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Falconer’s (K, d) distance set conjecture can fail
for strictly convex sets K in Rd

Christopher J. Bishop, Hindy Drillick and Dimitrios Ntalampekos

Abstract. For any norm on Rd with countably many extreme points, we
prove that there is a set E ⊂ Rd of Hausdorff dimension d whose distance
set with respect to this norm has zero linear measure. This was previously
known only for norms associated to certain finite polygons in R2. Similar
examples exist for norms that are very well approximated by polyhedral
norms, including some examples where the unit ball is strictly convex and
has C1 boundary.

1. Introduction

We will call K ⊂ Rd a “norm ball” if it is compact, convex, symmetric, and contains
the origin in its interior. Under these conditions there is an associated norm ∥ · ∥K
defined on Rd by

∥x∥K = inf{λ > 0 : x/λ ∈ K}.

If E ⊂ Rd then the K-distance set of E is

∆K(E) = {∥x− y∥K : x, y ∈ E} ⊂ [0,∞).

Motivated by [12] and [15], we say Falconer’s (K,α)-conjecture holds if for any set
E ⊂ Rd with dim(E) = α, the set ∆K(E) has positive 1-dimensional Lebesgue
measure, also referred to as length; here and below “dim” refers to Hausdorff
dimension. In this note we give new examples where this fails for α = d.

When K is the usual closed unit ball B in Rd, d ∈ N = {1, 2, . . . }, we shall
denote ∆B(E) simply by ∆(E). Falconer’s conjecture is a refinement of a well
known result of Steinhaus that ∆(E) contains an interval whenever E ⊂ R has
positive Lebesgue measure. Falconer [6] proved that the (B, α)-conjecture is true
for all α > (d + 1)/2 and he asked if it holds for all α > d/2. Falconer’s result
was subsequently improved by Bourgain [2], Wolff [19] and Erdogan [5] and very
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recently there has been much activity by various authors including Du, Guth,
Iosevich, Ou, Wang, Wilson and Zhang [3], [4], [10]. See Iosevich’s brief survey [13]
for a summary of the history of this problem, the best currently known bounds, the
ideas behind these results, and the close connection between Falconer’s conjecture
and the Erdős distance conjecture for finite sets (recently solved in the plane, [11]).

When K is not the round ball, much less is known. If ∂K is smooth and has
non-vanishing curvature, then Iosevich and Laba [12] proved the (K,α)-conjecture
is true for α > (d + 1)/2, but Konyagin and Laba [16] proved that the (K, 2)-
conjecture is false for various finite polygons in R2, e.g., when the slopes of the
sides are algebraic. In [15] they extend this to polygons where the slopes belong
to a certain set of full measure, and prove that the (K,α) conjecture always fails if
α > N/(N − 1), where N is the number of sides of the polygon K. Corollary 4 of
Falconer’s paper [7] claims that the (K, d) conjecture fails for all finite polyhedral
norm balls K ⊂ Rd, but the proof contains a gap, explained in Section 2. We will
fill this gap by proving a slightly stronger result:

Theorem 1.1. If K is a norm ball with countably many extreme points, then the
(K, d)-conjecture fails, i.e., there is a compact E ⊂ Rd of Hausdorff dimension d
such that ∆K(E) is a null set.

A null set in R is a set of zero Lebesgue measure. Recall that x ∈ ∂K is an
extreme point of K if it does not lie on any open line segment between distinct
points of K. For a finite polygon, these are exactly the vertices. We say that K is
strictly convex if every point of ∂K is an extreme point, i.e., the boundary contains
no line segments. Every point x on the boundary of a convex set K ⊂ Rd lies on a
(d− 1)-plane that misses the interior of K. The boundary of K is C1 if and only
if there is only one such plane at each x ∈ ∂K; see Lemma 4.3.

Theorem 1.2. There is a strictly convex norm ball K ⊂ Rd with C1 boundary
such that the (K, d)-conjecture fails.

So far as we know, Falconer’s (K,α)-conjecture was not previously known to
fail for any strictly convex set K and α > d/2. Results from [12] show that
Theorem 1.2 cannot be improved from C1 to C2 (at least with strictly positive
curvature), but whether any improvement beyond C1 is possible is an interesting
open problem. See our remarks following Lemma 4.3.

2. Dimensions of intersections

Theorem 0.2 of [14] implies that if E,F are σ-compact subsets of Rd, then for all
ε > 0 the set of homotheties σ on Rd (compositions of dilations and translations)
such that

dim(E ∩ σ(F )) ≥ dim(E) + dim(F ) − d− ε,(2.1)

has positive measure in the group of all homotheties. On the other hand, Theorem
1 of [7] (see also Theorem 8.3 of [8]; 8.2 in earlier editions), claims that if E and F
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are Borel subsets of Rd with sufficiently large dimension, then the above inequality
holds without the ε term for a set of homotheties having positive measure.

However this claim is false: we will show that there are compact sets E and F
of full dimension so that (2.1) does not hold without the ε term for any Euclidean
similarity σ (a composition of dilations, translations, rotations and reflections).

The proof of Theorem 1 in [7] uses an induction argument on the dimension d
which breaks down at the first step d = 1; this case is quoted from [17], but the
result is not found there, and our example will show that it is incorrect. There are
versions of (2.1) without the ε term under stronger hypotheses on the sets E,F ;
see e.g., Theorem 13.14 of [17].

Now we proceed with our example. For simplicity, consider the case dim(E) =

dim(F ) = d = 1. Let {In} be the collection of closed intervals [2−2n , 2
1
4−2n ], n ∈ N,

and for each n choose a compact set En ⊂ In with dim(E) = 1 − 1/n. Then set

E = {0} ∪
⋃︁

n∈NEn. Similarly, let Jn = [2−3n , 2
1
4−3n ], choose compact Fn ⊂ Jn

with dimensions 1 − 1/n and set F = {0} ∪
⋃︁

n∈N Fn.
We claim that dim(E ∩σ(F )) < 1 for any similarity σ. First note that dim(E \

U) < 1 and dim(F \ U) < 1 for any neighborhood U of zero. Thus if dim(E ∩
σ(F )) = 1, we must have σ(0) = 0, for otherwise there are disjoint neighborhoods
U, V of 0 and σ(0) and hence

dim(E ∩ σ(F )) ≤ max(dim(E \ U),dim(σ(F ) \ V )) < 1.

The restriction σ(0) = 0 already implies that the set of similarities (or homotheties)
such that dim(E ∩ σ(F )) = 1 has measure zero.

To show the set satisfying (2.1) without the ε term is empty, we may assume
σ(0) = 0, but that E ∩ σ(F ) ̸= {0}. Then some In must intersect some σ(Jm)
(otherwise the intersection is just the point {0}). Therefore σ must be a dilation
of the form σ(x) = 2λ+2n−3mx, for some λ ∈ [− 1

4 ,
1
4 ]. We claim that only finitely

many other pairs of the form Ik, σ(Jj) can intersect. Assume (j, k) is such a pair
and j > m, k > n. If σ(Jj) hits Ik we must have

λ+ 2n − 3m − 2k = λ′ − 3j

for some λ′ ∈ [0, 14 ]. Because the powers of 2 and 3 are integers, we must have

2n − 3m − 2k = −3j ,

or, equivalently,

2n(2k−n − 1) = 2k − 2n = 3j − 3m = 3m(3j−m − 1).

By unique factorization of integers, this implies

2n = 3j−m − 1.

Since n,m are fixed there is at most one j that can satisfy this equation. Similarly
for k. Since only finitely many pairs of intervals can overlap and the dimension
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of E,F inside each of these intervals is strictly less than 1, we see that dim(E ∩
σ(F )) < 1.

It is easy to see that the same idea can be applied to sets in Rd: there exist
E,F ⊂ Rd both of dimension d, so that dim(E ∩ σ(F )) < d for every similarity σ
of Rd. Indeed, only slightly more work shows this holds for every diffeomorphism
of Rd into itself.

3. The basic construction

Before giving our main construction, we give a simple criterion for a set E ⊂ Rd to
have dimension d. Suppose b ∈ N, b ≥ 2. An nth generation b-adic cube Q ⊂ R2

is a product of intervals of the form [jb−n, (j + 1)b−n], j ∈ Z. Fix a set S ⊂ N.
Suppose E is defined as an intersection of sets En, where each En is a union of
nth generation cubes. We assume E0 is a union of unit (i.e., 0th generation) b-
adic cubes in Rd. In general, suppose we obtain En+1 from En by taking all bd

subcubes if n ̸∈ S, and by taking at least one child cube if n ∈ S. For example,
for the construction of the middle thirds Cantor set in the real line one would take
b = 3, S = N, and would choose the leftmost and rightmost children among the
b = 3 children of an interval in each generation.

We say S has zero density if

lim
n→∞

#(S ∩ [1, n])

n
= 0.

Lemma 3.1. With notation as above, if S has zero density then dim(E) = d.

Proof. Consider the subset E′ of E constructed by choosing exactly one child cube
of a cube of En whenever n ∈ S. More precisely, E′ is the intersection of sets E′

n,
where E′

n is a union of cubes such that E′
0 = E0 and E′

n+1 is obtained from E′
n

by taking all bd subcubes if n /∈ S, and by taking exactly one child cube if n ∈ S.
We shall show that dim(E′) = d, and thus dim(E) = d.

Let µ be the measure on E′ that assigns mass 1 to each unit cube in the
construction and divides the mass of each cube evenly between its children. If Qn

is a cube of nth generation contained in a cube Qn−1 of (n− 1)th generation, then
by construction

µ(Qn)

µ(Qn−1)
=

{︄
1, n ∈ S

bd, n /∈ S.

We therefore have,

µ(Qn) = bd(n−#(S∩[1,n])).

By Billingsley’s lemma (see, for example, Lemma 1.4.1 of [1]), it follows that

dim(E′) ≥ lim
n→∞

⃓⃓⃓⃓
logµ(Qn)

n log b

⃓⃓⃓⃓
= d

(︃
1 − lim

n→∞

#(S ∩ [1, n])

n

)︃
= d. □
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The following strengthens Corollary 3 of [7] from finite collections of vectors to
countable collections.

Lemma 3.2. Suppose {θ1, θ2, . . . } is a countable collection of vectors in Rd. There
is a compact set E ⊂ B with dim(E) = d and so that for every n ∈ N, En =
∆(Πn(E)) has zero length, where Πn is the orthogonal projection onto the line in
direction θn. Moreover, there are closed null sets {Dn} ⊂ [0,∞), independent of
the choice of {θn}, so that En ⊂ [0, 2] ∩Dn for every n ∈ N.

Proof. We start with a standard construction of a set Y ⊂ R of Hausdorff dimen-
sion 1 whose distance set has length zero. Choose a strictly increasing sequence
of positive integers {mk} and set nk = m1 + · · · + mk. Set I = [0, 1] and let
Xk = 3−nk(I + 3Z); this is an infinite union of closed intervals of length 3−nk

separated by open intervals of length 2 · 3−nk . For n ∈ N, set

Yn =

n⋂︂
k=1

Xk ⊂ Yn−1, Y = Y ({nk}) =

∞⋂︂
n=1

Yn.

The set Y can also be described by an inductive construction using 3-adic intervals
as in the setting described before Lemma 3.1: one starts with all integer unit
intervals and replaces an interval by its three children if n /∈ S := {nk}, and
chooses only the leftmost interval if n ∈ S. If mk → ∞, then S has zero density
and Lemma 3.1 shows that dim(Y ) = d.

The distance set D0 = ∆(Y ) of Y ⊂ R is contained in the set {x− y : (x, y) ∈
Y × Y }, which is the projection of Y × Y ⊂ R2 to the real line via lines of slope
1. See Figure 1. By construction, the projection of Yn+1 × Yn+1 can be obtained
from the projection of Yn × Yn by replacing each interval I in the latter set by a
union of subintervals covering at most 2/3 of the length of I. Thus, in the limit,
the projection has zero length, and hence so does D0.

For each k = 1, 2, . . . , define Zk = Yk × Rd−1 and let Z = ∩kZk = Y × Rd−1.
Then Zk consists of infinitely many infinite, parallel “slabs” of thickness 3−nk .
Each slab is a union of d-cubes of side length 3−nk and disjoint interiors. We call
these the cubes associated to Zk. The main observation we need is that we can
choose a dilation factor 0 < λ = 3−t ≤ 1/(2

√
d+ 3), t ∈ N, (see Figure 2) so that

each cube associated to Zn contains a cube associated to λτ(Zn), where τ is any
rotation of Rd (this is also true for all rigid motions, but we don’t need that much
generality).

Set F k
n = τk(λkZn), where τk is any rigid rotation of Rd that takes the first

coordinate axis into the line Lk in direction θk. Set

F k = B ∩
∞⋂︂

n=1

F k
n .

Note that the orthogonal projection of F k into Lk is contained τk(λkY ) and hence
its distance set is contained in λkD0.

We now give the construction of E in the case of finitely many direction vectors,
and then show how to adapt it to the countable case. If there are N direction
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Figure 1: The set Y × Y is contained in the small white squares. This set is
projected to the real line via lines of slope 1, denoted by gray color. The set
D0 = ∆(Y ) ⊂ R is contained in this projection, denoted by the dashed horizontal
lines.

vectors θ1, . . . , θN then E =
⋂︁N

k=1 F
k will work if the increasing sequence {mk} is

chosen correctly. We require that mk ≥ t(N + 1); recall that λN+1 = 3−t(N+1).
Then each of the cubes Q1 of side length 3−n1 associated to F 1

1 contains one cube
Q2 with side length λ3−n1 associated to F 2

1 (by the choice of λ), and so on until
we reach one cube QN associated to FN

1 which has size λN3−n1 = 3−n1−tN . We

now consider a cube ˜︁Q1 ⊂ QN of side length 3−m1−t(N+1) = λ3−n1−tN that is the
product of intervals of the form [j3−m1−t(N+1), (j+ 1)3−m1−t(N+1)] and intersects

the set F 1
2 . Then we take all the cubes associated to F 1

2 that are contained in ˜︁Q1;
these have size 3−n2 = 3−m1−m2 ≤ 3−m1−t(N+1).

We repeat the construction above, taking one cube from F k
2 , k = 1, . . . , N ,

and then all the cubes associated to F 1
3 . Continuing in this way defines nested

collections of 3-adic cubes, whose intersection we call E. This procedure can also
be described as an iterative construction on 3-adic cubes where we always choose all
3d children, except for generations n ∈ [nk, nk+t(N+1)]. Since mk = nk+1−nk →
∞, the exceptional generations have zero density and so Lemma 3.1 proves that
dim(E) = d.

Now we modify the argument for countably many vectors. Each cube Q1 of side
length 3−n1 associated to F 1

1 contains one cube Q2 of side length λ3−n1 associated

to F 2
1 . We now consider a cube ˜︁Q1 ⊂ Q2 of side length λ23−n1 = 3−n1−2t that is

the product of intervals of the form [jλ23−n1 , (j+ 1)λ23−n1 ] and intersects the set

F 1
2 . Then we take all the cubes associated to F 1

2 that are contained in ˜︁Q1; these
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1

r

λ

Figure 2: The center of a unit cube in Z0 is contained in a λ-sized cube in λτ(Z0)
and we either keep that cube or an adjacent one. In either case the kept cube is
contained in disk of radius r = λ

√
d+ 3 around the center and hence it is inside

the unit cube if λ ≤ 1/(2
√
d+ 3). This holds even if the cubes come from grids

that are rotated with respect to each other.

have size 3−n2 = 3−n1−m2 ≤ λ23−n1 , provided that 3−m2 ≤ λ2. This completes
the first step of the construction.

Let now R1 be a cube of F 1
2 that has side length 3−n2 . There exists a cube

R2 ⊂ R1 of side length λ3−n2 associated to F 2
2 . Now, we also choose a cube

R3 ⊂ R2 of side length λ23−n2 associated to F 3
2 . We end the second step by

choosing a cube ˜︁R1 of side length λ33−n2 = 3−n2−3t that is the product of intervals
of the form [jλ33−n2 , (j + 1)λ33−n2 ] and intersects the set F 1

3 . Then we take all

the cubes associated to F 1
3 that are contained in ˜︁R1; these have size 3−n3 =

3−n2−m3 ≤ λ33−n2 , provided that 3−m3 ≤ λ3. This completes the second step of
the construction.

We continue the construction in this way, choosing every time sufficiently large
mk, so that the construction can go through. This procedure can also be described
as an iterative construction on 3-adic cubes where we always choose all 3d children,
except for generations n ∈ [nk, nk + t(k+ 1)]. We define S = ∪k[nk, nk + t(k+ 1)].
If, in addition, mk is chosen to be so large that mk/k → 0 as k → ∞, then S has
density zero, so dim(E) = d.

The projection of E onto direction θn is contained in a copy of λanY ({˜︁nk})
where an is the generation in which we first use a cube associated to Fn (for
example, a3 = 2 from the construction above) and {˜︁nk} is the truncation of {nk}
starting at index an. Thus the corresponding distance set, Dn, is a set of zero
length that depends on our choice of {mk}, but not on the {θk}. □

Lemma 3.3. Suppose K is a norm ball with countably many extreme points. Then
there is a countable set of vectors {θn} such that for each x ∈ Rd there exists n ∈ N
with

∥x∥K = |x · θn| = max
k

|x · θk|.

Moreover, if B(0, R1) ⊂ K ⊂ B(0, R2) for some 0 < R1 < R2, then 1/R2 ≤ |θn| ≤
1/R1 for all n ∈ N. If K is a polyhedron, then the vectors {θn} may be taken to
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be parallel to the normal vectors of the faces of K.

Proof. Every point x on the boundary of a convex set K ⊂ Rd lies on a (d − 1)-
plane Px, called a supporting hyperplane, that misses the interior of K. In other
words, there is a linear functional fx so that fx(x) = 1 and fx(y) ≤ 1 for all y ∈ K,
and Px = {y : fx(y) = 1}; see [18, Theorem 11.6].

Moreover, Carthéodory’s theorem [18, Theorem 17.1] states that every non-

extreme boundary point x is a convex combination x =
∑︁k

j=1 pjxj of k extreme
points with 0 < pj < 1 for 1 ≤ j ≤ k, and 2 ≤ k ≤ d+ 1. Let E(x) denote the set
of k extreme points associated to x. Then fx(y) = 1 for every y ∈ E(x) (otherwise
fx(x) < 1), and hence fx(y) = 1 for every convex combination y of points in E(x).
Thus the plane Px covers the convex hull of E(x). Since there are only countably
many k-tuples of a countable set, there are countably many (d − 1)-planes that
cover ∂K.

We take normal vectors νn, n ∈ N, to these planes such that νn, as a point of Rd,
lies on the corresponding plane. If we define θn = νn/|νn|2, then these vectors have
the desired properties. It suffices to check the claim whenever ∥x∥K = 1. Then
x ∈ Px and suppose that νn is the normal to Px. The vector (x · νn/|νn|)νn/|νn| =
(x · νn/|νn|2)νn is the projection of x to the direction νn, which is precisely the
vector 1νn. Hence, x · νn/|νn|2 = 1 = ∥x∥K .

If P is some other supporting hyperplane not containing ±x with normal vector
νm, then there exists a constant λ ∈ (−1, 1) such that x ∈ Pλ := ν⊥m + λνm and
the hyperplane Pλ has normal λνm ∈ Pλ. Then (x · νm/|νm|)νm/|νm| = λνm, so
|x · νm/|νm|2| = |λ| < 1 = ∥x∥K .

For the last assertion note that νn ∈ B(0, R2) \ B(0, R1) for all n ∈ N. Hence
|θn| = 1/|νn| ∈ [1/R2, 1/R1]. □

It will be crucial below that we have a maximum in the previous lemma and
not just a supremum; the latter version is always true by taking a dense set of
directions.

Proof of Theorem 1.1. This is the same as the proof of Corollary 4 in [7]. By
Lemma 3.3, there are countably many vectors {θn} ⊂ Rd so that for each x, y ∈ Rd

there exists n such that

∥x− y∥K = |(x− y) · θn|.

Let E and {Dn} be the sets from Lemma 3.2. We have

∆(Πn(E)) = {|(x− y) · θn/|θn|| : x, y ∈ E} ⊂ Dn.

Then

{∥x− y∥K : x, y ∈ E} ⊂
∞⋃︂

n=1

{|(x− y) · θn| : x, y ∈ E} ⊂
∞⋃︂

n=1

(|θn|Dn),

which is a countable union of zero length sets. □
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Given a Banach space X, a subset B ⊂ X∗ of its dual space is called a (James)
boundary if for every x ∈ X, there is a b ∈ B so that ∥x∥X = b(x). For example,
the unit sphere in X∗ is such a boundary, as is the set of extreme points of the unit
ball in X∗. Thus another way to state Lemma 3.3 is that if X is a finite dimensional
Banach space whose unit ball has countable number of extreme points, then X has
a countable boundary. Certain infinite dimensional Banach spaces also have this
property, e.g., c0, the space of real valued sequences that tend to zero. Is there an
interesting version of Theorem 1.1 for such spaces? What is the the correct notion
of a “large” set whose distance set has zero length? Infinite Hausdorff dimension?

4. A strictly convex example

Given two subsets E,F ⊂ Rd, recall that the Hausdorff distance between E and
F is defined as

dH(E,F ) = inf{ε > 0 : E ⊂ Nε(F ) and F ⊂ Nε(E)},

where Nε(E), Nε(F ) denote the open ε-neighborhoods of E and F respectively.

Lemma 4.1. For each 0 < R1 < R2 there is a function φ : N → (0, 1] so that the
following holds. Suppose K ⊂ Rd is a norm ball and {Kn} ⊂ Rd is a sequence of
finite polyhedral norm balls such that

(a) B(0, R1) ⊂ K,Kn ⊂ B(0, R2) for all n ∈ N, and

(b) Kn has sn sides for each n ∈ N, where sn strictly increases to ∞ as n→ ∞.

Moreover, consider the set E given by Lemma 3.2 and corresponding to the count-
ably many normal directions of the sides of all polyhedrons Kn.

(i) If dH(K,Kn) ≤ φ(sn) for some n ∈ N, then ∆K(E) has length at most 1/s2n.

(ii) If dH(K,Kn) ≤ φ(sn) for all n ∈ N, then the (K, d)-conjecture fails.

In other words, the (K, d)-conjecture not only fails for finite polyhedrons, but
also for any convex body that is “very well approximated” by finite polyhedrons.

Proof. Claim 1: Consider an infinite ray R emanating from 0 and hitting ∂Kn, ∂K
at points x, y, respectively. We first claim that there exists a constant C1 =
C1(R1, R2) > 0 such that

|x− y| ≤ C1dH(K,Kn).

Here, the roles of K and Kn are symmetric, so suppose that y ∈ ∂K satisfies
|y| > |x|. Let z ∈ ∂K be the point closest to x ∈ ∂Kn, so |x − z| ≤ dH(K,Kn);
see Figure 3.

If |x−y| > C1dH(K,Kn) for a constant C1 > 0 then we would have |x−z|/|x−
y| < 1/C1. In the extreme case that z = y we have C1 < 1, so if we choose C1 ≥ 1,
then z ̸= y. Consider the line L through y and z and let ψ be the angle between
L and the ray R. Then ψ < π/2, since z ̸= y. Therefore, the line L hits a point
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R2

R1

z
y

0 x

w

R

ψ

KKn

z

Figure 3: Illustration of the proof of Claim 1.

w on the hyperplane that is perpendicular to R and passes through the origin,
with |w| = |y| tan(ψ) ≤ R2 tan(ψ). We claim that z is on the segment between w
and y if C1 is sufficiently large. Indeed, otherwise we have |x − z| ≥ R1 because
x /∈ B(0, R1), so 1/C1 > R1/|x − y| > R1/(R2 − R1). Therefore, if we choose
C1 ≥ (R2 −R1)/R1, then our claim follows. Since z is on the segment between w
and y, if the point w is in the interior of K, so is z by convexity, a contradiction.
Hence, w is either on the boundary of K or is outside K. In either case |w| ≥ R1.
We have R2 tan(ψ) ≥ |w| ≥ R1, which implies that tan(ψ) ≥ R1/R2.

Now, let z′ be the point of the line L that is closest to x, so |x − z′| ≤ |x −
z|. It follows that sin(ψ) = |x − z′|/|x − y| ≤ |x − z|/|x − y| < 1/C1. Hence,
C1 < 1/ sin(arctan(R1/R2)), i.e., C1 <

√︁
(R2/R1)2 + 1. Therefore, if we choose

C1 ≥
√︁

(R2/R1)2 + 1, then we have the desired conclusion.
Claim 2: Next, we claim that if dH(K,Kn) ≤ φ for some number φ > 0,

then for any Borel set F ⊂ B = B(0, 1) the distance set ∆K(F ) is contained in
the C2φ-neighborhood of ∆Kn

(F ) for some constant C2 > 0 depending only on
R1, R2. Indeed, let |x| ≤ 2 be arbitrary. Then there exist α, αn > 0 such that
αx ∈ ∂K and αnx ∈ ∂Kn. In particular, ∥x∥K = 1/α and ∥x∥Kn = 1/αn. By
Claim 1 we have |αx− αnx| ≤ C1dH(K,Kn) ≤ C1φ. It follows that

|∥x∥K − ∥x∥Kn
| =

|αn − α|
αnα

≤ C1φ

αnα|x|
≤ 2C1φ

|αnx||αx|
≤ 2C1

R2
1

φ = C2φ.

Now, if x, y ∈ F , then |x − y| ≤ 2, so ∆K(F ) lies in the C2φ neighborhood of
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∆Kn(F ), proving Claim 2.
To continue the proof of Lemma 4.1, we need the following elementary lemma

that is proved later. Here m1 denotes the 1-dimensional Lebesgue measure.

Lemma 4.2. Let F ⊂ R be a bounded set.

(i) For each c, δ > 0 we have m1(Ncδ(F )) ≤ max{1, c} ·m1(Nδ(F )).

(ii) For each r, δ > 0 we have m1(Nδ(rF )) ≤ max{1, r} ·m1(Nδ(F )).

Let {Dn} be as in Lemma 3.2 and set Wk = [0, 2] ∩ Dk, k ∈ N. This is a
compact null set for each k ∈ N. Thus for each n ∈ N there is a δn > 0 so that
the δn-neighborhood of Wk has length less than 2−k/(C3n) for k = 1, . . . , n, where
C3 = (1 + C2)(1 + 1/R1) and our choice will be evident later. Here we have used
the fact the length of the δ-neighborhood of a compact null set in R tends to zero
with δ by the Lebesgue dominated convergence theorem. Let φ(n) = δn2 ; note
that this definition depends only on R1, R2 and not on K,Kn.

Now suppose dH(K,Kn) ≤ φ(sn) as in the statement of Lemma 4.1(i). For
n ∈ N let tn :=

∑︁n
k=1 sk ≤ nsn ≤ s2n. Enumerate the normal vectors corresponding

to the sides of K1,K2, . . . and let these be the θk in Lemma 3.3 and in Lemma
3.2; also let E ⊂ B be the d-dimensional set given by Lemma 3.2for this sequence.
The enumeration of the θk is such that the normal vectors for the sides of Kn are
accounted for among the first tn = sn + tn−1 vectors in the list, and therefore, as
in the proof of Theorem 1.1, we have

∆Kn(E) ⊂
tn⋃︂
k=1

|θk|Wk ⊂
s2n⋃︂
k=1

|θk|Wk.

Since Kn approximates K to within φ(sn), we deduce from Claim 2 that ∆K(E)

lies inside the C2φ(sn)-neighborhood of ∪s2n
k=1|θk|Wk. Hence, ∆K(E) lies inside the

union of the C2φ(sn)-neighborhoods of the sets |θk|Wk, k = 1, . . . , s2n. By Lemma
4.2, and using the fact that |θk| ≤ 1/R1 by Lemma 3.3, we have

m1(NC2φ(sn)(|θk|Wk)) ≤ max{1, C2} ·m1(Nφ(sn)(|θk|Wk))

≤ max{1, C2} · max{1, |θk|} ·m1(Nφ(sn)(Wk))

≤ (1 + C2)(1 + 1/R1)m1(Nδs2n
(Wk))

≤ C3
2−k

C3s2n

for k = 1, . . . , s2n. Since C3 > C2, it follows that

m1(∆K(E)) ≤
s2n∑︂
k=1

m1(NC2φ(sn)(|θk|Wk)) ≤ 1

s2n
,

which completes the proof of part (i). Since 1/s2n → 0, part (ii) also follows. □
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Proof of Lemma 4.2. If c ≤ 1, then (i) is immediate since Ncδ(F ) ⊂ Nδ(F ). Sup-
pose that c > 1 and consider the δ-neighborhood of F , which is a bounded open
set. Hence, it can be written as a finite union of bounded disjoint open intervals
Ii, i ∈ I, each having length at least 2δ. We append to each Ii two closed intervals
of length (c−1)δ, disjoint from Ii, so that one is appended to the left endpoint and
the other to the right endpoint of Ii. We let I ′i, i ∈ I, be the resulting collection
of intervals, which satisfy m1(I ′i) = m1(Ii) + 2(c− 1)δ. Note that the union ∪i∈II

′
i

covers Ncδ(F ). It follows that

m1(Ncδ(F )) ≤
∑︂
i∈I

(m1(Ii) + 2(c− 1)δ) ≤
∑︂
i∈I

cm1(Ii) = cm1(Nδ(F )).

Part (ii) follows from (i) and the observation that Nδ(rF ) = rNδ/r(F ). □

We will give a separate proof of Theorem 1.2 in the case d = 2, since it is quite
visual and simple to state. However, the proof for general dimensions, given later,
also applies to the planar case.

Proof of Theorem 1.2 for d = 2. We first build a strictly convex example and then
explain how to make it C1. We will construct K as as a limit of nested, increasing,
finite convex polygons {Kn}. Let K1 be a square centered at the origin. Suppose,
in general, we are given a polygon Kn with 2n+1 sides. Let Ik be one face of ∂Kn,
denote the midpoint of Ik by xk, and define yk as the outward normal vector to
Kn at xk. Let zk = xk + εnyk, where εn ≤ 1

2φ(2n+2); here φ is the function from
Lemma 4.1, corresponding to a small fixed R1 > 0 and a large fixed R2 > 0, and the
convex sets Kn,K are constructed so that B(0, R1) ⊂ K,Kn ⊂ B(0, R2). Replace
the edge Ik by an arc Jk consisting of two edges, connecting the endpoints of Ik to
the point zk. This gives the polygon Kn+1. See Figure 4. If εn is small enough (but
positive) Kn+1 will still be convex. Moreover, if εn+1 ≤ εn/2 is sufficiently small,
then the limiting region K will not contain any line segments in its boundary so it
will be a strictly convex norm ball which is approximated within 2εn by Kn. Thus
by Lemma 4.1, there is a compact set E of dimension 2 so that ∆K(E) has length
zero, as desired.

kJ

Ik−1 Ik+1

Ik

εn

Figure 4: Constructing Kn+1 from Kn to give a strictly convex example.

The example described above is not C1 since there are countably many extreme
points where the exterior angle is strictly larger than π. However we can eliminate
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these corners as follows. Instead of replacing each edge Ik by two edges as above,
we replace it by a polygonal arc Jk with 4 edges, as illustrated in Figure 5.

Ik−1 Ik+1

kJ

Ik
π−θ

θ/2

θ/2

ε

θ

< θ/2

n

Figure 5: Constructing Kn+1 from Kn to give a C1 boundary in the limit.

If the two points near each endpoint of Ik are chosen correctly (see Figure 5),
then the exterior angle at each of these points is approximately half the angle θ at
the corresponding endpoint of Ik (and can certainly be chosen to be less than 2/3
of that angle). The angle at the central vertex is as close to zero as we wish. Thus
all the exterior angles for Kn+1 are less than the maximum exterior angle for Kn

by a fixed factor strictly less than 1. This implies ∂K is has a (unique) tangent at
each point. By Lemma 4.3 below we conclude that ∂K is C1. □

Lemma 4.3. Let K ⊂ Rd be a norm ball such that there exists a unique supporting
hyperplane at each point of ∂K. Then ∂K is a C1-smooth (d− 1)-submanifold of
Rd.

This lemma follows from Theorem 25.1 and Corollary 25.5.1 of [18], if one uses
as local coordinates the projection from ∂K to a tangent hyperplane of ∂K. In
fact, ∂K is homeomorphic to the (d− 1)-sphere under the map x ↦→ x/|x|.

In our construction above, the boundary curvature of the limiting set K will
be a measure µ supported on ∂K that is singular to length measure. Can this
measure have positive dimension? Is there some relation between whether the
(K,α)-conjecture holds and the dimension of the measure µ, say α > 2 − dim(µ)?

Proof of Theorem 1.2 for d ≥ 2. We use Proposition 2.1 of [9] which states that
any convex body K ⊂ Rd can be approximated as closely as we wish in the Haus-
dorff metric by a C∞ strictly convex body that contains K. Although it is not
explicitly stated there, the proof in [9] shows that if K is symmetric then the
approximation will be too.

Start with a cube centered at the origin and approximate it by a smooth convex
body S1 to within ε1 > 0, where ε1 will be fixed below, subject to several additional
conditions. Choose a finite, symmetric collection points that are sufficiently dense
on ∂S1 that the intersection of half-spaces containing S1 and touching ∂S1 at these
points defines a polytope approximating S1 within ε1.

Since S1 is strictly convex, its boundary contains no line segment and hence
for any δ > 0 there is a η > 0 with the following property: any segment of length
δ that lies outside the interior of S1 contains a point at least distance 2η from S1.
In particular, any convex body K1 that contains S1 and approximates it to within
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η cannot contain any δ-long segment in its boundary. Thus by taking ε1 small
enough we may assume that ∂K1 contains no line segment of length 1/2.

Using the smoothness of S1, given any δ > 0 we can also choose η > 0 so small
that if a (d − 1)-plane P that misses the interior of S1 comes within η of a point
x ∈ ∂S1, then the normal to P is within angle δ of the normal to S1 at x. This
implies that any convex K that contains S1 and approximates it to within η, has
normals that approximate the normals to S1. Again, by taking ε1 small enough,
we can assume that any ray from the origin intersects S1 and K1 at points where
the normals agree to within angle 1/2 (for K1, there might be multiple choices of
the normal direction at some points, but they all satisfy this estimate).

Using these arguments repeatedly, we obtain a sequence of smooth, strictly
convex, symmetric bodies {Sn}, finite symmetric polytopes {Kn}, and positive
numbers {εn} so that

(1) Kn contains Sn and approximates Sn to within εn in the Hausdorff metric.

(2) Sn+1 containsKn and approximatesKn to within εn+1 in the Hausdorff metric.

(3) εn+1 ≤ φ(sn)/2 where sn is the number of faces of Kn and φ is as in Lemma
4.1. Hence the distance set ∆K(E) for any body K approximating Kn to
within 2εn+1 has length less than 1/s2n.

(4) εn is so small that any (d− 1)-plane that comes within 2εn of a point x ∈ Sn

without hitting Sn has normal direction that is within 2−n of the normal to
Sn at x.

(5) εn is small enough that any convex body that contains Sn and approximates
it to within 2εn contains no segment of length 2−n in its boundary.

(6) εn+1 ≤ εn/4.

Condition (6) implies the limiting body K approximates Sn to within

εn +
∑︂

k≥n+1

εk,

which is less than 2εn and hence K contains no segments at all by condition (5).
Therefore, K is strictly convex. Conditions (6) and (3) imply the distance set
∆K(E) has zero length. Conditions (6) and (4) imply that ∂K has a unique
supporting hyperplane at each of its points. Indeed, if x ∈ ∂K has two supporting
hyperplanes with unit normals ν1 and ν2 respectively, then each of ν1, ν2 is within
2−n of the normal of Sn at a point xn. This implies that ν1 = ν2. By Lemma 4.3
we conclude that ∂K is a C1, as desired. □
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[11] Guth, L. and Katz, N.H.: On the Erdős distinct distances problem in the plane.
Ann. of Math. (2) 181 (2015), no. 1, 155–190.

[12] Iosevich, A. and Laba, I.: K-distance sets, Falconer conjecture, and discrete
analogs. Integers 5 (2005), no. 2, A8, 11pp.

[13] Iosevich, A.: What is Falconer’s conjecture?. Notices Amer. Math. Soc. 66 (2019),
no. 4, 552–555.

[14] Kahane, J.-P.: Sur la dimension des intersections. In Aspects of mathematics and
its applications, Vol. 34, 419–430. North-Holland Math. Library, North-Holland,
Amsterdam, 1986.

[15] Konyagin, S. and Laba, I.: Falconer’s distance set conjecture for polygonal
norms. In Proceedings of Harmonic Analysis and its applications at Sapporo, 43–55.
Hokkaido University technical report series in mathematics 103, Hokkaido Univer-
sity, Sapporo, 2005. Preprint, arXiv math/0407503.

[16] Konyagin, S. and Laba, I.: Distance sets of well-distributed planar sets for polyg-
onal norms. Israel J. Math. 152 (2006), 157–179.

[17] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rec-
tifiability. Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge Uni-
versity Press, Cambridge, 1995.

[18] Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, No. 28,
Princeton University Press, Princeton, N.J., 1970.

[19] Wolff, T.: Decay of circular means of Fourier transforms of measures. Internat.
Math. Res. Notices 10 (1999), 547–567.

The first author is supported in part by NSF Grant DMS-1906259.
The third author is supported in part by NSF Grant DMS-2000096.



16 C. Bishop, H. Drillick and D. Ntalampekos

Received ??

C. Bishop: Department of Mathematics, Stony Brook University, Stony Brook, NY
11794

E-mail: bishop@math.stonybrook.edu

H. Drillick: Department of Mathematics, Columbia University, New York, NY
10027

E-mail: hdrillick@math.columbia.edu

D. Ntalampekos: Institute for Mathematical Sciences, Stony Brook University,
Stony Brook, NY 11794

E-mail: dimitrios.ntalampekos@stonybrook.edu

mailto:bishop@math.stonybrook.edu
mailto:hdrillick@math.columbia.edu
mailto:dimitrios.ntalampekos@stonybrook.edu

	Introduction
	Dimensions of intersections
	The basic construction
	A strictly convex example

