
Data Engineering for HPC with Python
Vibhatha Abeykoon∗†§, Niranda Perera∗§, Chathura Widanage∗§, Supun Kamburugamuve†§

Thejaka Amila Kanewala‡§, Hasara Maithree‖, Pulasthi Wickramasinghe∗,
Ahmet Uyar†, and Geoffrey Fox∗†

∗Luddy School of Informatics, Computing and Engineering, IN 47408, USA
{vlabeyko,dnperera,pswickra}@iu.edu

†Digital Science Center, Bloomington, IN 47408, USA
{cdwidana, skamburu, auyar, gcf}@iu.edu
‡Indiana University Alumni, IN 47408, USA

thejaka.amila@gmail.com
‖Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

hasaramaithree.15@cse.mrt.ac.lk

Abstract—Data engineering is becoming an increasingly im-
portant part of scientific discoveries with the adoption of deep
learning and machine learning. Data engineering deals with a
variety of data formats, storage, data extraction, transformation,
and data movements. One goal of data engineering is to transform
data from original data to vector/matrix/tensor formats accepted
by deep learning and machine learning applications. There are
many structures such as tables, graphs, and trees to represent
data in these data engineering phases. Among them, tables are
a versatile and commonly used format to load and process data.
In this paper, we present a distributed Python API based on
table abstraction for representing and processing data. Unlike
existing state-of-the-art data engineering tools written purely in
Python, our solution adopts high performance compute kernels
in C++, with an in-memory table representation with Cython-
based Python bindings. In the core system, we use MPI for
distributed memory computations with a data-parallel approach
for processing large datasets in HPC clusters.

Index Terms—Python, MPI, HPC, Data Engineering

I. INTRODUCTION

In the last two decades data has played a major role in
the evolution of scientific discoveries. This impacts a wide
range of domains such as medicine, security, nature, climate,
astronomy, and physics. Massive amounts of data are col-
lected daily by a plethora of scientific applications, especially
with the evolution of the Internet of Things (IoT)[1, 2]. The
transformation of raw data to a form suitable for analytics
is a complex process known as data engineering [3]. Data
engineering involves many data formats, as well as the trans-
formation, movement, and storage of said data. To support
these operations a major contribution has been done by the big
data community. Among these contributions, Apache Spark[4],
Apache Flink[5], Apache Beam[6], Twister2[7] and Hadoop[8]
can be considered as widely used systems for data engineering.

Data scientists who design analytical models often use pro-
gramming languages such as R, Matlab and Python. The flex-
ibility of these languages offers ideal prototyping required for
experiments. Additionally, the emergence of machine learning

§These authors contributed equally.

(ML) and deep learning (DL) frameworks such as Scikit-
Learn[9], PyTorch[10], Tensorflow[11] and MxNet[12] has
inclined the data analytics domain to rely on Python. Although
the core system of most prominent tools from the big data
community are written in JVM-based languages (like Java and
Scala), Python APIs are an essential feature for bridging the
gap between data engineering and data analytic frameworks.
PySpark, PyHadoop, PyFlink and PyTwister2 are some notable
examples. This interfacing affects the efficiency of the system,
since the data has to be serialized/deserialized back-and-forth
the Python runtime and JVM runtime. There has been some
efforts taken to improve this performance bottleneck by using
columnar data formats like Apache Arrow[13]. But we observe
that the performance can be further improved by using high
performance compute kernels.

Analytical engines increasingly rely on high performance
computing clusters for training large deep learning models[14–
16]. The data engineering frameworks must be able to leverage
the full power of these clusters to feed the data efficiently to
such applications. However, current big data systems are not
directly compatible with HPC frameworks such as MPI[17,
18], PGAS[19] or Slurm. There are several data engineering
frameworks contributed from the Python community. Python
support is required to blend with most of the data analytical
engines written with Python APIs. Pandas[20], Modin[21],
Dask[22] and Mars[23] are a few examples of such well-
known solutions written in Python. These frameworks are
not enhanced with HPC-oriented compute kernels or with
HPC-oriented distributed computing frameworks. This shows
that there is an opportunity to design high performance data
engineering libraries optimized for HPC resources. Further
language bindings like Cython[24] can be used to develop
Python API around high performance kernels.

Extending from the best practices of the big data and Python
communities, we believe that data engineering can be en-
hanced to suit the performance demands of HPC environments.
Since our effort is to seamlessly bridge data engineering and
data analytics, we must understand the expectations of state-
of-the-art data analytics engines. Among many data structures

ar
X

iv
:2

01
0.

06
31

2v
1

 [c
s.D

C
]

13
 O

ct
 2

02
0

Fig. 1: Data Engineering to Data Analytics

available for representing data in data engineering phases,
tables are one of the most widely used abstractions. Relational
algebraic operations are a natural fit for processing table
data, and SQL interfaces can further enhance usability. Tables
can be partitioned into distributed nodes, and the operations
can work the partitioned tables. With an efficient data rep-
resentation and with high performance compute kernels, we
believe that data engineering and data analytics can be bridged
efficiently and effectively. Figure 1 depicts the connection
between the data engineering and the data analytic in a data
pipeline.

In this paper we present a high performance Python API
with a C++ core to represent data as a table and provide dis-
tributed data operations. We compare our work with existing
data engineering libraries in Python and big data. The rest
of the paper is organized as follows. Section II discusses the
data engineering paradigm with high performance computing.
In Section III we elaborate on architecture and implementation
details, while in Section IV demonstrates how Python-bindings
are written on Cylon high performance compute kernels. In
Section V demonstrates how our implementation compares
with existing data engineering solutions. Section VI reviews
the existing literature. We reach our conclusions in Section VII
and VIII with an analysis of the current progress and future
goals in our effort to improve data engineering with Python
in HPC environments.

II. DATA ENGINEERING

The data used by ML/DL applications comes in the form
of vectors, matrices or tensors. In most cases, the original
data are not in formats that are directly convertible to the data
structure expected by ML/DL applications. This data can be in
many forms inside relational/graph/NoSQL databases or files.
The path from raw to readable data is not a one-step process
and can be highly complicated depending on the use case.
Vector/matrix/tensor data structures are represented by arrays
(contiguous memory) with homogeneous data values in the
main memory.

In contrast, depending on the original data format, there
are many structures available to model them, such as tables,
graphs and trees. It is fair to say that table is the most common
structure used to represent data. A table contains a set of

rows and columns viewed as a grid with cells. The columns
can contain data of different types compared to a matrix.
Natural operations for tables come from relational algebra.
The fundamental relational algebra operations are shown in
Table I.

To support large-scale data engineering on top of a table
structure, we need to have an in-memory table representation,
a partitioning scheme to distribute the table across nodes,
and distributed data operations on the partitioned table. As
with matrices, tables can be represented using a column or
row format. They can also be partitioned row-wise, column-
wise or using a hybrid approach with both column and
row partitioning. The operations shown in Table I can be
implemented on a distributed table partitioned into multiple
compute nodes. Both big data and Python systems have used
the table abstraction to process data. Another advantage in a
table abstraction is that it can be queried using SQL.

A. Big Data Systems

Big data systems adopt the dataflow model, where func-
tional programming is heavily implemented to support a series
of data operations. Figure 2 shows an example dataflow
operation in PySpark. The big data systems are designed to
run on commodity cloud environments. Referring to recent
advancements in DL frameworks, eager execution (inverse
of lazy execution) has been the most widely adopted pro-
gramming model as it mimics the Python programming style.
Eager execution is not supported by the Python bindings of
existing big data systems such as PySpark, PyFlink, PyHadoop
and Beam-Python (Apache Beam Python API), which adopt
the dataflow model. Integrating dataflow frameworks with
high performance computing resources is a challenging task.
Frameworks such as Twister2[7] and APIs like TSet[25] were
developed to bridge this gap between the big data and HPC
systems. Although these efforts enabled big data systems to
run on HPC environments, working with multi-language run-
times produces a bottleneck. In such integrations, we observe
the following common approaches in big data systems.

• JVM-based back-end handling computation and commu-
nication

• Python-based API for defining the dataflow application

Operator Description

Select Select operator works on a single table to produce another table by selecting a set of attributes matching a predicate
function that works on individual records.

Project Project operator works on a single table to produce another table by selecting a subset of columns of the original table.

Join Join operator takes two tables and a set of join columns as input to produce another table. The join columns should be
identical in both tables. There are four types of joins with different semantics: inner join, left join, right join and full outer
join.

Union Union operator works on two tables with an equal number of columns and identical types to produce another table. The
result will be a combination of the input tables with duplicate records removed.

Intersect Intersect operator works on two tables with an equal number of columns and identical types to produce another table that
holds only the similar rows from the source tables.

Difference Difference operator works on two tables with an equal number of columns and identical types to produce another table
that holds only the dissimilar rows from both tables.

TABLE I: Fundamental relational algebra operations

Fig. 2: PySpark Dataflow Operations

df_r = sqlContext.read.format(’com.databricks.spark.csv’) \
.options(header=’true’, inferschema=’false’) \
.load(..).toDF(...).repartition(...).cache()

Although JVM-Python bridging is done to enable switching
between language runtimes, it involves data serialization and
deserialization. This creates a performance bottleneck in large-
scale applications since (a) it consumes a significant amount
of additional CPU cycles for data serialization/deserialization,
and (b) this approach also tends to create additional copies
of data on both language runtimes’ memory spaces, reducing
the effective memory available for the application. With this
setting, enabling high performance kernels for legacy big data
frameworks poses a challenge.

B. Python for Data Engineering

PyData and Python community-designed frameworks
emerged well ahead of the big data explosion. Pandas was
initially released in 2008, compared to Apache Spark in
2014. Its user-friendly front-end heavily influenced the front-
end APIs of big data frameworks that followed. In the last
decade, Pandas became the center for all data engineering tasks
associated with ML/DL problems. It is predominantly written
in Python and seamlessly integrates with ML/DL frameworks
with Python front-ends.

Pandas provided a rich API for data engineering and
wraparound tabular format data processing for heterogeneous
data, establishing a convenient way to preprocess the data.
Yet Pandas suffers from performance bottlenecks for several
reasons. Firstly, it only works on a single core. This gives
much less room to scale out and process larger datasets in
parallel. Secondly, the compute kernels are entirely written
in Python without high performance compute kernels. For
higher performance and effective prototyping, Apache Spark
introduced PySpark which includes a similar functionality.
But it is also constrained by the data movement between the
Python runtime and JVM.

Since Pandas first premiered, there have been some attempts
made by the Python community to improve the performance

for large-scale problems. A distributed dataframe [26] was
introduced by Dask. This is a full-fledged Python library for
parallel computing and it allows for scaling the dataframe to
a larger number of machines. The API in Dask is based on
dataflow-like lazy execution that uses Python Futures.

Extending from Pandas dataframes, Modin[21] optimizes
the query compiling and internal components of Pandas. It
also supplies distributed computation by using Dask or Ray
as the execution back-end. The internal optimizations have
provided better performance over Pandas. Similar to Modin, a
framework called Mars [23] was released by Alibaba with a
Ray-based back-end. Both these frameworks are developed in
Python and do not support high performance compute kernels.

C. HPC for Data Engineering

We observe that ML/DL applications commonly consume
large predefined and preprocessed datasets. They frequently
use data-parallel execution mode in distributed execution.
This indicates that data engineering and ML/DL execution
occur as two separate functions. We believe that there is an
opportunity to bridge this gap using a high-performance low-
overhead framework for data engineering, thereby increasing
the efficiency and performance of the ML/DL pipeline. We
believe introducing HPC for data engineering would enable
this transformation. Data engineering in GPU resources using
Cudf [27] dataframes is a good example of such an effort, as
it delivers processed data immediately to the ML/DL pipeline.

Data engineering would benefit by using distributed memory
computations. Furthermore, there are well-defined HPC com-
pute kernels for numerical data analysis. BLAS[28], MKL[29]
and Boost[30] are a few examples of such tools being regularly
used. Developing systems with these HPC resources provides
a better opportunity to improve the performance in data
engineering. In addition, HPC compute kernels written in For-
tran/C/C++ can be easily integrated with Python, allowing for
a seamless integration among HPC resource, data engineering
and data analytics.

Since high performance Python is tightly coupled with ker-
nel implementations written in C/C++, the compute kernels re-
lated to data engineering can also be written in C/C++. Python
bindings must be written carefully without degrading perfor-

mance and usability. Frameworks like Swig [31], Pybind11
[32] and Cython [24] are mainly used to write efficient Python
bindings. In building frameworks or complex applications,
the most recommended methods are Python bindings written
in either Pybind11 or Cython. This is evident from open
source tools such as PyTorch(PyBind11), Numpy(Cython) and
Cudf(Cython). Pybind11 favors more on programming with
C++ 11 standards, while Cython focuses on both C++ and
Python approaches.

Fig. 3: PyCylon’s position in data engineering

The aforementioned tools are mainstream CPU data en-
gineering engines. Rapids AI developed CuDF [27], which
offers a GPU dataframe written on top of high performance
GPU kernels. CuDF houses a Cython-based Python binding
on top of the core GPU dataframe API. Similar to other
Python-based frameworks, CuDF uses Dask as a back-end for
distributed execution. Limited memory availability in GPUs is
often seen as the main drawback for CuDF. Even though GPUs
offer much faster kernel computations, CPU-based solutions
are still the best fit for big data-related data engineering.
Furthermore, we observe that the CPU manufacturers are
constantly improving CPU hardware architectures with more
threads, faster cache memory, and low power consumption.
Therefore a CPU-based solution may provide a less expensive
alternative for larger dataset operations.

D. Jupyter Notebooks

Jupyter Notebooks is a powerful means to share and main-
tain data engineering workflows. When it comes to distributed
workloads, Jupyter Notebooks does not support running pro-
grams in a cluster with the interactive look and feel gener-
ally provided for sequential programs. For Cylon we use an
existing set of plugins created by the Python community to

enable this on Jupyter Notebooks, with IPyParallel[33] and a
distributed extension to IPython[34] kernels. This distributed
integration currently supports only an MPI cluster. Using this
integration, a data engineering job can be seamlessly integrated
with distributed ML/DL jobs. Figure 4 shows the architecture
of the current implementation.

Fig. 4: Cylon Jupyter Cluster

III. CYLON

Having recognized the cost of performance bottlenecks
when designing a high performance data engineering library,
we created a library/framework Cylon1. Cylon a is a dis-
tributed memory data table consisting of core relational al-
gebra operators written in C++ high performance kernels.
Figure 3 shows PyCylon’s position on data engineering.

A. Data Model

Generally data processing systems are divided into two
categories: (1) Online Transaction Processing (OLTP) and (2)
Online Analytical Processing (OLAP). OLTP usually deals
with a large number of atomic operations such as inserts,
updates, and deletes, while OLAP is focused on bulk data
processing (bulk reads and writes) with a low volume of
transactions. Cylon falls into the OLAP category. For the in-
memory data representation, Cylon follows the Apache Arrow
format. Apache Arrow uses columnar in-memory representa-
tion. This allows Cylon to seamlessly integrate with Arrow-
based frameworks like Pandas, Apache Spark, Modin, Parquet
and Numpy.

B. Distributed Memory Execution

In order to handle massive volumes of data which do not
fit into the memory of a single machine, Cylon employs dis-
tributed memory execution techniques to slice a large table into
small pieces across a cluster of computing nodes. Applying an
operation on a table applies that operation concurrently across
all the table partitions that reside on different nodes. Hence
Cylon embraces the data-parallel approach to parallelizing

1https://github.com/cylondata/cylon

the computing tasks. Additionally, the Cylon worker process
spawns only a single thread for execution. We assume that the
user will start multiple instances of Cylon workers within a
single node to match the number of available CPU cores and
thus fully utilize the computing capacity of the hardware.

C. Operators

Cylon provides a set of operators for communication-related
to distributed computing and relational algebra operators for
processing tabular data. The set of operations that we have
implemented in Cylon requires an additional communication
step when running in a distributed environment. Cylon per-
forms a key-based partition followed by a key-based shuffle
through the network to collect similar records into a single
process. We have implemented an AllToAll communication
utilizing the asynchronous send and receive capabilities of the
underlying communication framework to support this cause.
The initial implementation of Cylon is written with OpenMPI
to handle the communication, which can be easily pluggable
with a different framework such as UCX. Cylon can utilize
the RDMA capabilities or any other hardware-level network
accelerators supported by OpenMPI to improve CPU utiliza-
tion, throughput, and the latency of the distributed operations.
When running on OpenMPI, apart from calling Cylon’s built-
in functions to manipulate data on the tables, users are free to
do any OpenMPI API call at any point of execution to handle
additional computing or message passing requirements. Also,
Cylon supports a set of core relational algebra operators used
in manipulating tabular data. These are supported as local and
distributed operators. The core data table operators are shown
in Table I.

IV. PYCYLON

PyCylon is the Python API written on top of Cylon high
performance kernels. Cython is used to link the C++ kernels
with Python. The core compute kernels for relational algebra
operations are written in C++ using the same memory buffer
allocated in C++ when doing computations from the Python
API. Since the in-memory data representation is based on
Apache Arrow, we have also extended our support to PyArrow
tables via our Cython API. This seamlessly integrates the
computations from PyArrow extended libraries to PyCylon.
We do not expose the communication API to the data scientist;
instead the communications are internally handled when doing
distributed computations on data tables. Figure 5 shows the
API overlay of Cylon.

Even though Cylon is a distributed memory framework, it
can also be used as a high performance library to speed up the
data processing workloads written in similar Python libraries
like Pandas, Modin and Dask. PyCylon includes a DataT-
able API which is being continuously improved to provide
advanced functionality to the data engineering workloads.

Figure 6 shows the PyCylon data interoperability. PyCylon
currently supports a few input data formats and input data
libraries. CSV support is provided via core Cylon C++ and
with PyArrow and Pandas. A PyCylon table can also be

Fig. 5: Cylon API Overlay

Fig. 6: Cylon Data Interoperability

created by passing a Pandas dataframe or a PyArrow table.
Once the distributed computation is complete, the output can
be converted to CSV, Pandas dataframe, etc.

A. PyCylon Table

The higher level API we have included is the DataTable
API. This provides parallelism-unaware API endpoints so that
a data scientist can prototype the model without worrying
about complex parallel computing concepts. The Cylon con-
text manages the initialization of a distributed environment,
so the data scientist need only specify the back-end name
used (i.e MPI or UCX). Currently our implementation supports
MPI.

Fig. 7: PyCylon Sequential Join

from pycylon.data.table import csv_reader
from pycylon.data.table import Table
from pycylon.ctx.context import CylonContext

ctx: CylonContext = CylonContext()

tb1_file = f’{/path/to/file_1}’
tb2_file = f’{/path/to/file_2}’

tb1: Table = csv_reader.read(ctx, tb1_file, ’,’)
tb2: Table = csv_reader.read(ctx, tb2_file, ’,’)

configs = {’join_type’:’left’, ’algorithm’:’hash’,
’left_col’:0, ’right_col’:0}

tb3: Table = tb1.join(ctx, table=tb2,
join_type=configs[’join_type’],
algorithm=configs[’algorithm’],
left_col=configs[’left_col’],
right_col=configs[’right_col’])

tb3.show()
ctx.finalize()

Fig. 8: PyCylon Distributed Join

from pycylon.data.table import csv_reader
from pycylon.data.table import Table
from pycylon.ctx.context import CylonContext

ctx: CylonContext = CylonContext("mpi")

tb1_file = f’file_1_{ctx.get_rank()}’
tb2_file = f’file_2_{ctx.get_rank()}’

tb1: Table = csv_reader.read(ctx, tb1_file, ’,’)
tb2: Table = csv_reader.read(ctx, tb2_file, ’,’)

configs = {’join_type’:’left’, ’algorithm’:’hash’,
’left_col’:0, ’right_col’:0}

tb3: Table = tb1.distributed_join(ctx, table=tb2,
join_type=configs[’join_type’],
algorithm=configs[’algorithm’],
left_col=configs[’left_col’],
right_col=configs[’right_col’])

tb3.show()
ctx.finalize()

Fig. 9: PyCylon Conversions

pycylon_table = Table.from_arrow(pyarrow_table),
pycylon_table = csv_reader.read(...)
tb3: Table = <pycylon_table>
converts PyCylon table to Pandas
pdf: pd.DataFrame = tb3.to_pandas()
converts PyCylon table to Numpy, specify
npy: np.ndarray = tb3.to_numpy(order=’C’)

The difference between a sequential and distributed table
API call is the distributed prefix for the method name, ‘mpi’
argument for the context initialization, and specifying unique
file names for each process. In the current API we have kept
the MPI look and feel so that users can extend PyCylon
programs to existing MPI projects or vice versa. We also
support table conversions and initialization as follows. Figures
7 and 8 show the PyCylon code for sequential and distributed
join respectively. Figure 9 displays the code-wise data inter-
operability previously illustrated in Figure 6.

We continue to improve the API endpoints and are adding
more functionality for users. We currently offer an experimen-
tal Numpy support with PyCylon. The Numpy conversion is
the direct link to the tensors in deep learning. In PyTorch
Numpy especially, NdArray to tensor conversion takes a
negligible amount of time.

V. EXPERIMENTS

We analyzed the strong scaling performance of PyCylon for
the following scenarios and compared the performance against
popular Python-based frameworks Dask (Distributed), Modin,
and PySpark.

1) Strong scaling performance comparison between the
frameworks. Join operation was used here as it is a
common use case of columnar-based traversal.

2) Larger test with the best performing frameworks of the
above experiment.

3) Overhead comparison between Cylon’s Python and Java
bindings.

Hardware Setup: The tests were carried out in a cluster
with 10 nodes. Each node is equipped with Intel® Xeon®

Platinum 8160 processors. A node has a total RAM of 255GB
and mounted SSDs were used for data loading. Nodes are
connected via Infiniband with 40Gbps bandwidth.

Software Setup: Cylon was built using g++ (GCC) 8.2.0
with OpenMPI 4.0.3 as the distributed runtime. Mpirun was
mapped by nodes and bound sockets. Infiniband was enabled
for MPI. For each experiment, a maximum of 40 cores from
each node were used, reaching a maximum parallelism of 400.

For the baseline sequential experiments we used Pan-
das 0.25.3 version. Apache Spark 2.4.6 (hadoop2.7) pre-
built binary was chosen for this experiment alongside
its PySpark release. Apache Hadoop/ HDFS 2.10.0 acted
as the distributed file system for Spark, with all data
nodes mounted on SSDs. Both Hadoop and Spark clus-
ters shared the same 10-node cluster. To match MPI
setup, SPARK WORKER CORES was set to 16 and
spark.executor.cores was set to 1. Additionally we also tested
PySpark with spark.sql.execution.arrow.pyspark.enabled op-
tion, which would allow PyArrow underneath PySpark
dataframes.

Dask and Dask-Distributed 2.19.0 was set up with Pip
installation. Dask Distributed cluster remained in the same
nodes as mentioned previously, with nthreads=1 and varying
nprocs based on the parallelism. All workers were equally
distributed among the nodes.

Modin [21] 0.6.3 was selected alongside Ray 0.7.3 for
the experiments. Note that both these frameworks are several
versions behind the latest released versions. We were unable
to get Modin’s latest version (0.8.0) to work with its corre-
sponding Ray 0.8.7 back-end. At the time of conducting these
experiments, there are a number of Github issues reported on
the same incident which have not yet been resolved [35][36].

Dataset Formats: For strong scaling test cases, CSV files
were generated with four columns (one int 64 as index and
three doubles). The same files were then uploaded to HDFS for
the Spark setup and output counts were checked against each
other to verify the accuracy. Timings were recorded only for
the corresponding operation (no data loading time considered).
For the extended test case, CSV files with two columns were
used (one int 64 as index and one double as payload).

1) Scalability: To test the scalability of the Python data
engineering frameworks, we varied the parallelism from 1 to
160 while keeping total work at 200 million rows per relation
(left/ right). The results are shown in Figure 10.

According to our findings, PyCylon seemed to scale well
as the number of processes increased. Around 160 processes,
the speedup reaches its plateau. This was expected, as when
the parallelism increases, the operation transforms into a
communication-bound operation. These results coincide with
the Cylon C++ performance in our prior publication [37].

Additionally, the current Cylon compute kernels do not
take into account factors such as NUMA boundaries, in-cache
performance, etc. As the number of processes inside a node
increases, we can expect resource contention for memory

bandwidth and L1/L2 caches. Polychroniou et al [38] show
that these factors play a vital role in sorting operations, which
is the core task in Cylon joins.

Out of Dask-distributed, Modin, and PySpark, only PySpark
achieved the strong scaling we expected. This reaffirms the
adoption of Spark as a popular data engineering tool. Even
with PyArrow execution enabled, the performance seemed to
be identical.

Dask-distributed shows some strong scaling conformity, but
since it is developed with a Python back-end, this behavior is
nothing out of the ordinary.

Recently Modin [21] emerged as a distributed dataframe
successor for Pandas. Authors Pertersohn et al showed that
it was able to work on datasets exceeding 100GB [39]. We
have tested Modin’s experimental distributed execution with
Ray back-end, but found it performs poorly for strong scaling.
Even though Modin’s (nearly) complete Pandas dataframe API
looks very promising, it suggests that there is a lot of room
for improvement.

2) Larger Load Tests: From the above experiment, PySpark
and PyCylon scaled as expected. As such we carried out a
larger test to determine how these two frameworks perform
under bigger loads. We fixed the processes at 200 and varied
the total work from 200 million rows per relation to 10 billion.
The results are shown in Figure 11.

As the total work increases from 200 million rows to 10
billion, the ratio between PySpark time and PyCylon time
increases from 2.1 to 4.5 times. This indicates that Cylon
performs better at larger workloads.

3) Switching Between C++, Python, and Java: Figure 12
shows the time taken for Inner-Join (Sort) for 200 million rows
while changing the number of workers. It seems clear that the
overheads between Cylon and its Cython Python bindings and
JNI Java bindings are negligible. This observation seems to
confirm that having a C++ back-end greatly reduces overhead
in switching between multiple language runtimes.

Fig. 10: Strong Scaling with Join Operator. Distributed Join
operation was called across 1-160 processes across 10 Nodes
(Log-Log plot)

Fig. 11: PyCylon vs. PySpark for Joins with 200 processes
at each experiment (Log scale on vertical axis and labels on
horizontal axis)

Fig. 12: Cylon Performance Comparison on C++, Python and
Java (Linear on vertical axis and labels on horizontal axis)

VI. RELATED WORK

In the data science domain, a widely used data abstraction
is the dataframe. Although it has risen to prominence with
the advent of deep learning, it was originally developed by
S programming language in 1990[40]. For modern day data
science, Python programming language affords rapid proto-
typing capability. Adopting this, Pandas[41] was introduced
as a state-of-the-art data representation format. It is a full-
fledged Python development based on tabular data. Pandas
compute kernels are limited to run only in a single core.
With the evolution of big data, an extensive amount of
data is being added to data storage every day. For efficient
data preprocessing, state-of-the-art big data frameworks like
Apache Spark[4, 42] also offer a dataframe abstraction on
top of the SQL-based Spark DataSet API. PySpark provides
integration between JVM-based data structures and Python-
based dataframes. Spark also scales in large-scale big data
clusters. One of the main challenges in using PySpark is its
function as a framework and not as a library. A data scientist
needs to set up a Spark cluster separately to run the data
pre-processing workloads. The challenge of data movement

from JVM to Python also adds a bottleneck in iterative data
preprocessing. Modin [39] provides a Pandas API which can
run in large scale with Dask[43] and Ray[44] back-ends. Dask
includes a distributed dataframe written on Python. Apart from
these CPU dataframes, CuDf, a GPU dataframe, was also
introduced by Rapids AI. Unlike existing CPU-based solu-
tions, CuDf[45] utilizes high performance kernels specific for
GPUs written in C++. These kernels are exposed to Python via
Cython bindings. In addition, frameworks like PyCOMPS[46]
along with Dislib[47] provides a better support for distributed
computation on array data structures. To optimize an exist-
ing Python code, libraries like Numba[48] and Pythran[49]
provide high performance capability by optimizing the user
code. But in writing frameworks, libraries like Cython[24]
and Pybind11[32] are recommended to obtain efficient lan-
guage bindings. By improving the usability for data analytics,
Jupyter[50] Notebooks is also widely popular. Finally, in
terms of distributed computations, IPyParallel[33] allows for
parallel computation on IPython[34] kernels. IPyParallel is
also compatible with Jupyter Notebooks.

VII. CONCLUSION

The exponential growth of data and deep learning applica-
tions means it is vital to provide effective data engineering so-
lutions. After studying the existing data engineering solutions
and best practices, we showcased how data engineering can
be reinforced to get better performance and scale. One of the
major qualitative requirements of data engineering is to write
ETL pipeline in Python and retain high performance. Using
high performance compute kernels written in C++ and offering
Cython-based Python APIs means less overhead across the
two runtimes and good scaling in HPC environments. We
also show how to use data science best practices and extend
distributed data engineering towards Jupyter Notebooks.

From our experiments, we can confirm that Cylon’s ap-
proach of using Python language bindings with a C++ back-
end significantly reduces the overheads of switching between
language runtimes. As such, data engineering frameworks
could benefit from both Python’s convenience and HPC back-
end’s performance. Furthermore, we showcased that PyCylon’s
operations scale better than the popular Python-based data
engineering frameworks that are available at the time of writ-
ing this paper. We firmly believe that PyCylon performance
could be improved further by paying careful attention to
memory and network utilization and usage of HPC kernels
for computations.

VIII. FUTURE WORK

We agree with Petersohn et al’s [39] suggestion that con-
firming to the Pandas dataframe API is an important feature
for Python data engineering tools. We are currently developing
a dataframe API based on Modin, and thus Cylon would
be another distributed back-end for Modin. To expand our
compute kernels we are currently focusing on the supporting
distributed computing on array data structures. In supporting
diverse data formats, we will be integrating HDF5 and Parquet

data loading and data processing in a future software release.
Additionally, we don’t support GPFS or Lustre file systems
yet, but we will be focusing on expanding data storage
support in the next stages of the development. Furthermore,
we are improving Cylon kernels to be NUMA and cache-
aware. We believe this would significantly enhance Cylon’s
performance. We have also recognized recent developments in
communication technologies such as RDMA and Infiniband-
enabled message passing without the involvement of the CPU.
Here, our focus is to integrate the Cylon communication layer
with UCX[51]. This permits more flexibility for computation
and communication overlap.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation (NSF) through awards CIF21 DIBBS 1443054,
nanoBIO 1720625, CINES 1835598 and Global Pervasive
Computational Epidemiology 1918626. We thank Intel for
their use of the Juliet and Victor systems, and extend our
gratitude to the FutureSystems team for their support with the
infrastructure.

REFERENCES

[1] A. Castillo O’Sullivan and A. D. Thierer, “Projecting the growth and
economic impact of the internet of things,” Available at SSRN 2618794,
2015.

[2] A. Whitmore, A. Agarwal, and L. Da Xu, “The internet of things—a
survey of topics and trends,” Information systems frontiers, vol. 17, no. 2,
pp. 261–274, 2015.

[3] J. Gray and P. Shenoy, “Rules of thumb in data engineering,” in
Proceedings of 16th International Conference on Data Engineering (Cat.
No. 00CB37073). IEEE, 2000, pp. 3–10.

[4] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “”apache
spark: a unified engine for big data processing”,” Communications of
the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[5] Apache flink - stateful computations over data streams. [Online].
Available: https://flink.apache.org/

[6] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing,” 2015.

[7] G. Fox, “Components and rationale of a big data toolkit spanning
hpc, grid, edge and cloud computing,” in Proceedings of the10th
International Conference on Utility and Cloud Computing, ser. UCC
’17. New York, NY, USA: ACM, 2017, pp. 1–1. [Online]. Available:
http://doi.acm.org/10.1145/3147213.3155012

[8] Apache hadoop project. [Online]. Available: https://hadoop.apache.org/
[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[12] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[13] Apache arorw project. [Online]. Available: https://arrow.apache.org/

https://flink.apache.org/
http://doi.acm.org/10.1145/3147213.3155012
https://hadoop.apache.org/
https://arrow.apache.org/

[14] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
sgd: Training resnet-50 on imagenet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

[15] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,
and A. Lumsdaine, “Open MPI: A High-Performance, Heterogeneous
MPI,” in 2006 IEEE International Conference on Cluster Computing,
Sept 2006, pp. 1–9.

[18] “MPI: A Message-Passing Interface Standard Version 3.0,” 2012,
Technical Report. [Online]. Available: http://mpi-forum.org/docs/mpi-3.
0/mpi30-report.pdf

[19] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “Upc++: a
pgas extension for c++,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. IEEE, 2014, pp. 1105–1114.

[20] W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, no. 9, 2011.

[21] Modin dataframes. [Online]. Available: https://modin.readthedocs.io/en/
latest/index.html

[22] Dask framework. [Online]. Available: https://dask.org/
[23] Alibaba, “mars-project/mars: Mars is a tensor-based unified framework

for large-scale data computation which scales numpy, pandas and scikit-
learn.” https://github.com/mars-project/mars, (Accessed on 09/09/2020).

[24] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[25] P. Wickramasinghe, S. Kamburugamuve, K. Govindarajan, V. Abeykoon,
C. Widanage, N. Perera, A. Uyar, G. Gunduz, S. Akkas, and G. Fox,
“Twister2: Tset high-performance iterative dataflow,” in 2019 Inter-
national Conference on High Performance Big Data and Intelligent
Systems (HPBD&IS). IEEE, 2019, pp. 55–60.

[26] A. Lazar, “Dask processing and analytics for large datasets.”
[27] Cudf gpu dataframes. [Online]. Available: https://docs.rapids.ai/api/

cudf/stable/
[28] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,

J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[29] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel® Xeon Phi™. Springer, 2014, pp. 167–188.

[30] B. Schäling, The boost C++ libraries. Boris Schäling, 2011.
[31] D. M. Beazley et al., “Swig: An easy to use tool for integrating scripting

languages with c and c++.” in Tcl/Tk Workshop, vol. 43, 1996, p. 74.
[32] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11–seamless oper-

ability between c++ 11 and python,” 2017.
[33] “ipython/ipyparallel: Interactive parallel computing in python,” https:

//github.com/ipython/ipyparallel, (Accessed on 09/10/2020).
[34] F. Pérez and B. E. Granger, “Ipython: a system for interactive scientific

computing,” Computing in science & engineering, vol. 9, no. 3, pp.
21–29, 2007.

[35] Ray-project issue: Trying to setup ray on custom cluster using docker.
[Online]. Available: https://github.com/ray-project/ray/issues/8033

[36] Ray-project issue: Specify network interface to use / runtimeerror...
[Online]. Available: https://github.com/ray-project/ray/issues/9456

[37] C. Widanage, N. Perera, V. Abeykoon, S. Kamburugamuve, T. A.
Kanewala, H. Maithree, P. Wickramasinghe, A. Uyar, G. Gunduz, and
G. Fox, “High performance data engineering everywhere,” arXiv preprint
arXiv:2007.09589, 2020.

[38] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison-and
radix-sort,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, 2014, pp. 755–766.

[39] D. Petersohn, W. Ma, D. Lee, S. Macke, D. Xin, X. Mo, J. E. Gonzalez,
J. M. Hellerstein, A. D. Joseph, and A. Parameswaran, “Towards scalable
dataframe systems,” arXiv preprint arXiv:2001.00888, 2020.

[40] J. M. Chambers and T. J. Hastie, “Statistical models in s. pacific grove,
ca: Wadsworth & brooks,” 1992.

[41] W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, no. 9, 2011.

[42] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning spark:
lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

[43] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, no. 130-136. Citeseer, 2015.

[44] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561–577.

[45] R. AI, “rapidsai/cudf: cudf - gpu dataframe library,” https://github.com/
rapidsai/cudf, (Accessed on 09/10/2020).

[46] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres,
T. Cortes, and J. Labarta, “Pycompss: Parallel computational workflows
in python,” The International Journal of High Performance Computing
Applications, vol. 31, no. 1, pp. 66–82, 2017.

[47] J. Á. Cid-Fuentes, S. Solà, P. Álvarez, A. Castro-Ginard, and R. M.
Badia, “dislib: Large scale high performance machine learning in
python,” in 2019 15th International Conference on eScience (eScience).
IEEE, 2019, pp. 96–105.

[48] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[49] S. Guelton, P. Brunet, M. Amini, A. Merlini, X. Corbillon, and
A. Raynaud, “Pythran: Enabling static optimization of scientific python
programs,” Computational Science & Discovery, vol. 8, no. 1, p. 014001,
2015.

[50] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.

[51] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss et al., “Ucx: an
open source framework for hpc network apis and beyond,” in 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE,
2015, pp. 40–43.

http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://modin.readthedocs.io/en/latest/index.html
https://modin.readthedocs.io/en/latest/index.html
https://dask.org/
https://github.com/mars-project/mars
https://docs.rapids.ai/api/cudf/stable/
https://docs.rapids.ai/api/cudf/stable/
https://github.com/ipython/ipyparallel
https://github.com/ipython/ipyparallel
https://github.com/ray-project/ray/issues/8033
https://github.com/ray-project/ray/issues/9456
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf

	I Introduction
	II Data Engineering
	II-A Big Data Systems
	II-B Python for Data Engineering
	II-C HPC for Data Engineering
	II-D Jupyter Notebooks

	III Cylon
	III-A Data Model
	III-B Distributed Memory Execution
	III-C Operators

	IV PyCylon
	IV-A PyCylon Table

	V Experiments
	V-1 Scalability
	V-2 Larger Load Tests
	V-3 Switching Between C++, Python, and Java

	VI Related Work
	VII Conclusion
	VIII Future Work
	References

