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Abstract—The amazing advances being made in the fields of
machine and deep learning are a highlight of the Big Data era for
both enterprise and research communities. Modern applications
require resources beyond a single node’s ability to provide.
However this is just a small part of the issues facing the overall
data processing environment, which must also support a raft
of data engineering for pre- and post-data processing, commu-
nication, and system integration. An important requirement of
data analytics tools is to be able to easily integrate with existing
frameworks in a multitude of languages, thereby increasing user
productivity and efficiency. All this demands an efficient and
highly distributed integrated approach for data processing, yet
many of today’s popular data analytics tools are unable to satisfy
all these requirements at the same time.

In this paper we present Cylon, an open-source high perfor-
mance distributed data processing library that can be seamlessly
integrated with existing Big Data and AI/ML frameworks. It
is developed with a flexible C++ core on top of a compact
data structure and exposes language bindings to C++, Java, and
Python. We discuss Cylon’s architecture in detail, and reveal
how it can be imported as a library to existing applications or
operate as a standalone framework. Initial experiments show
that Cylon enhances popular tools such as Apache Spark and
Dask with major performance improvements for key operations
and better component linkages. Finally, we show how its design
enables Cylon to be used cross-platform with minimum overhead,
which includes popular Al tools such as PyTorch, Tensorflow, and
Jupyter notebooks.

Index Terms—data-engineering, relational algebra, deep learn-
ing, ETL, MPI, big data

I. INTRODUCTION

Large-scale data processing/engineering has gone through
remarkable transformations over the past few decades. Devel-
oping fast and efficient Extract, Transform and Load frame-
works on commodity cloud hardware has taken center stage
in handling the information explosion and Big Data. Subse-
quently, we have seen a wide adoption of Big Data frameworks
from Apache Hadoop [1], Twister2 [2], and Apache Spark [3]
to Apache Flink [4] in both enterprise and research communi-
ties. Today, Artificial Intelligence (AI) and Machine Learning
(ML) have further broadened the scope of data engineering,
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which imposes faster and more integrable frameworks that can
operate on both specialized and commodity hardware.

One important question is whether those existing Big Data
frameworks utilize the full potential of the computing power
and parallelism available to process data. Both Big Data and
AI/ML applications spend a goodly amount of time pre-
processing data. Minimizing the pre-processing time clearly
increases the throughput of these applications. Productivity is
another important aspect of such frameworks. Most available
data analytics tools are implemented using a rapid program-
ming language such as Java, Python or R. This allows data
engineers to develop applications without diverging into the
details of complex distributed data processing algorithms. Still,
we rarely see these two aspects (high performance and pro-
ductivity) meet each other in the existing Big Data frameworks
[5]. We have also seen the world increasingly moving towards
user-friendly frameworks such as NumPy [6], Python Pandas
[7] or Dask [8]. Big Data frameworks have been trying to
match this by providing similar APIs (for example, PySpark,
Dask-Distributed). But this comes at the cost of performance
owing to the overheads that arise from switching between
runtimes.

We believe that a data processing framework focused on
high performance and productivity would provide a more
robust and efficient data engineering pipeline. In this paper
we introduce Cylon: a high-performance, MPI (Message Pass-
ing Interface)-based distributed memory data parallel library
for processing structured data. Cylon implements a set of
relational operators to process data. While "Core Cylon” is
implemented using system level C/C++, multiple language
interfaces (Python and Java (R in future)) are provided to
seamlessly integrate with existing applications, enabling both
data and AI/ML engineers to invoke data processing operators
in a familiar programming language.

Large-scale ETL operations most commonly involve map-
ping data to distributed relations and applying queries on
them. There are distributed table APIs implemented on top of
Big Data frameworks such as Apache Spark [9] and Apache
Flink [10] which are predominantly based on Java program-



ming language. Furthermore SQL interfaces are developed on
top of these to enhance the usability. Initial use cases of
Big Data frameworks were mostly based on text data (for
example, analyzing web scrolls of the Internet/social media,
time series data, etc.). But data engineering has ventured
beyond text data to analyzing multi-dimensional data such as
image, video, and text-to-speech. Further due to programming
language barriers, integration between Big Data frameworks
with AI/ML applications written in C++/Python and scientific
applications are not as efficient as possible. There is also a
discordance between these frameworks and high performance
computing frameworks such as MPI implementations. The
fact that these large-scale data processing operations exist as
separate frameworks also limits their use cases due to the
overhead in setting them up.

We envision data processing as a high performance library
function that should be available everywhere, including deep
learning, data processing frameworks, distributed databases
and even services. This paper discusses how we achieve this
using Cylon. Its flexible C++ core and language interfaces
allow it to be imported as a library for applications or run
as a standalone framework. It includes a table abstraction and
a set of fundamental relational algebraic operations that are
widely used in data processing systems, allowing Cylon to
couple seamlessly with existing AI/ML and data engineering
infrastructures. Internally it uses a compact Apache Arrow
[11] data format. The initial results show significant perfor-
mance improvements compared to current state-of-the-art data
processing frameworks. In Section II, we elaborate on the
functionality, architecture and features of Cylon. Section III
discusses the idea of “data processing everywhere” and how
Cylon achieves it. Section IV illustrates how Cylon performs
against popular data processing frameworks.
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Fig. 1: Data engineering everywhere

II. CYLON

Cylon! is a data engineering toolkit designed to work with
AI/ML systems and integrate with data processing systems.
This vision is highlighted in Figure 1 where Cylon is shown
to support common data structures and systems. It can be
deployed either as a library or a framework. Big Data systems
like Apache Spark, Apache Flink and Twister2 [2] can use Cy-
lon to boost the performance in the ETL pipeline. For AI/ML
systems like PyTorch [12], Tensorflow [13] and MXNet [14],
it acts as a library to enhance ETL performance. Additionally,
Cylon is being expanded to perform as a generic framework for
supporting ETL and efficient distributed modeling of AI/ML
workloads.

Cylon currently provides a set of distributed data-parallel
operators to extract, transform and load structured relational
data. These operators are exposed as APIs in multiple pro-
gramming languages (e.g., C++, Python, Java) that are com-
monly used in Machine Learning and Artificial Intelligence
platforms, enabling tight integration with them. When an
operator is invoked in any of these platforms, that invocation is
delegated to the "Core Cylon” framework, which implements
the actual logic to perform the operation in a distributed
setting. A high level overview of Cylon, along with its core
framework, is depicted in Figure 2.
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Fig. 2: Core Cylon Architecture

Cylon core has a table abstraction to represent structured
data. When a table is created in a distributed context, each
worker or process will hold a partition of the data that logically
belongs to the table. However each process can work on their
own portion of the table, as if they are working on the entire
dataset. Cylon “local operators” are executed on the local
data and distributed operators depend on these local operators
after distributing data as per operator requirements. Distributed
operators are implemented based on the Bulk Synchronous
Parallel (BSP) approach and the framework synchronizes local
operations as needed. In order to take the complexity of

Thttps://github.com/cylondata/cylon



distributed programming away from the user, Cylon internally
performs network-level operations and abstracts out the dis-
tributed nature of the operators. Those network operations
function on top of a layer where communication can take place
over either TCP, Infiniband or any other protocol supported by
the underlying communication layer of the framework. In the
following subsections we discuss each of these layers in detail.

A. Data Model

Traditionally, data processing systems are divided into two
categories: (1) Online Transaction Processing (OLTP) and (2)
Online Analytical Processing (OLAP). OLTP usually deals
with a large number of atomic operations such as inserts,
updates, and deletes, while OLAP is focused on bulk data
processing (bulk reads and writes) with low volume of trans-
actions.

Cylon workloads predominantly fall under the OLAP cat-
egory. The data layer of Cylon is based on Apache Arrow.
”Arrow Columnar Format” provides the foundation for Cylon
Table API. This allows seamless integration of other open
source frameworks such as Spark and libraries such as Pan-
das, Parquet and NumPy. Additionally, Arrow also provides
zero copy reads, which drastically reduces the overhead of
switching between language runtimes.

Further, columnar data formats have a number of advantages
when used for OLAP. Predominantly, each column will exist
contiguously on storage (memory or disk), and will be homo-
geneously typed. This increases the performance by allowing
SIMD operations, utilizing caches more efficiently due to the
data locality while also allowing effective compression of data.
This was the basis for the Apache Parquet columnar data
format [15] developed for Hadoop ecosystem. Apache Arrow
[11] extends this strategy to an in-memory language-agnostic
data structure.

B. Operators

On top of the table abstraction, Cylon implements five
fundamental operations that can be used to create a complete
data processing system. Each operator has two modes of
execution: local and distributed.

Local operators do not use the communication layer. In-
stead they work entirely on the data available and accessible
locally to the process, although these operators are capable
of performing computations on the data in volatile memory
as well as on the data in the disk. The performance of these
operations is bound usually by 10 and CPU capacity. Hence,
local operators are optimized to utilize disk-level and memory-
level caches efficiently. Some of the local operations we have
implemented in the initial version of the Cylon are Join,
HashPartition, Union, Sort, Merge, and Project.

Distributed operators use the network layer at one or
multiple points during the operator’s life-cycle (beginning,
middle, or end). In other words, a distributed operator is one
or more local operators coupled with one or more network
operators. Network operators can be considered as I/O and
network bound operators that involve minimum amount of

CPU based on the underlying protocol. Initially we have
implemented the “All to All” network operator which is widely
required when implementing the distributed counterparts of
the local operators. Figure 3 shows how the distributed join
operation has been composed by combining two local oper-
ators (HashPartition, Local Join) and one network operator
(AllToAll).The performance of distributed operators depends
on I/0O, CPU, and network performances. Current operators
implemented in Cylon are listed in Table I, though this list is
expected to grow.

1) Select: Select is an operation that can be applied on a
table to filter out a set of rows based on the values of all or
a subset of columns. When Select is called in a distributed
environment, Cylon applies the predicate function provided
by the user on the locally available partition of the distributed
table. This operation is a pleasingly parallel one where network
communication is not required at all.

2) Project: Cylon does not enforce any limits on the
amount of columns or rows that a table can have. As long
as the hardware resources permit, it can handle a dataset of
any complexity. Project can be used to create a simpler view of
an existing table by dropping one or more columns. Project is
considered the counterpart of Select, which works on columns
instead of rows. Similar to Select, Project is also a pleasingly
parallel operation, and Cylon applies it on distributed partitions
of the table without having to perform any synchronization
over the network.

3) Join: Join operation can be used to combine two tables
based on the values of a common column. Cylon implements
four types of Join operations;

1) Inner Join : Includes records that have matching values
in both tables.

2) Left (Outer) Join : Includes all records from the left table
and just the matching records from the right table.

3) Right (Outer) Join : Includes all records from the right
table and just the matching records from the left table.

4) Full Outer Join : Includes all records, but combines the
left and right records when there is a match.

We have implemented two different algorithms to perform
the above four operations.

1) Sort Join : Sorts both tables based on the join column
and scans both sorted relations from top to bottom while
merging matching records to create the joined table.

2) Hash Join : Hashes the join column of one relation
(preferably the smallest relation), and keeps the hashes
in a hash map. Scans through the second relation while
hashing the join column to find the matching records
from the first table’s hash map.

Although Join is a straightforward operation when performed
locally, all matching records need to be in the same process
when performed in a distributed context. Therefore Cylon
couples Join operation with a shuffling phase to redistribute
data based on the Join column value. We use a hash-based
partitioning technique where the records with the same Join
column hash will be sent to a designated worker/process. At



the end of the shuffling phase, local Join can be applied on
the re-partitioned table.

4) Union: The Union operation can be applied on two
homogeneous tables (those having similar schema) to create a
single table which includes all the records from both source
tables with duplicates removed. Similar to Join, in order to
perform Union on a distributed dataset, all similar records
need to be in the same process. Cylon performs shuffling as
the initial step of the distributed Union operation. Unlike with
Join, Union considers all the columns (properties) of a record
when finding duplicates. For that reason, the hash value of the
entire record (row) is considered when performing the hash -
partitioning.

5) Intersect: When applied on two homogeneous tables the
Intersect operation produces a table with similar rows from
both. Cylon couples this operation with a shuffling phase
similar to the Union operator’s distributed implementation.

6) Difference: This operation can be considered as the
opposite of Intersect. When the Difference is applied on two
homogeneous table, it produces the final table by adding all
the records from both tables but removing all similar records.
Since the similar records need to be identified, this operation
has also been coupled with a shuffling phase.

C. Communication Layer

Although the communication layer of Cylon was initially
developed based on OpenMPI [16], that implementation can
be easily replaced with a different one such as UCX [17]. This
will enhance Cylon’s compatibility to run on a wide variety
of hardware devices that have different native capabilities,
including GPUs, and different processor architectures such
as ARM and PowerPC. Transport layer options will also be
widened with different communication layer implementations.

A Cylon application can utilize multiple communication
layer implementations within the same process by defining
multiple Cylon Contexts, which is the API layer abstraction
of the underlying stack of communication and transport layers.

Data analytic systems either use an event-driven model,
where data producers and consumers are decoupled, or syn-
chronous models where producers and consumers work to-
gether at the same time. Classic parallel computing with
Message Passing Interface (MPI) [18] uses the latter approach
where senders synchronize with the receivers for transferring
messages. Big Data systems blend these two , with batch
systems using the event-driven model and streaming systems
using the synchronous model.

The producers and consumers are decoupled in time in an
event-driven model. The data generated by a producer can be
consumed in a later time suitable for the consumer, and not the
time imposed by the producer. This allows greater flexibility
in designing applications with distributed parts that can work
independently.

Cylon uses synchronized producers and consumers for
transferring messages. In contrast, Apache Spark employs an
event-driven model for communication between its tasks.

D. Transport Layer

At the time of writing, Cylon has the capability to com-
municate using any transport layer protocol supported by
OpenMPI, including TCP and Infiniband. Additionally, all the
tuning parameters of OpenMPI are applicable for Cylon since
the initial implementation is entirely written based on the
OpenMPI framework.
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Fig. 3: Cylon Distributed Operations

III. DATA PROCESSING EVERYWHERE

One of the main goals of Cylon is to be a versatile library
which facilitates data processing as a function (DPAF) and thus
provide efficient data engineering across different systems.
When working over multiple systems, data representation
and conversion is a key factor affecting performance and
interoperability. Cylon internally uses Apache Arrow data
structure, which is supported by many other frameworks such
as Apache Spark, TensorFlow, and PyTorch. Apache Arrow
can be converted into other popular data structures such as
NumPy and Pandas efficiently. In addition our core data
structures can work with zero copy across languages. For
example, when Cylon creates a table in CPP, it is available
to the Python or Java interface without need for data copying.

Cylon C++ kernels efficiently support data loading and data
processing. These functions can be used either in distributed or
local setting. Most of the deep learning libraries like PyTorch,
Tensorflow and MXNet are designed on top of such high
performance kernels. Cylon APIs are made available to the
user in a similar manner. Such designs lead to lower frictions in
system integration. With these design principles, we envision
the following scenarios where Cylon could work with other
systems to create rich applications.



Operator Description

Select Select operator works on a single table to produce another table by selecting a set of attributes that matches a predicate
function that works on individual records.

Project Project operator works on a single table to produce another table by selecting a subset of columns of the original table.

Join Join operator takes two tables and a set of join columns as inputs to produce another table. The join columns should be
identical in both tables. There are four types of joins with different semantics: inner join, left join, right join and full outer
join.

Union Union operator works on two tables with an equal number of columns and identical types to produce another table. The
produced table will be a combination of the input tables with duplicate records removed.

Intersect Intersect operator works on two tables with an equal number of columns and identical types to produce another table that
holds only the similar rows from the source tables.

Difference | Difference operator works on two tables with an equal number of columns and identical types to produce another table
that holds only the dissimilar rows from both tables.

TABLE I: Cylon operations

Fig. 4: Cylon Distributed Join in C++

#include <net/mpi/mpi_communicator.h>
#include <ctx/cylon_context.h>
#include <table.hpp>

using namespace cylon;

using namespace cylon::join::config;
using namespace cylon::io::config;
using namespace cylon::net;

int main (int argc, char xargv[]) {
auto mpi_config = new MPIConfig();

// initializing cylon in distributed mode
auto ctx = CylonContext::InitDistributed (mpi_config);
std::shared_ptr<Table> tablel,

table2, joined;

auto read_options = CSVReadOptions () .UseThreads (true);

// loading multiple table partitions concurrently
auto status = Table::FromCSV(ctx, {
"/path/to/csvl.csv",
"/path/to/csv2.csv"
}, {tablel, table2}, read_options);

if (status.is_ok()) {
auto Jjoin_config
auto join_status

JoinConfig::InnerJoin (0, 0);

tablel->DistributedJoin (table2,
join_config,
&joined) ;

if (join_status.is_ok()) {
// writing the partition of this worker back to
// the disk
joined->WriteCSV ("/path/to/out.csv");
} else {
// failed
}
} else {
// failed
}
ctx->Finalize();
return 0;

1) Data processing as a library
2) Data processing as a framework
3) Accelerating existing data processing frameworks

A. Data Processing Library

Cylon can be directly imported as a library to an application
written in another framework. In a Python program, this
integration is a simple module import. Cylon Python API
currently supports Google Colab with an experimental version
and supports Jupyter Notebooks with fully-fledged compati-
bility. In the model prototyping stage, setting up additional
configurations and installation details become a bottleneck

Fig. 5: Cylon with PyTorch

import numpy as np

from torch import Tensor as TorchTensor

from pycylon.data.table import Table, csv_reader
from pyarrow import Table as PyArrowTable

file = "data.csv"

tb = csv_reader.read(file, ", ")

# Does data pre-processing

tb_arw = Table.to_arrow (tb)
npy = tb_arw.to_pandas () .to_numpy ()
tensor = torch.from_numpy (npy)

# DL Training

to researchers. Having smooth integration makes this process
much easier.

A sample program snippet is shown in 5 where Cylon is
imported to Pytorch application. Cylon can act as a library
to load data efficiently by using either Arrow or Cylon data
loaders. The Table API can then take over for data pre-
processing. After the data pre-processing stage, the data can be
converted to Pandas and then to Tensors in the Al framework.
For data loading, Cylon Python API currently provides support
for PyTorch distributed data loaders. This minimizes the effort
of integrating Cylon Python APIs and PyTorch data loading.
After this stage, the usual data loader object can be used to
extract the tensors and run the training program.

Figure 6 shows the current positioning of Cylon in deep
learning integration. To further enhance the distributed oper-
ations, we can add specific support to deep learning settings
such as NCCL [19].

B. Data Processing Framework

Cylon can also perform as a separate standalone distributed
framework to process data. As a distributed framework, Cylon
should bring up the processes in different cluster management
environments such as Kubernetes, slurm and Yarn. After this
it accesses the core library to process the data. Cylon has
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Fig. 6: Cylon’s position in data engineering

a distributed backend abstraction to plug in various cluster
process management systems. At the moment it works as a
standalone framework with the MPI backend. Connections to
cluster environments such as Kubernetes can be added through
the resource management functions of existing frameworks
like Twister2 [2] or Dask [8].

C. Accelerating existing data processing frameworks

There are two main areas in which Cylon can accelerate
existing data frameworks. In terms of non-deep learning
workloads, Cylon can be used as a plugin to provide an
efficient communication API which encapsulates the state-
of-the-art communication libraries such as MPI, NCCL, and
UCX. In addition to this, Cylon can act as a high performance
kernel for any Big Data system to perform relational algebra
functions through the Table API. For JVM-oriented distributed
data processing engines like Apache Spark, Apache Flink or
Apache Storm, Cylon could provide a valuable addition with
the Java and Python APIs. We are currently integrating Cylon
kernels with the Twister2:TSet [20] abstraction to provide
efficient data pre-processing.

D. Integrating with workflow systems

Any of the above three modes of Cylon can be used with
workflow systems. Here workflow systems refers to contin-
uously integrated applications. Data pre-processing, training,
inference, post-analytics are linked in workflows. In modern
use cases, data-driven action triggering has become more
relevant. Support of standard file formats and in-memory data

formats are important when transferring data between various
parts of workflows.

IV. EXPERIMENTS

We analyzed the strong and weak scaling performance of
Cylon for the following operators and compared their perfor-
mance against an existing well-known Big Data framework,
Apache Spark.

1) Join - Joins are a common use case of columnar-
based traversal. Cylon implements two join algorithms:
Hash join and Sort join. Results are presented for both
algorithms.

2) Union - Unions without duplicates; a use case for row-
based traversal.

Additionally we compared Cylon performance against Dask
+ Dask-Distributed Python library, which is a popular data
science library. We present the results of Dask side-by-side
with Cylon and Spark.

We also analyzed the overhead of using Cylon on Java
and Python environments. This provides an indication of how
well Cylon can be integrated with Deep Learning and Al
frameworks such as PyTorch, Tensorflow and MXNet while
minimizing ETL processing time. In the following section we
will present our experiment setup and results in detail.

A. Setup

The tests were carried out in a cluster with 10 nodes. Each
node is equipped with Intel® Xeon® Platinum 8160 processors.
A node has a total RAM of 255GB and mounted SSDs were
used for data loading. Nodes are connected via Infiniband with
40Gbps bandwidth.

Cylon was built using g++ (GCC) 8.2.0 with OpenMPI
4.0.3 as the distributed runtime. Mpirun was mapped by nodes
and bound sockets. Infiniband was enabled for MPI. For each
experiment, 16 cores from each node were used, totaling 160
cores.

Apache Spark 2.4.6 (hadoop2.7) pre-built binary was chosen
for this experiment. Apache Hadoop/ HDFS 2.10.0 acted as the
distributed file system for Spark, with all data nodes mounted
on SSDs. Both Hadoop and Spark clusters shared the same 10-
node cluster. To match MPI setup, SPARK_WORKER_CORES
was set to 16 and spark.executor.cores was set to 1.

Dask and Dask-Distributed 2.19.0 was used with Pip instal-
lation. Dask Distributed cluster was used, in the same nodes
as mentioned previously, with nthreads=1 and varying nprocs
based on the parallelism. All workers were equally distributed
among the nodes.

For each test case, CSV files were generated with 4 columns
(1 int_64 as index and 3 doubles). The same files were then
uploaded to HDFS for the Spark setup and output counts were
checked against each other to verify the accuracy. Timings
were recorded only for the corresponding operation (no data
loading time considered).
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B. Scalability

1) Weak Scaling: For the weak scaling, tests were carried
out for parallelism from 1 to 160 while allocating 2 million
rows per core per relation (left/ right). Hence the first case
would have a total work of 2 million rows while the last
case would have 320 million rows. The results are depicted in
Figure 7.

Figure 7 (a) shows Inner-Join results and (b) shows Union
(Distinct) results. Both Join algorithms and Union implemen-
tation of Cylon shows sound scalability behaviour. As such
both can be seen showing a flat line in the log-log plot for
Cylon, indicating that the framework behaves as expected
when adding more nodes with similar work. As the number of
workers increases, the time for the completion grows owing
to the increased communication among workers.

Compared to Cylon Joins, Union behaves poorly in a higher
number of nodes. A possible reason for this is the row-based
traversal of the table, which could nullify the advantages of a
columnar data format.

Without loss of generality, we have plotted timings of Spark
for the same experiments. In both cases Cylon perform better
than Spark in terms of wall clock time for the operations,
while both have similar upward trending curves at a higher
number of workers.

2) Strong Scaling: For the strong scaling, tests were carried
out for parallelism from 1 to 160 while keeping total work
at 200 million rows per relation (left/ right). The results are
shown in Figure 8. It demonstrates individual speed-up over
its own sequential test (ex: Cylon hash join speed-up over its
sequential time)

Figure 8 (a) shows Inner-Join results and (b) shows Union
(Distinct) results. As the number of workers increases, the
work per core reduces. Both Join and Union speed-up is
expected to follow a linear trend in the log-log plot. Cylon
plots confirm this expectation. When the number of workers
increases, the speed-up reaches a plateau.

Workers Dask Spark Cylon
Time(s) | Time(s) | Time (s) | v. Dask | v. Spark
1 - 586.5 141.5 - 4.1x
2 - 332.8 116.2 - 2.9x
4 246.7 207.1 56.5 4.4x 3.7x
8 134.6 119.0 27.4 4.9x 4.3x
16 134.2 62.3 13.2 10.1x 4.7x
32 113.1 39.6 7.0 16.1x 5.6x
64 109.0 222 4.0 27.4x 5.6x
128 70.6 18.1 2.5 28.1x 7.2x
160 68.9 18.0 2.3 30.0x 7.8x

TABLE II: Cylon, Spark vs.
Joins and Cylon’s speed-up

Dask scaling times (s) for Inner-

C. Cylon, Spark vs. Dask

Figure 9 (a) shows a strong scaling wall-clock time com-
parison between Cylon, Spark and Dask. The same strong
scaling setup for Inner-Joins was used in this comparison.
When comparing with Dask and Spark, Cylon performs better
than them on the wall-clock time. For this 200 million line
join, it scales better than both of the other frameworks. It
should be noted that Dask failed to complete for the world
sizes 1 and 2, even when doubling the resources. It continued
to fail even with the factory LocalCluster settings, with higher
memory.

Cylon shows better strong scaling, reaching a higher in-
dividual speedup. As shown in Table II for a single worker
(serial) Inner-joins, Cylon Hash, Cylon Sort, and Spark took
141s, 164s and 587s respectively. For Union, Cylon and Spark
took 34s and 75s respectively. Thus not only does Cylon
show better scaling, it achieves a superior wall-clock speed
up because its serial case wall-clock time is an improvement
on Spark.

Figure 9 (b) shows the results for the Union (Distinct)
operation. Unfortunately Dask (as of its latest release) does
not have a direct API for distributed Union operation. As a
result the comparison is limited to Spark and Cylon. As the
graph depicts, Cylon performs better than Spark, with more
than 2x better performance at each experiment.
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Fig. 9: Cylon, Spark vs. Dask strong scaling (Log-Log plots) [H = Hash-based, S = Sort-based]

D. Overhead between C++, Python & Java

Figure 10 shows the time taken for Inner-Join (Sort) for 200
million rows while changing the number of workers. It seems
clear that the overheads between Cylon and its Cython Python
bindings and JNI Java bindings are negligible.

V. RELATED WORK

Databases and Structured Query Language (SQL) lay at the
heart of ETL pipelines until the emergence of Apache Hadoop
[1]. Viewed as the first generation of Big Data analytics,
Hadoop provides a distributed file system (HDFS) and a data
processing framework based on the MapReduce programming
model [21]. Even though Hadoop scales into terabytes of data
over commodity hardware clusters, having a limited functional
API, as well as high overheads due to disk-based operations
and difficulty in managing applications, made it less attractive
for the impending ETL applications.

Apache Spark [3]succeeded Hadoop with the introduction
of Resilient Distributed Dataset (RDD) [22] abstraction. Built
on the Scala, Spark provided a fast distributed in-memory data
processing framework, with built-in SQL capability, streaming
analytics and Python API. In later versions Spark developers
enhanced the performance by optimizing queries and added
more user-friendly table-like APIs that mimic Python Pan-
das DataFrames. Having to communicate between Python
and Java run-times greatly affects PySpark’s performance.
An extension was introduced that uses Apache Arrow in-
memory columnar data format in the Python environment,
which resolves this issue to a certain extent. Unfortunately this
enhancement is not available for the Java/Scala APIs. Spark
initially proposed a machine learning library, MLIlib, but with
the wide adoption of specialized AI/ML and deep learning
frameworks, it is now used purely as an ETL framework
for AI/ML data manipulation. Apache Flink [10] is another
popular data analytics tool that emerged after Apache Spark,
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which was also developed in Java. Flink is geared for real-
time streaming analytics and native iterative processing. It also
provides a table-like API on both Python and Java environ-
ments. Both Spark and Flink use Py4J as the intermediary to
communicate between Java and Python runtimes in a trade-off
of performance for usability.

Pandas [7] is the most popular library used in the data
science community today, providing a rich toolkit for ETL
operations. It is built on top of the Numpy library. DataFrame
is the main table-like data structure of Pandas. The con-
cept of DataFrames has inspired many other frameworks, as
mentioned previously. The main drawback of Pandas is its
lack of a distributed data abstraction as well as distributed
operations. Since 2016, Dask [8] has offered a distributed
DataFrame abstraction like Python Pandas. Using distributed
communication primitives, Dask provides standard Pandas
operations like group-by, join, and time series computations.
Since both Pandas and Dask DataFrames have been developed
in Python, they suffer the inherent inefficiencies of the lan-
guage environment. The application of DataFrames for large-
scale ETL pipelines is still not very popular, even though they
provide a user-friendly programming interface.

GPU hardware is becoming very popular for deep learning
workloads. GPUs have many SIMD threads that are connected
to high-bandwidth memory. CuDF [23] integrates GPU com-
puting capabilities to Pandas like DataFrame abstraction that
can be used for ETL pipelines. It also integrates with Dask to
enabe distributed computations on GPU DataFrames. It is built
on top of the Apache Arrow columnar data format. Modin
[24] is a similar GPU-based dataframe library inspired by
Pandas API. It uses Ray or Dask for distributed execution.
With increasing GPU memory and hardware availability, it is
inevitable that they would also be used for ETL workloads,
which would complement deep learning workloads in turn.

Apache Spark is one of the pioneer dataflow systems
to support deep learning workloads. BigDL [25] framework
developed on top of the Apache Spark ecosystem is one of the
prominent research examples done in integrating deep learning

with Apache Spark. Additionally, Horovod [26] is another
distributed deep learning framework which initially supported
TensorFlow. It also uses Apache Spark as a backend for
data pre-processing. In supporting the existing deep learning
frameworks, there has been a recent contribution from another
platform called Ray [27]. Ray is an actor-based distributed
system developed on top of a Python-backend. The major
advantage of Ray is its ease of use as a regular Python library
to bridge the gap between classical Big Data systems.

VI. CONCLUSIONS & FUTURE WORK

In this paper we described the Cylon data processing library.
We showcased its data model, how it can inter-operate between
different systems efficiently, as well as its core operations and
performance. We saw significant gains in efficiency compared
to existing systems, proving our assumption that there is much
room for improvement. Furthermore we discussed how Cylon
fits into the overall data engineering of an application.

We are working on extending the Cylon operations to use
external storage such as disks for larger tables that do not
fit into memory. For disk-based operations, a dataflow graph-
based API is more suitable due to the streaming nature of
computations. At the initial stage we have implemented the
fundamental relational algebraic operations. We are planning
to add more operations to enhance the usability of the system.
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