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Dilute interacting electrons harbour competing ground states 
when their Coulomb repulsion greatly exceeds their kinetic 
energy. In a parabolically dispersing two-dimensional elec-

tron system (2DES), the ratio of interaction to kinetic energy scales 
is parameterized by the dimensionless parameter rs, given by

rs =
1

(πn)1/2aB
. (1)

Here, aB = 4πϵħ2/mbe2 is the effective Bohr radius of carriers with ϵ 
the material dielectric constant, ħ is the reduced Planck constant, 
mb is the band effective mass, e is the elementary charge and n is 
the electron concentration. As the density is lowered, the electron 
system undergoes a Wigner crystallization transition, which quan-
tum Monte Carlo (QMC) studies predict to occur at around rs ≈ 30 
(refs. 1–7). In spite of decades of research efforts8–12, many aspects of 
the phase diagram of a strongly interacting 2DES in the limit of zero 
temperature and zero magnetic field remain clouded in the range 
of 25 < rs < 40. One of the main obstacles has been the trade-off of 
interaction and disorder strengths in these platforms; the cleanest 
systems, such as electron-doped GaAs, are also typically the ones 
that are relatively weakly interacting, while those with stronger 
interactions tend to be more disordered. Thus, systematic experi-
mental studies in the high rs regime (rs ≥ 20) remain few13–14.

ZnO heterostructures offer a platform that is sufficiently 
strongly interacting and clean15,16. Here, the 2DES is formed due to 
the polarization mismatch between epitaxial layers of Mg-alloyed 
MgxZn1−xO and pristine ZnO, both of which exist in the inversion  

asymmetric wurtzite crystal structure (P63mc space group). The 
itinerant carriers occupy a potential well in ZnO in a predomi-
nantly Zn2+s-orbital-like single electron pocket at Γ with weak 
non-parabolicity and spin–orbit interaction17. The band is highly 
spin degenerate, and the band g-factor (gb) (~2) is isotropic18. The 
enhanced electronic interactions stem from the ionicity of the crys-
tal, which produces a relatively heavy band mass (mb = 0.3m0) and 
small dielectric constant (ϵ = 8.5ϵ0), where m0 is the bare electron 
mass and ϵ0 is the vacuum permittivity. These features combine to 
make the system close to the ideal jellium model studied in QMC. 
The interaction effects and cleanness of the system are evidenced by 
the observation of fragile correlated states in the fractional quantum 
Hall regime, such as the 3/2, 5/2 and 7/2 incompressible states, bub-
bles and stripes19,20, with the devices remaining strongly interacting 
at zero magnetic field, as we demonstrate in this study.

Transport properties of the device
The quasi-Hall bar device under study is rendered in Fig. 1a. The 
MgZnO/ZnO heterostructure confines a 2DES approximately 
500 nm beneath the wafer surface with n tuned in situ via a capaci-
tively coupled gate electrode on the back side of the wafer. The 
field-effect transfer characteristics are displayed in Fig. 1b. Here, n is 
determined from the period of quantum oscillations and Hall effect. 
Great effort has been invested to perform experiments at very low 
temperatures. To this end, the sample is immersed within a liquid 
3He bath in a cryostat that operates down to temperature T ≈ 7 mK. 
The electrical characteristics are probed in a four-point configura-
tion by sweeping the d.c. bias (Vbias) while measuring the current 
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across the device (I) and local longitudinal voltage drop (V), yield-
ing a single I−V trace. The first derivative of this data provides the 
differential resistance (dV/dI) of the device as a function of I. We 
define ρ to be dV/dI in the small current limit (I → 0 nA), which 
probes the linear response of the equilibrium state of the system.

The magnetotransport of the device in the (Bz,n) parameter 
space where Bz is the out-of-plane magnetic field is presented in 
Fig. 1c. Oscillatory features in ρ as ∣Bz∣ is increased are associated 
with integer steps in Landau quantization. These states are labelled 
according to their filling factor ν = hn/eBz, where h is the Planck 
constant. A magnetotransport trace at n = 1.6 × 1010 cm−2 (rs = 30) 
is displayed in Fig. 1d with a robust ν = 1 quantum Hall state evi-
dent. Remarkably, this minimum remains apparent even when the 
zero-field resistance increases to approximately 108 Ω as the density 
is reduced to n = 1.3 × 1010 cm−2 (Bz = 0.5 T).

The data in Fig. 2a present ρ(n,T) of the device at zero magnetic 
field. This data reveal a crossover from a metallic dρ/dT > 0 to insu-
lating dependence dρ/dT < 0 at a critical density nc ≈ 1.6 × 1010 cm−2 
(corresponding to rs = 30), enabling us to associate the density nc 
with a zero-field metal–insulator transition (MIT) close to the 
quantum resistance value h/e2. Data for T ≲ 20 mK deviate from 
the systematic behaviour at higher temperatures, most likely due to 
the common issue of decoupling of the electron temperature from 
that of the immersion cryogen. The effect of an in-plane magnetic 
field is displayed in Fig. 2b, which indicates a positive magnetore-
sistance at all values of n. The value ρ = h/e2 is identified as a black 
line, which corresponds to a finite Bx where Bx is the magnetic field 
projected in-plane when n is larger than nc.

Examining spin susceptibility. The in-plane magnetic field per-
mits us to control the degree of spin polarization of the electrons, 
as the orbital coupling to in-plane fields is negligible due to the 
two-dimensional confinement. Figure 3a plots the magnetoresis-
tance of the device as a function of Bx at n = 2 × 1010 cm−2 and at 
various temperatures. From these curves we can identify two val-
ues of the magnetic field of interest: Bc, which is interpreted as the 
critical magnetic field required to reach full spin polarization, and 
is identified as the point at which ρ saturates to a value of ρB=sat 
(black triangle) and can be interpreted as the critical field required 
to reach full spin polarization8–12, and B*, at which there is a change 
in the sign of dρ/dT from metallic-like to insulating-like. The large 
dynamic range of ρ of the device makes it challenging to identify 
Bc(n) in Fig. 2b, and thus we plot the ratio ρB/ρB=sat where ρB is 
the resistivity at a given magnetic field in the (Bx,n) plane in Fig. 
3b. This aids visual identification of Bc as the fully spin-polarized 
2DES appears as an orange colour for any n in the figure. The data 
in Fig. 3b reveal a non-monotonic dependence of Bc as a function 
of n (dashed line) as the MIT is crossed. We observe an inflec-
tion point in the value of Bc/n around n = 1.8 × 1010 cm−2 (Fig. 3d), 
which is higher than the value nc associated with the zero-field 
MIT. While the procedure for determining Bc can be performed 
in multiple ways, as is discussed in Supplementary Section 10, a 
qualitatively similar trend is obtained. The in-plane field traces 
also reveal the presence of finite magnetoresistance even in the 
low-density limit (Fig. 3c), where the device is insulating for all 
magnetic fields.

The dotted line in Fig. 3b tracks B*, and thus, the (Bx,n) param-
eter space hosts two regions with an insulating-like temperature 
dependence dρ/dT < 0, namely at B > B* when n > nc, and at all Bx 
when n < nc. As we show in Supplementary Section 7, in the latter 
regime of n < nc, the temperature dependence is consistent with the 
activated or variable range hopping mechanisms that are character-
istic of insulators21 (including Wigner crystals22). By contrast, in the 
regime of n > nc and B > B* where we encounter what appears as a 
field-induced MIT, the dependence of resistivity on temperature is 
more consistent with a linear or power-law relation. Such a linear 
increase in ρ with T, and the accompanying change in sign of dρ/dT, 
has been shown theoretically to arise in metallic, correlated states 
with high spin polarization23,24. Thus, the temperature dependence 
points to a ground state at n > nc and B > Bc that is distinct from the 
low-density insulating phase for n < nc at rs > 30.

The value of Bc allows us to measure the renormalized spin sus-
ceptibility of the system, χ. Experimentally, it is convenient to use 
the following relationship:

Bc
n ≈

2π h̄2
μB

1
g∗m∗

. (2)

Here, μB is the Bohr magneton. The quasiparticle effective mass 
(m*) and effective g-factor (g*) are related to the renormalized sus-
ceptibility g*m*/m0 = 4πg0χ (Supplementary Section 4), where g0 is 
the bare electron g-factor. The Bc/n is presented in Fig. 3d as a func-
tion of n with corresponding values of g*m*/m0 plotted as vertical 
lines. As is observed from much higher densities (Supplementary 
Fig. 5), g*m*/m0 increases monotonically with decreasing n in the 
range 2.3 > n > 1.8 × 1010 cm−2. The estimated value of g*m*/m0 ≈ 15 
at n = nc represents a nearly 30-fold enhancement over the band 
value of 0.6. The relative magnitude of the magnetoresistance with 
in-plane field, ρB=0/ρB=sat, is generally suppressed when reducing n 
(Fig. 3e). However, the non-trivial dependence of the magnetoresis-
tance never disappears completely, as we discuss below.

Nonlinear charge transport is encountered throughout the 
parameter space and is revealed by studying the differential resis-
tance as a function of current. Figure 4a–c plots I−V traces at 
three distinct charge densities, corresponding to rs ≈ 25, 28 and 

a

Bz

Bx

V

VG
I

–60 –40 –20 0 20 40
0.5

1.0

1.5

2.0

2.5

n 
(1

010
 c

m
–2

)

VG (V)

b

–0.6 –0.4 –0.2 0 0.2 0.4 0.6

Bz (T)

1.0

1.2

1.4

1.6

1.8

2.0

c

1010108106104102

2.2
2= 3 4 25 345

1
28

30

32

40
38

35

26

27

1

rs
rs
rs = 30

30

40
35

26

ρ (Ω)

Vbias

101

105

109
2=

1

3 4d

n 
(1

010
 c

m
–2

)

ν

ν

ρ 
(Ω

)

Fig. 1 | The device and quantum transport. a, Schematic of the device 
under study. b, Charge carrier density (n) as a function of gate bias (VG). 
c, Mapping of ρ as a function of Bz and n, taken in the limit I → 0 nA where 
T ≈ 10 mK. Integer quantum Hall filling factors ν are noted. d, Line trace of 
magnetoresistance corresponding to n = 1.6 × 1010 cm−2 and rs = 30.
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32, respectively (purple, blue and red triangles). The correspond-
ing differential resistance as a function of I is plotted in Fig. 4d–f. 
The three values of rs represent qualitatively distinct responses 
in the (n, T, V) parameter space. For rs ≈ 25 the system displays 
metallic (dρ/dT > 0) transport as the lowest attainable tempera-
ture is approached, with dV/dI approximately constant as a func-
tion of I. By contrast, strong nonlinearity develops as T → 0 when 
n < nc. We characterize this nonlinearity in two different ways: 
through the threshold voltage (VT) at which 10 pA flows through 
the device, and through an extrapolation of the high current volt-
age drop to zero current (ΔV), as shown in Fig. 4c. A large VT is 
a characteristic transport feature expected from a Wigner crys-
tal (WC) ground state13,25, arising from pinning of the crystal. We 
also identify a regime of apparent excess conductance at low bias 
for a finite range of densities, nc < n < 2 × 1010 cm−2 (Fig. 4b,e). In 
this regime, a flattening of the voltage drop as a function of cur-
rent is visually apparent in the raw I−V data (Fig. 4b), producing a 
lower differential resistance dV/dI as I → 0. The differential resis-
tance increases by as much as four times when even a few nano-
amperes of current (corresponding to ~1 fW power dissipation) 
are fed through the device. This excess conductance is discussed 
further below.

The degree of nonlinearity in the parameter space is not evident 
in the raw resistance value of Fig. 2a, yet it provides additional insight 
into the qualitative nature of the ground state. To illustrate this, we 
plot the ratio of zero-bias resistance ρ with that at finite current, 
here defined as the resistance at I ≈ 2.5 nA (ρ2.5nA). We present this in 
two panels: the (n,T) plane at zero field (Fig. 4g), and in the (n,Bx) 
plane at base temperature (Fig. 4h). In both these representations, 
green regions (where ρ/ρ2.5nA is close to unity) correspond to a linear 
response where the differential resistance is independent of I, as is 
evident for all n when T ≥ 100 mK. Some region of excess conduc-
tivity, defined as ρ < ρ2.5nA, appears as a dome-like blue region above 
nc, disappears above 30 mK and is suppressed with the application 
of a B field (Supplementary Fig. 12). Similar I−V features have been 
identified in previous studies as the MIT is approached13,26. Both 
yellow and red regions corresponds to a peak in ρ at I = 0 nA, with 
the former displaying weaker nonlinearity in the form of a finite ΔV 
and the latter hosting a prominent VT as I → 0.

Discussion. We characterize the phases encountered using the 
boundaries associated with full spin polarization of the system 
(Bc, dashed line), the change in sign of dρ/dT (B*, dotted line), 
the magnitude of the resistivity relative to h/e2 (black line) and 
the degree of nonlinearity ρ/ρ2.5nA, all of which are plotted in Fig. 
4h. We couple these experimental results with a comparison to 
state-of-the-art QMC simulations7, which have identified a compe-
tition between paramagnetic Fermi liquid (FL), spin-polarized FL, 
antiferromagnetic WC with a stripe-like spin order on a triangu-
lar lattice and spin-polarized WC phases in the rs range studied in 
our work. Here we expand the phase diagram produced by QMC to 
take into account a finite in-plane magnetic field (Supplementary 
Information for details and alternative scenarios). The result is pre-
sented in Fig. 4i and contains no free parameters.

We associate the zero-field metal phase at large n with a para-
magnetic FL subjected to increasingly strong interactions as n is 
reduced towards nc. At finite Bx and n > nc, however, the change 
in sign of dρ/dT at B* that is traditionally associated with a MIT 
bears closer resemblance to a linear-in-T correction to the conduc-
tivity emerging from strong interactions in a FL23,24. We also note 
that the magnetic field scale at which the paramagnetic FL is pre-
dicted by QMC calculations to become the spin-polarized FL (Fig. 
4i) agrees with the measured value of B* (or Bc) without any fitting 
parameters. Therefore we associate the state that appears for n > nc 
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and B > Bc as the spin-polarized FL. However, while such a linear 
increase in ρ is consistent with our data (Supplementary Section 7), 
we caution that the theory of some studies in the literature23,24 is 
not a priori applicable to the states with relatively large rs and large 
resistivity that we are considering. In line with this concern, it is 
worth emphasizing that our results in this regime exhibit extreme 
deviations from the usual weak-coupling metallic conductivity, as 
evidenced, for example, by the 100-fold positive magnetoresistance 
and by a low-temperature resistance substantially higher than h/e2.

Turning our attention to n < nc, the insulating phase has the char-
acteristic transport attributes of a pinned WC, as evidenced by the 
large value of VT that develops at low temperature. The vanishing of 
the nonlinearity at temperatures above approximately T = 50 mK is 
consistent with thermal melting of a WC27. The nonlinearity in this 
regime is orders of magnitude larger than that of the spin-polarized 
FL phase discussed above, supporting our hypothesis that the two 
regimes host distinct phases. The positive magnetoresistance at 
n < nc that becomes clear at very low temperatures in Fig. 3c remains 
to be fully understood, although it is apparently consistent with cal-
culations28 that consider the effect of Zeeman splitting of localized 
states on hopping conduction. The presence of finite magnetoresis-
tance appears to preclude the conclusion that the state is fully spin 
polarized at low temperature in the range of rs studied. This is in con-
trast with a recent study of aluminium arsenides14, which reported 
an apparent divergence of the spin susceptibility in the insulating 
phase based upon no appreciable magnetoresistance for n < nc at a 
measurement temperature of T ≈ 300 mK (Supplementary Section 6 
for a discussion). The lack of clear spontaneous spin polarization at 
very low temperatures in our experiment agrees with the fact that the 
exchange energy scale J associated with spin ferromagnetic ordering 
of the WC at n < nc, as estimated by QMC, is smaller than ∣J∣ < 10 mK 
(Supplementary Section 6). The spins of the WC are therefore likely 
disordered by temperature fluctuations at Bx = 0. While we note 
that delicate hysteretic features in transport are indeed resolved for 
n ≤ nc, which upon first glance could indicate some ferromagnetic 
ordering (Supplementary Fig. 7), we, however, ascribe these fea-
tures to experimental artefacts associated with heating close to zero 
field and trapped flux in the superconducting coil, as the estimated 
coercive field in the presence of magnetostatic fields is ~10−7 T 
(Supplementary Section 5) and hence undetectable in experiment.

We now discuss one of the most remarkable findings of our 
study, namely the non-monotonicity of the in-plane saturation 
field Bc near the zero-field MIT. The non-monotonicity of Bc is 
a low-temperature property of the system and is absent above 
approximately 30 mK (Supplementary Fig. 4). In agreement with 
QMC calculations7, we find no clear evidence for a Stoner instabil-
ity of the itinerant liquid; finite magnetoresistance is always pres-
ent in the metal phase. By contrast, QMC has identified a possible 
antiferromagnetic crystal in between the paramagnetic FL and 
the fully spin-polarized WC. By adapting the QMC results from a 
study in the literature7 to include the in-plane field (Supplementary 
Section 3 for details), one obtains the phase diagram shown in Fig. 
4i. However, as we see from this phase diagram, the intermediate 
antiferromagnetic state does not offer any clear explanation for the 
non-monotonicity of the critical field Bc to spin polarize the sys-
tem. Moreover, as mentioned before, our lowest temperature scale 
T ≈ 20 mK is larger than the exchange energy scale J, or more pre-
cisely it is larger than the energy difference per electron of the ferro-
magnetic WC and the antiferromagnetic WC obtained from QMC, 
as detailed in Supplementary Section 6, and thus the spin order of 
the WC is likely destroyed by temperature fluctuations at Bx = 0. 
We therefore believe that the antiferromagnetic WC phase found 
in QMC is not likely to be the origin of the non-monotonicity of Bc 
that we observe. We note that the QMC employed in the literature7 
is variational in nature, and therefore it is always possible that other 
phases not considered could be behind the non-monotonicity of Bc, 
such as spin liquid states29,30 or spin-density-wave ordered states31,32.

The role of spatial variation in electron density may also be prom-
inent in the vicinity of n = nc. Even in the cleanest samples it is not 
possible to completely eliminate the role of disorder, which tends to 
produce variation in the local electron density, and leaves the WC 
phase with only finite-range order. When the average density is very 
close to nc, such variation causes the 2DES to break up into itiner-
ant and localized regions (Supplementary Section 8 for a discus-
sion). And even in the absence of disorder, variation in the local 
density can arise from Coulomb-frustrated phase separation6,33–35. 
While such phase separation may be important near n = nc, it does 
not provide an obvious explanation for the non-monotonicity of Bc 
as a function of n. Nevertheless, the phase separation picture can 
serve as a premise for interpreting the excess conductance presented 
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in Fig. 4b,e. When conducting and insulating phases are mixed in 
nearly equal proportion, then electric current flows predominantly 
through narrow metallic pathways, which are unusually sensitive 
to Joule heating. The ratio of metallic to insulating regions falls as 
the MIT is approached, with the MIT signifying the transition to a 
regime where insulating regions percolate and metallic regions are 
relegated to disconnected puddles (Supplementary Section 9).

Finally, we note that while the QMC data used to produce Fig. 4i 
assume a pure 1/r Coulomb interaction at all values of the electron–
electron separation r, in reality the finite thickness of the quantum 
well truncates the small-r divergence of the Coulomb potential. 
The magnitude of such an effect depends on the ratio between 
the effective thickness tWF of the electron wave function and the 
inter-electron spacing, or in other words on the parameter kFtWF, 
where kF is the Fermi wavenumber. We estimate that near n = nc, the 
value of kFtWF is on the order of 0.3. The smallness of this parameter 
justifies the comparison to the existing QMC studies, although the 
degree to which the phase diagram presented in Fig. 4i is altered 
quantitatively by such values of kFtWF remains to be studied in detail 
theoretically.

Outlook
Our study provides experimental clarity about the phase diagram 
around the Wigner crystallization transition at rs ≈ 30 and very 
low temperatures. The data reveal a paramagnetic FL that exhib-
its a strong renormalization of its spin susceptibility, becoming 
nearly 30 times larger than the band value as the critical density 
nc is approached. At n < nc the transport becomes strongly non-
linear and exhibits an exponential temperature dependence, both 
of which features are consistent with a WC. The qualitative and 
quantitative agreement of our phase diagram with state-of-the-art 
QMC7 is striking, with zero adjustable parameters. Future experi-
mental work will probe the finite-range order within the pinned 
solid phase, for example through optical absorption36,37, reflec-
tion38,39 or tunnelling approaches40. The most prominent mys-
tery suggested by our measurements is the possible existence 
and nature of a WC state with incomplete spin polarization. The 
non-monotonicity of the magnetic field Bc required to achieve 
spin polarization has no obvious interpretation in terms of the 
QMC phase diagram and may be associated either with the spatial 
coexistence of different phases or with an as-yet-undetermined 
intermediate phase. The large increase of resistance with the 
in-plane field, which for densities near nc becomes as large as two 
orders of magnitude, is also incompletely understood. QMC cal-
culations suggest that the state at B > Bc and n slightly larger than 
nc is a spin-polarized FL, but the large value of resistance poses 
a challenge for understanding this state within traditional para-
digms of metallic transport.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41563-021-01166-1.
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Methods
The heterostructure was grown using ozone-assisted molecular beam epitaxy 
and consists of a lightly alloyed MgxZn1−xO layer (x ≈ 0.001) of 500 nm thickness 
grown on a homoepitaxial ZnO layer upon single crystal (0001) Zn-polar 
ZnO substrates15,16. The heterostructure has an estimated electron mobility 
of approximately 600,000 cm2 V–1 s–1 in the metallic regime (Supplementary 
Information for discussion). Ohmic contacts were formed by evaporating Ti 
(10 nm) followed by Au (50 nm) on the sample surface. Indium was additionally 
soldered upon these pads to improve the contact quality. The distance between 
voltage probes is approximately 1 mm. The sample was immersed in a liquid 3He 
containing polycarbonate cell attached to the end of a cold finger of a dilution 
refrigerator cryostat equipped with a three-axis (9–3–1 T) vector magnet. The 
3He cell is based upon previous reports41,42. The mixing chamber temperature is 
measured using a calibrated cerous magnesium nitrate paramagnetic thermometer 
for 7 ≤ T ≤ 120 mK, and a ruthenium oxide thermometer for 50 ≤ T ≤ 800 mK. Each 
measurement wire passes through a large-surface-area (A ≈ 1 m2) sintered silver 
heat exchanger to overcome the Kapitza resistance that suppresses heat exchange 
at low T. The differential resistance data are obtained by measuring I–V data using 
DL Instruments 1211 current and 1201 voltage preamplifiers at discrete steps in the 
(B,T,n) parameter space, followed by differentiation using data analysis software.

Data availability
The data that support the findings of this study are available from the 
corresponding author on request.
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