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Abstract

We present a new deep-learning method, named FibrilNet, for tracing chromospheric fibrils in Hα images of solar
observations. Our method consists of a data preprocessing component that prepares training data from a threshold-
based tool, a deep-learning model implemented as a Bayesian convolutional neural network for probabilistic image
segmentation with uncertainty quantification to predict fibrils, and a post-processing component containing a fibril-
fitting algorithm to determine fibril orientations. The FibrilNet tool is applied to high-resolution Hα images from an
active region (AR 12665) collected by the 1.6 m Goode Solar Telescope (GST) equipped with high-order adaptive
optics at the Big Bear Solar Observatory (BBSO). We quantitatively assess the FibrilNet tool, comparing its image
segmentation algorithm and fibril-fitting algorithm with those employed by the threshold-based tool. Our
experimental results and major findings are summarized as follows. First, the image segmentation results (i.e., the
detected fibrils) of the two tools are quite similar, demonstrating the good learning capability of FibrilNet. Second,
FibrilNet finds more accurate and smoother fibril orientation angles than the threshold-based tool. Third, FibrilNet
is faster than the threshold-based tool and the uncertainty maps produced by FibrilNet not only provide a
quantitative way to measure the confidence on each detected fibril, but also help identify fibril structures that are
not detected by the threshold-based tool but are inferred through machine learning. Finally, we apply FibrilNet to
full-disk Hα images from other solar observatories and additional high-resolution Hα images collected by BBSO/
GST, demonstrating the tool’s usability in diverse data sets.

Unified Astronomy Thesaurus concepts: Solar atmosphere (1477); Solar chromosphere (1479); Convolutional
neural networks (1938)

1. Introduction

Fibrils are thin threadlike absorption features ubiquitously
observed in the solar chromosphere. Depending on their
location and dynamic behavior, they may have different
names, e.g., threads of filaments (Martin 1998; Wang et al.
2000), the superpenumbra of sunspots (Loughhead 1968; Jing
et al. 2019), mottles in quiet-Sun rosette structures (Heinzel &
Schmieder 1994), etc. Fibrils are often observed with
narrowband solar filtergrams in chromospheric spectral lines
such as Hα, where they are denser than their surroundings
(Mooroogen et al. 2017). Physically speaking, fibrils represent
the cool gas “frozen” in magnetic field lines and protected by
the magnetic fields from diffusing out (Pikel’ner 1971;
Langangen et al. 2008; Rouppe van der Voort et al. 2009).
For this reason, fibrils have been traditionally assumed to be
aligned with the direction of the chromospheric magnetic field
(Foukal 1971a, 1971b).

Tracing chromospheric fibrils in Hα is an important subject
in heliophysics research (Jing et al. 2011; Leenaarts et al.
2015), and has attracted much attention in the heliophysics
community. The comparison between fibrils and the potential
magnetic field may provide a quick way to examine the
nonpotentiality of active regions (ARs) (Jing et al. 2011).
The orientation of fibrils could be used as a constraint to
improve the nonlinear force-free modeling of coronal fields
(Wiegelmann et al. 2008; Aschwanden et al. 2016; Fleishman
et al. 2019). Tracing fibrils also helps estimate the amount of

energy in acoustic waves (Fossum & Carlsson 2006) and of
free magnetic energy in the chromosphere (Aschwanden et al.
2016).
Many fibril-tracing methods have been developed in recent

years. Leenaarts et al. (2015) conducted three-dimensional
magnetohydrodynamic simulations to investigate the relation
between chromospheric fibrils and magnetic field lines.
Aschwanden et al. (2016) performed nonpotential field
modeling of chromospheric structures and coronal loops with
the VCA-NLFFF code. Jafarzadeh et al. (2017) adopted the
CRISPEX tool for visual inspection and identification of
isolated slender fibrils. Gafeira et al. (2017) used image
processing and contrast enhancement techniques to identify
these fibrils. Asensio Ramos et al. (2017) employed the rolling
Hough transform (RHT) for fibril detection and a Bayesian
hierarchical model to analyze the pixels in spectropolarimetric
chromospheric images of penumbrae and fibrils. The authors
concluded that fibrils are often well aligned with the magnetic
azimuth. This RHT technique has also been used by Schad
(2017) to analyze fibrils and coronal rain. Jing et al. (2011)
developed a threshold-based algorithm to automatically seg-
ment chromospheric fibrils from Hα observations and extracted
direction information along the fibrils with a fibril-fitting
algorithm. The authors further quantitatively measured the
nonpotentiality of the fibrils by the magnetic shear angle. In
contrast to the above methods, our deep-learning-based tool
(FibrilNet) presented here can automatically predict fibrils and
measure uncertainties in the predicted results simultaneously.
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Deep learning is a branch of machine learning where neural
networks are designed to learn from large amounts of data
(LeCun et al. 2015). It has been used extensively in computer
vision and natural language processing, and more recently in
astronomy and astrophysics for flare prediction, spectroscopic
analysis, and solar image segmentation, among others
(Huertas-Company et al. 2018; Leung & Bovy 2018; Kim
et al. 2019; Lieu et al. 2019; Liu et al. 2019; Wu & Boada 2019;
Jiang et al. 2020). Different from previous solar image
segmentation techniques, which focus on predicting a value
for each pixel, our FibrilNet employs a probabilistic segmenta-
tion model, specifically a Bayesian convolutional network, that
predicts a value for each pixel accompanied with reliable
uncertainty quantification. Such a model leads to a more
informed decision, and improves the quality of prediction.

In general, there are two types of uncertainties in Bayesian
modeling: aleatoric uncertainty and epistemic uncertainty
(Kendall & Gal 2017). Aleatoric uncertainty, also known as
data uncertainty, measures the noise inherent in observations.
Epistemic uncertainty, on the other hand, measures the
uncertainty in the parameters of a model; this uncertainty is
also known as model uncertainty. Quantifying uncertainties
with machine learning finds many applications ranging from
computer vision (Kendall & Gal 2017), natural language
processing (Xiao & Wang 2019), and medical image analysis
(Kwon et al. 2020) to geomagnetic storm forecasting (Gruet
et al. 2018; Xu et al. 2020). Here we present a new application
of uncertainty quantification with machine learning in fibril
tracing.

The rest of this paper is organized as follows. Section 2
describes the solar observations and data used in this study.
These data are from an AR (AR 12665) collected by the Big
Bear Solar Observatory (BBSO). Section 3 presents the details
of our FibrilNet method and the algorithms used by the
method. FibrilNet employs a Bayesian convolutional network
for probabilistic image segmentation with uncertainty quanti-
fication to predict fibrils. It then uses a fibril-fitting algorithm
with a polynomial regression function of varying degrees to
model the predicted fibrils and determine their orientations.
Section 4 reports the experimental results, showing the traced
fibrils in Hα images of the solar observations in AR 12665
collected by BBSO. Furthermore, we apply FibrilNet to other
types of observations, demonstrating the tool’s usability in
diverse data sets. Section 5 presents a discussion and concludes
the paper.

2. Observations and Data Preparation

The Goode Solar Telescope (GST) is a 1.6 m clear-aperture,
off-axis telescope at BBSO, which is located in Big Bear Lake,
California (Cao et al. 2010; Goode et al. 2010; Goode &
Cao 2012; Varsik et al. 2014). GST is equipped with a high-
order adaptive optics system, AO-308, which provides high-
order correction of atmospheric seeing within an isoplanatic
patch (about 6″ at 500 nm in summer), with a gradual roll-off of
correction at larger distances (Shumko et al. 2014). Under a
stable seeing condition, BBSO/GST observed AR 12665 at
(W27°, S4°) on 2017 July 13, in which the data taken during
∼20:16–22:42 UT were used in the study presented here.

The Visible Imaging Spectrometer (Cao et al. 2010) of GST
utilizes a telecentric mount of the Fabry-Pérot etalon. This
imaging system was used for observing the Hα line. It scanned
the target area at ±0.6, ±0.4, and 0.0Å (0.08Å bandpass) from

the Hα line center 6563Å with a 70″ circular field of view
(FOV). At each wavelength step, the 25 frames, out of 60
frames taken in succession, with the best contrast were saved.
These frames, with exposure time ranging from 7 to 20 ms and
an image scale of 0 03 per pixel, were processed by the high-
order adaptive optics system and post-facto speckle image
reconstruction algorithms (Wöger et al. 2008), which improved
the quality of the images by correcting the wave front
deformation caused by atmospheric distortion. An Hα line
scan was performed over the FOV, and the position with the
minimum intensity was defined as the Hα line center. It should
be pointed out that GST narrowband Hα data do not contain
the full spectral information, which restricts the full character-
ization of fibrils in three dimensions. Therefore, our study of
fibrils is all based on their projected morphology on the
observational image plane.
Our data set contained the GST Hα observations in AR

12665 from 20:16:32 UT to 22:41:30 UT on 2017 July 13,
where the observed region was located at (W27°, S4°). During
this period of time, 241 Hα line center images (i.e., those at
0.0Å from the Hα line center 6563Å with a 70″ circular FOV)
were used as training data since features in these images were
abundant. The test set contained five Hα images taken from AR
12665 at 20:15:58 UT on the same day (see Figure 1). Thus,
there were 241 training Hα images and 5 test Hα images,
where the size of each image was 720× 720 pixels. The
training and test sets were disjoint, as the training observations
and test observations were taken at different time points. Please
note that the five test images were chosen in such a way that
they were on five different wavelength positions rather than at
five different time points on the same wavelength position. The
reason why we did not choose test images that were equally
distributed over the time series on the same wavelength
position was that the features in the images on the same
wavelength position did not change much across the images.
By contrast, the features in the images on the five different
wavelength positions appeared quite different as shown in
Figure 1.

3. Methodology

3.1. Overview of FibrilNet

Figure 2 explains how FibrilNet works. Training Hα images
are preprocessed in steps 1 and 2, and then used to train the
Bayesian deep-learning model (step 3). The trained model takes
as input a test Hα image (step 4) and produces as output a
predicted mask accompanied with results for quantifying
aleatoric uncertainty and epistemic uncertainty (step 5). In the
post-processing phase (step 6), based on the predicted mask,
fibrils on the test Hα image are detected and highlighted by
thin red curves. Furthermore, the orientations of the detected
fibrils are determined based on a fibril-fitting algorithm, where
the orientations are shown by different colors.
Specifically, in step 1, we apply the threshold-based tool

developed by Jing et al. (2011) to each training Hα image
described in Section 2 to obtain a corresponding fibril mask.
Fibril patterns on this mask are very thick, containing a lot of
noise. In step 2, we refine the fibril mask via a skeletonization
procedure to obtain a fibril skeleton in which fibrils are marked
by black and regions without fibrils are marked by white. The
skeletonization procedure works by extracting a region-based
shape feature representing the general form of the fibrils. This
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Figure 1. Five test images at (A) 0.0 Å, (B) +0.4 Å, (C) +0.6 Å, (D) −0.4 Å, and (E) −0.6 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in
AR 12665 on 2017 July 13 20:15:58 UT. Enormous amounts of fibrils exist in these Hα images.

Figure 2. Illustration of the proposed method (FibrilNet) for fibril tracing. FibrilNet employs a Bayesian deep-learning model for probabilistic image segmentation
with uncertainty quantification to predict fibrils and a fibril-fitting algorithm to determine fibril orientations. The training data used to train the Bayesian deep-learning
model are highlighted in the dashed box. The tracing results for the test Hα image include the predicted/detected fibrils, their orientations, the aleatoric uncertainty,
and the epistemic uncertainty.
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skeletonization procedure results in better and cleaner images
suitable for model training (Umbaugh 2010).

The training Hα images and fibril skeletons are then used to
train the Bayesian deep-learning model for probabilistic image
segmentation and uncertainty quantification (step 3). During
training, in order to obtain a robust model, we use the data
augmentation technique described in Jiang et al. (2020) to
expand the training set by shifting, rotating, flipping, and
scaling the training images. In step 4, a test Hα image is fed to
the trained Bayesian deep-learning model. During testing, we
use the Monte Carlo (MC) dropout sampling technique
described in Section 3.2 to produce a predicted mask of the
test Hα image accompanied with aleatoric uncertainty and
epistemic uncertainty results (step 5). In step 6, by using the
fibril-fitting algorithm based on the polynomial regression
model described in Section 3.3, our FibrilNet tool outputs
detected fibrils marked by red color on the test Hα image and
their orientations represented by different colors.

3.2. Implementation of the Bayesian Deep-learning Model in
FibrilNet

The Bayesian deep-learning model used by FibrilNet is
similar to the model used in SolarUnet (Jiang et al. 2020) for
tracking magnetic flux elements. Both models have four
encoder blocks (E1, E2, E3, and E4) and four decoder blocks
(D1, D2, D3, and D4), mediated by a bottleneck (Bot). See
Figure 3 and Jiang et al. (2020) for the configuration and
parameter settings of the models. While both models are based
on an encoder–decoder convolutional neural network, they
differ in three ways. First, in performing 2× 2 max pooling,
represented by a red arrow in Figure 3, the corresponding max
pooling indices are stored. During decoding, the max pooling
indices at the corresponding encoder layer are recalled,
represented by an orange arrow, to upsample, represented by
a green arrow, as done in Badrinarayanan et al. (2017). This
upsampling technique used by FibrilNet, designed to reduce the
number of trainable parameters in the model (network) and
hence save memory, is different from the upconvolution layers
used in SolarUnet. Second, since fibril patterns are relatively
vague and harder to identify than magnetic flux elements,
FibrilNet uses twice as many kernels as SolarUnet in all of the
blocks in the encoder and decoder, as well as in the bottleneck.
Finally, during testing, instead of using the trained model
(network) directly to produce segmentation results as done in

SolarUnet, FibrilNet employs an MC dropout sampling
technique, detailed below, to produce, for a test Hα image, a
predicted mask accompanied with aleatoric uncertainty and
epistemic uncertainty results (see Figure 2). This MC dropout
sampling technique allows FibrilNet to perform probabilistic
image segmentation with uncertainty quantification, which is
lacking in SolarUnet.
Specifically, to quantify uncertainty with the convolutional

neural network, we use a prior probability, P(W), over the
network’s weights, W. During training, pairs of Hα images and
their corresponding fibril skeletons, collectively referred to as
D, are used to train the network. According to Bayes’ theorem,

( ∣ ) ( ∣ ) ( )
( )

( )=W D
D W W

D
P

P P

P
. 1

Computation of the exact posterior probability, P(W|D), is
intractable (Denker & LeCun 1990). Nevertheless, we can use
variational inference (Graves 2011) to learn the variational
distribution over the network’s weights parameterized by θ,
qθ(W), by minimizing the Kullback–Leibler (KL) divergence of
qθ(W) and P(W|D) (Blei et al. 2017). It is known that training a
network with dropout is equivalent to a variational approx-
imation on the network (Gal & Ghahramani 2016). Further-
more, minimizing the cross-entropy loss of the network
is equivalent to the minimization of the KL divergence
(Goodfellow et al. 2016). Therefore, we use a binary cross-
entropy loss function and the adaptive moment estimation
(Adam) optimizer (Goodfellow et al. 2016) with a learning rate
of 0.0001 to train our model (network). Let q̂ denote the
optimized variational parameter obtained by training the model
(network); we use ( )q̂ Wq to represent the optimized weight
distribution.
In deep learning, dropout is mainly used to prevent

overfitting, where a trained model overfits training data and
hence cannot be generalized to make predictions on unseen test
data. During training, dropout refers to ignoring or dropping
out units (i.e., neurons) of a certain set of neurons that is chosen
randomly. During testing, dropout can be used to retrieve TMC
samples by processing the input test Hα image T times (Gal &
Ghahramani 2016). (In the study presented here, T is set to 50.)
Each time, a set of weights is randomly drawn from ( )q̂ Wq .
Each pixel in the predicted mask, shown in step 5 of Figure 2,
gets a mean and variance over the T samples. If the mean is

Figure 3. Architecture of the encoder–decoder convolutional neural network (i.e., the Bayesian deep-learning model) used in FibrilNet. This network is similar to the
one presented in Jiang et al. (2020). See text for their differences.

4

The Astrophysical Journal Supplement Series, 256:20 (16pp), 2021 September Jiang et al.



greater than or equal to a threshold, the pixel is marked by
black indicating that the pixel is part of a fibril; otherwise the
pixel is marked by white indicating that the pixel is not part of a
fibril. (In the study presented here, the threshold is set to 0.5).
Following Kwon et al. (2020), we decompose the variance into
aleatoric uncertainty and epistemic uncertainty at the pixel. The
aleatoric uncertainty captures the inherent randomness of the
predicted result, which comes from the input test Hα image,
while the epistemic uncertainty comes from the variability of
W, which accounts for the uncertainty in the model parameters
(weights).
In the post-processing phase, we use a connected-component

labeling algorithm (He et al. 2009) to group all adjacent black
segments if their pixels in the edges or corners touch each
other. For each resulting group, which represents a fibril, we
locate its pixels in the predicted mask and highlight their
corresponding pixels in the test Hα image by red. (Resulting
groups containing fewer than 10 pixels are considered noise
and filtered out.)We then output the detected fibrils highlighted
by red color in the test Hα image, as shown in step 6 of
Figure 2.

3.3. Implementation of the Fibril-fitting Algorithm in FibrilNet

Most of the detected fibrils are lines or curves. In contrast to
Jing et al. (2011), who used a quadratic function to fit the
detected fibrils, we adopt a polynomial regression model here.
Specifically, our regression model is a polynomial function
with varying degrees capable of fitting the detected fibrils with
different curvatures. In general, regression analysis investigates
the relationship between a dependent variable and an
independent variable (Bishop 2006). We model a detected
fibril as an nth-degree polynomial function as follows:

( )g g g g= + + +¼+ + y x x x , 2n
n

0 1 2
2

where γi denotes the coefficients and ò is a random error term.
In Equation (2), the independent variable x represents the x
coordinate of a pixel in the detected fibril and the dependent
variable y represents the y coordinate of the same pixel, where
the x-axis represents the E–W direction and the y-axis
represents the S–N direction (see Figure 1). When the degree
n equals 1, Equation (2) represents a linear regression model,
meaning that the detected fibril is represented by a straight line.
In our work, n ranges from 1 to 10.

We then use the least squares method (Ostertagová 2012) to
find the optimal γi values. There are 10 candidate polynomial
functions for representing the detected fibril. We use the R-
squared score (Ostertagová 2012) to assess the feasibility of
these 10 candidate polynomial functions. Specifically, we
choose the candidate polynomial function yielding the largest
R-squared score, and use this polynomial function to represent
the detected fibril. To determine the orientation of the detected
fibril, we calculate the derivative of the chosen polynomial
function. For each pixel on the detected fibril, we thus obtain
the slope of the tangent at the pixel, leading to the orientation
angle of the pixel, denoted by θf, with respect to the x-axis.
Notice that the orientation angle θf is in the 0°−180° range, as
two directions differing by 180° are indistinguishable here
because the detected fibril in Hα does not carry information on
the vertical dimension. Thus, θf represents the direction of the
detected fibril with a 180° ambiguity (Jing et al. 2011).

4. Results

4.1. Tracing Results of FibrilNet Based on Data from AR
12665

In this series of experiments, we used the 241 Hα line center
images from 20:16:32 UT to 22:41:30 UT on 2017 July 13
mentioned in Section 2 along with their corresponding fibril
skeletons to train the FibrilNet tool as described in Section 3.
We then used the trained tool to predict and trace fibrils on the
five test images at 0.0Å, +0.4Å, +0.6Å, −0.4Å, and −0.6Å
from the Hα line center 6563Å with a 70″ circular FOV
collected in AR 12665 on 2017 July 13 20:15:58 UT (see
Figure 1). Figure 4 presents the tracing results on the test image
at 0.0Å; the tracing results on the other four test images can be
found in the Appendix. In all of the tracing results, fibrils
containing 10 or fewer pixels were treated as noise and
excluded.
Figure 4(A) shows the original test Hα image. Figure 4(B)

shows the enlarged FOV of the region highlighted by white
box 1 in Figure 4(A). It can be seen from Figure 4(B) that there
are salt-and-pepper noise pixels in the region highlighted by
white box 2, which are caused by image reconstruction
limitations. Figure 4(C) shows the fibrils (red curves) on the
test Hα image detected by the tool (after skeletonization)
presented in Jing et al. (2011). Figure 4(D) shows the fibrils
(red curves) predicted by FibrilNet. FibrilNet uses the images
processed by the tool in Jing et al. (2011) as training data. The
results in Figures 4(C) and (D) are quite similar, demonstrating
the good learning capability of FibrilNet.
Figures 4(E) and (F) show the aleatoric uncertainty (data

uncertainty) and epistemic uncertainty (model uncertainty)
maps, respectively, produced by FibrilNet. Regions predicted
with less uncertainty and higher confidence are colored blue.
Regions predicted with more uncertainty and lower confidence
are colored red. We can see that the main source of uncertainty
is the data rather than the model. Specifically, the values in the
data uncertainty map in Figure 4(E) range from 0 to 0.246
while the values in the model uncertainty map in Figure 4(F)
range from 0 to 0.086. Furthermore, we observe that the ends
of a detected fibril are often associated with higher uncertainty.
This happens because there is ambiguity surrounding the
transition from the fibril body to the nonfibril background area,
a finding consistent with that in object detection with
uncertainty quantification reported in the literature (Kendall
& Gal 2017; Kwon et al. 2020).
Notice also that the map in Figure 4(E) shows higher

uncertainty in the noisy region inside white box 2 compared to
that in the region outside white box 2. Specifically, in the noisy
region inside white box 2, 90% of the values are contained in
the range [0.00014 (5%), 0.20528 (95%)]. By contrast, in the
region outside white box 2, 90% of the values are contained in
the range [0 (5%), 0.18969 (95%)]. Furthermore, it is observed
in Figure 4(C) that the tool in Jing et al. (2011) misses some
fibril structures with at least 15 pixels inside white box 3. These
fibril structures are not present in the mask predicted by
FibrilNet either, as shown inside white box 3 in Figure 4(D).
Nevertheless, the uncertainty maps of FibrilNet are able to
catch and display these missed fibril structures with higher
uncertainty by Bayesian inference, as shown inside white box 3
in Figures 4(E) and (F). This finding demonstrates the
usefulness of the uncertainty maps, as they not only provide
a quantitative way to measure the confidence on each predicted
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fibril, but also help identify fibril structures that are not detected
by the tool in Jing et al. (2011) but are inferred through
machine learning. It should be pointed out that the previous
fibril-tracing tool in Jing et al. (2011) does not have the
capability of producing these uncertainty maps as described
here.

Figure 5 compares the orientation angles of the fibrils found
by the tool in Jing et al. (2011) and by FibrilNet. The colors of
angles between 0° and 90° range from dark blue to green. The
colors of angles between 90° and 180° range from green to
dark red. It can be seen from Figure 5 that the orientation
angles found by the two tools mostly agree with each other,
though the angles detected by FibrilNet tend to be smoother.
This happens because FibrilNet uses polynomial functions of
varying degrees, as opposed to the quadratic function employed
by the tool in Jing et al. (2011), to better fit the detected fibrils
with different curvatures. Notice also that the quadratic
function used by the tool in Jing et al. (2011) may produce
wrong angles, which are calculated correctly by the polynomial
regression model of FibrilNet. For example, the orientation
angle of the fibril at E–W= 425″ and S–N=−190″, which is

highlighted by a small red circle in Figure 5, is roughly 90°. It
is calculated incorrectly by the tool in Jing et al. (2011), as
shown in Figure 5(A). On the other hand, FibrilNet calculates
the orientation angle of this fibril correctly, as shown in
Figure 5(B). It should be pointed out that the smoother and
more accurate orientation angles detected by FibrilNet are due
to the better fibril-fitting algorithm used by the tool, as
explained above. They are not caused by FibrilNet’s Bayesian
deep-learning model, whose purpose is mainly image segmen-
tation (i.e., marking each pixel by black indicating the pixel is
part of a fibril or by white indicating the pixel is not part of a
fibril as shown in the predicted mask in Figure 2) with
uncertainty quantification (i.e., producing the uncertainty maps
as shown in Figure 4).

4.2. Quantitative Assessment of FibrilNet Based on Data from
AR 12665

As mentioned above, FibrilNet has two parts: (i) a Bayesian
deep-learning model for predicting fibrils with probabilistic
image segmentation, and (ii) a fibril-fitting algorithm for

Figure 4. Fibril tracing results on the test image at 0.0 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58
UT, where the training data were 241 Hα line center images taken from the same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) The original test
Hα image. (B) The enlarged FOV of the region highlighted by white box 1 in (A). (C) Fibrils (red curves) on the test Hα image detected by the tool in Jing et al.
(2011). (D) Fibrils (red curves) on the test Hα image predicted by FibrilNet. (E) The aleatoric uncertainty (data uncertainty) map produced by FibrilNet. (F) The
epistemic uncertainty (model uncertainty) map produced by FibrilNet.
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determining the orientations of predicted fibrils based on the
polynomial regression function in Equation (2). Here, we adopt
four measures, defined below, to quantitatively assess the first
part, comparing the image segmentation algorithms employed
by FibrilNet and the tool (after skeletonization) in Jing et al.
(2011), based on the same data from AR 12665 used in
Section 4.1. Unlike FibrilNet, which employs deep learning for
image segmentation, the tool in Jing et al. (2011) used a
threshold-based algorithm rather than machine learning for
image segmentation.

Let A (B) denote the set of 720× 720= 518,400 pixels in
the mask (skeleton) predicted by FibrilNet (calculated by the
tool in Jing et al. 2011) for a test image. Let p ä A be a pixel in
A and let q ä B be pʼs corresponding pixel in B, i.e., q is at the
same position as p. We use A ∩A B to represent a subset of
pixels in A such that for each pixel p in A∩A B and pʼs
corresponding pixel q in B, p and q are marked by the same
color. That is, p and q are both marked by black indicating p
and q are part of a fibril in A and B, respectively, or p and q are
both marked by white indicating p and q are not part of a fibril
in A and B, respectively. Similarly, we use A ∩B B to represent
a subset of pixels in B such that for each pixel q in A∩B B and
qʼs corresponding pixel p in A, q and p are marked by the same
color. The first quantitative measure is the pixel similarity (PS),
also known as the global accuracy (Badrinarayanan et al.
2017), which is defined as

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )Ç Ç=
+
+

A B A B

A B
PS , 3A B

where | · | is the cardinality of the indicated set. PS is used to
assess the pixel-level similarity between the mask A predicted
by FibrilNet and the skeleton B calculated by the tool in Jing
et al. (2011) for the test image. The value of PS ranges from 0
to 1. The larger (i.e., the closer to 1) the PS value, the greater

the pixel-level similarity between the mask A and the
skeleton B.
Let AF (BF) denote the set of pixels on the fibrils in A (B).

Thus, in A, the pixels in AF are marked by black while the
pixels not in AF are marked by white. Similarly, in B, the pixels
in BF are marked by black while the pixels not in BF are marked
by white. We use ÇA BAF FF to represent a subset of pixels
in AF such that for each black pixel p in ÇA BAF FF , pʼs
corresponding pixel q is also black, i.e., q is in BF. Similarly,
we use ÇA BBF FF to represent a subset of pixels in BF such
that for each black pixel q in ÇA BBF FF , qʼs corresponding
pixel p is also black, i.e., p is in AF. The second quantitative
measure is the fraction of common fibril pixels (FCFP), defined
as

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )Ç Ç=
+
+

A B A B

A B
FCFP . 4A BF F F F

F F

F F

FCFP is used to measure the pixel-level similarity between the
fibrils predicted by FibrilNet and those found by the tool in Jing
et al. (2011). The value of FCFP ranges from 0 to 1. The larger
(i.e., the closer to 1) the FCFP value, the greater the pixel-level
similarity between the fibrils predicted by FibrilNet and those
found by the tool in Jing et al. (2011).
The third quantitative measure is the fraction of disjunct

fibril pixels (FDFP), defined as

( )= -FDFP 1 FCFP. 5

FDFP is used to measure the pixel-level dissimilarity (distance)
between the fibrils predicted by FibrilNet and those found by
the tool in Jing et al. (2011). The value of FDFP ranges from 0
to 1. The smaller (i.e., the closer to 0) the FDFP value, the
greater the pixel-level similarity between the fibrils predicted
by FibrilNet and those found by the tool in Jing et al. (2011).
The fourth quantitative measure is the Rand index (RI;

Rand 1971; Unnikrishnan et al. 2005), which calculates the

Figure 5. Orientation angles (colored curves) of the detected fibrils on the test image at 0.0 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR
12665 on 2017 July 13 20:15:58 UT. (A) Fibril orientation angles calculated by the tool in Jing et al. (2011). (B) Fibril orientation angles determined by FibrilNet. The
orientation angles of a number of fibrils, some of which are highlighted by small red circles here, are calculated wrongly by the tool in Jing et al. (2011), but correctly
by FibrilNet.
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ratio of pairs of pixels whose colors (black or white) are
consistent between the mask A predicted by FibrilNet and the
skeleton B calculated by the tool in Jing et al. (2011) for the test
image. RI accommodates the inherent ambiguity in image
segmentation, and provides region sensitivity and compensa-
tion for coloring errors near the ends of detected fibrils. For
example, consider a wider fibril. FibrilNet may detect the
portion to the left of the center of the fibril and highlight this
portion by red. The tool in Jing et al. (2011) may detect the
portion to the right of the center of the fibril and highlight that
portion by red. Under this circumstance, FCFP does not
consider there are common pixels between the two red curves,
though RI treats the two red curves as consistent curves.
Visually the fibril is indeed found by both tools. As a
consequence, RI is often used in comparing image segmenta-
tion algorithms. The value of RI also ranges from 0 to 1. The
larger (i.e., the closer to 1) the RI value, the greater the visual
similarity between the fibrils predicted by FibrilNet and those
found by the tool in Jing et al. (2011).

Table 1 presents the quantitative measure values of FibrilNet
based on the five test images in Figure 1. It can be seen from
the table that the mask predicted by FibrilNet and the skeleton
calculated by the tool in Jing et al. (2011) are very similar at
pixel level, with PS� 95% on the test images. FCFP is about
80%. However, visually, the similarity/consistency between
the fibrils predicted by FibrilNet and those found by the tool in
Jing et al. (2011) is much greater, where it is quantitatively
assessed with RI� 91% on the test images. This finding is
consistent with the results presented in Figures 4(C) and (D).
Next, we quantitatively assess the second part of FibrilNet,

comparing the fibril-fitting algorithms employed by FibrilNet
and the tool (after skeletonization) in Jing et al. (2011), based
on the same data from AR 12665 described in Section 4.1. The
fibril-fitting algorithms are used to determine the orientations of
detected fibrils. Let θf represent the fibril orientation angle of a
pixel calculated by the polynomial regression function in
FibrilNet, and let θj represent the fibril orientation angle of the
same pixel calculated by the quadratic function in the tool of
Jing et al. (2011). The acute angle difference between θf and θj,
denoted as δ(θf, θj), is defined as

⎧
⎨⎩

( )
∣ ∣ ∣ ∣

∣ ∣
( )

◦
d q q

q q q q
q q

=
- -

 - -


,

if 90

180 otherwise
. 6f j

f j f j

f j

The angle difference is decided in favor of an acute or right
angle, i.e., 0°� δ(θf, θj)� 90°.

Figure 6 quantitatively compares the orientation angles of
common fibril pixels calculated by the fibril-fitting algorithms
used in FibrilNet and the tool of Jing et al. (2011) based on the
test image at 0.0Å from the Hα line center 6563Å with a 70″
circular FOV collected in AR 12665 on 2017 July 13 20:15:58

UT. Figure 6(A) shows a 2D histogram of the orientation
angles of common fibril pixels produced by the two tools,
where the x-axis (y-axis) represents the orientation angles
calculated by FibrilNet (the tool of Jing et al. 2011). The 2D
histogram is computed by grouping common fibril pixels
whose orientation angles are specified by their x and y
coordinates into bins, and counting the common fibril pixels
in a bin to compute the color of the tile representing the bin.
The width of each bin equals 2°. It can be seen from
Figure 6(A) that the orientation angles of common fibril pixels
calculated by the two tools mostly agree with each other, which
is consistent with the findings shown in Figure 5. Figure 6(B)
shows the differences of the orientation angles of common
fibril pixels produced by the two tools. It can be seen from
Figure 6(B) that most of the common fibril pixels have very
small orientation angle differences, displayed by a purple color.
For the common fibril pixels with large orientation angle
differences, the orientation angles calculated by the quadratic
function used in the tool of Jing et al. (2011) are often incorrect
(see, for example, the fibrils highlighted by small red circles in
Figure 6(B) and Figure 5).

4.3. Application of FibrilNet to Other Data

In this series of experiments, we applied FibrilNet to other
types of test images, including (i) a full-disk image from the
Global Oscillation Network Group (GONG; Harvey et al.
1996; Plowman & Berger 2020) at the National Solar
Observatory, (ii) a full-disk image from the Kanzelhöhe Solar
Observatory (KSO; Otruba 1999; Otruba et al. 2008), (iii) high-
resolution superpenumbral fibrils from BBSO (Jing et al.
2019), and (iv) two high-resolution quiet-Sun regions from
BBSO. The GONG full-disk Learmonth reduced Hα data in (i)
was collected on 2015 September 28 00:01:34 UT. The KSO
full-disk raw-image Hα data in (ii) was collected on 2015
September 14 09:14:20 UT. The GONG and KSO full-disk
images have relatively low resolution. The BBSO super-
penumbra of sunspots in (iii) was collected at Hα −0.6Å from
AR 12661 (501E, 95N) on 2017 June 4 19:08:44 UT. The two
BBSO quiet-Sun regions in (iv) were collected on 2018 July 29
16:33:12 UT and 2020 June 10 16:10:25 UT at Hα −0.6Å
from (604E, 125S) and Hα 0.0Å from (283E, 789N),
respectively. The FibrilNet tool was trained using the same
241 Hα line center images described in Section 2. Here we
present results without uncertainty maps. Results with
uncertainty maps can be generated as done in Section 4.1.
Figure 7 shows the fibrils (red curves) predicted by FibrilNet

on the GONG and KSO test images. Figure 7(A) presents the
GONG full-disk Hα image. Figure 7(B) shows an enlarged
view of the region highlighted by the white box in Figure 7(A).
In Figure 7(C), we see that FibrilNet detects many fibrils on the
GONG image. Figure 7(D) presents the KSO full-disk Hα
image. Figure 7(E) shows an enlarged view of the region
highlighted by the white box in Figure 7(D). Figure 7(F)
clearly demonstrates that FibrilNet detects threads of filaments
and fibrils on the KSO image.
Figure 8 presents the fibril prediction results on the BBSO

high-resolution test Hα images. Figure 8(A) shows the BBSO
superpenumbra of sunspots image used in the study. It can be
seen that there are superpenumbral fibrils around the sunspot in
the center of the image. Figure 8(D) shows the predicted
superpenumbral fibrils (red curves) produced by FibrilNet on
the image in Figure 8(A). We see in Figure 8(D) that FibrilNet

Table 1
Comparison of the Image Segmentation Algorithms Used in FibrilNet and the
Tool of Jing et al. (2011) Based on Four Quantitative Measures and Five Test

Images

Test Image PS FCFP FDFP RI

Hα 0.0 Å 0.9576 0.8038 0.1962 0.9188
Hα +0.4 Å 0.9571 0.8097 0.1903 0.9178
Hα +0.6 Å 0.9659 0.8079 0.1921 0.9340
Hα −0.4 Å 0.9546 0.7922 0.2078 0.9134
Hα −0.6 Å 0.9536 0.8022 0.1978 0.9115
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can distinguish the superpenumbral fibrils from the clusters of
spicules nearby. Figures 8(B) and (C) present the two BBSO
quiet-Sun regions. Figures 8(E) and (F) show the predicted
mottles in the quiet-Sun rosette structures in Figures 8(B) and
(C), respectively. These high-resolution Hα images clearly
demonstrate the good fibril prediction capability of our tool.

5. Discussion and Conclusions

We develop a Bayesian deep-learning method, FibrilNet, for
tracing chromospheric fibrils in Hα images of solar observations.
We apply the FibrilNet tool to high-resolution Hα images from
an AR (AR 12665) collected by BBSO/GST on 2017 July 13.
The tool performs well on these high-resolution Hα images,
predicting fibrils with uncertainty quantification and determining
the orientations of the predicted fibrils. We further apply
FibrilNet to full-disk Hα images from other solar observatories
and additional high-resolution Hα images collected by BBSO/
GST, demonstrating the tool’s usability in diverse data sets.

Our main results are summarized as follows:

1. The encoder–decoder convolutional neural network (i.e., the
Bayesian deep-learning model) used in FibrilNet, as
illustrated in Figure 3, is an enhancement of two deep-
learning models, namely U-Net (Falk et al. 2019), based on
which our SolarUnet tool (Jiang et al. 2020) for magnetic
tracking was developed, and SegNet (Badrinarayanan et al.
2017). FibrilNet predicts fibrils on a test Hα image through
image segmentation (i.e., predicting each pixel in the test Hα
image to be black indicating the pixel is part of a fibril or
white indicating the pixel is not part of a fibril). In computer
vision and image processing, U-Net and SegNet are two of
the best image segmentation models. By combining these
two models, FibrilNet produces good image segmentation
(i.e., fibril prediction) results, as described in Section 4.

2. The training data set used in this study comprises 241
high-resolution Hα line center images in AR 12665
collected by BBSO/GST from 20:16:32 UT to 22:41:30

UT on 2017 July 13. After FibrilNet is trained on this data
set, we apply the trained model to predict fibrils on five
high-resolution test Hα images from the same AR (AR
12665) collected by BBSO/GST on 2017 July 13
20:15:58 UT as described in Section 4.1, as well as on
an additional five test Hα images including two full-disk
Hα images from GONG/KSO and three other high-
resolution Hα images collected by BBSO/GST as
described in Section 4.3. Our experimental results show
that the Bayesian deep-learning model employed by
FibrilNet performs well not only on the five high-
resolution test Hα images from AR 12665 that are not
seen during training, but also on the additional five test Hα
images. No further training is needed for FibrilNet to
predict fibrils in the additional five test Hα images. This is
achieved by the generalization and inference capabilities of
the deep-learning model used by FibrilNet. On the other
hand, the threshold-based tool in Jing et al. (2011) is
tailored for the high-resolution Hα images collected by
BBSO/GST. When applying the threshold-based tool in
Jing et al. (2011) to the GONG full-disk Hα image in
Figure 7, the threshold-based tool performs poorly,
missing many fibrils on the GONG Hα image.

3. FibrilNet obtains training data from the threshold-based
tool in Jing et al. (2011), where the training data set
contains 241 high-resolution Hα line center images from
AR 12665 collected by BBSO/GST as described in item 2
above. When applying FibrilNet and the threshold-based
tool to the five high-resolution test Hα images from the
same AR (AR 12665) collected by BBSO/GST, the two
tools agree well on the detected fibrils as described in
Sections 4.1 and 4.2. This demonstrates the good learning
capability of FibrilNet. When predicting fibrils on a test Hα
image, FibrilNet uses an uncertainty quantification techni-
que (more precisely an MC sampling technique) to process
the test Hα image T times, where T= 50 as described in
Section 3.2. Unlike FibrilNet, which employs deep

Figure 6. Quantitative comparison of the orientation angles of common fibril pixels calculated by the fibril-fitting algorithms used in FibrilNet and the tool of Jing et al.
(2011) based on the test image at 0.0 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58 UT. (A) 2D histogram of
the orientation angles of common fibril pixels produced by the two tools. (B) Differences of the orientation angles of common fibril pixels produced by the two tools. The
orientation angles of the fibrils highlighted by small red circles are calculated wrongly by the tool of Jing et al. (2011), but correctly by FibrilNet as indicated in Figure 5.
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learning, the tool in Jing et al. (2011) used a threshold-
based algorithm, rather than machine learning, for image
segmentation to detect fibrils on the test Hα image. It takes
several seconds for the threshold-based tool to process the
test Hα image. When the uncertainty quantification
technique is turned off (i.e., T is set to 1), FibrilNet is 10
times faster than the threshold-based tool in Jing et al.
(2011) due to the fact that FibrilNet detects fibrils through
making predictions, although the two tools produce similar
results. When the uncertainty quantification technique is
turned on (i.e., T is set to 50), FibrilNet is as fast as the
threshold-based tool while producing uncertainty maps that
not only provide a quantitative way to measure the
confidence on each detected fibril, but also help identify
fibril structures that are not detected by the threshold-based
tool (i.e., that do not exist in the training data) but are
inferred through machine learning as described in
Section 4.1. It is worth noting that the main source of
uncertainty is the data rather than our deep-learning model.
Uncertainty values are higher in noisy regions of the test
Hα image. Furthermore, the ends of a predicted fibril are
often associated with higher uncertainty, due to the
ambiguity surrounding the transition from the fibril body
to the nonfibril background area. To the best of our

knowledge, FibrilNet is the first tool capable of predicting
fibrils with uncertainty quantification.

4. We conducted additional experiments to evaluate the
effectiveness of the data augmentation technique used for
training FibrilNet as described in Section 3.1. Our
experimental results show that, without the data augmenta-
tion technique, the performance of FibrilNet degrades,
particularly when the tool is applied to the GONG and KSO
full-disk Hα images in Figure 7. This happens because the
data augmentation technique can increase the generalization
and inference capabilities of the Bayesian deep-learning
model used by FibrilNet. Our training data set comprises
241 Hα line center images from AR 12665 collected on
2017 July 13 as described in Section 2. We also performed
experiments where we split the training data set into two
parts based on image quality. The first part contained 12 Hα
line center images with slightly lower quality. The second
part contained the remaining 229 Hα line center images
with higher quality. Since the first part contained too few
Hα images, we expanded it by including 12 lower-quality
images from the other four wavelength positions in AR
12665 studied here, yielding a total of 60 lower-quality Hα
images. Our experimental results show that the deep-
learning models trained by all 241 Hα line center images

Figure 7. Fibrils (red curves) predicted by FibrilNet on the GONG and KSO full-disk Hα images collected on 2015 September 28 00:01:34 UT and 2015 September
14 09:14:20 UT, respectively. (A) The GONG full-disk Hα image. (B) Enlarged view of the region highlighted by the white box in (A). (C) Fibrils predicted by
FibrilNet on the image in (B). (D) The KSO full-disk Hα image. (E) Enlarged view of the region highlighted by the white box in (D). (F) Fibrils predicted by FibrilNet
on the image in (E).
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and by the 229 higher-quality Hα line center images
produce similar results. On the other hand, the performance
of the deep-learning model trained by the 60 lower-quality
Hα images degrades, and becomes even worse in the
absence of data augmentation, particularly when the model
is applied to the GONG and KSO full-disk Hα images.

5. To further understand the behavior of FibrilNet, we trained
the tool using all 241× 5= 1205 high-resolution Hα
images from all five wavelength positions in AR 12665
studied here and applied the trained tool to the same test
images described in Section 4. The results obtained are
similar to those presented here, indicating our tool works
equally well with fewer training images. When the tool is
trained by a much smaller data set such as one with less than
100 Hα line center images from AR 12665 collected on
2017 July 13, the tool still performs well on the high-
resolution test Hα images described in Section 4, but finds
fragmented filaments and fibrils, rather than long, complete
filaments and fibrils, on the KSO full-disk Hα image in
Figure 7, even when the tool is trained by the data
augmentation technique with higher-quality training images.

6. As mentioned above, the Bayesian deep-learning model
in FibrilNet performs image segmentation to predict
fibrils with uncertainty quantification. On the other hand,

the fibril-fitting algorithm in FibrilNet uses a polynomial
regression function with varying degrees to calculate the
orientation angles of the predicted fibrils. This poly-
nomial regression model produces more accurate and
smoother fibril orientation angles than the quadratic
function used by the tool in Jing et al. (2011) as described
in Sections 4.1 and 4.2. However, if we replace the
polynomial regression model by the quadratic function in
FibrilNet, the two tools would produce the same
orientation angles on common fibril pixels they detect.

We conclude that FibrilNet is an effective and alternative
method for fibril tracing. It is expected that this tool will be a
useful utility for processing observations from diverse instru-
ments including BBSO/GST and the new Daniel K. Inouye
Solar Telescope.

We thank the referee and scientific editor for very helpful
and thoughtful comments. We also thank the BBSO/GST team
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Figure 8. Fibrils (red curves) predicted by FibrilNet on additional high-resolution BBSO test Hα images. (A) The BBSO superpenumbra of sunspots image collected
at Hα −0.6 Å from AR 12661 (501E, 95N) on 2017 June 4 19:08:44 UT. (B) The BBSO quiet-Sun image collected at Hα −0.6 Å from (604E, 125S) on 2018 July 29
16:33:12 UT. (C) The BBSO quiet-Sun image collected at Hα 0.0 Å from (283E, 789N) on 2020 June 10 16:10:25 UT. (D) Fibrils predicted by FibrilNet on the image
in (A). (E) Fibrils predicted by FibrilNet on the image in (B). (F) Fibrils predicted by FibrilNet on the image in (C).
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Appendix

Figures A1–A4 compare the fibril tracing results and fibril
orientations obtained by FibrilNet and the tool in Jing et al. (2011)

Figure A1. Fibril tracing results on the test image at +0.4 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58
UT, where the training data were 241 Hα line center images taken from the same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on the test
Hα image detected by the tool in Jing et al. (2011). (B) Fibrils on the test Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty) map
produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing et al.
(2011). (F) Fibril orientation angles determined by FibrilNet. The orientation angles of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. (2011), but correctly by FibrilNet.
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on the test image at +0.4Å, +0.6Å, −0.4Å, and −0.6Å,
respectively, from the Hα line center 6563Å with a 70″ circular
FOV collected in AR 12665 on 2017 July 13 20:15:58 UT, where

the training data were 241 Hα line center images taken from
the same AR between 20:16:32 UT and 22:41:30 UT on the
same day.

Figure A2. Fibril tracing results on the test image at +0.6 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58
UT, where the training data were 241 Hα line center images taken from the same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on the test
Hα image detected by the tool in Jing et al. (2011). (B) Fibrils on the test Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty) map
produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing et al.
(2011). (F) Fibril orientation angles determined by FibrilNet. The orientation angles of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. (2011), but correctly by FibrilNet.
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Figure A3. Fibril tracing results on the test image at −0.4 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58
UT, where the training data were 241 Hα line center images taken from the same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on the test
Hα image detected by the tool in Jing et al. (2011). (B) Fibrils on the test Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty) map
produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing et al.
(2011). (F) Fibril orientation angles determined by FibrilNet. The orientation angles of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. (2011), but correctly by FibrilNet.
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Figure A4. Fibril tracing results on the test image at −0.6 Å from the Hα line center 6563 Å with a 70″ circular FOV collected in AR 12665 on 2017 July 13 20:15:58
UT, where the training data were 241 Hα line center images taken from the same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on the test
Hα image detected by the tool in Jing et al. (2011). (B) Fibrils on the test Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty) map
produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing et al.
(2011). (F) Fibril orientation angles determined by FibrilNet. The orientation angles of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. (2011), but correctly by FibrilNet.
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