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Falconer’s (K, d) distance set conjecture can fail
for strictly convex sets K in R¢

Christopher J. Bishop, Hindy Drillick and Dimitrios Ntalampekos

Abstract. For any norm on R? with countably many extreme points, we
prove that there is a set £ C R? of Hausdorff dimension d whose distance
set with respect to this norm has zero linear measure. This was previously
known only for norms associated to certain finite polygons in R?. Similar
examples exist for norms that are very well approximated by polyhedral
norms, including some examples where the unit ball is strictly convex and
has C* boundary.

1. Introduction

We will call K C R? a “norm ball” if it is compact, convex, symmetric, and contains
the origin in its interior. Under these conditions there is an associated norm || - ||x
defined on R¢ by

lz]|x = inf{A >0:2/X € K}.

If E c R? then the K-distance set of F is
Ar(E) = {llz —yllx : z,y € E} C [0,00).

Motivated by [12] and [15], we say Falconer’s (K, o)-conjecture holds if for any set
E C R? with dim(E) = a, the set Ax(F) has positive 1-dimensional Lebesgue
measure, also referred to as length; here and below “dim” refers to Hausdorff
dimension. In this note we give new examples where this fails for o = d.

When K is the usual closed unit ball B in R?, d € N = {1,2,...}, we shall
denote Ag(FE) simply by A(FE). Falconer’s conjecture is a refinement of a well
known result of Steinhaus that A(FE) contains an interval whenever E C R has
positive Lebesgue measure. Falconer [6] proved that the (B, a)-conjecture is true
for all & > (d + 1)/2 and he asked if it holds for all & > d/2. Falconer’s result
was subsequently improved by Bourgain [2], Wolff [19] and Erdogan [5] and very
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recently there has been much activity by various authors including Du, Guth,
Tosevich, Ou, Wang, Wilson and Zhang [3], [4], [10]. See Iosevich’s brief survey [13]
for a summary of the history of this problem, the best currently known bounds, the
ideas behind these results, and the close connection between Falconer’s conjecture
and the Erdds distance conjecture for finite sets (recently solved in the plane, [11]).

When K is not the round ball, much less is known. If K is smooth and has
non-vanishing curvature, then Iosevich and Laba [12] proved the (K, a)-conjecture
is true for a > (d + 1)/2, but Konyagin and Laba [16] proved that the (K,2)-
conjecture is false for various finite polygons in R?, e.g., when the slopes of the
sides are algebraic. In [15] they extend this to polygons where the slopes belong
to a certain set of full measure, and prove that the (K, «) conjecture always fails if
a > N/(N — 1), where N is the number of sides of the polygon K. Corollary 4 of
Falconer’s paper [7] claims that the (K, d) conjecture fails for all finite polyhedral
norm balls K C R?, but the proof contains a gap, explained in Section 2. We will
fill this gap by proving a slightly stronger result:

Theorem 1.1. If K is a norm ball with countably many extreme points, then the
(K, d)-conjecture fails, i.e., there is a compact E C R? of Hausdorff dimension d
such that Ak (E) is a null set.

A null set in R is a set of zero Lebesgue measure. Recall that z € 0K is an
extreme point of K if it does not lie on any open line segment between distinct
points of K. For a finite polygon, these are exactly the vertices. We say that K is
strictly convex if every point of 0K is an extreme point, i.e., the boundary contains
no line segments. Every point x on the boundary of a convex set K C R? lies on a
(d — 1)-plane that misses the interior of K. The boundary of K is C' if and only
if there is only one such plane at each z € 0K; see Lemma 4.3.

Theorem 1.2. There is a strictly convex norm ball K C R? with C* boundary
such that the (K, d)-conjecture fails.

So far as we know, Falconer’s (K, «)-conjecture was not previously known to
fail for any strictly convex set K and « > d/2. Results from [12] show that
Theorem 1.2 cannot be improved from C! to C? (at least with strictly positive
curvature), but whether any improvement beyond C* is possible is an interesting
open problem. See our remarks following Lemma 4.3.

2. Dimensions of intersections

Theorem 0.2 of [14] implies that if E, F are o-compact subsets of R¢, then for all
£ > 0 the set of homotheties o on R? (compositions of dilations and translations)
such that

(2.1) dim(ENo(F)) > dim(E) + dim(F) — d — ¢,

has positive measure in the group of all homotheties. On the other hand, Theorem
1 of [7] (see also Theorem 8.3 of [8]; 8.2 in earlier editions), claims that if E and F’
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are Borel subsets of R? with sufficiently large dimension, then the above inequality
holds without the € term for a set of homotheties having positive measure.

However this claim is false: we will show that there are compact sets F and F'
of full dimension so that (2.1) does not hold without the ¢ term for any Euclidean
similarity o (a composition of dilations, translations, rotations and reflections).

The proof of Theorem 1 in [7] uses an induction argument on the dimension d
which breaks down at the first step d = 1; this case is quoted from [17], but the
result is not found there, and our example will show that it is incorrect. There are
versions of (2.1) without the € term under stronger hypotheses on the sets E, F
see e.g., Theorem 13.14 of [17].

Now we proceed with our example. For simplicity, consider the case dim(F) =
dim(F) = d = 1. Let {I,,} be the collection of closed intervals [272",2372"] n € N,
and for each n choose a compact set E, C I, with dim(E) =1 — 1/n. Then set
E = {0} UU, e En- Similarly, let J, = [273",2573"], choose compact F,, C J,,
with dimensions 1 —1/n and set I = {0} U, cry Frn-

We claim that dim(E No(F)) < 1 for any similarity o. First note that dim(E'\
U) < 1 and dim(F \ U) < 1 for any neighborhood U of zero. Thus if dim(E N
o(F)) =1, we must have ¢(0) = 0, for otherwise there are disjoint neighborhoods
U,V of 0 and ¢(0) and hence

dim(EF No(F)) < max(dim(E \ U),dim(c(F)\V)) < 1.

The restriction o(0) = 0 already implies that the set of similarities (or homotheties)
such that dim(F No(F)) = 1 has measure zero.

To show the set satisfying (2.1) without the e term is empty, we may assume
o(0) = 0, but that ENo(F) # {0}. Then some I,, must intersect some o(J,)
(otherwise the intersection is just the point {0}). Therefore o must be a dilation

of the form o(z) = 22" 3"z, for some A € [—1, ]. We claim that only finitely

many other pairs of the form Iy, o(J;) can intersect. Assume (j, k) is such a pair
and j > m, k > n. If o(J;) hits I}, we must have

A+2m—3m—2F =X -3
for some X' € [0, 1]. Because the powers of 2 and 3 are integers, we must have
on —3m ok — 37
or, equivalently,
on(2kn —1) =2F —2n =39 3™ =3m(3I—™ —1).
By unique factorization of integers, this implies
2" =37 1.

Since n, m are fixed there is at most one j that can satisfy this equation. Similarly
for k. Since only finitely many pairs of intervals can overlap and the dimension
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of E, F inside each of these intervals is strictly less than 1, we see that dim(F N
o(F)) < 1.

It is easy to see that the same idea can be applied to sets in R?: there exist
E,F C R? both of dimension d, so that dim(E N (F)) < d for every similarity o
of R?. Indeed, only slightly more work shows this holds for every diffeomorphism
of R? into itself.

3. The basic construction

Before giving our main construction, we give a simple criterion for a set £ C R? to
have dimension d. Suppose b € N, b > 2. An nth generation b-adic cube Q C R?
is a product of intervals of the form [j6~",(j + 1)b™"], j € Z. Fix a set S C N.
Suppose F is defined as an intersection of sets F,,, where each F, is a union of
nth generation cubes. We assume FEj is a union of unit (i.e., Oth generation) b-
adic cubes in R?. In general, suppose we obtain E,,; from E, by taking all b?
subcubes if n &€ S, and by taking at least one child cube if n € S. For example,
for the construction of the middle thirds Cantor set in the real line one would take
b =3, S =N, and would choose the leftmost and rightmost children among the
b = 3 children of an interval in each generation.
We say S has zero density if

N CIal L %0)

n—00 n

=0.
Lemma 3.1. With notation as above, if S has zero density then dim(E) = d.

Proof. Consider the subset E’ of E constructed by choosing exactly one child cube
of a cube of F,, whenever n € S. More precisely, E’ is the intersection of sets E/,,
where E], is a union of cubes such that E) = Ey and E],; is obtained from E],
by taking all b% subcubes if n ¢ S, and by taking exactly one child cube if n € S.
We shall show that dim(E’) = d, and thus dim(E) = d.

Let 1 be the measure on E’ that assigns mass 1 to each unit cube in the
construction and divides the mass of each cube evenly between its children. If @,
is a cube of nth generation contained in a cube @, —1 of (n — 1)th generation, then
by construction

1(Qr) _ )L nes
w(Qn-1) b, né¢sS.

We therefore have,
(@) = pAn=#(SNin))

By Billingsley’s lemma (see, for example, Lemma 1.4.1 of [1]), it follows that

llogu(Qn) :d<1_ fim #(Sﬂ[lm])) _ 4 -

dim(E’) > 1i
im(E) 2 lim nlogb n—00 n

n— oo
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The following strengthens Corollary 3 of [7] from finite collections of vectors to
countable collections.

Lemma 3.2. Suppose {01, 02, ...} is a countable collection of vectors in RY. There
is a compact set E C B with dim(E) = d and so that for every n € N, E,, =
A(IL,(E)) has zero length, where 11, is the orthogonal projection onto the line in
direction 0,,. Moreover, there are closed null sets {D,} C [0,00), independent of
the choice of {0,,}, so that E,, C [0,2] N D,, for every n € N.

Proof. We start with a standard construction of a set Y C R of Hausdorff dimen-
sion 1 whose distance set has length zero. Choose a strictly increasing sequence
of positive integers {my} and set ny = mq + -+ + my. Set I = [0,1] and let
Xy = 37" (I + 3Z); this is an infinite union of closed intervals of length 37"*
separated by open intervals of length 2 - 37™*. For n € N, set

Vo=()Xe CVar, Y =Y({m})=[)Yn
k=1 n=1

The set Y can also be described by an inductive construction using 3-adic intervals
as in the setting described before Lemma 3.1: one starts with all integer unit
intervals and replaces an interval by its three children if n ¢ S = {n4}, and
chooses only the leftmost interval if n € S. If mp — oo, then S has zero density
and Lemma 3.1 shows that dim(Y") = d.

The distance set Dy = A(Y) of Y C R is contained in the set {z —y : (x,y) €
Y x Y}, which is the projection of Y x Y C R? to the real line via lines of slope
1. See Figure 1. By construction, the projection of Y, 11 X Y, 411 can be obtained
from the projection of Y,, x Y,, by replacing each interval I in the latter set by a
union of subintervals covering at most 2/3 of the length of I. Thus, in the limit,
the projection has zero length, and hence so does Dj.

For each k =1,2,..., define Z;, =Y, x Rt and let Z =N Z, =Y x R 1,
Then Zjy consists of infinitely many infinite, parallel “slabs” of thickness 37"*.
Each slab is a union of d-cubes of side length 37" and disjoint interiors. We call
these the cubes associated to Z;. The main observation we need is that we can
choose a dilation factor 0 < A =3¢ < 1/(2v/d+ 3), t € N, (see Figure 2) so that
each cube associated to Z,, contains a cube associated to A7(Z,), where 7 is any
rotation of R (this is also true for all rigid motions, but we don’t need that much
generality).

Set F¥ = 7,,(A\*Z,,), where 7 is any rigid rotation of R? that takes the first
coordinate axis into the line Ly in direction 6. Set

FF=Bn ﬁF/f.

n=1

Note that the orthogonal projection of F* into Ly, is contained 73, (A¥Y") and hence
its distance set is contained in A\*D.

We now give the construction of E in the case of finitely many direction vectors,
and then show how to adapt it to the countable case. If there are N direction
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Figure 1: The set Y X Y is contained in the small white squares. This set is
projected to the real line via lines of slope 1, denoted by gray color. The set
Dy = A(Y) C R is contained in this projection, denoted by the dashed horizontal
lines.

vectors 61, ...,0N then E = ﬂ]k\;l F* will work if the increasing sequence {my} is
chosen correctly. We require that my > t(N + 1); recall that \Vt1 = 3—t(N+1),
Then each of the cubes Q; of side length 37" associated to F} contains one cube
Q2 with side length A3~™ associated to F? (by the choice of \), and so on until
we reach one cube Qy associated to F{¥ which has size AN3™™1 = 371~V We
now consider a cube Q1 C Qy of side length 3™ —t(N+1) = \3=m1~tN that is the
product of intervals of the form [j3~=™1—*N+1) (j 4 1)3=m1=t(N+D] and intersects
the set Fy. Then we take all the cubes associated to Fy that are contained in Q1;
these have size 3772 = 3—m1—m2 < 3=mi—t(N+1)

We repeat the construction above, taking one cube from FQk, k=1,...,N,
and then all the cubes associated to Fi. Continuing in this way defines nested
collections of 3-adic cubes, whose intersection we call E. This procedure can also
be described as an iterative construction on 3-adic cubes where we always choose all
34 children, except for generations n € [ng,ng +t(N+1)]. Since my, = ng 1 —np —
00, the exceptional generations have zero density and so Lemma 3.1 proves that
dim(E) = d.

Now we modify the argument for countably many vectors. Each cube Q1 of side
length 37™ associated to F} contains one cube Qs of side length A3~™ associated
to F2. We now consider a cube @1 C Q5 of side length A\23™™ = 37172 that is
the product of intervals of the form [jA237"1, (5 +1)A237™1] and intersects the set
F3. Then we take all the cubes associated to Fy that are contained in @1; these
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Figure 2: The center of a unit cube in Zj is contained in a A-sized cube in A7(Z))
and we either keep that cube or an adjacent one. In either case the kept cube is
contained in disk of radius r = Av/d + 3 around the center and hence it is inside
the unit cube if A < 1/(2v/d + 3). This holds even if the cubes come from grids
that are rotated with respect to each other.

have size 3772 = 37™m ™2 < A\237™ provided that 37™2 < A2, This completes
the first step of the construction.

Let now R; be a cube of Fj that has side length 37"2. There exists a cube
Ry C R; of side length A37™2 associated to F22 Now, we also choose a cube
R3 C Ry of side length \237"2 associated to Fy. We end the second step by
choosing a cube R, of side length A337"2 = 37 "273¢ that is the product of intervals
of the form [jA337"2, (j + 1)A337"2] and intersects the set F}. Then we take all
the cubes associated to F31 that are contained in ﬁl; these have size 37" =
3—m2—ms < \337"2_ provided that 37 < A3. This completes the second step of
the construction.

We continue the construction in this way, choosing every time sufficiently large
mg, 8o that the construction can go through. This procedure can also be described
as an iterative construction on 3-adic cubes where we always choose all 3¢ children,
except for generations n € [ng, ng +t(k+1)]. We define S = Ug[ng, ng +t(k+1)].
If, in addition, my is chosen to be so large that my/k — 0 as k — oo, then S has
density zero, so dim(E) = d.

The projection of E onto direction 6, is contained in a copy of A*»Y ({nx})
where a,, is the generation in which we first use a cube associated to F™ (for
example, ag = 2 from the construction above) and {n;} is the truncation of {ny}
starting at index a,. Thus the corresponding distance set, D, is a set of zero
length that depends on our choice of {my}, but not on the {0}. O

Lemma 3.3. Suppose K is a norm ball with countably many extreme points. Then
there is a countable set of vectors {0, } such that for each x € R there existsn € N
with

el = lz - 6] = max |z - 6]

Moreover, if B(0,R1) C K C B(0,Rg) for some 0 < Ry < Ry, then 1/Ry < 0,| <
1/Ry for alln € N. If K is a polyhedron, then the vectors {0,} may be taken to
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be parallel to the normal vectors of the faces of K.

Proof. Every point z on the boundary of a convex set K C R? lies on a (d — 1)-
plane P,, called a supporting hyperplane, that misses the interior of K. In other
words, there is a linear functional f, so that f(z) =1 and f,(y) < 1forally € K,
and P, = {y : f.(y) = 1}; see [18, Theorem 11.6].

Moreover, Carthéodory’s theorem [18, Theorem 17.1] states that every non-
extreme boundary point x is a convex combination x = Z?Zl p;jx; of k extreme
points with 0 < p; < 1for 1 <j <k, and 2 <k < d+ 1. Let E(z) denote the set
of k extreme points associated to . Then f,(y) = 1 for every y € E(z) (otherwise
fz(z) < 1), and hence f;(y) = 1 for every convex combination y of points in E(x).
Thus the plane P, covers the convex hull of E(x). Since there are only countably
many k-tuples of a countable set, there are countably many (d — 1)-planes that
cover 0K.

We take normal vectors v,,, n € N, to these planes such that v,, as a point of R?,
lies on the corresponding plane. If we define 6,, = v,,/|v,|?, then these vectors have
the desired properties. It suffices to check the claim whenever ||z||x = 1. Then
x € P, and suppose that v, is the normal to P,. The vector (- v, /|vn|)vn/|vn] =
(2 - Un/|Vn]?)vy is the projection of z to the direction v,, which is precisely the
vector 1v,. Hence, x - v, /|v,|> = 1 = ||2] k-

If P is some other supporting hyperplane not containing +x with normal vector
Vm, then there exists a constant A\ € (—1,1) such that z € Py = v;~ + A\, and
the hyperplane Py has normal Av,, € Px. Then (2 - vp/|Vm|)Vim/|Vm| = AV, so
|2 i/ |vm?| = A < 1 = |||k _

For the last assertion note that v, € B(0, Rs) \ B(0, Ry) for all n € N. Hence
10| = 1/|vn| € [1/Ra,1/Ry]. O

It will be crucial below that we have a maximum in the previous lemma and
not just a supremum; the latter version is always true by taking a dense set of
directions.

Proof of Theorem 1.1. This is the same as the proof of Corollary 4 in [7]. By
Lemma 3.3, there are countably many vectors {6,,} C R? so that for each z,y € R?
there exists n such that

[z = yllx = (2 —y) - Onl.
Let E and {D,} be the sets from Lemma 3.2. We have

AT (E)) = {l(z —y) - 0n/|0n]] : 2,y € E} C D.

Then
{llz = yllx s v,y € B} € (J{l(m—y) - Ol s 2,y € B} C | (10n]Dn),
n=1 n=1

which is a countable union of zero length sets. a
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Given a Banach space X, a subset B C X ™ of its dual space is called a (James)
boundary if for every « € X, there is a b € B so that ||z||x = b(x). For example,
the unit sphere in X* is such a boundary, as is the set of extreme points of the unit
ball in X*. Thus another way to state Lemma 3.3 is that if X is a finite dimensional
Banach space whose unit ball has countable number of extreme points, then X has
a countable boundary. Certain infinite dimensional Banach spaces also have this
property, e.g., cg, the space of real valued sequences that tend to zero. Is there an
interesting version of Theorem 1.1 for such spaces? What is the the correct notion
of a “large” set whose distance set has zero length? Infinite Hausdorff dimension?

4. A strictly convex example

Given two subsets E, F C R?, recall that the Hausdorff distance between E and
F is defined as

dy(E,F) =inf{e > 0: E C N.(F) and F C N.(E)},

where N (E), N.(F) denote the open e-neighborhoods of FE and F respectively.

Lemma 4.1. For each 0 < Ry < Ry there is a function ¢ : N — (0,1] so that the
following holds. Suppose K C R? is a norm ball and {K,} C R? is a sequence of
finite polyhedral norm balls such that

(a) B(0,Ry) C K,K,, C B(0,R2) for alln € N, and

(b) K,, has s, sides for each n € N, where s, strictly increases to co as n — oco.

Moreover, consider the set E given by Lemma 3.2 and corresponding to the count-
ably many normal directions of the sides of all polyhedrons K.

(i) Ifdu(K, K,) < ¢(s,) for somen € N, then Ak (E) has length at most 1/s2.

(i) If du(K, K,) < ¢(s,) for alln € N, then the (K, d)-conjecture fails.

In other words, the (K, d)-conjecture not only fails for finite polyhedrons, but
also for any convex body that is “very well approximated” by finite polyhedrons.

Proof. Claim 1: Consider an infinite ray R emanating from 0 and hitting 0K,,, 0K
at points x,y, respectively. We first claim that there exists a constant C; =
C1(R1, R2) > 0 such that

|z —y| < Chdy (K, K,).

Here, the roles of K and K, are symmetric, so suppose that y € 0K satisfies
ly| > |z|. Let z € K be the point closest to # € K, so |z — z| < dy(K, K,);
see Figure 3.

If | —y| > Cidu (K, K,,) for a constant C; > 0 then we would have |z —z|/|x —
y| < 1/Cq. In the extreme case that z = y we have C; < 1, so if we choose C; > 1,
then z # y. Consider the line L through y and z and let 1 be the angle between
L and the ray R. Then ¢ < 7/2, since z # y. Therefore, the line L hits a point
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Figure 3: Illustration of the proof of Claim 1.

w on the hyperplane that is perpendicular to R and passes through the origin,
with |w| = |y| tan(yp) < Rgtan(¢). We claim that z is on the segment between w
and y if C is sufficiently large. Indeed, otherwise we have |z — z| > Ry because
x ¢ B(0,Ry), so 1/Cy > Ry/|lx —y| > R1/(R2 — R1). Therefore, if we choose
C1 > (Ry — R1)/ Ry, then our claim follows. Since z is on the segment between w
and y, if the point w is in the interior of K, so is z by convexity, a contradiction.
Hence, w is either on the boundary of K or is outside K. In either case |w| > R;.
We have Ry tan(vy) > |w| > Ry, which implies that tan(¢) > R1/Rs.

Now, let 2’ be the point of the line L that is closest to z, so |z — 2| < |z —
z|. It follows that sin(y) = |z — 2|/|Jx — y| < |z — z|/|x — y| < 1/C:1. Hence,
Cy < 1/sin(arctan(R1/Rs)), i.e., C1 < y/(R2/R1)? + 1. Therefore, if we choose
Cy1 > +/(R2/R1)? + 1, then we have the desired conclusion.

Claim 2: Next, we claim that if dy (K, K,) < ¢ for some number ¢ > 0,
then for any Borel set F' C B = B(0,1) the distance set Ag(F) is contained in
the Cap-neighborhood of Ak, (F) for some constant Co > 0 depending only on
R1, Ry. Indeed, let |z| < 2 be arbitrary. Then there exist a,a;, > 0 such that
ar € 0K and o,z € JK,. In particular, ||z||x = 1/a and ||z|k, = 1/a,. By
Claim 1 we have |ax — a,z| < C1dy (K, K,) < Cip. It follows that

la, — af Cip 2C1 < 2C,

—5p = Cap.
apa T apalz|] T |apz|lax] T R? 7 2%

Mzl = ll=llx, | =

Now, if z,y € F, then |z —y| < 2, so Ag(F) lies in the Cy¢ neighborhood of
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Ak, (F), proving Claim 2.
To continue the proof of Lemma 4.1, we need the following elementary lemma
that is proved later. Here m; denotes the 1-dimensional Lebesgue measure.

Lemma 4.2. Let ' C R be a bounded set.
(i) For each ¢, > 0 we have my(N.s(F)) < max{l,c} - mi(Ns(F)).

(ii) For each r,d > 0 we have my(Ns(rF)) < max{1l,7} - mi(Ns(F)).

Let {D,} be as in Lemma 3.2 and set W), = [0,2] N Dy, k € N. This is a
compact null set for each k¥ € N. Thus for each n € N there is a §,, > 0 so that
the §,-neighborhood of W}, has length less than 27%/(C3n) for k = 1,...,n, where
C3 = (14 C3)(1+ 1/R;) and our choice will be evident later. Here we have used
the fact the length of the §-neighborhood of a compact null set in R tends to zero
with ¢ by the Lebesgue dominated convergence theorem. Let p(n) = d,2; note
that this definition depends only on R;, R and not on K, K,,.

Now suppose dg (K, K,,) < ¢(s,) as in the statement of Lemma 4.1(i). For
n € Nlet t, = ZZ=1 s < ns, < sfl. Enumerate the normal vectors corresponding
to the sides of K1, Ks,... and let these be the 0, in Lemma 3.3 and in Lemma
3.2; also let £ C B be the d-dimensional set given by Lemma 3.2for this sequence.
The enumeration of the 0}, is such that the normal vectors for the sides of K, are
accounted for among the first ¢,, = s,, + t,,—1 vectors in the list, and therefore, as
in the proof of Theorem 1.1, we have

2

tTlr STL
AKn(E) C U ‘9k|Wk C U |9k|Wk~
k=1 k=1

Since K,, approximates K to within ¢(sy), we deduce from Claim 2 that Ag (E)

lies inside the Ca¢ (s, )-neighborhood of U;’il |0k |Wy. Hence, Ag (E) lies inside the
union of the Co¢(s,, )-neighborhoods of the sets |0,|Wy, k= 1,...,s2. By Lemma
4.2, and using the fact that || < 1/R; by Lemma 3.3, we have

m1(Neye(s,) (10:Wr)) < max{1, Ca} - m1(Ngs,) (10kWk))
< max{l, Cg} . max{l, |0k|} . m1(N¢(S")(Wk))
< (1+Co)(1+ 1/Ry)ma(Ns 5 (W)
2—k
< (.2
<Cj Cas?

for k=1,...,52. Since C3 > Cy, it follows that

S2

M (BK(E)) <3 ma(Negon (06 W) <
k=1

|

)
S

St

which completes the proof of part (i). Since 1/s2 — 0, part (ii) also follows. O
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Proof of Lemma 4.2. If ¢ < 1, then (i) is immediate since Ngs(F') C Ns(F'). Sup-
pose that ¢ > 1 and consider the §-neighborhood of F', which is a bounded open
set. Hence, it can be written as a finite union of bounded disjoint open intervals
I;, i € I, each having length at least 20. We append to each I; two closed intervals
of length (¢—1)4, disjoint from I;, so that one is appended to the left endpoint and
the other to the right endpoint of I;. We let I/, i € I, be the resulting collection
of intervals, which satisfy m (I]) = mi(I;) +2(c—1)d. Note that the union U;erI]
covers N.s(F'). It follows that

m1(Nes(F)) <3 (ma(L) +2(c = 1)8) < > ema (I;) = ema (Ns(F)).

iel i€l
Part (ii) follows from (i) and the observation that Nj(rF) = rNs,.(F). O

We will give a separate proof of Theorem 1.2 in the case d = 2, since it is quite
visual and simple to state. However, the proof for general dimensions, given later,
also applies to the planar case.

Proof of Theorem 1.2 for d = 2. We first build a strictly convex example and then
explain how to make it C'*. We will construct K as as a limit of nested, increasing,
finite convex polygons { K, }. Let K7 be a square centered at the origin. Suppose,
in general, we are given a polygon K,, with 27*! sides. Let I}, be one face of K,
denote the midpoint of I by zj, and define y; as the outward normal vector to
K, at xj. Let z;, = xp + €y, where g, < %@(2”*2); here ¢ is the function from
Lemma 4.1, corresponding to a small fixed R; > 0 and a large fixed Ry > 0, and the
convex sets K,,, K are constructed so that B(0, Ry) C K, K,, C B(0, Rz). Replace
the edge I by an arc Ji consisting of two edges, connecting the endpoints of I, to
the point zi. This gives the polygon K, 11. See Figure 4. If ¢, is small enough (but
positive) K, 1 will still be convex. Moreover, if 41 < &,/2 is sufficiently small,
then the limiting region K will not contain any line segments in its boundary so it
will be a strictly convex norm ball which is approximated within 2¢,, by K,,. Thus
by Lemma 4.1, there is a compact set E of dimension 2 so that Ax (E) has length
zero, as desired.

3

. N
. N
. N
. N
. N
. N
. € N
. n <

Figure 4: Constructing K41 from K, to give a strictly convex example.

The example described above is not C! since there are countably many extreme
points where the exterior angle is strictly larger than 7. However we can eliminate
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these corners as follows. Instead of replacing each edge I by two edges as above,
we replace it by a polygonal arc J with 4 edges, as illustrated in Figure 5.

Ik+1
Figure 5: Constructing K41 from K, to give a C' boundary in the limit.

If the two points near each endpoint of I are chosen correctly (see Figure 5),
then the exterior angle at each of these points is approximately half the angle 6 at
the corresponding endpoint of I (and can certainly be chosen to be less than 2/3
of that angle). The angle at the central vertex is as close to zero as we wish. Thus
all the exterior angles for K, 1 are less than the maximum exterior angle for K,
by a fixed factor strictly less than 1. This implies 0K is has a (unique) tangent at
each point. By Lemma 4.3 below we conclude that 0K is C. O

Lemma 4.3. Let K C R? be a norm ball such that there exists a unique supporting
hyperplane at each point of K. Then 0K is a C*-smooth (d — 1)-submanifold of
R4,

This lemma follows from Theorem 25.1 and Corollary 25.5.1 of [18], if one uses
as local coordinates the projection from 0K to a tangent hyperplane of K. In
fact, 0K is homeomorphic to the (d — 1)-sphere under the map = — z/|x|.

In our construction above, the boundary curvature of the limiting set K will
be a measure p supported on JK that is singular to length measure. Can this
measure have positive dimension? Is there some relation between whether the
(K, a)-conjecture holds and the dimension of the measure p, say o > 2 — dim(u)?

Proof of Theorem 1.2 for d > 2. We use Proposition 2.1 of [9] which states that
any convex body K C R? can be approximated as closely as we wish in the Haus-
dorff metric by a C* strictly convex body that contains K. Although it is not
explicitly stated there, the proof in [9] shows that if K is symmetric then the
approximation will be too.

Start with a cube centered at the origin and approximate it by a smooth convex
body S7 to within e; > 0, where &1 will be fixed below, subject to several additional
conditions. Choose a finite, symmetric collection points that are sufficiently dense
on 05 that the intersection of half-spaces containing S; and touching 0.5; at these
points defines a polytope approximating S; within €.

Since S7 is strictly convex, its boundary contains no line segment and hence
for any § > 0 there is a n > 0 with the following property: any segment of length
0 that lies outside the interior of S7 contains a point at least distance 27 from Sj.
In particular, any convex body K; that contains S; and approximates it to within
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7 cannot contain any d-long segment in its boundary. Thus by taking ¢; small
enough we may assume that K7 contains no line segment of length 1/2.

Using the smoothness of S7, given any § > 0 we can also choose 17 > 0 so small
that if a (d — 1)-plane P that misses the interior of S; comes within 1 of a point
x € 051, then the normal to P is within angle § of the normal to S; at x. This
implies that any convex K that contains S; and approximates it to within 7, has
normals that approximate the normals to S;. Again, by taking £; small enough,
we can assume that any ray from the origin intersects S; and K at points where
the normals agree to within angle 1/2 (for K7, there might be multiple choices of
the normal direction at some points, but they all satisfy this estimate).

Using these arguments repeatedly, we obtain a sequence of smooth, strictly
convex, symmetric bodies {S,}, finite symmetric polytopes {K,}, and positive
numbers {e,} so that

(1) K, contains S,, and approximates S,, to within &, in the Hausdorff metric.
(2) Sp41 contains K, and approximates K, to within &, in the Hausdorff metric.

(3) en+1 < ©(sn)/2 where s, is the number of faces of K,, and ¢ is as in Lemma
4.1. Hence the distance set Ag(FE) for any body K approximating K, to
within 2e,,11 has length less than 1/s2.

(4) e, is so small that any (d — 1)-plane that comes within 2¢,, of a point z € S,,
without hitting S,, has normal direction that is within 27" of the normal to
S, at x.

(5) e, is small enough that any convex body that contains S,, and approximates
it to within 2¢,, contains no segment of length 27" in its boundary.

(6) ent1 <epn/4.
Condition (6) implies the limiting body K approximates .S,, to within

en + Z €k,

k>n+1

which is less than 2¢,, and hence K contains no segments at all by condition (5).
Therefore, K is strictly convex. Conditions (6) and (3) imply the distance set
Ak (E) has zero length. Conditions (6) and (4) imply that 0K has a unique
supporting hyperplane at each of its points. Indeed, if x € 0K has two supporting
hyperplanes with unit normals 1y and vs respectively, then each of vy, v5 is within
27" of the normal of S,, at a point x,,. This implies that 1 = v5. By Lemma 4.3
we conclude that K is a C!, as desired. a
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