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Abstract—This paper discusses the potential of model-
hardware co-design to simplify the implementation complex-
ity of compute-in-SRAM deep learning considerably. Although
compute-in-SRAM has emerged as a promising approach to
improve the energy efficiency of DNN processing, current
implementations suffer due to complex and excessive mixed-
signal peripherals, such as the need for parallel digital-to-
analog converters (DACs) at each input port. Comparatively,
our approach inherently obviates complex peripherals by co-
designing learning operators to SRAM’s operational constraints.
For example, our co-designed implementation is DAC-free even
for multibit precision DNN processing. Additionally, we also
discuss the interaction of our compute-in-SRAM operator with
Bayesian inference of DNNs. We show a synergistic interaction of
Bayesian inference with our framework, where Bayesian methods
allow achieving similar accuracy with much smaller network size.
Although each iteration of sample-based Bayesian inference is
computationally expensive, the cost is minimized by our compute-
in-SRAM approach. Meanwhile, by reducing the network size,
Bayesian methods reduce the footprint cost of compute-in-SRAM
implementation, which is a crucial concern for the method.
We characterize this interaction for deep learning-based pose
(position and orientation) estimation for a drone.

Index Terms—Deep neural networks; Compute-in-memory;
Pose-estimation; Nanodrone.

I. INTRODUCTION

Deep neural networks (DNNs) are proliferating to various
novel application spaces where high predictive accuracy alone
is not adequate but low power and real-time performance is
also equally critical. Since a DNN typically requires thousands
to millions of parameters to achieve higher predictive capacity,
a key challenge for employing DNNs in low power/real-time
application platforms is its excessively high workload. Further-
more, a typical digital computing platform is von Neumann,
i.e., has separate units for storage and computing. Therefore,
the foremost challenge for digital processing of DNNss is due to
excessive bandwidth demand between storage and computing.

To overcome the fundamental challenges due to exces-
sive memory-processor bandwidth demand, non-von Neu-
mann compute-in-memory approaches are gaining attention.
In compute-in-memory DNN processing, memory modules are
redesigned to be used for both storages of DNN’s weights
and processing them against inputs. Therefore, by using the
same physical structure for computing and storage, compute-
in-memory processing of DNN obviates repeated weight trans-
fer from storage units to processors, limiting constraints on
memory-processor bandwidth. However, compute-in-memory
processing of DNNs is non-trivial. The primary function of
conventional memories is to store. Thus, the additional require-
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Figure 1: (a) Typical DNN operator requires computations between higher
precision operands. Therefore, to implement them using compute-in-memory
parallel digital-to-analog converters (DAC) and higher precision analog-
to-digital converter (ADC) becomes necessary. (b) The proposed operator
is compliant to compute-in-SRAM and obviates DACs even for multi-bit
precision DNN while reduces precision demand on ADCs.

ment to in situ perform DNN’s operations complicates their
design complexity, limiting memory density and degrading
energy efficiency/speed of processing.

Due to the high potential of compute-in-memory for DNN
and associated challenges, the field has become a rich play-
ground for research from various disciplines. From the tech-
nology side, new non-volatile memory devices such as mem-
ristors [1]-[3], PCRAM [4]-[6], insulator-metal transition de-
vices [7]-[9], spintronics [10], [11], Gaussian transistors [12]—
[14], and even photonic devices [15]-[17] have been explored
to simplify compute-in-memory DNN processing. From the
architecture side, new schemes to overcome the rigidity of
memory structures in the flexible mapping of DNNs have been
proposed [18]-[20]. From the algorithm side, training methods
for extremely low precision DNN have been explored [21]—
[23].

While the above schemes have overcome the challenges of
compute-in-memory to a varying degree, as the application
scope of DNN continues to spread and power/performance-
challenges aggravate, it has now become essential to explore
a synergistic integration of multiple schemes to extract an
even higher-order performance advantage. In this work, we
specifically focus on the co-design of model and hardware
for compute-in-memory to illustrate the potential of such
co-designed approaches. As a test-case for our discussion,
we consider the compute-in-SRAM implementation of DNN.
Nonetheless, the design principles generalize beyond the test-
case and are equally applicable to other memory structures.

II. OVERVIEW OF CURRENT-ART OF COMPUTE-IN-SRAM

The growing complexity of real-world applications necessi-
tates DNNs operating with utmost energy efficiency and speed.
Compute-in-SRAM has become a leading solution to enhance
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Figure 2: (a) Compute-in-SRAM based on the proposed operator. (b) Compute-in-SRAM cell. Additional ports in the cell (RL and PL) are utilized for in situ
scalar product of input and weights. (c) Simulation waveforms. (d) Higher-level integration of compute-in-SRAM macros (pArrays) in a CIM-core.

the energy efficiency of DNNs due to two main reasons. First,
the scheme minimizes data movement during DNN operations
by collapsing computing and storage within the same physical
structure. Secondly, the underlying memory technology, i.e.,
SRAM, is a high-speed structure designed on mass producible
CMOS technologies, allowing easier on-chip integration with
other system components. In [24], a six-transistor SRAM
cell was used for binary-weighted neural networks. SRAM
array was augmented with digital to analog converters (DACs)
at each input port for mixed-signal within SRAM scalar
product of inputs and 1-bit weights stored on SRAM cells.
In [25], a charge mode within SRAM product operation was
discussed, which also improved reliability against transistor-
level process variability. In [26], time-domain DACs were
used to minimize overheads of mixed-signal circuits. However,
with increasing input precision, either operating time increases
exponentially, or complex analog-domain voltage scaling is
necessitated. In [27], DACs are precluded, but the operation
is only limited to binary inputs and weights, which has
low algorithmic accuracy. Multibit processing using DIMA
architecture on 6-T SRAM was shown in [28] but requires
on-chip training to overcome process variability. The scheme
creates challenges at large scale production since each chip
must be tested independently. In Supported BinaryNet [29],
support parameters are applied through DAC to improve the
prediction capacity of SRAM-mapped DNNs. In MC2RAM
[30], with-SRAM Markov chain Monte Carlo (MCMC) was
shown for Bayesian deep learning operations. C3SRAM [31]
utilizes mixed-signal capacitive coupling to evaluate a binary
neural network; however, it incorporates one ADC per column,
excessively increasing area/power overhead. In [32], a ReRAM
based multibit, non-volatile CIM is proposed for Edge Al
operating at 2/4-bits input, 4-bit word line, and 10-bit output.
A CIM based CNN processor is proposed in [33] with dynamic
sparsity performance scaling architecture and exploits inter-
and intra-CIM macro data reusability for energy efficiency. In
[34], the fully parallel MAC CIM system’s image recognition
accuracy highly depends on ADC resolution, costing energy
and latency.

III. A LEARNING OPERATOR FOR COMPUTE-IN-SRAM

In our prior work [35], we discussed a novel neural net-
work operator that considerably reduces the implementation
complexity of compute-in-SRAM. In the new operator, the

correlation of weight w and input x is represented as
whHX= Z sign(z;) - abs(w;) + sign(w;) - abs(z;) (1)

Here, - is an element-wise multiplication operator, + is
element-wise addition operator, and 3 is vector sum operator.
sign() operator is +1 and abs() operator produces absolute
unsigned value of the operand. Therefore, in Eq. 1, the
correlation operator multiplies one-bit sign(x) against higher
precision abs(w), and one-bit sign(w) against higher precision
abs(x). Such decoupling of higher precision operands directly
benefits compute-in-SRAM as discussed in the following.

In Figure 1(a), consider the compute-in-SRAM implemen-
tation of typical DNN operator using CONV-SRAM [25]. [25]
uses a 10T bit-cell-based SRAM array to store the 1-b filter
weights and a DAC for each column to generate analog inputs
for the array to perform the dot product. An analog-to-digital
converter is used to compute the partial digital outputs. Since
DAC:s are concurrently active, they lead to high area and power
overhead with the increasing precision of operands.

Comparatively, consider compute-in-SRAM using the pro-
posed operator in Figure 1(b). To even simplify the implemen-
tation of Eq. 1, we consider the below reformulation:
>, sign(w;) - abs(z;) = 23 step(w;) - abs(z;) — >, abs(z;)

(2a)

>, sign(x;) - abs(w;) = 2", step(x;) - abs(w;) — >, abs(w;)
(2b)

In the above reformulation, step(-) € [0,1]. >, step(w;) -
abs(x;) and ), step(x;) - abs(w;) terms can be computed
through compute-in-SRAM, as discussed below. . abs(z;)
can be computed through a dummy row of weights, all storing
ones. For a given input, this computation can be referenced
for all weight vectors. ). abs(w;) is a weight statistics that
can be pre-computed and can be looked-up during evaluation.
If we consider a comparable compute-in-SRAM implemen-
tation for the proposed operator to Figure 1(a), DACs in
the implementation can be obviated since the co-designed
operator doesn’t require operation between high precision
operands. Note that in the proposed operator only 1-bit vectors
sign(x) and sign(w) are operated against higher precision
vectors abs(x) and abs(w), respectively. Meanwhile, to process
! compute-in-SRAM cells in parallel, the typical operator
requires [ DACs, which is a considerable overhead and
constrains its parallelism. With the proposed operator, each

Design, Automation and Test in Europe Conference (DATE 2021)

891

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on April 04,2022 at 15:27:06 UTC from IEEE Xplore. Restrictions apply.



892

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on April 04,2022 at 15:27:06 UTC from IEEE Xplore. Restrictions apply.

H-tree routers

node to
root

- B
Broadcast sign(x) Read sign(w)

(@) i From root- i
ode to edge
Read weight
vector :
biplenes [ Sum i (] (S
Sum ¢ : Sum

Shift and add : £ : 3

bitplane sums L Shift and Add { Shift and Add_| J
Sign(x)*abs(w) ____ Signfw)xahs(x)

Root node: Broadcast sign(x), read sign(w),

Near-memory computations

Computations in the root

aggregate partial computations
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Figure 4: (a) Pruning can be exploited to avoid mapping zero weights to save
space and power in compute-in-SRAM. (b) A fine-grained pruning scheme
where weight rows with highest alignment of non-zero entries are grouped.

SRAM cell only performs a 1-bit logic operation; thus, to
digitize the output of | columns, ADC with logs(l) precision
is needed. Compare this to CONV-SRAM in Figure 1(a),
where necessary ADC’s precision is n + logs(l) since each
SRAM cell processes n-bit DAC’s output. By simplifying
constraints on data converters, the co-designed operator also
helps achieve higher vector-scale parallelism, i.e., processing
a higher number of parallel columns (/) with the same ADC
complexity in [25]. Additionally, the above step function
reformulation of sign function will allow processing with a
single product port of SRAM cells; thus, reducing dynamic
energy. Comparatively, operations in CONV-SRAM are with
weights w € [—1,1], therefore, require differential ended
processing and more complex cells.

IV. DETAILED DESIGN OF COMPUTE-IN-SRAM USING
THE CO-DESIGNED OPERATOR

A. Compute-in-SRAM macro

Figure 2(a) shows the proposed design of compute-in-
SRAM macro based on the co-designed operator. In the
proposed design, an SRAM macro consists of pArrays and
pChannels. Each pArray is dedicated to storing one weight
channel. DNN weights are arranged across columns in a
pArray, whereas each bit plane of weights is arranged in a
row. Therefore, an NN-dimensional weight channel with m-
bit precision weights will require m rows and N columns of
SRAM cells in a pArray. Figure 2(b) shows the proposed 8T
SRAM cell used for the operator’s in-SRAM processing. Extra
transistors in the cell compared to a 6T cell decouple typical
read/write operations to within cell product. The added tran-
sistors are selected by the row and column select lines (RL and

) bit vector is transmitted from the edge node to the root node.
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Figure 5: Comparing the validation accuracy of multiplication-free operator
based DNN versus the baseline for (a) ResNet50, (b) VGGI16, and (c)
MobileNetv2. (d) Test accuracy comparison across the three networks.

CL) and operate on the product bit line (PL). The decoupling
of read/write and product operations mitigates interference be-
tween the operations, reduces the impact of process variability,
and allows operation in storage hold mode. pChannels convey
digital inputs/outputs to/from pArrays. If a weighting filter has
many channels, pChannels also allow stitching of pArrays so
that inputs can be shared among the pArrays. Moreover, the
same SRAM array can also be used for memory-immersed in
situ analog-to-digital conversion (ADC) as discussed in our
prior work [35]. Figure 2(c) shows the exemplary waveforms
for within-SRAM inner product computation and digitization.
Figure 2(d) shows higher-level integration of compute-in-
SRAM macros. A compute-in-memory (CIM) core comprises
parallel processing columns. Within a column, pArrays are
stacked vertically. yChannels interleave pArrays and transport
inputs to them from the input feature-map buffer at the bottom.
An output channel from CIM-columns transports product-sum
bits to the output buffer at the bottom.

B. Near-memory adaptation of co-designed operator

The co-designed operator is not only suited for compute-
in-memory but also for near-memory processing. Figure 3
shows an example implementation of H-tree-based spatial
architecture for near-memory processing using the operator.
In the ensuing discussion, we highlight how the proposed
operator can naturally minimize data communication between

Design, Automation and Test in Europe Conference (DATE 2021)



distributed nodes. To compute w &£ x, only the bit sign vectors
of w and x travel between root nodes and edge nodes. Root
node pushes sign(x) vector to SRAM banks, and SRAM
arrays only communicate sign(w). At the end of processing,
root node collects partial product-sums and combines them to
determine DNN output. Therefore, communication overheads
do not grow proportional to the operating precision. To com-
pute > sign(x) - abs(w) near an SRAM array, weight vector
bitplanes w; are sequentially read. By controlling column
sense-amplifiers with the logic values of sign(x), only those
weights where the respective sign(x) is one are read. An
adder tree is used to sum the bit of element-wise product
vector. A similar adder tree and processing are used to evaluate
>~ sign(w) - abs(x) in the root node.

C. Interaction of novel operator with pruning approaches

Minimal weights in a DNN can be ignored without much
impact on the prediction accuracy. If a weight value is zero, it
need not be stored and processed. However, the rigid physical
structure and processing flow of compute-in-SRAM makes
it challenging to exploit weight sparsity. Interestingly, our
compute-in-SRAM learning operator () can also help to
address this challenge. We earlier discussed that @& obvi-
ates DACs in DNN processing. This led to the design of
low overhead DAC-free pChannels. Meanwhile, fine-grained
interleaving of pChannels in a CIM-column [Figure 2(d)]
can provide it the flexibility to efficiently map sparse weight
matrices. With current CIM approaches relying on typical
operator and DACs, fine-grained interleaving of peripherals is
impractical due to excessive overheads. For example, Sparse
ReRAM [36] operates with fine-grained weight matrices to
exploit sparsity, like us, but can only process them sequentially
to limit peripheral overheads. Therefore, efficiency in handling
sparsity comes at the cost of low throughput. Figure 4(b)
shows an example mapping strategy where pChannels help
pArrays exploit sparsity. Using procedures such as [37],
[38], a sparse matrix can be partitioned into sub-matrices
where rows in the sub-matrix have aligned sparsity, thereby
allowing elimination of common zero columns. The reduced
sub-matrices can be mapped together in ptArrays. A CIM-core
can combine columns of varying dimensions so that after zero-
column elimination, the reduced matrix can be placed on a
column of matching width. The alignment of two sub-matrices
can be computed by counting the number of sharing input
indices. Sub-matrices with the highest alignment can be placed
on pArrays in proximity. Therefore, pruned networks can be
effectively implemented by merging between two pArrays. If
two columns are merged, inputs are passed to the top array
directly from the bottom array, and the loading of input bits
is bypassed on the top column; therefore, overheads to load
input feature-map can be minimized.

D. Accuracy comparison to the typical operator

We characterize our proposed DNN operator’s prediction
accuracy on the benchmark ResNet50, VGG16, and Mo-
bileNetV2 networks. These networks are typically used as
a backbone for many computer vision tasks. As shown in
Figures 5(a)-(c), the validation accuracy of the proposed
multiplication-free operator based DNNs is comparable to
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Figure 6: (a) Dropout iterations and compute reuse opportunities. (b) Neces-
sary MAC operations at varying number of dropout samples by considering
compute reuse and optimal sample ordering.

the baseline networks. In Figure 5(d), we compare the test
accuracy between the baseline DNNs and multiplication-free
operator based DNNs. The multiplication-free operator-based
network’s test accuracy is competitive to that based on a
typical operator and drops less than one percent. With a
little compromise in accuracy, the multiplication-free operator
significantly reduces the implementation complexity compared
to the typical.

V. SYNERGY IF COMPUTE-IN-SRAM WITH BAYESIAN
INFERENCE

Even though the traditional (i.e., deterministic) DNNs
achieve remarkable accuracy in many complex decision-
making tasks, flawless predictions can not be guaranteed.
To address this challenge, Bayesian inference (BI) of DNN
is gaining attention. Unlike deterministic inference, BI can
rigorously account for the model and training uncertainties.
Predictions in BI can express the prediction confidence. For
example, Bl-based predictions might say ‘Greenlight with 70%
confidence,’ unlike just saying ‘Greenlight’ as in deterministic
inference. If the underlying DNN is not confident, top-level
controllers can take risk-aware safeguarding.

The predictive robustness of BI comes with an overwhelm-
ing computing cost, nonetheless. The excessive workload of
BI has stimulated research on alternate frameworks such as
variational inference (VI) [39]. A novel VI framework, Monte
Carlo Dropout (MC-Dropout) [40], was recently proposed
where dropout was exploited for VI during the test. In the
method, dropout used during training is also implemented dur-
ing the test. Predictions from multiple iterations are combined
to capture the prediction’s statistical moments, such as the
mode/mean determines the output, and the variance determines
prediction confidence. In the following discussion, we show
the potential of a synergistic integration of Compute-in-SRAM
with such Bayesian inference methods.

A. Compute reuse in sampling domain

In Figure 6(a), consider an MC-Dropout layer where input
and output neurons are dropped randomly in each iteration
to estimate the partial sum over several iterations. However,
two successive iterations can share a common set of active in-
put/output neurons (highlighted in the figure), thus presenting
an opportunity to reuse computations. This can also be seen
in Figure 6(b), where iteratively computing the product sum
in N+1*" iteration from N*" iteration will only require eval-
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Figure 7: (a) Deep learning-based visual odometry: pose estimation based on
RGB input frame stream. (b) Prose estimation of the RGB image for 50%
thinning of the network.

uation of non-overlapping input and output neurons between
the iterations (i.e., corresponding matrix columns and rows,
highlighted in color in the figure). Our compute-in-SRAM
framework can exploit this by operating only on SRAM
columns that correspond to the non-overlapping input neurons.
Working on fewer columns reduces dynamic energy as well as
necessary ADC’s precision. For near-memory implementation,
the iterative compute flow minimizes the energy and latency
by operating on fewer operands.

B. Optimal sample ordering to maximize compute reuse

Since each iteration’s compute cost depends on the over-
lap of input/output neurons from the previous iteration, the
compute reuse can become even more effective if dropout
samples can be optimally ordered. Notably, the above compute
reuse opportunities only depend on weight samples and not on
inputs; thus, our framework can benefit from offline sampling
and ordering. Interestingly, this sample ordering is equivalent
to a traveling salesman’s problem (TSP). In an analogy to TSP,
samples here represent cities, and sample-to-sample compute
cost means the distance between the cities. We can further
enhance this reuse efficiency if we expand compute reuse to
past n samples where partial sums from all these previous sam-
ples can be reused. The equivalent sample ordering problem,
in this case, is the traveling repairman’s problem (TRP). TSP
and TRP are well-studied optimization problems. TRP-based
sample ordering can be more effective but will require more
registers to store intermediate product sums. In Figure 6(b), we
compare the necessary MAC operations at varying numbers of
samples by considering typical flow, compute reuse flow, and
compute reuse with optimal sample ordering where the last
saves computations by 79% for 100 samples.

C. Simulation Results

We characterize the interaction of our framework and
Bayesian inference for the pose estimation of a drone in an
indoor setting. As shown in Figure 7, the input RGB image
captured by the drone is extracted by convolutional layers
and finally regressed by fully-connected layers to output the
predicted pose (i.e. x-y-z location and orientation expressed as
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Figure 8: (a)-(f) Pose estimation and orientation error for Bayesian inference
with different level of network thinning.

quaternions ql-q2-q3-g4 of the drone camera). The network
is trained using RGB-D dataset [41] comprising of image
frames, and the corresponding camera poses for various in-
door settings. Since the predictive confidence of Bayesian
inference (BI) comes with an overwhelming computing cost,
thinning down the network reduces energy overhead for BI
significantly. Using the RGB-D dataset, we trained and tested
different network configurations, considering BI’s energy con-
straints. In Figure 8, we discuss the relocalization error of RGB
images at different levels of thinning of the network. We use
Bayesian GoogleNet to regress the camera pose from a single
RGB image. Figure 8(a) compares the position error with
different thinning levels for the deterministic and Bayesian
networks. In figure 8(b), we choose the optimum number of
dropout layers to be added to the GoogleNet during training
and inference. Figure 8(c)-(f) show that even a very thin
network with only 25% of learnable parameters can restore
the accuracy of the full network with an optimum number of
Bayesian (dropout) network samples.

VI. CONCLUSIONS

Compute-in-Memory has emerged as a critical approach to
energy-efficient deep learning. Although most of the current
research focuses on low-level design innovations, such as
more efficient cell design and processing flow, in this work,
we have presented a new perspective on compute-in-memory
where the learning operator itself is co-adapted to memory’s
physical and processing constraints. Using such co-designing,
in-memory deep learning doesn’t require DAC, reduces ADC’s
precision requirement, and is readily scalable to multibit
precision operations. Our proposed operator based compute-in-
SRAM achieves competitive accuracy to the typical operator
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based DNNs. We have also shown the interaction of Bayesian
inference (BI) methods with compute-in-memory where BI
methods can reduce the network size and compute-in-memory
can reduce the sample iteration cost of BI. To further enhance
BI for compute-in-memory, we have presented a novel sample
ordering approach to maximize compute reuse.
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