , ai + n− i, . . . , an

)
. (2.9)

Let π be a cuspidal automorphic representation of GV , and write π = π∞⊗πf ,
where π∞ is an irreducible (gV , K y)-module and πf is an irreducible representation
of GV (Af ). Suppose π contributes to the cohomology H 0(Sh(V ), EκV (α)); in other
words

H 0(Sh(V ), EκV (α))[π ] := HomGV (Af )

(
πf , H 0(Sh(V ), EκV (α))

)
6= 0. (2.10)
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This is a property that depends only on π∞; it says precisely that π∞ is (depend-
ing on conventions) either isomorphic to or the contragredient of DκV (α). In the
convention of [Eischen et al. 2020],

Hypothesis 2.11. Assuming (2.10), dim H 0(Sh(V ), EκV (α))[π ] = 1.

This will be proved in the sequel to [Kaletha et al. 2014], and we will as-
sume it here; the p-adic L-function can be constructed without the assumption
of Hypothesis 2.11 but at the cost of additional notation. In any case it is known
by [Labesse 2011] that, assuming (2.10), the base change 5= BCK/Q(π) exists as
a cuspidal cohomological automorphic representation of GL(n)K. The compatible
family of homomorphisms

ρπ,` : Gal(Q/K)→ GL(n,Q`),

defined by many people (including in [Clozel et al. 2011], in most cases) is geo-
metric in the sense of Fontaine–Mazur. In particular, the restriction of ρπ,` to a
decomposition group at a prime dividing ` is de Rham with the Hodge numbers
(pi (α), qi (α)) defined above.

Remark 2.12. Under hypothesis (2.10) we know that πf has a model as an admis-
sible representation of GV (Af ) over a number field E(π). We will be working
with spaces of p-adic automorphic forms, so we will implicitly be assuming that
the integer ring OE(π), together with all the other integer rings that arise in the
subsequent constructions, is embedded in a sufficiently large p-adic integer ring
denoted O. We will briefly need to work with models of (finite parts of) automor-
phic representations over the fraction field of O, which we denote L. The smooth
representation theory of the finite adèles is indifferent to the topology of the fields
of coefficients.

Suppose π ′ = π ′
∞
⊗π ′f is an automorphic representation such that the contra-

gredient π ′,∨ contributes to the cohomology H 0(Sh(V ′), EκV (α′)), where α′ is the
highest weight of an irreducible representation Wα′ of GL(n− 1). In particular, π ′

is antiholomorphic — it contributes to the cohomology in degree d ′ = dim Sh(V ′)
of the automorphic vector bundle

�d ′
Sh(V ′)⊗ E∨κV (α′)

,

which is the Serre dual of EκV (α′). For such a π ′, we assume the analogue of
Hypothesis 2.11 holds for π ′,∨, and we assume κ ′ = κV (α′) satisfies the inequalities
of Lemma 2.5; in other words, that α′ is one of the parameters in Lemma 2.7.

2A2. Parameters for the Hodge filtration. Using the shorthand of (2.9), we have

M(α′)∨ =
(
−br + r − 1, . . . ,−b1,−cs−1+ n− 2, . . . ,−c1+ r

)
.
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We consider the 2n(n−1)-dimensional real Hodge structure

M(α, α′)= RC/R MC(α)⊗MC(α
′)∨.

Then M(α, α′)C is the sum of eigenspaces of the form

(ai + n− i − bk + k− 1, •); (ai + n− i − c j + j − 1+ r, •),

where in each case the two integers in the ordered pair add up to 2n− 3. The space
M(α, α′)C contains an n(n−1)-dimensional subspace F+M(α, α′), defined as in
[Harris 2013]: it consists of pairs (x, y) as above with x > y.

2B. Igusa towers and pairings. Let p be a prime that splits in K as the product
p ·p′. Identifying the algebraic closures of Q in C and in Qp places the embeddings
of K in C and in Qp in bijection. We let p be the prime above p associated to the
fixed embedding ι : K ↪→ C and identify

U(V )(Qp)−→
∼ GL(n,Kp)−→

∼ GL(n,Qp) (2.13)

in such a way that p−y ⊕ ky is identified with the Lie algebra of an upper triangu-
lar parabolic subalgebra of Lie(GL(n)). We also denote by inclp : K ↪→ Qp the
embedding corresponding to p. We fix a neat level subgroup K ⊂U(V )(Af ) with
K = K p × K p with K p = GL(n,Zp). The Shimura variety K Sh(U(V )) then has
a smooth model KS(V ) as a moduli space (Shimura variety of abelian type) over
Spec(O) for some finite Zp-algebra O. For each κ as above the vector bundle Eκ
extends to a vector bundle over KS(V ).

We choose K so that K ∩U(V ′)(Af ) = K ′ is neat and admits a factorization
K ′ = GL(n− 1,Zp)× K ′,p. We define K ′S(V ′) as in the previous paragraph, and
assume the embedding

K ′S(V ′) ↪→ KS(V ) (2.14)

restricts (see Section 2B1 below) to an embedding of ordinary loci

K ′S(V ′)ord ↪→ KS(V )ord (2.15)

which lifts to a morphism of Igusa towers

K ′ Ig(V ′) ↪→ K Ig(V ). (2.16)

2B1. Embeddings of Igusa towers. As in [Eischen et al. 2020], we use the theory
of ordinary Hida families developed in Hida’s book [Hida 2004] (and completed by
Kai-Wen Lan’s verification of the necessary conditions: see the discussion in [Eis-
chen et al. 2020, §2.9.6]). This theory is based on the study of analytic functions on
Igusa towers. In this paper we use the conventions of [Eischen et al. 2020, §2]. We
choose a p-adic embedding ιp :K ↪→ Cp as in [Eischen et al. 2020, §1.4.1], so that
ιp and the chosen inclusion ι : K ↪→ C are associated as in [Harris et al. 2006, §1].
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In order to define cohomological pairings between p-adic modular forms on the
Shimura varieties K ′S(V ′) and KS(V ) we need to know that the map (2.15) actually
exists. In the first place, strictly speaking there is a map of Shimura data

(U(V ′), YV ′)× (U(1), Y+1 ) ↪→ (U(V ), YV ). (2.17)

The second factor on the left is a (pro)-finite set without any additional arithmetic
structure — recall that with our conventions the homomorphism Y+1 is trivial. To
understand the map (2.15) it is nevertheless better to start with the map of Shimura
data of PEL type (

G(U(V ′)×U(1)), X
′′

V ′
)
↪→ (GU(V ), XV )) (2.18)

with X
′′

V ′ defined as in [Harris 2021], §2.2. As a reminder: we can also embed
G(U(V ′)×U(1)) in GU(V ′)×GU(1), with GU(1)= RK/Q(Gm)K. Then X

′′

V ′ is a
G(U(V ′)×U(1))(R)-conjugacy class of homomorphisms whose image under the
embedding in GU(V ′)×GU(1) lies in the product XV ′ × X0,1, where X0,1 is the
homomorphism RC/R(Gm)C→GU(1)(R) whose value on R-valued points is given
by z 7→ z̄.

Now the map (2.18) defines a morphism of PEL Shimura varieties, and thus of
smooth models in level K = K p× K p as above:

K ′S
(
G(U(V ′)×U(1)), X

′′

V ′
)
↪→ KS(GU(V ), XV ), (2.19)

with notation (and level subgroup K ′) defined by analogy with (2.14). We define
ordinary loci

KV ′
S(GU(V ′), XV ′)

ord
⊂ K ′S(GU(V ′), XV ′);

K ′1 S(GU(1), X0,1)
ord
⊂ K ′S(GU(1), X0,1);

K ′S
(
G(U(V ′)×U(1)), X

′′

V ′
)ord
⊂ K ′S

(
G(U(V ′)×U(1)), X

′′

V ′
)

as well as
KS(GU(V ), XV )

ord
⊂ KS(GU(V ), XV ).

(Level subgroups are assumed compatible with all morphisms.)
We recall the discussion of the Igusa varieties in [Harris et al. 2006]. For any

n ≥ 0 we can define Igusa coverings (we omit the prime-to-p level structures from
the notation)

GIg(V ′)n→ KV ′
S(GU(V ′), XV ′)

ord
; GIg(0, 1)n→ K ′1 S(GU(1), X0,1)

ord

and
GIg(V )n→ KS(GU(V ), XV )

ord.

(We reserve the notation Ig(V ) for the Igusa towers over the unitary group Shimura
varieties, and Ig(V )n for the Igusa covering in level pn .) When n = 0 this is the
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identity map. These correspond to pairs (AV ′, jo
V ′), (A0,1, jo

0,1), (AV , jo
V ) as in

[Harris et al. 2006, (2.1.6.2)]. Here for example, AV is a quadruple (A, λ, ι, α p),
with A an abelian scheme of dimension n, and

jo
V : M(V )

0
⊗µpm ↪→ A[pm

]

is an embedding of finite flat group schemes with OK /pmOK -action. The free
OK -submodule M(V )0 ⊂ V (resp. M(V ′)0 ⊂ V ′, M(0, 1)0 ⊂ K) has the property
that the action of OK is a sum of r copies (resp. r copies, 0 copies) of ι (or ιp) and
s copies (resp. s− 1 copies, 1 copy) of cι (or cιp).

We let GIg(V ′, (0, 1))m denote the fiber product of GIg(V ′)m×GIg(0, 1)m with
K ′S
(
G(U(V ′) × U(1)), X

′′

V ′
)

over KV ′
S(GU(V ′), XV ′)

ord
× K ′1 S(GU(1), X0,1)

ord.
With these conventions, it follows as in the discussion in [Harris et al. 2006, §2.1.1]
that

Lemma 2.20. The morphism (2.19) defines canonical morphisms of Igusa towers

GIg(V ′, (0, 1))n ↪→ GIg(V )n

for n ≥ 0. For n = 0 this defines a morphism

K ′S
(
G(U(V ′)×U(1)), X

′′

V ′
)ord

↪→ KS(GU(V ), XV )
ord.

Finally, the maps (2.15) and (2.16) are obtained by twisting with the Igusa tower
for the Shimura datum (GU(1), X0,1) as in [Harris 2021, §2]. We omit the details.

Remark 2.21. The local computations in [Eischen et al. 2020] make it clear that
the Euler factors at p in the standard p-adic L-function for ordinary families
depend strongly on the signatures at primes above p, in a way that is broadly
consistent with the conjectures of Coates and Perrin-Riou on p-adic L-functions
for motives. The same dependence on archimedean data is expected for p-adic L-
functions constructed in the setting of the Ichino–Ikeda–N. Harris Conjecture 7.1.
The signature enters in [Eischen et al. 2020] through a twist that guarantees the
existence of embeddings of Igusa towers; see Remark 3.1.4 of [Eischen et al. 2020].
It is likely that similar twists will be needed in order to extend the constructions of
the present paper to the setting of Pilloni’s higher Hida theory [Pilloni 2020].

Let (H1, h1) ⊂ (GU(V ), X (V )) be a CM pair — in other words, H1 is a torus.
We say (H1, h1) is an ordinary CM pair if the image of the morphism

K (H1)S(H1, h1)→ KS(GU(V ), XV )

consists of PEL abelian varieties with ordinary reduction at p, for appropriate
level subgroups. Thus when K ∩ U(V )(A) = K p

× GL(n,Zp), the morphism
of K (H1)S(H1, h1) → KS(GU(V ), XV ) extends to a finite morphism of integral
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models if (H1, h1) is an ordinary CM pair. We define an ordinary CM pair (H, h)⊂
(U(V ), YV ) analogously.

2B2. Pairings. Fix κ and δκ,κ ′ : Eκ |Sh(V ′)→ Eκ ′ as in Proposition 2.6. Let

d = rs = dim Sh(V ), d ′ = r(s− 1)= dim Sh(V ′),
and define

Eκ ′,[ =�d ′
⊗ E∨κ ′

be the Serre dual of Eκ ′ . Then there is a canonical Serre duality pairing

H 0(KS(V ), Eκ)⊗ H d ′(K ′S(V ′), Eκ ′,[)→O.

More generally, if K ′p,r ⊂ K ′p is the congruence subgroup defined in [Eischen et al.
2020], K ′r = K ′p,r × K ′,p, we can define a finite flat O-module

H 0(K ′r S(V ′), Eκ ′)⊂ H 0(K ′r Sh(V ′), Eκ ′) := H 0(K ′r S(V ′), Eκ ′)⊗O O[1/p]

to be
H 0(K ′r S(V ′), Eκ ′)= H 0(K ′r S(V ′), Eκ ′)⊗O O[1/p] ∩VV ′, (2.22)

where VV ′ is the algebra of p-adic modular forms on ShV ′ (see below). Then we
let

H d ′(K ′S(V ′), Eκ ′,[)= Hom
(
H 0(K ′r S(V ′), Eκ ′),O

)
. (2.23)

and we obtain a Serre duality pairing

H 0(Kr S(V ), Eκ)⊗ H d ′(K ′r S(V ′), Eκ ′,[)→O, (2.24)

where Kr = K p,r × K p is defined as before.

3. p-adic modular forms and differential operators

3A. Basic definitions. The algebra VV of p-adic modular forms on ShV is de-
fined as in [Eischen et al. 2018, §2.6], following [Hida 2004]. Specifically, we
let B, N , T ⊂ GL(n) denote respectively the upper triangular Borel subgroup, its
unipotent radical, and its diagonal torus. For any pair of nonnegative integers
(n,m) we let

Ign,m,V = Ig(V )n ×Spec(O) Spec(O/pm)

where Ig(V )n is the Igusa covering in level pn , as above. In the notation of [Eischen
et al. 2018] we let

Vn,m,V = H 0(Ign,m,V ,OIgn,m,V
); V∞,m,V = lim

−−→
n

Vn,m,V ; V∞,∞,V = lim
←−−

m
V∞,m,V .

and set
VV = V N (Zp)

∞,∞,V ,
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where N is the maximal unipotent subgroup of U(V ) defined in [Eischen et al.
2018, §2.1].

The group T (Zp) acts on VV and for any algebraic character α of T we let
VV [α] ⊂ VV denote the corresponding eigenspace; the elements of VV [α] are called
p-adic modular forms of weight α. There are canonical embeddings

9 =9α : H 0(SV , Eα) ↪→ VV [α]; (3.1)

compatible with multiplication in the sense that

9α ⊗9β =9α+β : H 0(SV , Eα)⊗ H 0(SV , Eβ)
×
→ H 0(SV , Eα+β) ↪→ VV [α+β];

the forms in the image of (3.1) are called classical. More generally, if

α : T (Zp)→O×
Cp

is any continuous character, we may define the space VV [α] ⊂ VV ⊗OCp of p-adic
modular forms of weight α. In what follows, we use the embeddings inclp and ι to
identify the maximal tori Ty and T , so that B is contained in the maximal parabolic
subgroup with Lie algebra p−y ⊕ ky . If α is a classical weight, we write

9α : VV [α] ⊂ VV (3.2)

for the tautological inclusion, extending the inclusion of (3.1); the notation is con-
sistent.

The embedding (2.16) determines a map

resV ′ : VV → VV ′ . (3.3)

This embedding is compatible with action of the torus T ′ on the two sides through
its inclusion in T .

Let A be an algebraic torus over Spec(Zp). For any complete p-adic algebra O,
define the Iwasawa algebra

3O(A)=O[[A(Zp)]] = lim
←−−

U⊂A(Zp)

O[A/U ],

where U runs over open compact subgroups of A(Zp). Let C(A(Zp),O) denote the
O-algebra of continuous O-valued functions on A(Zp), endowed with the topology
defined by the sup norm.

Definition 3.4. A O-valued p-adic measure — more simply, an O-valued mea-
sure — on A is a continuous O-homomorphism from C(A(Zp),O) to O.

It is well known that the set of O-valued measures on A forms an O-Banach
module that is naturally identified with 3O(A). Multiplication in the O-algebra
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3O(A) corresponds to convolution of measures. If φ ∈ C(A(Zp),O) and µ ∈
3O(A), we write ∫

A(Zp)

φ dµ := µ(φ).

For any torus A over Spec(Zp), and any Zp-algebra O, let

WO(A)= Homcont(A(Zp),O×)= Homcont(3O(A),O×).

The weight space for A is the rigid analytic space over Qp attached to 3O(A). A
weight for A is then an element of WO(A).

When O = VV we write Meas(A,VV ) instead of 3VV (A).

3B. p-adic differential operators. There is a quotient T Sym of the torus Ty , of rank
min(r, s), defined by a sublattice of the lattice of characters of Ty: the characters
of T Sym are spanned by the ones called symmetric in Definition 2.4.4 of [Eischen
et al. 2018]. Symmetric characters are also assumed to be dominant; the precise
condition is recalled below.

We recall the normalization of C∞ differential operators (Maass operators) from
[Eischen et al. 2018, §3.3.1]. For a weight κ of holomorphic type we let Eκ(C∞)
denote the space of C∞ global sections of Eκ . Let λ be a symmetric character of
Ty and let

Dλ
κ : Eκ(C

∞)→ Eκ+λ(C∞) (3.5)

be the differential operator introduced on pages 467–468 of [Eischen et al. 2018]
(we are writing weights additively rather than multiplicatively). For any weight α
of T let [α]′ denote its restriction to the subtorus T ′ ⊂ T . Let

R∞V,V ′ : Eα(C
∞)→ E[α]′(C∞)

denote the restriction of C∞ sections (any α). We let

prhol
[α]′ : E[α]′(C

∞)→ H 0(Sh(V ′), E[α]′)

denote the orthogonal projection on holomorphic sections (any α).
Let κ ′ = [κ + λ]′. The relation between the Dλ

κ and the holomorphic operator
δκ,κ ′ is given by the following:

Lemma 3.6. We write

Dhol(κ, κ†)= prhol
[κ†]′
◦ R∞V,V ′ ◦ Dκ†

−κ
κ

Then for all κ†
≤ κ ′ there exist unique elements δ(κ ′, κ†) ∈U(p+,′), defined over K,

such that
Dλ
κ =

∑
κ†≤κ ′

δ(κ ′, κ†) ◦ Dhol(κ, κ†).

The term δ(κ ′, κ ′) is a nonzero scalar in K.
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Proof. This is the analogue of Corollary 4.4.9 of [Eischen et al. 2020] and is proved
in the same way. �

The idea of the proof is roughly the following. Write Eκ,y for the fiber at y of
the pullback of Eκ to the symmetric space YV ; this is an irreducible representation
of K y . Then Dκ†

−κ
κ lifts, on automorphic forms, to a differential operator given

in the enveloping algebra of p+y by an explicitly normalized projection onto the
κ†-isotypic subspace of

Eκ,y ⊗Sym|κ
†
−κ|(p+y ),

where |κ†
−κ| is the degree of the weight κ†

−κ . This isotypic subspace is the sum
of its intersections with the irreducible constituents of the restriction to U(g′) of the
discrete series Dκ , as in (2.4). Only one of these intersections is the highest K ′y-type
subspace of its corresponding constituent; this is the image of prhol

κ ′ . Each of the
others is obtained from the highest K ′y-type of its irreducible U(g′)-constituent Dκ† .
The existence of δ(κ ′, κ†) as in the lemma then follows from the obvious fact that
Dκ† is generated over U(p+,′) by its highest K ′y-type subspace.

The analogous p-adic differential operators are constructed in [Eischen et al.
2018, §3.3.2]. To preserve some of their notation while avoiding ambiguity we
write

Eκ(ord)= H 0(IgV , Eκ).

Then the operators are denoted

Dλ,ord
κ : Eκ(ord)→ Eκ+λ(ord). (3.7)

We define a p-adic character χ of T Sym to be a continuous group homomorphism
T Sym(Zp)→ Z×p that arises as the p-adic limit of dominant characters λ. The main
results of [Eischen et al. 2018] are summarized in the following theorem:

Theorem 3.8. (a) For any dominant character λ of T Sym (or any symmetric char-
acter λ of Ty) there is a p-adic differential operator

2λ : VV → VV (3.9)

characterized uniquely by either of the following properties:

(i) For all classical weights α,

2λ ◦9α =9α+λ ◦ Dλ,ord
α . (3.10)

Here 9α+λ is understood in the sense of (3.2).

(ii) Let α be algebraic. Let j : (H, h)→ (U(V ), YV ) be an ordinary CM pair, and
for any κ let

RH,h, j,κ : H 0(S(V ), Eκ)→ H 0(S(H, h), j∗Eκ)
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denote the restriction map. Let

R p
H,h, j,κ : E

ord
κ → H 0(S(H, h), j∗Eκ),

and
R∞H,h, j,κ : Eκ(C

∞)→ H 0(S(H, h), j∗Eκ);

denote the analogous restrictions on p-adic and C∞ modular forms, respec-
tively. Then for any F ∈ H 0(S(V ), Eα),

R p
H,h, j,α+λ ◦2

λ
◦9α(F)= R∞H,h, j,κ ◦ Dλ

α(F). (3.11)

(b) For any p-adic character χ of T Sym there exists a p-adic differential operator

2χ : VV → VV

characterized by the property: whenever χ can be written as limi λi , where λi are
dominant algebraic characters, satisfying the inequalities of Theorems 5.2.4 and
5.2.6 of [Eischen et al. 2018], then

2χ = lim
i
2λi

(limit in the operator norm).

(c) If F ∈ VV is a p-adic modular form of weight α ∈ X an(Ty), then 2λ(F) is a
p-adic modular form of weight α+ λ.

Proof. Parts (a)(i), (b), and (c) are in Corollary 5.2.8 of [Eischen et al. 2018].
Part (a)(ii) can be proved by the arguments quoted in the proof of [Eischen et al.
2018, Proposition 7.2.3]. A complete proof will appear in forthcoming work. �

Remark 3.12. The inequalities cited in the statement of Theorem 3.8(b) guarantee
that the characters λi tend to infinity in the positive chamber; indeed, that for every
positive root α, limi 〈α, λi 〉 =∞. In particular, when χ = 1 is the trivial character,
21
:= 2χ is not the identity operator on VV , though it is an idempotent. This

is familiar from Hida’s theory in the case of elliptic modular forms: the p-adic
differential operator of nonintegral weight χ multiplies the n-th Fourier coefficient
of a classical modular form by the power nχ , which is only defined if (p, n)= 1. A
classical modular form whose n-th Fourier coefficient vanishes for every n divisible
by p is called p-depleted. In our situation, the operation F 7→ 21(F) can be
understood as p-depletion, even when the unitary group (over a general totally
real field) is anisotropic.

4. One-dimensional p-adic measures
defined by a holomorphic automorphic form

The differential operators defined in Section 3B give rise to a p-adic measure. We
believe that they can be used to define a measure on the full space T Sym(Zp), but
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for the purposes of this paper we restrict our attention to a 1-dimensional quotient
torus, since the necessary definitions are already in [Eischen et al. 2018] in the
form we need. First, we state a corollary to Theorem 3.8:

Corollary 4.1. Let F ∈ VV be a p-adic modular form of weight α. Then there
exists a VV -valued measure µ∗F on T Sym(Zp) characterized by the property that,
for any p-adic character χ of T Sym, viewed as a symmetric character of Ty , we
have ∫

T Sym(Zp)

χ dµ∗F =2
χ−α(F).

We recall that Ty is a maximal torus of the group GL(r)×GL(s)−→∼ K y , and
that the adjoint action of K y on p+y is equivalent to the natural conjugation action
on the space of r × s matrices. This action is identified in [Eischen et al. 2018]
with the representation Str ⊗Sts , where Sta is the standard representation of GL(a)
on a-dimensional space. Then the symmetric algebra

Sym∗(p+y /p
+,′
y )−→∼

⊕
i≥0

Sym∗
(
(Str ⊗Sts)/(Str ⊗Sts−1)

)
−→∼

⊕
i≥0

Sym∗(Str ⊗St1), (4.2)

where the last isomorphism is given by the isotypic decomposition Sts−→∼ St1⊕Sts−1

as representation of the standard Levi subgroup GL(1)×GL(s− 1)⊂ GL(s). The
dominant characters λ of T Sym can be written as parameters (2.1)(

b1 ≥ b2 ≥ · · · ≥ bs ≥ 0≥ · · · ≥ 0; b1 ≥ b2 ≥ · · · ≥ bs
)

if r ≥ s, and with the 0s in the second half of the parameter if s > r . Then the
representations occurring in (4.2) have parameters

λb = (b ≥ 0≥ · · · ≥ 0; b; 0≥ · · · ≥ 0), (4.3)

where the two semicolons separate parameters for GL(r)×GL(1)×GL(s− 1).
If b ∈ Zp, we write λb = limi bi , where bi = (b1,i , . . . , bmin(r,s)i ), where all the

b j,i are nonnegative integers, b = limi b1,i in the p-adic topology, limi b j,i = 0 in
the p-adic topology for j > 1, and for all 1 ≤ j ≤min(r, s), limi b j,i =∞ in the
real topology.

Let X (T Sym) denote the character lattice of T Sym. Let X1⊂ X (T Sym) be the char-
acters of the form λb as in (4.3). Then X1 is the character group of a 1-dimensional
quotient of T Sym, which we identify with GL(1). Restricting the measure µ∗F to
characters of GL(1), we obtain the corollary:

Corollary 4.4. Let F ∈ VV be a p-adic modular form of weight α. Then there
exists a VV -valued measure µF on GL(1,Zp) characterized by the property that,
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for any p-adic integer b, we have∫
GL(1,Zp)

xb dµF =2
λb(F).

Definition 4.5. Let A be a torus over Spec(Zp). We say the VV -valued measure
µ on A(Zp) is equivariant of weight α if for any character χ of A, the integral∫

A(Zp)
χ dµ is a p-adic modular form of weight χ +α for some fixed weight α.

The following corollary is then a consequence of Theorem 3.8(c).

Corollary 4.6. Let F ∈ VV be a p-adic modular form of weight α. Then the mea-
sures µ∗F (resp. µF ) on T Sym(Zp) (resp. GL(1,Zp)) are equivariant of weight α.

We will be pairing the measure µF — or rather its restriction to ShV ′ — with
Hida families of ordinary p-adic modular forms on U(V ′). We could also pair
the dim T Sym-parameter measure with Hida families, but they will not give rise to
more general special values, because the differential operators on ShV in directions
parallel to ShV ′ do not change the automorphic representation of U(V ′).

Suppose now that F ∈ VV is a classical form of weight κ . Let κ ′ satisfy the
inequalities of Lemma 2.5, so there is a holomorphic differential operator δκ,κ

′

as
in Proposition 2.6.

Lemma 4.7. (a) For all κ† that satisfy the inequalities of Lemma 2.5, there is a
differential operator

θhol(κ, κ†) : VV → VV

such that
resV ′ ◦ θ

hol(κ, κ†)(F)= δκ,κ
′

(F).

(b) For all κ†
≤ κ ′, there are differential operators θ(κ, κ†) : VV → VV such that

θ(κ, κ ′)=
∑
κ†≤κ ′

resV ′ ◦ θ(κ, κ
†) ◦ θhol(κ, κ†),

with θ(κ, κ) a nonzero scalar. Here resV ′ is as in (3.3).

Proof. Part (a) is the analogue of Proposition 8.1.1(d) of [Eischen et al. 2020]; it
is derived in the same way from properties of restriction to CM points — in this
case from Theorem 3.8(a)(ii). Part (b) is then the analogue of [Eischen et al. 2020,
Corollary 8.1.2]. �

In what follows, the terms antiordinary and antiholomorphic are used as in
[Eischen et al. 2020]; these are reviewed in Section A.2 of the Appendix.

Proposition 4.8. There is a p-adic differential operator θκ,κ
′

: VV → VV ′ with the
property that, for any antiholomorphic antiordinary automorphic form g of weight
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κ ′ on U(V ′) and any holomorphic automorphic form F of weight κ on U(V ), we
have

[θκ,κ
′

(F), g] = [δκ,κ
′

(F), g].

Proof. This follows from Lemma 4.7 and from estimates on the denominators used
to define the ordinary projector, as in the proof of [Eischen et al. 2020, Proposi-
tion 8.1.3]. �

In what follows we assume F to belong to a fixed holomorphic automorphic
representation π .

5. Hida families

Recall the maximal torus T ′ ⊂U(V ′). Let 3′ =3O(T ′) be the Iwasawa algebra
of T ′(Zp); it is a noetherian local ring that is non canonically isomorphic to the
tensor product over O of n− 1 copies of O[[1+ pZp]].

5A. Ordinary parameters. We let T denote the ordinary p-adic Hecke algebra for
cusp forms on the group U(V ′). For the purposes of this paper, a Hida family is
determined by a single antiordinary antiholomorphic automorphic representation τ
of U(V ′), and the completion Tτ of T at the maximal ideal mτ corresponding to τ .
We write O for the coefficient ring denoted Oτ as in [Eischen et al. 2020, §7.3], so
that 3′ =3Zp(T

′)⊗O, where 3Zp(T
′) is the Iwasawa algebra of weights for T ′y .

We let T ord
K ′r ,κ ′,O

denote the ordinary Hecke algebra of weight κ ′ and level K ′r —
notation as in [Eischen et al. 2020, §6.6.6] — and let Tr,κ ′ denote the completion
of T ord

K ′r ,κ ′,O
at mτ ; the representation τ will be fixed for the remainder of the paper.

We can write
Tτ = lim

←−−
r

Tr,κ ′,τ

for any sufficiently regular κ ′, as in [Eischen et al. 2020, §7.1, Theorem 7.1]. For
all claims regarding Hida families we refer to Hida’s book [2004]. In particular,
Tτ is a finite flat 3′-algebra.

5B. The Gorenstein condition. We introduce two versions of the Gorenstein hy-
pothesis that was used in [Eischen et al. 2020] to define p-adic L-functions with
values in Hida’s ordinary Hecke algebra. The first is adapted to (holomorphic) auto-
morphic forms of fixed weight κ ′; compare [Eischen et al. 2020, Definition 6.7.9]:

Definition 5.1. The Tr,κ ′-module Sord
κ ′ (K

′
r ,O)τ is said to satisfy the Gorenstein

hypothesis if the following conditions hold.

• Tr,κ ′ −→
∼ T̂r,κ ′ := HomO(Tr,κ ′,O) as O-algebras.

• Sord
κ ′ (K

′
r ,O)τ is free over Tκ ′ .
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The T ord
K ′r ,κ ′,O

-module Sord
κ ′ (K

′
r ,O) is said to satisfy the Gorenstein hypothesis if all

its localizations at maximal ideals of TK ′r ,κ ′,O satisfy the two conditions above.

The second version is a hypothesis on the big ordinary Hecke algebra, which is
a finite 3′-algebra; compare [Eischen et al. 2020, Hypothesis 7.3.2].

Hypothesis 5.2 (Gorenstein hypothesis). Let T̂τ = Hom3′(Tτ [,3
′). Then

• T̂τ is a free rank-one Tτ -module via the isomorphism [ : Tτ −→
∼ Tτ [ .

• For each r , let Tτ act on HomO(Sord
κ ′ (K

′,p
r ,O),O)mτ by the natural action

twisted by [. Then

Ŝord
τ = HomO

(
lim
−−→

r
Sord
κ ′ (K

′,p
r ,O),O

)
mτ

( for any sufficiently regular κ ′) is a free Tτ -module.

The hypothesis in Definition 5.1 follows from Hypothesis 5.2 and Hida’s control
theorem, for sufficiently regular κ ′. More precisely, let

Ŝord
κ ′ (K ;O)= HomO(Sord

κ ′ (K ;O),O), (5.3)

and define Ŝord
κ ′ (K ;O)τ analogously. Then Hida’s control theorem (see [Eischen

et al. 2020, Theorem 7.3.1]) asserts, in the present notation, that

Tτ ⊗3′ 3
′/Iκ ′ −→∼ (T ord

K ,κ,O)τ (5.4)

for sufficiently regular κ ′. Under Hypothesis 5.2, there is then an isomorphism

Ŝord
κ ′ (K ;O)τ −→∼ Sord

κ ′ (K ;O)τ (5.5)

of dual free Tκ ′-modules. We introduce compatible bases of these modules in the
next section.

5B1. Bases. We let

�τ = HomTτ (T̂τ ,Tτ ), (5.6)

�κ ′,τ = HomTκ′
(T̂κ ′,Tκ ′). (5.7)

Under the Gorenstein hypotheses, �τ is a free rank 1 Tτ -module, and �κ ′,τ is a
free rank 1 Tκ ′-module. In particular, the set of Tτ -isomorphisms between Tτ and
T̂τ is a torsor under T×τ , and between Tκ ′ and T̂κ ′ a torsor under T×κ ′ .

5C. Ramified local components. We let π be the automorphic representation of
GV corresponding to the holomorphic modular form F . Let τ be as in the previous
section, and let S denote the finite set of finite primes v, not including p, such that
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either πv, τv, or K/Q is ramified. In [Eischen et al. 2020, §7.3.4] we introduce a
free O-lattice

Î = Îτ ⊂
(⊗
v∈S

τv

)K p

with the property that:

(a) For all sufficiently regular κ ′, there is an isomorphism of Tκ ′,τ -modules

Ŝord
κ ′ (K ;O)τ −→∼ Tκ ′,τ ⊗O Î .

(b) Also, there is an isomorphism of Tτ modules Ŝord
τ −→

∼ Tτ ⊗O Î , compatible
with (a) and with the control isomorphisms (5.4).

(In [Eischen et al. 2020] the group is GU(V ) rather than U(V ′) and the notation
is π [ rather than τ , but the lattice is defined in the same way.)

Let L= Frac(O), L its algebraic closure. For any sufficiently regular κ ′, there
is a decomposition

Tκ ′,τ ⊗O L−→∼
⊕

π ′∈[τ ]κ′

Tπ ′ . (5.8)

The elements of [τ ]κ ′ are the (antiordinary) antiholomorphic automorphic represen-
tations π ′ of weight κ ′ whose Hecke eigenvalues at places outside S are congruent
to those of τ ; the action of Tκ ′,τ on the vectors in each π ′ factors through the
corresponding component Tπ ′ .

We let K ′S=K p
∩
∏
v∈S GV ′(Qv) and assume K ′S admits a factorization

∏
v∈S K ′v .

We have implicitly been assuming that the finite parts of our automorphic repre-
sentations are defined over L (see Remark 2.12). Let

ÎL = Î ⊗O L=
⊗
v∈S

(τv)
K ′v (L).

This is naturally the tensor product over v ∈ S of irreducible representations of the
local (ramified) Hecke algebra HL(GV ′(Qv), K ′v) of compactly supported L-valued
K ′v-biinvariant functions on GV ′(Qv). Let HO(GV ′(Qv), K ′v)⊂HL(GV ′(Qv), K ′v)
denote the subalgebra of O-valued functions and let HS =

⊗
v HO(GV ′(Qv), K ′v).

We make the following simplifying hypothesis:

Hypothesis 5.9 (local minimality). For each v ∈ S, there is an O-lattice Îv ⊂
(τv)

K ′v (L), invariant under HO(GV ′(Qv), K ′v), with the property that Î −→∼
⊗

v∈S Îv
and

M̂0
τ := M̂0

τ, Î
:= HomHS ( Î , Ŝord

τ )

is a free rank 1 Tτ -module.
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We let
M̂τ := HomTτ (M̂

0
τ ,Tτ ). (5.10)

Under Hypothesis 5.9, M̂τ is a free rank 1 Tτ -module.
Recall that each v ∈ S is of characteristic prime to p, so we can apply the methods

of the mod p representation theory of GV ′(Qv) [Vignéras 1996]. In particular, one
can define the reduction τ̄v of each τv for v ∈ S modulo the maximal ideal of O,
as a semisimple representation of GV ′(Qv) of finite length. It is easy to see that
Hypothesis 5.9 is automatic if each τ̄v is irreducible. In particular, by the theory of
[Vignéras 1996], this holds if p is banal for all GV ′(Qv) with v ∈ S, and in particular
if p is sufficiently large. For v split in K, the condition can be read off the p-adic
Galois representation attached to τv by the local Langlands correspondence, and
corresponds to the usual hypothesis in Galois deformation theory that the Galois
representations attached to τ ′ congruent to τ modulo p are minimally ramified at
such v. This is probably also the case for v inert or ramified in K, but as far as I
know this has not been verified.

The notation Î is deleted for the sake of legibility. By (5.4), Hypothesis 5.9
implies that, for all sufficiently regular κ ′,

M̂0
κ ′,τ := HomHS ( Î , Ŝord

κ ′ (K ;O)τ ) is a free rank 1 Tκ ′,τ -module. (5.11)

An element f ′S =
∑

j
⊗

v∈S f ′v, j ∈ Î , with f ′v, j ∈ τv, is called primitive if it
generates a O-direct summand of Î . Choose a generator m̂ of M̂τ as Tτ -module
and a primitive f ′S ∈ Î . Then for every sufficiently regular κ ′, m̂−1( f ′S) generates
Sord
κ ′ (K ;O)τ over Tκ ′,τ ; it defines a linear combination

m̂−1( f ′S)=
∑

π ′∈[τ ]κ′

( fπ ′)= f ′S ⊗
[ ∑
π ′∈[τ ]κ′

f ′,Sπ ′

]
:= f ′S ⊗ f ′,Sm̂ (5.12)

with notation as in (5.8), where fπ ′ = f ′S⊗ f ′,Sπ ′ ∈ π
′ with f ′,Sπ ′ a Hecke eigenvector.

Note that each individual fπ ′ is not necessarily integral, but the sum f ′,Sm̂ is a
divided congruence and is defined over O. As we have noted, under the Gorenstein
hypothesis the set of generators m̂ of M̂τ is a torsor under T×τ . If t ∈ T×τ , then

f ′,St·m̂ = t · f ′,Sm̂ .

6. Contraction of p-adic measures with Hida families

We fix a ring O of integers in a finite extension of Qp, and we assume O is a subal-
gebra of the algebra VV of p-adic modular forms. For a p-adic torus A we define
Meas(A,VV ) as in Section 3A. We choose a collection of congruence subgroups

A(Zp)⊃ A1 ⊃ A2 · · · ⊃ Ar ⊃ . . .
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with
⋂

i Ai = {1}, and we let

Cr (A,O)⊂ C(A(Zp),O)

be the O-submodule of O-valued functions on A(Zp)/Ar . For any algebraic char-
acter χ of A we consider Cr (A,O)χ as a finite rank O-submodule of C(A(Zp),O).

6A. Review of equivariant measures. Let α be a character as in Definition 4.5.
As in [Eischen et al. 2020, Lemma 7.4.2], we can identify an equivariant measure
φ ∈Meas(A,VV ) of weight κ

φ(a · f )= κ(a) · a ·φ( f ), for all a ∈ A(Zp), f ∈ C(A(Zp),O) (6.1)

with a collection

(φr,χ ) ∈ Hom3O(A)(Cr (A,O)κ ·χ,VV ), (6.2)

satisfying a certain distribution relation, written

η∗r (φr+1,χ )= φr,χ ;

we refer the reader to [Eischen et al. 2020] for the definition. (There is a misprint in
[Eischen et al. 2020]: the factor corresponding to a· after α(a) in (6.1) is missing.)

In the application in this paper, A is the torus T ′y . The classical weights are
Zariski dense in Spec(3′). Recall that we have defined [κ]′ to be the restriction of
the weight κ to T ′y . We define 3′κ (which we could also write 3[κ]′) to be the quo-
tient of 3′ corresponding to the Zariski closure of highest weights of T ′y of the form
κ ′b := [κ]

′
+b(1, 0, . . . , 0). As a ring, 3′κ is isomorphic to3′0, which is just the Iwa-

sawa algebra O[[T ]]. We assume our chosen automorphic representation τ of U(V ′)
is of weight contained in Spec(3′κ). In the discussion above, [κ]′ ·χ is taken to be a
character κ ′b, which we henceforth abbreviate κ ′. In other words, we don’t assume
that κ ′ = [κ]′, but we do want κ ′ to correspond to a classical point of Spec(3′κ).

We choose the filtration (Ar )= (T ′y,r ) to be compatible with the filtration K ′p,r
of K ′p. In (6.2) we can replace 3O(T ′y) by its quotient 3′κ , which is an Iwasawa
algebra in one variable. Let J ⊂3O(T ′y) denote the kernel of the homomorphism
to 3′κ . Let (φr,χ ) be as above, and define

φ′r,χ = resV ′ ◦φr,χ ∈ Hom3′κ

(
Cr (T ′y,O)[J ]κ ·χ,VV ′

)
, r ≥ 0.

Here Cr (T ′y,O)[J ] ⊂Cr (T ′y,O) is the O-submodule of functions annihilated by J .
As in [Eischen et al. 2020], we define contraction of p-adic measures with Hida

families by fixing a sufficiently regular classical weight κ ′ = [κ]′ · χ of T ′y and
taking the limit over r of pairings of the φ′r,χ with the level K ′r components of
a fixed Hida family. We start with the equivariant measure µF of weight κ , then,
and define an element µ′F of Hom3′κ

(C(Z×p ,O),VV ′) by restricting µF via the map
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resV ′ ; let (φ′r,χ )= (φ
′
r,χ,τ ) be the corresponding collection of homomorphisms in

Hom3′κ
(Cr (A,O)[κ]′ ·χ,V ′V ).

Let e′τ denote the ordinary projector VV ′→ Vord
V ′ , composed with localization at

the maximal ideal mτ . For κ ′ = [κ]′ ·χ sufficiently regular, it follows from (5.4)
that the image of e′τ ◦φ

′
r,χ is contained in

Sord
κ ′ (K

′

r ,O)−→∼ HomO(Ŝord
κ ′ (K

′

r ,O),O). (6.3)

More precisely, denoting localization at mτ by the subscript τ , the image of e′τ ◦φ
′
r,χ

lies in
Sord
κ ′ (K

′

r ,O)τ −→∼ HomO(Ŝord
κ ′ (K

′

r ,O)τ ,O), (6.4)

where the left-hand side is the image of Sord
κ ′ (K

′
r ,O) in the right-hand side of (6.3)

after localization at mτ .

6B. Application of the Gorenstein Hypothesis 5.2. The right hand side of (6.4) is
isomorphic to Ŝord

κ ′ (K
′
r ,O)τ as finite free module of rank M equal to the O-rank of

Î = Îτ over Tτ . We choose Tτ bases m̂ ∈ M̂τ and ω ∈�τ , and a primitive f ′S ∈ Î ,
and obtain the following diagram:

Sord
κ ′ (K

′

r ,O)τ ∼−→ HomO(Ŝord
κ ′ (K

′

r ,O)τ ,O)
∼
−→ HomO

([
Î ⊗O HomHS ( Î , Ŝord

κ ′ (K
′

r ,O)τ )
]
,O
)

m̂
−→ HomO( Î ⊗O Tr,κ ′,τ ,O)
ω
−→ HomO( Î ,O)⊗O Tr,κ ′,τ

f ′S⊗id
−−−→ Tr,κ ′,τ , (6.5)

where the last line inserts f ′S in the factor HomO( Î ,O).
We now apply the discussion of Section 6A when (φr,χ ) is attached to the mea-

sure µF . As in [Eischen et al. 2020, §7.4], the collection

(φ′r,χ,τ ∈ Sord
κ ′ (K

′

r ,O)τ )r≥0

patches together with an element L0(F, τ ) of a finite free rank M Tτ -module. By
choosing m̂, ω, and f ′S as above, we identify L0(F, τ ) with an element

L(F, τ ) := L(F, f ′S, τ, m̂, ω) ∈ Tτ .

as in [Eischen et al. 2020, Proposition 7.4.10]. Note, however, that this element is
not independent of the choices. In particular, the bases m̂ and ω of their respective
rank 1 Tτ -modules are only defined up to multiplication by units in T×τ . In general
there seems to be no canonical choice of these bases, in contrast to the familiar
case of new forms for GL(2), when the leading term of the q-expansion defines a
canonical choice.
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6C. Pairings and periods. We summarize the construction in the previous section.

Theorem 6.6. Suppose F is classical of weight κ . Let Tτ be a component of
the ordinary Hecke algebra for cusp forms on U(V ′); we admit Hypotheses 5.2
and 5.9. Let L(F, τ ) denote the element L(F, f ′S, τ, m̂, ω) ∈ Tτ constructed above.
Let x ∈ Spec(Tτ ) lie over a weight κ ′ ∈ Spec(3′κ), and suppose it corresponds to
an eigenform f ′x = f ′S ⊗ f ′,Sm̂,x as in (5.12). Then

L(F, τ, x)= [θκ,κ
′

(F), f ′x ]

=

∫
[U(V ′)]

δκ,κ
′

(F)(g′) · f ′x(g
′) dg′ = PU(V ′)(δ

κ,κ ′(F), f ′x). (6.7)

Proof. Since f ′x is antiordinary, this follows immediately from Proposition 4.8. �

Remark 6.8. The function L(F, τ ) can be described more canonically as an ele-
ment of Tτ⊗O M̂τ⊗�τ , or alternatively as a section of the line bundle on Spec(Tτ )
corresponding to the module M̂τ ⊗�τ . In cases involving elliptic modular forms
(for example, in [Harris and Tilouine 2001]) the theory of the q-expansion provides
a canonical everywhere nonvanishing section of this line bundle. I don’t know
whether or not to expect the corresponding line bundle to be trivial more generally,
when the Gorenstein condition is satisfied. The question will be examined more
carefully in the sequel to this paper.

7. The Ichino–Ikeda formula and the main theorem

The formula is given by the Ichino–Ikeda–N. Harris conjecture:

Conjecture 7.1. Let f ∈ π , f ′ ∈ π ′ be factorizable vectors. Then there is an
integer β, depending on the L-packets containing π and π ′, such that

P( f, f ′)= 2β1HLS(π, π ′)
∏
v∈S

I ∗v ( fv, f ′v).

Here

P( f, f ′) :=
|PU(V ′)( f, f ′)|2

〈 f, f 〉〈 f ′, f ′〉
.

and

LS(π, π ′) :=
L S
( 1

2 ,5⊗5
′
)

L S(1,5, As(−1)n )L S(1,5′, As(−1)n−1
)
, (7.2)

where 5= BC(π), 5′ = BC(π ′). Moreover, the local Euler factors I ∗v are given
by the explicit formula

I ∗v ( fv, f ′v)= [cfv (1)cf ′v (1)]
−1
·

∫
U(V ′)v

cfv (g
′)cf ′v (g

′) dg′, (7.3)
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where cfv (g)= 〈π(g) fv, fv〉πv , for a fixed inner product 〈•, •〉πv , and likewise for
the matrix coefficient cf ′v . Normalizations are explained in the references cited in
the following theorem.

Theorem 7.4 [Beuzart-Plessis 2021; Beuzart-Plessis et al. 2020; 2021; Xue 2019;
Zhang 2014]. Suppose π and π ′ are everywhere tempered. Then Conjecture 7.1
holds.

We apply this when f = δκ,κ
′

(F) and f ′ = fx in (6.7). If fx is classical we
write it in the form

fx =
f hol
x

〈 f hol
x , f hol

x 〉
,

where f hol
x is an holomorphic modular form (of weight κ ′x ) rational over Q, and

the denominator is the Petersson inner product. When π and π ′ are in the discrete
series at archimedean places it is known thanks to a long list of people, ending
with Caraiani, that π and π ′ are necessarily tempered everywhere. Then we have
the following theorem.

Theorem 7.5. Suppose F is classical of weight κ , corresponding to the cuspi-
dal automorphic representation π . Fix an antiordinary antiholomorphic auto-
morphic representation τ of U(V ′) of weight κ ′, where κ ′ is in Spec(3′κ). Let
f = δκ,κ

′

(F) ∈ π be a vector
⊗
′

v fv, which is unramified outside a finite set S
of places containing p and ∞. Let x 7→ f ′x be a Hida family over Spec(3′κ).
We assume that, for every classical point x , with f ′x corresponding to the au-
tomorphic representation τx of U(V ′), f ′x is a factorizable vector of the form⊗

v /∈S f ′x,v ⊗ f ′S ∈
⊗

v τx,v, with fx,v spherical for v /∈ S, fx,p the antiordinary
vector in τx,p as in [Eischen et al. 2020, §8.3].

We admit Hypotheses 5.2 and 5.9 and assume f ′S =
∑

j
⊗

v∈S f ′v, j ∈ Î is a
primitive vector as in Section 5C. Fix generators m̂ ∈ M̂τ and ω ∈�τ and define
L(F, τ )= L(F, f ′S, τ, m̂, ω) as in Theorem 6.6. Then for every classical point, the
function L(F, τ, x) is an algebraic number that satisfies

|L(F, τ, x)|2 = 2β1H |δ
κ,κ ′(F)|2〈 f ′x , f ′x 〉

2
·LS(π, τx) · ZS(x),

where
ZS(x)= Z∞(x) · Z p(x) ·

∑
j

∏
v∈S\{p,∞}

I ∗v ( fv, f ′v, j ). (7.6)

Next, Z∞ is the Euler factor attached to δκ,κ
′

(F∞) ∈ π∞ and fx,∞ ∈ τx,∞.
Finally, Z p(x) is the Euler factor attached to the specified vectors f p and f ′x,p.

Proof. By the cuspidality hypotheses on π and τ and Theorem 7.4 the formula in
Conjecture 7.1 is valid. The theorem then follows by combining Theorem 6.6 with
(7.2) and (7.3). �
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Remark 7.7. If we don’t insist that f ′S be primitive, we can arrange that ZS be a
product and that the local factors for v ∈ S \ {p,∞}. are volume terms.

8. Open questions

8A. Local factors at p. The most intriguing open question is the determination of
the local factor I ∗p( f p, f ′x,p) in Conjecture 7.1. Specifically, the antiordinary vector
f ′x,p has been identified in [Eischen et al. 2020] as a collection of explicit vectors,
of increasing level — bounded below by a constant determined by the level at p of
the component τx of τ , which belongs to the (possibly ramified) principal series
of GL(n− 1,Qp). On the other hand, f p must have the property corresponding to
p-depletion in the classical context of elliptic modular forms. We can start by re-
placing F by21(F), where21 is the operator introduced in Remark 3.12. It will be
proved in a subsequent paper that 21(F) is a classical holomorphic modular form,
but of level divisible by p. This probably suffices to determine the vector f p ∈ πp.

The representation πp× τx,p can be viewed as a representation of

GL(n,Qp)×GL(n− 1,Qp),

and the Ichino–Ikeda local factors I ∗p( f p, f ′x,p) can be computed in terms of Jacquet–
Piatetski-Shapiro–Shalika local factors for GL(n)×GL(n− 1). As Beuzart-Plessis
explained to me, this was first observed by Waldspurger; and independently and
more explicitly in [Sakellaridis and Venkatesh 2017, §18.4]. Thus it suffices to
compute the Jacquet–Piatetski-Shapiro local factors for our chosen vectors, both
of which belong to principal series representations. Since these factors behave well
with respect to parabolic induction, this may not be as difficult as it appears.

8B. Local factors at ∞. The proof of Conjecture 7.1, in the cases in which it
is known, is based on a comparison of the local Euler factors (7.3) at all places
with corresponding local factors in the Jacquet–Piatetski-Shapiro–Shalika integral
representation of the Rankin–Selberg L-functions for GL(n) × GL(n − 1). In
our situation, δκ,κ

′

(F∞) and fx,∞ are vectors in discrete series representations of
U(r, s) and U(r, s− 1), respectively; the comparison depends on a transfer of test
functions on U(r, s)×U(r, s− 1) to GL(n,C)×GL(n− 1,C). As in the previous
section, the local Euler factors in the latter situation can be studied by means of
parabolic induction, so the computation of local factors at∞ mainly depends on
understanding the local transfer.

8C. Maximal dimension. As b varies among positive integers, the p-adic modular
forms2b(F) can be paired not only with classical forms of weight [κ]′+(b, 0, . . . )
but with those of more general weights in the decomposition (2.4). The function
L( f, τ ) should thus extend to a function on min(r, s)-dimensional Hida families.
This will be considered in future work with Ellen Eischen.
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8D. Extension to coherent cohomology in higher degree. Conjecture 7.1 applies
to many central values of motivic L-functions that are not realized as pairings of
holomorphic and antiholomorphic modular forms. In many cases they can neverthe-
less be realized as cup products in higher coherent cohomology; some examples are
considered in [Grobner et al. 2018]. Pilloni’s recent development of higher Hida
theory shows that higher coherent cohomology classes can also be deformed in
ordinary families. Work in progress by Loeffler, Pilloni, Skinner, and Zerbes aims
to use this theory to study the p-adic behavior of special values of L-functions of
certain automorphic representations, for groups of low dimension, that are known
to be related to cup products in coherent cohomology. In future work with Eischen
and Pilloni, we hope to make a systematic study of square-root p-adic L-functions
for U(n)×U(n− 1), whenever coherent cohomology can be applied.

Many of the period integrals in Conjecture 7.1 involve coherent cohomological
representations but are not identified as cup products. There should be square root
p-adic L-functions in these cases as well, but it is not clear how they can be defined.

8E. Slopes and the Panchishkin condition. General conjectures on p-adic L-func-
tions predict that they can be constructed for quite general motives, but that they
belong to Iwasawa algebras, or finite extensions thereof, only when the motive
satisfies a Panchishkin condition, which is the analogue for the p-adic slope filtra-
tion of the condition on the Hodge filtration that guarantees that a special value is
critical in Deligne’s sense. No such conjectural restriction has been formulated,
as far as I know, for the existence of p-adic analytic functions with values in
finite extensions of Hida’s ordinary Hecke algebra (itself a finite extension of a
multivariable Iwasawa algebra) that interpolate square roots of normalized critical
values of L-functions. The method of the present paper presupposes that the forms
on U(V ′) vary in an ordinary family but impose no restriction on the forms in the
larger group U(V ). Is the construction here consistent with general conjectures?

Appendix

A.1. Review of Shimura data for unitary groups. The Shimura datum (U(V ), YV )

is introduced in Section 2, following the discussion in [Gan et al. 2012, §27]. We
review the definition given there, in the simpler case treated here where K is an
imaginary quadratic field. Let V and (r, s) be as in the beginning of Section 2.
Let GU(V ) denote the algebraic group over Q of unitary similitudes of V; in other
words, it is the subgroup of RK/Q(GL(V )) of automorphisms of V that preserve
the hermitian form up to a scalar. Let S denote the Serre torus RC/RGm,C. Define
a map

hV = S→ GU(V )(R)
by the formula

hV (z)=
(

z Ir 0
0 z̄ Is

)
, (A-1)
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where Ir and Is are the identity matrices of size r and s, respectively. Denote by XV

the GU(V )(R)-conjugacy class of homomorphisms S→ GU(V )R containing hV ;
thus (GU(V ), XV ) is a Shimura datum

Let V1 denote the vector space K, endowed with a hermitian form of signature
(0, 1) at the chosen complex embedding ι, and define hV1 = h6 : S→ GU(V1)(R)

by analogy with (A-1); as above, we thus have a Shimura datum (GU(1), hV1) Let
G ′V ⊂GU(1)×GU(V ) be the subgroup consisting of (t, g) with ν(t)= ν(g). Then
the map

h′V : S→ [GU(V1)×GU(V )](R); h′V (z)= (hV1(z), hV (z))

has image contained in G ′V (R); thus we may write h′V :S→G ′V (R). Let X ′V denote
the G ′V (R)-conjugacy class of homomorphisms h : S→ G ′V (R) containing h′V .
Then (G ′V , X ′V ) is a Shimura datum, and the inclusion map G ′V ↪→GU(V )×GU(1)
induces a morphism of Shimura data

(G ′V , X ′V )→
(
GU(V )×GU(1), XV × X1

)
.

There is a natural map

u : G ′(V )→U ; u(t, g)= t−1g,

for all (t, g) ∈ G ′(V )⊂ GU(1)×GU(V ). (A-2)

The map taking h ∈ X ′V to u ◦ h : S→ U(V )(R) then defines a map of Shimura
data

(G ′V , X ′V )→ (U(V ), YV ),

where YV is the U(V )(R)-conjugacy class defined by this map. Unlike the other
Shimura data introduced in this section, the pair (U(V ), YV ) is not of PEL type. It
is of abelian type, however, and arithmetic of the Shimura variety S(U(V ), YV ) has
been studied, nevertheless, in [Kisin et al. ≥ 2021]. In this paper we write S(V )
instead of S(U(V ), YV ), and if K ⊂U(V )(Af ) is an open compact subgroup,the
corresponding finite level Shimura variety is denoted K S(V ).

A.2. Review of antiholomorphic and antiordinary forms. The complex structure
on the hermitian symmetric space YV determines the complex structure on the
Shimura variety Sh(V ), and one thus has a well-defined notion of holomorphic
sections of the canonical extensions of automorphic vector bundles on toroidal
compactifications of Sh(V ). Such a holomorphic section φ gives rise by a canoni-
cal trivialization to an automorphic form Fφ on G(V )(Q)\G(V )(A), and thus to an
automorphic representation π =π(φ) of G(V )(A). Such a π is called holomorphic,
and Fφ is a highest K∞-type vector for an appropriately chosen maximal compact
subgroup K∞ ⊂ G(V )(R). For all this, see [Harris 1997, §§2.4–2.5, especially
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(2.4.4 bis)]. If π is holomorphic then its archimedean component π∞ is isomorphic
to a holomorphic discrete series representation Dκ , as defined in Section 2A.

Then an antiholomorphic automorphic representation is just the complex conju-
gate π of a holomorphic automorphic representation; equivalently, π ′ is antiholo-
morphic if π ′

∞
is isomorphic to the contragredient of a holomorphic discrete series

representation Dκ . As functions on G(V )(Q)\G(V )(A), antiholomorphic auto-
morphic forms are just the complex conjugates of holomorphic automorphic forms.

We use the term antiordinary form as in [Eischen et al. 2020] to denote an
element of the dual module Ŝord

κ (K ;O) defined in (5.3), for appropriate level K
and weight κ . The property of being antiordinary is determined by the valuations
of a family of local Hecke operators at primes dividing p that are dual to the
U -operators used to define Hida’s ordinary subspace. The details can be found in
[Eischen et al. 2020, §6.6.6 and §8.3.5]. For our purposes here, the main properties
of antiordinary forms are the following:

(i) Ŝord
κ (K ;O)τ is identified with an O-lattice in⊕

τ ′∈S(K ,κ,τ )

τ ′,[,a-ord
p,r ⊗ τ

′,[,KS
S .

(ii) The pairing of Sκ(K ,O) with Ŝord(K ,O) factors through the ordinary projec-
tion

Sκ(K ,O)→ Sκ(K ,O)ord.

Here τ ′,[,a-ord
p,r is an explicit one-dimensional antiordinary eigenspace (at level Kp,r ,

see [Eischen et al. 2020] for details) of the local component τ [p of τ [; the antiordi-
nary eigenspace is defined explicitly in the model of τ [p as a principal series repre-
sentation. The set S(K , κ, τ ) is roughly the set of automorphic representations τ ′

that are congruent modulo p to τ . Property (i) follows from [Eischen et al. 2020,
Lemma 6.6.12(ii) and the discussion preceding Lemma 6.6.11], and (ii) follows
from [Eischen et al. 2020, Lemma 8.3.4(iii)].
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