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Conductivity of two-dimensional narrow gap semiconductors subjected to strong Coulomb disorder
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In the ideal disorder-free situation, a two-dimensional band-gap insulator has an activation energy for con-
ductivity equal to half the band gap A. But transport experiments usually exhibit a much smaller activation
energy at low temperature, and the relation between this activation energy and A is unclear. Here we consider
the temperature-dependent conductivity of a two-dimensional insulator on a substrate containing Coulomb
impurities, with random potential amplitude I" >3>> A. We show that the conductivity generically exhibits three
regimes of conductivity, and only the highest-temperature regime exhibits an activation energy that reflects
the band gap. At lower temperatures, the conduction proceeds through activated hopping or Efros-Shklovskii
variable-range hopping between electron and hole puddles created by the disorder. We show that the activation
energy and characteristic temperature associated with these processes steeply collapse near a critical impurity
concentration. Larger concentrations lead to an exponentially small activation energy and exponentially long
localization length, which in mesoscopic samples can appear as a disorder-induced insulator-to-metal transition.
We also arrive at a similar steep disorder driven insulator-metal transition in thin films of three-dimensional
topological insulators with large dielectric constant, for which Coulomb impurities inside the film create a large

disorder potential due to confinement of their electric field inside the film.
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I. INTRODUCTION

In a band-gap insulator, charged impurities often play a
decisive role in determining the properties of the insulating
state. Due to the long-range nature of the Coulomb potential
that they create, such impurities produce large band bending
that changes qualitatively the nature of electron conduction
relative to the ideal disorder-free situation. An illustrative
case is that of a three-dimensional completely compensated
semiconductor, for which positively charged donors and neg-
atively charged acceptors are equally abundant and randomly
distributed in space. In this case, the impurity potential has
large random fluctuations, which can be screened only when
the amplitude of this potential I reaches A, where 2A is
the band gap. This screening is produced by sparse electron
and hole droplets, concentrated in spatially alternating elec-
tron and hole puddles [1-3]. At high enough temperatures,
the electrical conductivity is due to activation of electrons
and holes from the chemical potential to the energy associ-
ated with classical percolation across the sample. At lower
temperatures, the conductivity is due to hopping between
nearest-neighbor puddles. At even smaller temperatures, it is
due to variable-range hopping between puddles. Crucially, in
each of these temperature regimes, the naive relation £, = A
is lost, where E, is the activation energy for conductivity. Only
in the highest-temperature regime is there a direct propor-
tionality between E, and A (with a nontrivial small numeric
prefactor) [3.,4]; at lower temperatures, the observed activation
energy is nonuniversal and disorder dependent [1,2].
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In this paper, we consider a similar problem in two di-
mensions, focusing on the case of strong disorder, I" > A.
Specifically, we consider a two-dimensional small band-gap
semiconductor resting on a thick substrate with a three-
dimensional concentration of randomly positioned impurities.
We derive the temperature dependence of the electrical
conductivity across all temperature regimes and show that
observed activation energy can be very small.

Understanding the relation between the energy gap and the
observed activation energy for transport is of crucial impor-
tance for studying a variety of two-dimensional (2D) electron
systems. For example, recent studies of 2D topological insu-
lators (TIs) [5-7], films of 3D TIs [8-20], bilayer graphene
(BLG) with an orthogonal electric field [21,22], and twisted
bilayer graphene (TBG) [23-27] use the transport activation
energy as a way of characterizing small energy gaps. In all
these cases, the observed activation energy is much smaller
than the energy gap that is expected theoretically or measured
through local probes such as optical absorption or scanning
tunneling microscopy.

Here, we show that there is indeed no simple proportional-
ity between the energy gap and the activation energy except at
the highest-temperature regime, which is likely irrelevant for
many experimental contexts. Instead, we find a wide regime
of temperature and disorder strength for which the activa-
tion energy is parametrically smaller than the energy gap.
At the lowest temperatures, the conductivity follows a Efros-
Shklovskii (ES) law [28] rather than an Arrhenius law, and
this dependence can give the appearance of a small activation
energy.

Let us dwell on two likely applications of our theory. First,
our results may be especially relevant for ongoing efforts to
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FIG. 1. Schematic picture of a cross section of puddles in the
case I' > A. The wavy lines show the conduction-band bottom and
the valence-band ceiling separated by the gap 2A. The red shaded
region above the chemical potential © = O represents a hole puddle,
while the blue shaded region below p represents an electron puddle;
I" is the amplitude of the disorder potential, X is the screening length,
and w is the width of the barrier between neighboring puddles.

understand the energy gaps arising in TBG at certain com-
mensurate fillings of the moiré superlattice [23-27]. Such
gaps apparently arise from electron-electron interactions, but
the observed activation energies of the maximally insulating
state are typically an order of magnitude smaller than the
naive interaction scale (see, e.g., Refs. [24,25]), and they vary
significantly from one sample to another. Scanning tunneling
microscopy studies also suggest a gap of the order of ten
times larger than the observed activation energy [29,30]. The
theory we present here offers a natural way to interpret this
discrepancy.

Second, our theory can be applied to the huge body of
experimental work on thin films of a 3D TI, where the surface
electrons have a small gap 2A due to hybridization of the
surface states of two surfaces [8,9] or due to intentionally
introduced magnetic impurities [10-20]. Understanding the
origin of the small apparent activation energy E, < A is
crucial for achieving metrological precision of the quantum
anomalous Hall effect [11,13,16,19,20,31,32] and the quan-
tum spin Hall effect [9,33-35].

The model we consider of is a two-dimensional semi-
conductor with band gap 2A atop a substrate with a
three-dimensional concentration N of random sign charged
impurities. We assume that the semiconductor has a gapped
Dirac dispersion law,

€2(k) = (hvk)* + A2, (D

where € is the electron energy, k is the 2D wave vector, v is the
Dirac velocity, and 7 is the reduced Planck constant. We are
interested in the case when the amplitude I" of spatial fluctua-
tions of the random potential satisfies I' >> A, so that electron
and hole puddles occupy almost half of the space each and
are separated by a small insulating gap which occupies only a
small fraction of space (see Fig. 1). This system is an insulator
because in 2D neither electron nor hole puddles percolate,
and they are disconnected from each other (neglecting, for
now, the possibility of quantum tunneling between puddles).
Throughout this paper, we focus on the case of zero chemical
potential, for which electron and hole puddles are equally
abundant and the system achieves its maximally insulating
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FIG. 2. Schematic plot of the logarithm of the dimensionless
conductivity o /(e*/h) as a function of the inverse temperature 7~".
At high temperature 7 > 7} = A/S, the conductivity has activation
energy A. At intermediate temperature 7, <7 < T} where T, =
E2/Tgs, the conductivity is dominated by activated hopping (AH).
At low temperature such that T < T,, AH is replaced by the ES law.
Numbers adjacent to different parts of the line show corresponding
equations.

state. We argue that this situation is likely realized in the
experiments of Refs. [5-27,29,30].

The remainder of this paper is organized as follows. In
the following section, we first summarize our main results
for the temperature-dependent conductivity. In Sec. III, we
review the fractal geometry of two-dimensional puddles for
the case I' > A. In Sec. IV, we calculate the action accu-
mulated by electrons tunneling across the gap between two
neighboring puddles, the corresponding localization length,
and the critical value (I'/A). of the ratio I'/A, at which
crossover to “almost metallic conductivity” takes place. In
Sec. V, we calculate the hopping conductivity at | < I'/A K
(I'/A).. Section VI deals with the generalization of our results
to thin TI films. Because of the intense recent interest in
such films [8-10,12-20,31-45], in this section we add a fair
amount of numerical estimates. We close in Sec. VII with a
summary and conclusion.

II. SUMMARY OF RESULTS

In situations where the typical tunneling transparency
P = exp(—S) of the insulating barrier separating neighboring
puddles is small (the action S in units of 7 is large), one
can envision a sequence of three mechanisms of activated
transport replacing each other with decreasing temperature,
as in a lightly doped wide gap semiconductor [2]. This three-
mechanism sequence is illustrated in Fig. 2. At relatively large
temperature 7', electrons and holes can be activated from the
chemical potential to the percolation level (i.e., the classical
mobility edge). As we show in detail in the Appendix, the
activation energy for this process is exactly equal to A when
the chemical potential © = 0 (i.e., at the charge neutrality
point). Thus, the conductivity at such large temperatures is
given by

o=o0exp(—A/T)(T1 KT K A), ()
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with the prefactor o; ~ e?/hi. Here and everywhere in this
paper, we use energy units for the temperature T (absorbing
kg in its definition).

At lower temperatures, this mechanism yields to hopping
of electrons between electron and hole puddles near the chem-
ical potential. Similarly to the case of granular metals [46,47],
the activation energy of such hopping is first determined by
the typical puddle charging energy Ec,

o =o0exp(—Ec/T) (T, KT K Th). 3

Here the prefactor o, ~ (e /) exp(—S) < (¢*/h). We show
below that

Ec = > A(A/T)? « A. “4)

Here, o = ¢?/(khv) is the analog of the fine-structure con-
stant and « is the dielectric constant of the substrate. With the
standard semiconductor value v ~ 10° m s~!; and with x = 4
for SiO,, 11 for insulating GaAs, 20 for HfO, and 1000 for
PbTe; o can vary from 1 to 1073. Below, in our theory, we use
« as a small parameter, o < 1.

At even lower temperatures, the activated hopping (AH)
crosses over to the Efros-Shklovskii (ES) law,

o = ozexp[—(Tes/T)'*1 (T K ), 5)
with o3 ~ €2 /hi. We show below that in this regime,
Tis = a A(A/ TP « A, (6)

and the temperatures associated with the crossover between
the different regimes are

Ty = a A /A, (7
T =’ AT/ A, ®)

Above we assumed that metallic gates are far enough from
the semiconductor so that there is no screening of electron-
hole Coulomb interaction leading to a crossover between the
ES and Mott law of variable-range hopping. Such crossover
happens when the hop length becomes larger than the distance
to the gate [48,49].

Similar results for all three mechanisms of conductivity are
obtained below for thin films of 3D topological insulators.
However, such a three-mechanism sequence is not observed in
most experiments [5-27,29,30]. Instead, experiments tend to
report an activated conductivity with activation energy much
smaller than A.

Here we suggest a possible explanation for such low ac-
tivation energies. We show that at I'/A > (I'/A),, electrons
are not localized in single puddles and the first two regimes of
conductivity are absent. For the general case presented above,
(T'/A). = a~%*1, The only remaining mechanism is the ES
law with very small 7gs. This means that the low-temperature
“local activation energy” is much smaller than A. Such a
theory predicts that the prefactor should be close to e?/h.
This prediction agrees with some experiments [16,19], but
disagrees with others [18,20].

FIG. 3. Schematic picture of interlocked “fingers” of neighbor-
ing puddles. Here the length of “fingers” a is of the order of the
puddle diameter. One can imagine that Fig. 1 shows a vertical cross
section of Fig. 3.

III. FRACTAL GEOMETRY OF PUDDLES

In this section, we briefly review some geometrical fractal
properties of 2D puddles at I" 3> A [50]. The characteristic
size (diameter) of a puddle is given by

a=rT/A), €))

where v = 4/3 and X is the electron screening radius. The
perimeter of a puddle is

L=a(/A)=rT/A), (10)

The perimeter L is parametrically longer than the diameter a
because puddles have many “fingers,” which are interlocked
with other fingers of neighboring puddles (see Fig. 3). The
area of a puddle is given by

A=22(T/A)>F, (11)

where B = 5/36. The typical separation distance between
nearest-neighbor puddles is

w = AA/T. (12)

In order to estimate I" and A, we can use the self-consistent
theory of Ref. [51], which dealt with the disorder potential at
the surface of a bulk TI created by charged impurities with 3D
concentration N. In our case, the substrate plays the role of
the TI bulk and the two-dimensional semiconductor plays the
role of the TI surface. The band gap A that exists in our case
is not important for determining the values of I" and A when
I' > A. To begin, we relate I" to A as the typical Coulomb
energy created by charge fluctuations in a volume A3:

)
= —(NNAHY2 (13)
KA
This relation leads to a typical 2D density of states,
g =2’ /e", (14)

which in turn leads to the screening radius,

K 62

A= — = ——. 15
e2g  a*T (1%
Solving Egs. (13) and (15) for I" and A, we get [51]
2173
=, (16)
ka3
A= V3N, (17)
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IV. TUNNELING ACTION, LOCALIZATION
LENGTH, AND CONDUCTANCE

Let us now calculate the hopping conductivity of the sys-
tem of fractal metallic puddles separated by narrow insulating
gaps shown in Fig. 1. In this section, we estimate the dimen-
sionless tunneling action S. The value of S is determined by
the tunneling length r = A/eE in the spatially varying electric
field E created by impurities,

rA A? 18

v eEhv’ (1%
It is tempting to use I' /eA for E and arrive at S = o~ (A/T)?.
However, the electric field has strong fluctuations at short
distances, so the typical electric field depends on the tunneling
distance r. Since a cube of size r has a typical excess impurity
charge ~/Nr3, the typical electric field associated with the
length scale r is E(r) = e(Nr®)!/2/kr?, which grows with
decreasing r. Also, due to the large perimeter length L of
puddles, we can find rare places where the random electric
field is created by a larger-than-average number of excessive
charges, M > (Nr3)!/2, leading to even larger electric field
E(r) = eM/xr?. Below we find the optimal values of M and r
which determine S, and we arrive at a value of S much smaller
than the naive estimate quoted above. Our optimization pro-
cedure is a mesoscopic version of the optimization used in
the theory of the interband absorption of light in compensated
three-dimensional semiconductors [2,52]. It is also similar to
the theory of fluctuation-induced excess currents in reverse
biased p-n junctions [53].

Below we use S to calculate the localization length &
that determines hopping transport. Thus, we are interested in
fluctuations of the electric field which, although rare, happen
roughly once at every interface between nearest-neighboring
puddles. Thus,

MZ
(L/A)exp [_W] =1. 19)

Here we use the Gaussian probability of finding net charge M
in a cube of size r. For tunneling across the gap 2A, we need
the potential difference across the cube Me? /kr = A. In other
words, r = r(M) = Me*/k A. Substituting (M) into Eq. (19)
and solving for M gives

_a X(A/TY
~ In[(T/A)]

which at I" 3> A corresponds to r(M) < w < A.
Substituting the electric field E = Me/kr*(M) into the
tunneling action given by Eq. (18), we have

-1 3
— w ~ a—l(A/F)34/9. (1)
In[(T'/A)"/]
In the last step, we used the power-law approximation In x ~
x!/3, which is valid for x € (3, 100) with accuracy better than
30%.

Now we can calculate the electron localization length &,
which we need below to calculate the hopping conductivity.
Consider a tunneling path with a displacement x >> a. The
action associated with this path is dominated by the action for
tunneling across the narrow insulating gaps between puddles,

(20)

which the electron must cross every time it displaces across
one puddle diameter £. Consequently, the total action of the
tunneling path is Sx/a = x/&, where

&£ =a/S =aa(l/A)*°, (22)

Notice, however, that the fast decrease of S with growing
I'/ A leads to a fast increase of the dimensionless conductance
between two neighboring puddles,

G = (L/A)exp(=9), (23)

so that we get G = 1 at some critical value (I'/A).. Substitut-
ing Eq. (21) into Eq. (23) and setting G = 1, we arrive at an
estimate for the critical disorder strength [54],

(T/A)e = a2, 24)

valid for o € (1.2x107#,0.12). This range of « is obtained
by substituting Eq. (24) into the requirement for the argument
of the logarithm (I'/A)"/3 e (3, 100) [55].

Atlarger I'/ A, the localization length grows exponentially
as £ = ae®. This growth leads to a dramatic growth of the
conductivity, which we dub an “insulator-almost metal tran-
sition” (IAMT), if the sample size is much larger than &. For
a sufficiently small sample, (I"'/A),. effectively plays the role
of disorder-induced insulator-metal transition.

V. HOPPING CONDUCTIVITY

At moderate disorder when 1 < I'/A < (I'/A)., electrons
are well localized within a single puddle and the temperature
dependence of the conductivity follows the three-mechanism
sequence described above, for which with decreasing temper-
ature the activated conductivity with activation energy A is
replaced first by AH and then by the ES law. In this case,
the system is similar to a network of densely packed metallic
granules separated by a thin insulating matrix with Coulomb
impurities, and we can follow the calculation of their conduc-
tivity [46,47].

Let us start from the discussion of AH conductivity at
A/T > SorT «T;y =A/S. [One arrives at Eq. (7) for T}
with the help of Eq. (21).] In this case, the charging energy of
apuddle E¢ replaces A as the activation energy for conductiv-
ity. In the case of large I' /A, we study the fractal structure of
puddles which leads to a peculiar expression for E¢, smaller
than the standard expression Ec = ¢?/ka. Namely, we are
going to show that

A

E- = .
¢ kal’

(25)
By substituting Eqgs. (9) and (15) into Eq. (25), one arrives at
Eq. (4). Let us illustrate how this happens by comparing the
self-capacitance of an isolated puddle, Cy ~ ka, with the ca-
pacitance C of the same puddle surrounded by other puddles.
In the latter case, because our puddle has metallic properties,
an excess electron charge e spreads to the border (perimeter),
while neighboring metallic puddles provide opposite charge
on the other side of the border. Thus, all of the electric field
is concentrated at the border between two puddles, mostly
between the long fingers of the electron and hole puddles
shown in Fig. 3.
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This mechanism of enhanced capacitance was recognized
by the electrical engineering community [56]. In our system,
it means that C ~ xL, and Ec = ¢?/C leads to Eq. (29).

The use of the activation energy E¢ is justified when it is
larger than the energy level spacing in a puddle. The level
spacing is given by

§ = (gA)" = o} (A/T)30A, (26)

where g is the 2D density of states (DOS) given by Eq. (14),
and A is the area of a puddle given by Eq. (11). Therefore, the
ratio 8/Ec = (A/T)"/3 « 1 and our use of E¢ is legitimate.

Let us now consider the ES conductivity which replaces
AH at low temperatures. In the ground state, each puddle
i of our system is charged by a random fractional charge
lgi| < e/2. This charging happens because some impurities
contribute their potential to neighboring puddles effectively
by sharing their charge between neighboring puddles, so that
each puddle effectively gets a fraction of impurity charge e.
On the other hand, electrons contribute their integer charge
e to their puddles. Fractional charging provides background
disorder and creates a random potential that results in local-
ized electron states and enables the formation of the Coulomb
gap around the chemical potential [46,47]. This Coulomb gap
leads again to conductivity described by the ES law in the
low-temperature limit.

We can calculate the constant 7gg in the ES law start-
ing from the standard expression Tgs = e*/k& [2,28]. Using
Eq. (22) for &, we arrive at Eq. (6). We see now that Tgg << A.
Equating (Tgs/T)"/? to Ec/T with the help of Eq. (6), we
arrive at the expression of 75 as Eq. (8).

VI. THIN FILM OF 3D TOPOLOGICAL INSULATOR

In previous sections, we dealt with a general model of a
trivial 2D semiconductor with gapped Dirac spectrum, given
by Eq. (1). In this section, we concentrate on the special case
of a thin film of 3D TI, where the narrow gap 2A can be a re-
sult of the hybridization of surface states on opposite surfaces
of the film [8,9,33-39] or may be created by a finite concentra-
tion of magnetic dopants such as Cr [10-20,40,41]. Because
of the promise of such films to achieve metrological precision
of the quantum anomalous Hall effect [11,13,16,19,20,31,32]
and the quantum spin Hall effect [9,33—35], in this section we
are more specific with material parameters and numerical
estimates.

We have in mind TI thin films based on
(Biy Sby_,)2Tes [8], or (Biy Sbi_,)2 (Tey Sei—y)3 [9], which
have very large dielectric constant ¥ ~ 200 [57-59]. Using
k ~ 200 and the Fermi velocity of TI v ~ 4x 103 m/s [60],
one gets o ~ 0.027. We assume that such a film of width
d ~ 7 nm is deposited on a substrate with much smaller
dielectric constant k, < &, so that the electric field created by
Coulomb impurities residing inside the film is trapped within
the film [61-64]. This trapping slows down the decay of the
Coulomb potential with distance and enhances the role of
impurities. TI films typically have a large (N ~ 10!° cm™3)
concentration of Coulomb impurities, which allows us to
study only their effect and to assume that impurities inside
the substrate play no role.

As in the previous section, we calculate the tunneling
action S and the critical ratio (I'/A)., and we describe the
hopping conductivity of the film. According to Ref. [64], due
to the peculiar electrostatics of TI films, the expression of I"
is the same as Eq. (16), while the expression for A becomes

r=a 3WNd*)Vq, 27

which is valid if . > d. Using the above estimates of «, d, and
N, we get & ~ 50 nm, so that this estimate is valid.

Notice that the electric field in the plane of the film created
by charge fluctuations in a disk of radius r and thickness d is

given by
~Nrid N
g=orae ¢ (28)
krd k\V d

which turns out to be independent of r. Therefore, there is no
enhancement of the electric field at scales shorter than A, as
there was in Sec. IV. Substituting Eq. (28) (or, equivalently,
E =T /e)) into Eq. (18), we arrive at the action

wA  AA? |

= — o V3NIHVS(AIT)? 29
i~ ol Y (Nd”) "P(A/T) (29)
for tunneling between neighboring puddles. However, the
electric field E = eM/«kAd can still be enhanced by a rare
fluctuation of the number of charges M > (NA2d)'/? with
Gaussian probability exp(—M?/NA2d). This replaces Eq. (19)
by

2
— | =1 30
v 0
Solving the above equation, we obtain the largest M available

in the perimeter,

M = {NA\2d In[(I"/A)3 1312, (31)

M
(L/1)exp [—

Now substituting the electric field E = eM/«kAd into the ac-
tion Eq. (18) gives
()[_1/3(Nd3)1/6(A/F)2 _

— —1/3 3\1/6 43/18
5T Ty S WA

(32)

which is smaller than the action given by Eq. (29). In the last
step, as in Sec. IV, we used the power-law approximation
Inx = x'/3 valid for x € (3, 100) with accuracy better than
30%.

Substituting Eq. (32) into the expression of G, given by
Eq. (23), and setting G = 1, we arrive at the critical point [65],

(T'/A)e = a” PO Nad*HVP. (33)

Using the estimates o ~ 0.027, N ~ 10°cm—3 and d = 7 nm,
we get (['/A). = 1.6.

Let us switch to the hopping conductivity of the thin TI
film and start from the charging energy of a puddle. Similar
to Sec. III, the capacitance of a puddle within the film is
determined by the long border of the puddle with neighboring
puddles. Near the border, there are two stripes of length L and
width A with charges —e and e. But now, the electric field at
the border is concentrated in the film of width d < A with the
large dielectric constant «. This changes the capacitance of the
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puddle border to C ~ «L(d/A) and leads to
Ec = (€’ /kd)(A/L) = (€*/kd)(A/T). (34)

At lower temperatures T < T, the conductivity obeys the
ES law with the characteristic temperature 7Tgs = &2 /K.,
where £ = a/S. Note that here we use k. because, at large
distances, the electric field lines leave the film and go through
the environment. Using Eqgs. (9) and (32), we get

Tis = a(k [k )A(A /TP, (35)

Equations (35) and (33) show that in TI films, as in trivial
semiconductors [cf. Egs. (6) and (24)], a reduction of 7Tgg and
a crossover from strong localization to practically metallic
conductivity happens dramatically quickly when I' exceeds
A.

We now estimate the characteristic energies I', A, E¢, Tgs,
T1, and T for TI thin films based on (Bi, Sb;_,)> (Te, Se;_y)s.
Using « =200, « = 0.027, and N = 10" cm™3, we have
[' >~ 17 meV. The hybridization gap is related to the thickness
by A = Age~ 4% with Ay = 0.5 eV and dy = 2 nm [9]. For
example, ifd = 7nm, then ' >~ 17 meV, A >~ 15meV, § >~ 3,
Ec >~ 0.8 meV, and Tgs ~ 130 K (here assume that the film
has boron nitride on both sides and use k., = 5). Temperatures
Tih=A/S~60Kand 75 = Eé/TES = 0.6 K are obtained by
equating Egs. (2) to (3), and (3) to (5), respectively. In this
case, apparently ES conductivity starts when (Tgs/T)"/? ~
15 so that the ES law is hardly observable because of very
large resistance. Thus, observable activation energy is given
by Ec ~ 0.05A.

In slightly thicker films with d > 8 nm, the half gap
A(d) <9 meV and I'/A > (I'/A),, so that they are almost
metallic and show ES conductivity with much smaller 7gs.
On the other hand, one can show that in thinner films, d <
7 nm, for which A > T activation energy E. = ¢?/kd and
Tss = a(k/Kk.)A so that practically, conductivity is similar to
films with d = 7 nm. Notice that critical thicknessd = d. =7
nm is very sensitive to values of Ay, N, «, «, and, most
importantly, dy, which are different for different materials.
This can explain the differences between experimental results
in Refs. [8,9].

For the case of magnetically doped TI thin films, the ex-
change half gap A induced by magnetic impurities is not
directly related to d and is of the order of 20 meV [19,20,45],
so that we have practically the same numbers as in the previ-
ous example.

VII. SUMMARY AND CONCLUSION

In this paper, we have considered the temperature-
dependent conductivity of a two-dimensional insulator sub-
jected to the random potential created by Coulomb impurities
in the substrate. Our primary results can be summarized as
follows. First, the random potential of charged impurities
necessarily produces large band bending. We focus here on
the case where the impurity concentration is large enough
that the disorder potential I" > A, and the system can be
described as a network of large and closely spaced fractal pud-
dles (Fig. 1) separated by narrow insulating barriers (Fig. 3).
This case is characterized by the “three-mechanism sequence”

of temperature-dependent conductivity illustrated in Fig. 2.
Only the highest-temperature regime has an activation energy
E, equal to half the band gap A. The middle regime, with
activated hopping between puddles (AH), exhibits a paramet-
rically smaller activation energy whose value depends on the
impurity concentration, while the lowest-temperature regime
corresponds to Efros-Shklovskii conductivity, which may ap-
pear as an even smaller activation energy when measured over
a limited temperature range.

Second, when the impurity concentration N exceeds some
critical value, the tunnel barriers between puddles become
thin enough to be nearly transparent, and electrons are de-
localized across many puddles. In this limit, the localization
length grows exponentially with increased disorder, and the
corresponding activation energy falls exponentially, so that
in mesoscopic samples one effectively has a disorder-induced
insulator-to-metal transition.

Our results have implications for a wide variety of exper-
iments on 2D electron systems with a narrow energy gap.
Some of these include 2D and thin 3D TIs, Bernal bilayer
graphene with a perpendicular displacement field, and twisted
bilayer graphene, as mentioned in Sec. I. In such systems,
the temperature-dependent conductivity is often used as a
primary way to diagnose the magnitude of energy gaps. Our
results here suggest that such studies suffer an essentially
unavoidable limitation, since the apparent activation energy
E, at low temperature has no simple relation to the energy gap,
and, in general, E, can be taken only as a weak lower bound.
No wonder that the transport activation energy in many cases
is 100 times smaller than the value expected theoretically or
measured by probes such as optical absorption or tunneling
spectroscopy.

In principle, one can infer the band gap by measuring the
activation energy at the highest-temperature regime. However,
the existence of this regime practically requires a low enough
disorder that electron and hole puddles are small and well
separated from each other. Even in this case, experiments
using transport to estimate A should first demonstrate two
distinct regimes of constant activation energy, and then use
only the value from the higher-T' regime as an estimate of A.

The existence of an apparent disorder-induced IMT at
I'/A > (I'/A). is an especially striking result of our analysis.
For conventional insulators, this apparent transition cannot be
called a true IMT, since in 2D the zero-temperature conduc-
tance flows toward zero in the thermodynamic limit for any
finite amount of disorder [66]. However, the situation may be
different for thin TI films, since the spin-orbit coupling of the
TI surface states permits a stable metallic phase [67,68]. A
full theory of this IMT in TI films is beyond the scope of our
current analysis.
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APPENDIX: ACTIVATION TO THE CLASSICAL
MOBILITY EDGE

1. Percolation-based argument for E, = A

In this Appendix, we consider the process of thermal acti-
vation of electrons from the chemical potential to the classical
mobility edge. We show that, generically, this process leads to
an activation energy

E, = |Epe — ul, (AD)
where Ep. = £A represents the mean energy of the nearest
band edge (conduction band or valence band) and u is the
chemical potential, both defined relative to the midgap [69].
In the maximally insulating state, where pu = 0, this equa-
tion gives

E, = A, (A2)
as in the nondisordered system.

To show this result, we first consider the case u = 0. In this
case, the mean energy of the conduction-band edge is +A and
the mean energy of the valence-band edge is —A, although
the disorder potential causes both band edges to wander in
energy as a function of position (see Fig. 1). Let us now
consider the process of drawing spatial contours of constant
energy E for one of the two band edges (say, the conduction
band). The contours corresponding to E = 0 are small closed
curves which surround electron puddles. As the energy E is
increased, these contours grow in diameter and an increasing
fraction of the system’s area is inscribed within such con-
tours. This inscribed area corresponds to the regions of the
system that are accessible to conduction-band electrons with
energy E.

At some point, as the contour energy E is increased,
the area inscribed within contours becomes large enough
that it comprises half of the total area of the system. At
this energy E,, there is a percolation transition, such that a
conduction-band electron with £ > E, can move freely across
a macroscopic distance and contribute to bulk conduction. The
energy E, is therefore equal to the position of the classical
mobility edge for the conduction band, and the activation
energy for this process E, = E,. That percolation occurs when
half the area of the system is encompassed by contours can be
argued simply on the basis of symmetry: in two dimensions,
it is not possible for a continuous percolation cluster and
its complement to percolate simultaneously. Thus the critical
area fraction for a continuous and symmetric random potential
is equal to 1/2 [2].

Thus, the energy of activation to the conduction band is
equal to the energy at which half of the system’s area is acces-
sible via conduction-band states. For a symmetric potential,
this energy corresponds exactly to the mean energy of the
conduction band, and therefore E, = A, as announced above.

This same argument can easily be extended to the case
where the chemical potential is not at zero, but is instead
at some finite energy u relative to the mean position of the
midgap. The percolation level E, remains unchanged relative
to the midgap, and thus the energy of activation to the conduc-
tion band is A — u. The energy of activation to the valence
band is A + u.

Thus, the activation energy for activation to the nearest
mobility edge is identical to what it would have been in
the nondisordered case. Its origin, however, is nontrivial and
involves a symmetry of percolation in a two-dimensional con-
tinuous potential. In three dimensions, for example, there is no
such symmetry since a given space and its complement may
percolate simultaneously. Consequently, the activation energy
for percolation is significantly smaller than the difference in
energy between the chemical potential and the mean position
of the closest band edge, E, ~ 0.3|Epe — 1| [3,4].

2. Computer modeling

In order to confirm Eq. (Al), we consider a simple
computer model of a 2D electron system of dimensions
surrounded by a three-dimensional environment containing
charged impurities. We simulate the electron system as a
square grid of Ly x Ly discrete points, embedded as the mid-
plane of a cube containing Lg charged impurities. We define
our coordinates such that the 2D electron system comprises
the x-y plane, while impurities are uniformly and randomly
distributed within the region —Ly/2 < x,y,z < Lp/2 (im-
purities are not constrained to reside at integer values of
X,¥,2). A given discrete point i in the x-y plane may have
charge ¢; = —1,0, 1, with the values corresponding to the
location of the chemical potential relative to the conduction-
band and valence-band edges at site i. Specifically, ¢; =
—1 corresponds to the chemical potential being above the
conduction-band edge, g; = +1 indicates that the chemical
potential is below the valence-band edge, and ¢g; = 0 if the
chemical potential is within the band gap. The corresponding
semiclassical Hamiltonian for this system is

H=Y ¢Mq—-2Y g+ =

i it Y

(A3)

where 7;; is the distance between the sites i and j in the x-y
plane. The quantity ¢;"" represents the potential created by
bulk impurities at site i, and is given by

imp

g =3 I

I
X ik

(A4)

Here, r;; represents the distance between the bulk impurity &
and the site i; the impurity charge is g, © = 1. The corre-
sponding energies of the conduction-band and valence-band
edges at site i are

EF® = —¢: + A, (A5)
EY® = —¢; — A, (A6)
where
e 45 A7
i =9+ ; . (A7)

is the total electric potential at site i. The intent of this model
is to describe the spatial meandering of the band edge for a
2D system surrounded by bulk impurities. Once the corre-
sponding energies EI-CB’ VB are known, we can calculate the
energy E, that corresponds to the classical mobility edge for
the nearest band. Specifically, E, corresponds to the minimal
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FIG. 4. An example of the energy Ecp of the conduction-band
edge as a function of position, as given by our numerical simulation.
Light (yellow) colors indicate high energy, and dark (blue) colors
correspond to low energy. The black contour indicates the energy
of the percolation level, Ecg = A. This example corresponds to
A =5,Ly=50.

energy such that there exists a percolating path across opposite
faces of the system using only lattice sites with EC® < E,,.
The model discretizes the electron system on a length scale
given by the mean distance between bulk impurities. The
corresponding correlation length of the random potential is
given by

A2K2
T 27éN

and so such discretization is unimportant when A /(e*N'/3 /i)
is large. We use nearest-neighbor percolation on the square
lattice, but since the potential is correlated over length scales
much larger than the lattice constant, this choice is unimpor-
tant in the limit of large A.

In order to find the energies , we first need a so-
lution for the charges g; of each site i in the ground state.
Finding such a solution is a difficult numerical problem. We
use the numerical algorithm described in Refs. [2—4] to find a
pseudo-ground state that is minimized with respect to chang-
ing any one or two values of ¢; simultaneously. This algorithm
is known to give a good approximation for the properties of
the ground state. The resulting solution for the charge g; of
each site allows us to define the energies El.CB’ VB, and thus to

(A8)

EiCB, VB

1% 1
0.8 T 1
Losf ST~ 1
S o
0.4 ¢ o~ 1
o~
0.2 e _ |
(a) Tee
0 L | I I Co,
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FIG. 5. Numerical results for the activation energy as a function
of (a) the chemical potential ¢ and (b) the band gap A. The dashed
lines in (a) and (b) correspond to Eqs. (A1) and (A2), respectively.
Both plots use a system size Ly = 50.

find the percolation level for both the conduction band (CB)
and valence band (VB). We iterate this procedure over many
random choices of the impurity positions, and average over all
such iterations.

We also examine the dependence of the activation energy
on the chemical potential x. The chemical potential can be
tuned by adjusting the net concentration of charged impurities,
which mimics the effect of a gate voltage. ;© = 0 corresponds
(on average) to equal numbers Lg/ 2 of + and — impurities,
since we are defining u relative to the average energy of the
midgap, which at site i has an energy —¢;. We can thus define
u for the system as

1
=g Z $i. (A9)
This chemical potential is calculated after the pseudo-ground
state is determined. We then report E, relative to this chemical
potential.

Figure 4 shows an example plot of the energy of the CB
bottom, EB, as a function of position. Figure 5 gives the cal-
culated activation energy as a function of chemical potential
and band gap. It closely matches Eq. (A1).
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