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ABSTRACT: We explore the extended Koopmans’ theorem (EKT) within the
phaseless auxiliary-field quantum Monte Carlo (AFQMC) method. The EKT
allows for the direct calculation of electron addition and removal spectral
functions using reduced density matrices of the N-particle system and avoids
the need for analytic continuation. The lowest level of EKT with AFQMC,
called EKT1-AFQMC, is benchmarked using atoms, small molecules, 14-
electron and S4-electron uniform electron gas supercells, and a minimal unit
cell model of diamond at the I'-point. Via comparison with numerically exact
results (when possible) and coupled-cluster methods, we find that EKT1-
AFQMC can reproduce the qualitative features of spectral functions for
Koopmans-like charge excitations with errors in peak locations of less than 0.25
eV in a finite basis. We also note the numerical difficulties that arise in the
EKT1-AFQMC eigenvalue problem, especially when back-propagated
quantities are very noisy. We show how a systematic higher-order EKT

AFQMC and EKT

EKTI-AFQMC
HE

BAFQMC
EOM-IP-CCSD

approach can correct errors in EKT1-based theories with respect to the satellite region of the spectral function. Our work will be of
use for the study of low-energy charge excitations and spectral functions in correlated molecules and solids where AFQMC can be

reliably performed for both energy and back propagation.

1. INTRODUCTION

The dynamical response to external perturbation is one of the
most powerful means of experimentally probing molecules and
materials. Examples include angle-resolved photoemission
spectroscopy, electron energy loss spectroscopy,” and inelastic
neutron scattering,3 each of which encodes the excitation
spectrum of a many-body system. The theoretical description of
such experiments can be modeled in the linear response regime
by considering many-body Green’s functions.”” For example,
differential cross sections from direct and inverse photoemission
experiments can be related to the retarded single-particle
Green’s function.® In a general sense, these observables are
connected to spectral functions describing electron removal and
addition via the single-particle Green’s function.””

Given the above facts, the theoretical description of dynamical
response properties have been dominated by Green’s function-
based approaches mainly due to the direct access to the spectral
function that they afford.”® There has also been a sizable effort
to construct spectral functions based on wave function methods.
From the quantum chemistry community, there have been
developments of coupled-cluster Green’s function’ ' or
equation-of-motion coupled-cluster methods.'®"” These and
related approaches have distinct strengths and weaknesses in
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terms of both cost and accuracy and continue to be actively
pursued.

Another useful path to the description of spectral information
is based on projector quantum Monte Carlo (PQMC)
approaches.®'” PQMC methods provide a highly accurate
means to simulate the ground-state properties of correlated
solids.”” Unlike the aforementioned wave function-based
approaches, PQMC methods do not provide direct access to
real-time and real-frequency Green’s functions. This is a direct
consequence of the imaginary-time propagation at the heart of
all PQMC approaches. A popular way around this hurdle is to
first obtain the imaginary-time Green’s function and then
perform analytic continuation to obtain the real-frequency
Green’s function.”' ™’ Unfortunately, analytic continuation is
numerically ill-conditioned, and the methods to perform
analytic continuation such as the maximum entropy method”"**
can exhibit difficulties in resolving sharp features in the real-
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frequency spectral function even if high-quality imaginary-time
Green’s functions are used as input.”*~>° Therefore, it is highly
desirable to develop an alternative means to obtain spectral
functions which can work with PQMC methods without
sacrificing its ground-state accuracy.

The approach that we will examine in this work is called the
extended Koopmans’ theorem (EKT), which was first proposed
in refs 31—33. The EKT generalizes the KT in Hartree—Fock
(HF) theory for arbitrary many-body wave functions. Its
working ingredients are reduced density matrices (RDMs) for
an N-particle system, and it produces approximate (N — 1)-
particle and (N + 1)-particle wave functions even without the N-
particle ground-state wave function. Due to this desirable
teature, EKT methods have been widely used as a means to
obtain spectral information for approaches for which one has
access neither to real-time Green’s functions nor wave functions.
Examples include direct RDM-based methods,”* density matrix
functional theory,35 natural orbital functional methods,***” and
second-order Green’s function methods.”® EKT has also been
explored with wave function methods such as configuration
interaction methods,” Moller—Plesset perturbation meth-
ods,*”*! orbital-optimized methods,”** and coupled-cluster
methods.** It is also a promising way for any QMC method to
compute excited state and spectral information if the necessary
RDMs can be constructed. The EKT has also been used to
obtain the quasiparticle band structure of silicon,* ionization
potentials (IPs), and electron affinities of atoms,*® the Fermi
velocity of graphene,” and quasiparticle bands of trans-
polyacetylene®” using VMC. Lastly, the EKT has been combined
with DMC to study similar systems.*®

A PQMC approach that can be readily combined with the
EKT is the phaseless auxiliary-field QMC (ph-AFQMC)
method.**7%° ph-AFQMC has emerged as a flexible, accurate,
and scalable many-body method. It imposes an approximate
gauge boundary condition (i.e., the phaseless constraint) on the
imaginary-time evolution of Slater determinant walkers,
completely removing the Fermionic phase problem.”” While
the resulting energy is neither exact nor a variational upper
bound to the exact ground-state energy,”’ many benchmark
studies have demonstrated the accuracy of ph-AFQMC and its
related variants.”>~®* Furthermore, with recent advances in local
energy evaluation techniques in ph-AFQMC,***° the cost for
obtaining each statistical sample scales cubically with the system
size, which renders it less expensive than many other many-body
methods. With the advent of the back-propagation (BP) method
in ph-AFQMC,*°**” with some additional effort one can
compute pure estimators for any operator, including those that
do not commute with the Hamiltonian. Therefore, one can
compute the relevant input for the EKT directly from ph-
AFQMC using the BP algorithm. This is the direction we pursue
in this work.

This paper is organized as follows. We first present the general
framework of the EKT, its most common form EKT-1, and its
extension, EKT-3. We then discuss how to obtain the relevant
input for EKT-1 using BP and ph-AFQMC. We assess the
accuracy of EKT-1-AFQMC on atoms (He, Be, and Ne) and
small molecules (FH, N,, CH,, and H,O). We further show the
qualitative failure of EKT-1 for the core spectra of a 14-electron
19-plane-wave model of uniform electron gas (UEG) and
illustrate the drastic improvement upon this result from using
EKT-3 on the same model. We also apply EKT1-AFQMC to a
54-electron 257-plane-wave model of UEG and a minimal unit

3373

cell model of diamond at the I'-point. We conclude and
summarize our most important findings.

2. THEORY

2.1. Extended KT. In order to compute quasiparticle gaps
and spectral functions, one must compute IP and electron
attachment energies along with the associated wave functions
(or at least squared amplitudes for spectral weights). While we
focus in this work on electron removal processes, we keep our
presentation of theory general so that it is also applicable to
electron addition processes.

In the EKT approach, we consider wave functions

17, = O, 1%, ) (M
where the electron addition operator é,f is
A + n
Ol/ = Z (c+)pya;
P )

for the v-th one-particle excitations, the electron removal
operator O, is

éy_ = Z (c_ pbﬁp
) (3)

for the v-th one-hole excitations, and |¥") is the N-particle
ground state wavefunction. We obtain the linear coefficients c,,”
by minimizing the following variational energy expression

N0, Y IH, O, 1)

AED+ — Ey(Nil) _ Ey(N) —

N0, Y O, 1)
4)
where we have defined
o oveny _ (IO, HO, )
’ N6, %) 6, 1w )
and assumed
7:{|IPON> = EO(N)|\P0N> ©

where E,™ is the N-particle ground state energy. We refer this
approach to as EKT-1. The excitation levels in eqs 3 and 2 can be
systematically increased to achieve a greater accuracy in

o . 34,68
principle at the expense of greater computational costs.
The next level of theory would incorporate 2hlp and 2plh
excitations instead of eqs 3 and 2, respectively

par (7)
and
0, =Y (c),, 444,
par (8)

These operators include EKT-1 excitations because when r =
g, we recover the 1h and 1p excitations, as in eqs 3 and 2. We
refer this higher level of theory to as EKT-3.

2.1.1. EKT-1. We consider the following Lagrangian for 1h and
1p excitations

L1c"T = (BN, TH, 6, 1Y) — e,"((c")8,¢” — 1)
)

https://doi.org/10.1021/acs.jctc.1c00100
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where S, is a pertinent metric matrix for normalization and €," is
a Lagrange multiplier. We note that

vo_ +
€ = +AE,

(10)

The normalization of ¥, N*!) is ensured by the constraint in
eq 9. The stationary condition of eq 9 with respect to (c,”)" then
leads to a generalized eigenvalue equation

v _ VU v
Fc, =€.8.c;

(11)

where the generalized Fock matrix is defined as (assuming that
¥,V is normalized)

(E),g = (HMa]IH, a,11%") (12)
and

(B, = (%Na,[H, al 1%, (13)

and the corresponding metric matrix S, is

(s- )pq Pq (14)
and

(St)pg = Gpg = Ly (15)
Here, I,, is the one-body RDM (1-RDM)

T, = (%Mala %) (16)

The electron attachment and IP simply follow €, = —EA and
€_ = —IP (assuming that v corresponds to the lowest energy
state for each particle sector). Then, the quasiparticle gap is
given as AE,, = €, — €_. We note that these Fock matrices are

not Hermitian unless [¥,") is an exact eigenstate of .
To provide more detailed expressions, let us define a generic
ab initio Hamiltonian

H=H, +H, (17)
with
H, = Z hpq“;aq
rq (18)
1 M aTA A
= zz <Pq|1’5> ;aq a4,
pars (19)

where h,, is the one-body Hamiltonian matrix element and (pql
rs) is the two-electron integral tensor in the Dirac notation.
Substituting eq 17 into eqs 12 and 13, it can be shown that F,
can be evaluated with the 1-RDM and the two-body RDM (2-

RDM)

(F_),, = —Z By (S2),, + Z (tqllrs)T,"
trs (20)
and
(B = Z hy (S, + Z (rtl|gs)L, T
trs
+ Z (8_),(prllgs)
s (21)
where the 2-RDM I is
L, = (%aja aa%") (22)
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and the antisymmetrized two-electron integral tensor is
defined as

(pqllrs) = (pqlrs) — (pqlsr) (23)

2.1.2. EKT-3. For many solid-state systems, including 1h or 1p
excitations only is not sufficient as the restriction to such
excitations would not be capable of describing satellite peaks.*
A straightforward way to obtain satellite peaks in addition to
dominant quasiparticle peaks is to include higher-order
excitations in the EKT ansatz. Thus, EKT-3 is the next level in
this hierarchy that can be attem ted. Although EKT-3 has been
mentioned in the literature’***’® and approximately imple-
mented (neglecting the opposite spin term) before,** to the best
of our knowledge, this work presents the first complete
implementation of EKT-3 along with numerical results.

The corresponding generalized Fock operator for the IP
problem reads

(F )y = (S5M13183 111, 41,8119 (24)
Using the SecondQuantlzatlonAlgebra package”' developed

by Neuscamman and others,”>”* we derived a complete spin-

orbital equation of the generalized Fock operator

Z (hla x}umakrt + hmaaknr: “

mlk)

(F—)ijk,lmn =~

+ hla l}namk _ h alk +h

ma t;n

hkn ij

na t]a

+ (kml|ab)T} *

ijn

—Z ((Im|ab)8,,I;" — (kll|ab)T;,""

ijn

— 2(kal|nb), '™

ia ™ = (Iml|ab)T;, ")

ijn

1 ¢ cbm
+ EZ ((mallbe)3, T, — (lallbe)5,, L,

abc
— (la||bc) l]nud’mk + (mal|bc) l]nud’lk
— (nallbo)T, ")
(25)
where the three-body RDM (3-RDM) is
D% = (9 V1/6763,0,8,1%") (26)
and the four-body RDM (4-RDM) is
rtfjkl"mpq <lP Nla akaT quﬁnamllP0N> (27)

The pertinent metric, (S_),g, 0 for this generalized
eigenvalue problem is

Ny~
(S—)pqr,stu la T T T

<IP p q 44,4 ﬁsllPON>

str

51—*51

ur— pq F

pqu

(28)

The storage requirement of the 4-RDM scales as O(N %), and
it becomes prohibitively expensive for more than 16 orbitals. To
circumvent this problem, we approximate the 4-RDM via a
cumulant expansion. The cumulant approximation to the 4-
RDM has been used in multireference perturbation theory and
configuration interaction methods previously.””’* In essence,
the 4-RDM is approximately constructed from four classes of
terms: (1) 1-RDM X 1-RDM X 1-RDM X 1-RDM, (2) 2-
RDMX1-RDM X 1-RDM, (3) 2-RDM X 2-RDM, and (4) 1-
RDM X 3-RDM. Interested readers are referred to ref 74 for
more details. To construct the cumulant terms, we wrote a

https://doi.org/10.1021/acs.jctc.1c00100
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Python code based on the Fortran code presented in ref 73. For
the systems we have investigated, we have found the error of the
cumulant approximation is insignificant, and we present results
with the reconstructed cumulant 4-RDM later in this work. We
further note that Farnum and Mazziotti have used a cumulant
expansion for both 3- and 4-RDMs in their EKT-3
calculations.”*

Practical implementations may be achieved using spin—
orbital expressions where we consider two spin blocks in c_
[(aaa) and (afff)] for removing an a electron

AT — vata A
O, = Z (c—)paq(,n, 4,99 p,
Foyla

AtA A
+ E c Ya'a a
( _)pa q/;r/i s q/; b,

XP7 (29)

Consequently, this leads to four distinct spin blocks for F:
(aaaaaa), (appaaa), (aaaapp), and (apfapp). These
explicit spin equations can be derived from the spin—orbital
expression in eq 25 by carrying out spin integrations for each

75
term.

2.2. Spectral Functions from EKT. We write the retarded
single-particle Green’s function in a finite basis as”

iGy(t, £) = 0(t — £ )(B {4, (1), 4, () )%"™) (30)
where 6(t) is the Heaviside step function. Assuming the H is
time-independent, we can write the Green’s function in the
frequency domain as

1 3
G2 (w + in) = (¥4 _ a1 Ny
i S (H—E™) +ip T
1
+ (¥Na! _ a Ny
° qw—(?—(—EO(N))+in v
(1)

where 7 is a small positive constant and E," is the ground-state
energy of the N-particle system.

The EKT approach offers a systematically improvable way to
approximate the evaluation of eq 31. This is because one can
form projection operators on the subspace of EKT excitations

b= 1w N (s, T (B N

™ (32)

where |¥,N*!) are approximate wave functions obtained via the
EKT as defined in eq 1 and $* is a metric in the pertinent space.
Using eq 32, we obtain an approximate G*

. 1 .
Gh(w + in) ~ (BNa P, - b,
H o - H-E™) +in
a, %)

+ (¥Na'p_ _ pawNy
Yo - (H - EO(N)) + in g
(33)

where E,(N) is the approximate ground-state energy. This
approximation can be systematically improved as higher-order
excitations are included in eqs 3 and 2. It is exact when ¥, "*')
spans the entire (N =+ 1)-particle Hilbert space. Substituting eq

32 into eq 33 and using f’if'[f’il‘{LNﬂ> = EuNilllI’yNil) (from
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eq S), we obtain the (approximate) Lehmann representation of
Green’s function

~ N+1

(W4, 1%,

~ N+1 |

. Wl
Gpg(®) = Z ~ (N+) = NN .
., o — (E, —E,) +in

CBM1aI8 e N )

~ (N—-1 ~ (N .
v O+ (Ey( - Eo( )) + in (34)

where we orthogonalized the eigenvectors by
N = 3N (8,
H (39)

Details concerning the numerical implementation of this
orthogonalization procedure are given in Appendix B.
A spectral function in a finite basis set can be computed from

1 .
qu(a)) = —;ql:ng)r Im[GIl}q(w + in)]

= A;q(w) + A;q(a)) (36)

where

A (@) = D0 (BNa, N (8 N )

v

x 8(w — (E,N) — E,M)) 37)
and

As (@) = 0 (BN e N s N a1 N)

x 8(w + (BN - E,M)) (38)

where A” and A" are the addition and removal single-particle
spectral functions, which describe inverse and direct photo-
emission experiments, respectively, in the sudden approxima-
tion.

Using the definition of eq 1, eqs 37 and 38 can be expressed in
terms of directly computable quantities, ¢,” (orthogonalized
eigenvectors) and I, in the case of EKT-1

K (o) = ) D& @60 - ) x (5, - T,)

(6, - T, (39)
and
A () =) D e (€)oo +e )L,
. (40)

Similarly, for EKT-3, 2-RDM naturally arises in the evaluation
of the spectral functions. The working equation for IP states is as
follows

A (@) =) Y LGP0 (@ ) ¥0(0 + € )

v ijklmn

(41)

It is straightforward to find similar equations for the EA states.
Furthermore, we note that the density of state (DOS) is
simply defined as

o) = A

M (42)

https://doi.org/10.1021/acs.jctc.1c00100
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where M is the number of single-particle basis functions. We
note that for solid-state applications, single-particle basis carries
an additional index for the crystalline momentum k, which can
be straightforwardly incorporated into the above formalism. In
such applications, it is useful to compute the momentum-
dependent DOS, g(k, @).

2.3. Phaseless Auxiliary-Field Quantum Monte Carlo.
We refer readers to Appendix A for a short summary of the
ground-state computation with ph-AFQMC. In ph-AFQMC,
the simplest way to evaluate the expectation value of an operator
O is using the mixed estimator

. _ (WO (2))
Olniea = (¥ ¥(7)) 43)
(¥lOly(2))
Z w(7) <‘1’(|)wyzr)>
Zi WI(T) (44)

where all relevant variables are defined in Appendix A. The
mixed estimator is an unbiased estimator only for operators that
commute with the Hamiltonian. For operators that do not
commute with the Hamiltonian, the mixed estimator can
introduce significant biases due to the approximate trial wave
functions that can be practically used. To overcome this, we use
the BP algorlthm48 666776 and write

©) ~ (Wl “HANp(z))

K=o (e~ “Hip (7)) (45)
(y()IOly(7))
. X7+ )7 )
ke Yw(T 4 k) (46)

To summarize, we propagate [¥) until ¥ + 7, storing the
walker wave function at time 7. We can then split the
propagation into k BP and 7 forward propagation, as in eq 46.
The back-propagated wave function is constructed by applying
walker’s propagators to the trial wave function from the x
portion of the path. Practically, the convergence of the
expectation value has to be monitored with respect to the BP
time «. It should be emphasized that in ph-AFQMC, the walker
wave function is a single determinant wave function.

It was found in ref 67 that the standard BP algorithm
described in eq 46 can yield poor results in ph-AFQMC when
applied to ab initio systems. The authors devised a number of
additional steps to reduce the phaseless error, the most accurate
of which was to partially restore the phase and cosine factors
along the BP portion of the path. In this work, we restore phases
along the back propagated path and along the forward direction.
Practically, this amounts to storing the phases and cosine factors
between [t — k, 7 + k] and multiplying these by the weights
appearing in eq 46. This additional restoration of paths along the
forward direction was not described in ref 67 but was used in
practice,”””* and we found it necessary to obtain more accurate
results for the systems studied here.

In EKT1-AFQMC, we directly sample F, using the back-
propagated estimator form. This boils down to the evaluation of
the 2-RDM appearing in eq 22 using the back propagated 1-
RDM via Wick’s theorem:

F "= l—‘pi’l—‘ts

I

ps-tr (47)
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With these ingredients, we can evaluate F, by contracting the
one- and two-body matrix elements with the back-propagated 1-
and 2-RDMs.

While efficient implementations are not the focus of our
efforts in this work, we mention the computational cost of
producing one back-propagated sample of F* and S*. A sample
of $* has the same overhead as computing a back-propagated 1-

RDM sample which scales as O(NM?), where M is the number of
orbitals and N is the number of occupied orbitals. The cost for
producing a sample of F* is more involved and depends on the
integral factorization that one chooses to use. Using the most
common integral factorization, that is, the Cholesky factoriza-

tion, it can be shown that the cost scales as O(M°X), where X is
the number of Cholesky vectors (also note that the 2-RDM is
never explicitly formed). With tensor hypercontraction,”*”?~**
the cost can be brought down to overall cubic. If one were to just
implement a matrix-vector product for iterative eigensolvers, the
Cholesky factorization can achieve cubic scaling per matrix-
vector product as well. The cost is increased in EKT3-AFQMC

where each matrix-vector product sample costs O(M°). 1t is
potentially possible to reduce this cost further by also factorizing
EKT amplitudes in a THC format, as is done in ref 81.

We leave the exploration of EKT3-AFQMC for the future
study and focus on EKT1-AFQMC in this work.

2.4. Uniform Electron Gas. Aside from small atomic and
molecular benchmarks, we also study the spectral properties of
finite-basis supercell models of the UEG. We assume atomic
units and use the spin—orbital representation. For readers
unfamiliar with the spin—orbital representation, we present the
spin-explicit Hamiltonian in Appendix C. The UEG Hamil-
tonian is usually defined in the plane-wave basis set, which gives
the one-body operator

WZ

and the electron—electron interaction operator is (in a spin—

orbital basis)

~ 1
K#0,K,K,

IKI? ¥
agak

(48)

X (49)

where K here is a plane wave vector and €2 is the volume of the

unit cell. In addition to ‘7:(1 and 7:(2 , there is a constant term that
arises due to a finite-size effect. Specifically, the Madelung
energy Ey; should be included to account for self-interactions
associated with the Ewald sum under periodic boundary
conditions*?

via
N
Ey=—
M=t (s0)
with
3 1/3
&= —2 X 2837297 x (—] N7V
47 (51)

where N is the number of electrons in the unit cell and 7 is the
Wigner—Seitz radius. We define the UEG Hamiltonian as a sum
of these three terms

Hype = Hy + H, + Ey (52)

The Madelung constant can be either included in the
Hamiltonian as written in eq 52 or it can be included as an a

https://doi.org/10.1021/acs.jctc.1c00100
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posteriori correction to the simulation done without it. When the
latter choice is made, the spectral functions have to be shifted
accordingly in order to compare the results obtained from the
former approach. The corresponding shift can be derived from a
shift, A, in the poles

¢

Ap = Ey(N — 1) — Ey(N) = 5 (53)

¢

Agy = Ey(N + 1) — Ey(N) = (54)

Regardless of whether we included the Madelung constant in
the Hamiltonian, there is an additional correction of —£/2 for
both IP and EA to remove spurious image interactions coming
from the excess charge created.®* Therefore, overall electron
removal poles are shifted by —£ and electron addition poles
remain the same.

For many molecular quantum chemistry methods, often the
two-electron integral tensor is assumed to be eightfold
symmetric. Practical implementations utilize this symmetry to
simplify equations as well. As such, without the eightfold
symmetry, molecular quantum chemistry methods would not
produce correct answers even though the UEG Hamiltonian
only contains real-valued matrix elements. This complication of
the UEG Hamiltonian becomes more obvious once we write it in
the form of eq 19 with

4

1
sy = ——F 5
{pglrs) QIK, - KPS

K,~K,

X (1 - 5KP,K,) (55)

The permutation between p and r or between g and s alters the
value of the integral tensor because of the Kronecker delta term.
This is a direct consequence of using a plane wave basis which is
complex, unlike the usual Gaussian orbitals. To circumvent any
complications due to this, we perform a unitary transformation
that rotates the plane wave basis into a real-valued basis. Namely,
for given K and —K (assuming K # 0), we use

1 (1 —i
V2L

We apply this transformation to every pair of K and —K in the
two-electron integral tensor in eq 55. The resulting transformed
integral tensor now recovers the full eightfold symmetry. One

can also transform observables such as spectral functions back to
the original basis using U’ when necessary.

(56)

3. COMPUTATIONAL DETAILS

All quantum chemistry calculations are performed with
PySCF,* which include mean-field (HF) calculations,
coupled-cluster with singles and doubles (CCSD), and CCSD
with perturbative triples (CCSD(T)). All one- and two-electron
integrals needed for ph-AFQMC were also generated with
PySCEF. ph-AFQMC calculations were mostly performed with
QMCPACK,*® and PAUXY®” was used to cross-check some
results.

We use a selected configuration interaction (CI) method
called heat-bath CI (HCI)* ™ to produce numerically exact
IPs within a basis whenever possible. Furthermore, we compute
the HCI IPs within EKT1 (i.e., EKT1-HCI) using the 1- and 2-
RDM from variational HCI wave functions along with eq 20.
Since there can be an inherent bias of EKT1 itself, we provide
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EKT1-HCI as an “exact” result for IPs within the limits of the
EKT1 approach. This can be used to quantify the phaseless and
BP errors in EKT1-AFQMC. In HCI, there is a single tunable
parameter, €, that controls the variational energy which is used
to select determinants to be included in the variational
expansion. We also use the 3-RDM of the variational wave
function to compute the 4-RDM via the cumulant con-
struction.”””* These 3- and 4-RDMs are further used to
construct the EKT3 Fock matrix in eq 25. This approach is
referred to as EKT3-HCI. The eigenvalues and eigenvectors of
the EKT3 Fock matrix (with its pertinent metric) can then be
used to produce IPs and spectral functions of EKT3. We tuned
€, to be such that the resulting second-order Epstein—Nesbet
perturbation energy is no greater than 1 mE, for every system,
except the 14-electron 19-plane-wave model of the UEG, where
we observed a PT2 correction of 3 mE, at r, = 4. This was found
to be sufficient to produce accurate EKT IPs for systems studied
here. All calculations are performed with a locally modified
version of Dice.**™"°

We used a time step of 0.01 au, and the pair branch pog)ulation
control method”' used the hybrid propagation scheme®® for all
ph-AFQMC simulations. For the small atoms and molecules and
14-electron UEG examples, we used 2880 walkers, while for the
S4-electron UEG, we used 1152 walkers. All calculations used
restricted HF (RHF) trial wave functions except for the charged
species where we instead used unrestricted HF (UHF) wave
functions. The exception to this was CH,, where we used the
same RHF orbitals for the charged species as we found that the
UHF solution broke spatial symmetry and led to a large
phaseless constraint bias. All AFQMC results are performed
with the phaseless approximation, so we simply refer ph-
AFQMC to as AFQMC in the following sections.

We adapted the standard dynamical Lanczos algorithm™ ™" to
obtain spectral functions of eq 52. Even by exploiting symmetry
and using a distributed sparse Hamiltonian, dynamical Lanczos
results could only be obtained for the smallest UEG system with
14 electrons in 19 plane waves, corresponding to an N-electron
Hilbert space size of 2.5 X 10° determinants. In the dynamical
Lanczos algorithm, one first obtains the N-particle ground state,
I¥,N), iterating within the Lanczos Krylov subspace. Ultimately,
our goal is to compute eq 36, which then requires another run of
the Lanczos algorithm. For an electron removal problem, we
pick an orbital index i and generate an initial vector in the (N —
1)-electron sector, If,) = 4,/¥,N) /(¥ Na/al¥,N). Each Lanczos
iteration then generates coefficients, {a,} and {b,}, for the
following continued fraction expression”””

1 (¥Nafa Ny
Aii(w: ’7) = _;Im . 22

92,93

z—ay,— -
z—a—

z—ay.

(87)

where z = E,™) — @ + i with some spectral broadening constant
7. We take a total of S0 Lanczos iterations to generate the
continued fraction coeflicients and this was enough to converge
the low-energy spectrum within the energy scale that is relevant
in this work.

4. RESULTS AND DISCUSSION

While the EKT approach is valid for both electron removal and
electron addition, for numerical results, we focus on electron
removal processes (IP energies and electron removal spectral
functions) for simplicity. We benchmark the IP energies from
the proposed EKT1-AFQMC approach over several small
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chemical systems and the finite-basis supercell model of UEG.
Furthermore, we also show promising improvements over EKT1
using EKT3-HCI in cases where satellite peaks are prominent in
the 14-electron 19-plane-wave UEG model. We use a “A
method” to denote a scheme, where we run the pertinent
method for both N- and (N — 1)-electron systems and obtain
the IP as an energy difference.

4.1. Small Chemical Systems in the aug-cc-pVDZ Basis.
In this section, we study seven small chemical systems (He, Be,
Ne, FH, N,, CH,, and H,0) that have well-documented
experimental IPs.”* We use the nomenclature FH for the
hydrogen fluoride molecule to distinguish it from the
abbreviation for HF. All geometries were taken from ref 94.
We used a relatively small basis set, namely, aug—cc-pVDZ,95 to
obtain good statistics in back-propagated estimators. We have
used more than 3000 back-propagated estimator samples in all
cases considered here, each of which requires a BP time of
greater than 4 a.u. This results in a total propagation time longer
than 1,2000 a.u., which is unusually long for standard AFQMC
calculations. The use of this basis set also allows for a direct
comparison between AFQMC and numerically exact HCI
within this basis set.

The goal of this numerical section is to quantify the three
sources of error in addition to the basis set incompleteness error
in EKT1-AFQMC based on simple examples where exact
simulations are possible. These three sources of error are as
follows:

1. Phaseless constraint errors. As mentioned, the phaseless
constraint is necessary to remove the phase problem that
arises in the imaginary-time propagation. However, due to
this constraint, the resulting ground-state energies and
properties (e.g., RDMs) are biased.

. BP errors. The BP algorithm incurs additional errors. This
was noted and studied in detail in ref 67. For instance, in
ref 67, it was shown that for neon, the phaseless error with
a simple trial wave function is negligible (below 1 mE,),
but the error in the one-body energy from the back-
propagated 1-RDM was around 5 mE;.

. EKT1 errors. While systematically improvable with
higher-order excitations, EKT1 is not an exact approach
to quasiparticle spectra unless all orders of excitations are
included. Nonetheless, for the first IP, it has been
numerically and analytically suggested that EKT1
approaches the exact IP in the basis set limit if the exact
1- and 2-RDM:s are used.’””*~"® Beyond the first IP, we
will show that EKT1 qualitatively fails to capture satellite
peaks that arise in the case of the core spectrum of this
model.

In Table 1, we present numerically exact first IPs of molecules
within this basis set using AHCI. The basis set incompleteness
error can be as large as 0.3 eV in these molecules, and therefore,
we will only compare AFQMC results to these numerically exact
results in the same basis set as opposed to comparing to the
experimental data. We do not expect the qualitative conclusions
of our study to change with larger basis sets.

4.1.1. Phaseless constraint Errors. Next, we assess the
phaseless bias in the N-electron system ground-state energy and
the error in the AAFQMC IP energies compared to the AHCI
IPs. In Table 2, we present numerical data that detail the
phaseless bias in these quantities. The ground-state energy error
is less than 0.04 eV, which is in the neighborhood of the usual
standard of accuracy, 1 mE,. Unfortunately, in many cases, (N —
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Table 1. Experimental First IPs (eV) and Deviation (eV) of
the Numerically Exact AHCI from These Results for
Chemical Species Considered”

experiment AHCI
He 24.59 -0.23
Be 9.32 —0.03
Ne 21.56 —0.13
FH 16.19 —0.12
N, 15.6 —0.34
CH, 14.35 —0.06
H,O 12.62 —-0.07

“AHCI employed the aug-cc-pVDZ basis.

Table 2. Deviation (eV) in the AFQMC N-Electron System
Ground-State Energy and in the First IP with Respect to the
Corresponding HCI Results®

deviation in the ground state deviation in IP

He 0.00 0.00
Be 0.01 —0.01
Ne -0.03 0.07
FH -0.03 0.07
N, —0.04 0.06
CH, -0.03 0.06
H,0 -0.03 0.04

“Statistical error bar of AFQMC is less than 0.01 eV, and therefore,
we do not present them here.

1)-electron systems incur as large a phaseless bias as do the N-
electron systems, albeit with an opposite sign of the error. Thus,
AFQMC does not benefit from a cancellation of errors for the IP
energy, which results in IP errors that are larger than those for
the ground-state energy. The largest IP error we find is around
0.07 eV.

4.1.2. BP Errors. We present the EKT1 results in Table 3. We
refer readers to Appendix B, where a detailed description of the

Table 3. Error (eV) in the First IP Obtained from EKT1-
AFQMC and the KT Relative to EKT1-HCI”

EKT1-HCI KT EKT1-AFQMC
He 24.36 0.60 0.02
Be 9.29 —0.87 0.06
Ne 21.48 173 —0.04
FH 16.13 1.58 0.01
N, 15.34 1.92 0.15
CH, 14.13 0.68 0.19
H,0 12.60 127 —0.04

“Statistical error bar of EKT1-AFQMC cannot be estimated without
bias (see the main text for discussion).””'%

EKT1 calculation is given. Theoretically “exact” EKT1 results
can be obtained by using exact RDMs from HCI. To quantify the
BP error of AFQMC (given that the phaseless error is very small
for these systems), we shall compare EKT1-AFQMC to EKT1-
HCI. We also computed simple KT IPs using HF and report
these results in Table 3. The error of EKT1-AFQMC is small for
most chemical species, but it becomes as large as 0.19 eV for
CH,, Even though the phaseless bias in the ground-state energy
was found to be very small (0.04 eV or less), EKT1-AFQMC
errors from using the back-propagated 1-RDM and the EKT
Fock matrix can be five times larger. Therefore, we attribute this
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error mainly to the BP error. Nonetheless, the comparison
against the simpler KT suggests that EKT1-AFQMC can readily
recover the correlation contribution to quasiparticle energies
with errors less than 0.2 eV in these examples.

We note that EKT1-AFQMC IPs do not have any statistical
error bars. This is not because these numbers are deterministic
but arises because EKT eigenvalues are not unbiased estimators.
This was also observed in a similar approach called Krylov-
projected full CI QMC. Interested readers are referred to ref 100
for details. In essence, eigenvalues of a noisy matrix where each
element is normally distributed are not normally distributed.
Therefore, statistical error bars are difficult to estimate and are
not simply associated with variances of Gaussian distributions.
Given the small statistical error bars (on the order of 3 X 10~ or
less) on the diagonal elements of the EKT1 Fock matrix and 1-
RDM, we expect that these results are reproducible up to 0.01
eV if one follows exactly the same numerical protocol given in
Appendix B.

4.1.3. EKT1 Errors. Finally, we discuss the inherent error of
EKT1 by comparing EKT1-HCI and EKT1-AFQMC against
AHCI as in Table 4. We also compare a more widely used

Table 4. Error (eV) in the First IP Obtained from EKT1-HCI,
EKT1-AFQMC, and EOM-IP-CCSD Relative to AHCI
(Given in Table 1) in the aug-cc-pVDZ Basis”

EKT1-HCI EKT1-AFQMC EOM-IP-CCSD
He 0.00 0.02 0.00
Be 0.00 0.06 0.00
Ne 0.05 0.02 —0.28
FH 0.06 0.07 —0.22
N, 0.05 0.20 0.14
CH, —0.15 0.04 —0.02
H,0 0.05 0.01 —0.15

“Statistical error bar of EKT1-AFQMC cannot be estimated without
biases (see the main text for discussion).””'%

approach called equation-of-motion coupled cluster IP with
singles and doubles (EOM-IP-CCSD) to gauge the magnitude
of EKT1 errors. Despite the fact that these are small molecules,
EKT3-HCI is not feasible with our pilot implementation
because there are too many orbitals to handle. Furthermore,

exact spectral functions are unavailable as our Lanczos
implementation is specialized to the finite-basis supercell
model of UEG. Since this is a benchmark on the first IP of
molecules, EKT1-HCI is expected to be quite accurate. This
expectation is due to the general belief that EKT1 with exact
RDMs yields exact first IP.””°~® Given this, the small errors of
EKT1-HCI in Table 4 are not surprising. The only exception is
CH, with an error of —0.15 eV, which we believe will still
approach the exact first IP in the complete basis set limit. This is
because the long-range behavior of exact density should be
related to the exact first IP in the basis set limit, as shown in ref
33. We note, however, that the same exactness may not apply to
any other states. EKT1-AFQMC appears to be as good as EKT1-
HCI, with an outlier for the case of N,. The error of EKT1-
AFQMC relative to EKT1-HCI is comparable to the error of
EKT1-HCI relative to AHCI in this basis set. EOM-IP-CCSD
generally does not work as well as the EKT1 approaches with a
maximum error of —0.28 eV on the neon atom. While these
finite basis set comparisons are informative, we emphasize that
more fair comparisons should be conducted in the complete
basis set limit and we hope to carry these out in the future.
Regardless, the EKT1-AFQMC results are encouraging.

4.1.4. EKT1 Spectral Functions. The main motivation for
performing EKT1 within AFQMC was to obtain spectral
functions. Poles alone can be obtained using the ground-state
AFQMC algorithm (ie, AAFQMC) by imposing a proper
constraint for excited-state descriptions. While the choice of
proper trials is a challenge for this purpose, such an approach
avoids the complications due to BP. However, spectral weights
cannot be obtained from AAFQMC. We show EKT1-AFQMC
spectral functions for FH and N, in Figure 1. Based on the results
shown in Table 3, EKT1-AFQMC is in good agreement with
EKT1-HCI for FH but not for N,. Therefore, comparing these
two cases is useful for understanding how BP errors are reflected
in spectral functions. In the case of FH, we do not see any visible
differences between EKT1-HCI and EKT1-AFQMC on the
plotted energy scale. However, for N,, we can clearly see some
deviation between EKT1-AFQMC and EKT1-HCI. Nonethe-
less, the main features of the spectral function are reproduced,
namely, three large quasiparticle peaks with the middle peak
being the largest. We note that there are peaks with very small
spectral weights in EKT1-HCI close to —30, —27, and =5 eV

(a) (b)
0.040 - EKTI-HCI 0.035 -
——=-== EKTI-AFQMC
0.035 - HE 0.030 1
FH

- 0030 0.025
>
2 0.025
8 0.020
£ 0.020
s 0.015
£ 0,015+
5 0.010 1
2 0.010 ’

0.005 - 0.005 -

0.0004 = | 0.000 -

-30 -20 -10 0 -30 -20 -10 0
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Figure 1. Electron removal spectral functions from various methods (EKT1-HCI, EKT1-AFQMC, and HF) of (a) FH and (b) N, in the aug-cc-pVDZ
basis set. Note that in (a), EKT1-AFQMC is right on top of EKT1-HCI on the plotted scale. A broadening parameter 7 = 0.5 eV was used.
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Figure 2. Electron removal spectral functions of the 14-electron in 19-plane-wave UEG model from various methods at r, = 0.5: (a) K= [0, 0, 0] and
(b) K=1[0,0,27/L]. In (a), note that EKT1-AFQMC, EKT1-HCI, and HF are right on top of each other. In (b), EKT1-AFQMC and EKT1-HCI are
right on top of each other. In both (a,b), Lanczos and EKT3-HCI are right on top of each other. A broadening parameter of 0.2 eV was used for all plots.

The location of the Fermi level is 158.6 eV.

and that these features these do not appear in EKT1-AFQMC.
We attribute this to a relatively large linear dependency cutoft
(107*) needed in EKT1-AFQMC to stabilize the generalized
eigenvalue problem, as explained in Appendix B. In both
molecules, there are insignificant differences between the EKT1
and HF spectra in terms of the peak heights, locations, and the
number of peaks with a broadening parameter of 77 = 0.5 eV.

4.2. Finite-Basis Models of the UEG. AFQMC has
emerged as a unique tool for simulating correlated sol-
ids.>>>7093 100 A model solid that describes the basic physics
of metallic systems is the UEG. The accuracy and scope of
AFQMC in studying the finite-basis supercell model of UEG has
been well documented at zero temperature and finite temper-
ature.””'?" Motivated by these studies, we investigate the
spectral properties of the model UEG within the EKT
approaches (EKT1 and EKT3). We do not make any
comparisons to known spectral functions in the thermodynamic
limit'**'*® as we are far away from the thermodynamic limit and
the basis set limit.

4.2.1. 14 Electrons/19 Plane Waves. The first example that
we consider is a relatively small UEG supercell with only 19
plane waves. It is far from the basis set limit and from the
thermodynamic limit. However, it is small enough for one to
produce unbiased EKT results using HCI and numerically exact
dynamical Lanczos results. We note that the spectral function of
the 14-electron 19-plane-wave UEG model at r, = 4 was first
presented in ref 16. We produced around 3000 BP samples,
which yielded the largest statistical error in the Fock matrix and
1-RDM on the order of § x 107

We consider two Wigner-Seitz radii, r, = 0.5 and r, = 4. Based
on our previous benchmark study of AFQMC on this system, we
expect that the phaseless error in the ground state at r, = 0.5 is
negligible, while the error is relatively more noticeable at r, = 4.°
Compared to the numerically exact energies, it was found that
the constraint bias in AFQMC is only —0.0118(6) eV at r,= 0.5
and 0.185(2) eV at r, = 4. Given this small ground-state bias, we
expect that the EKT1-AFQMC approach would be as accurate
as EKT1-HCI if good statistics and accuracy in the back-
propagated estimators can be achieved.

In Figure 2, we present spectral functions of this model at r, =
0.5 for two momenta. The first is at K = [0, 0, 0] which
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represents removal of an electron from the core shell of the 14-
electron 19-plane-wave UEG model. Core spectra have been
shown to have rich satellite features where different many-body
methods do not agree in terms of the precise satellite structure.'®
However, such features are very simple in a small supercell such
as this one. As can be seen in Figure 2a, we only have two peaks
from the Lanczos method. Neither of these peaks corresponds to
a single Koopmans-like excitation. Namely, they cannot be
found from a simple single ionization process that either HF
(i.e., Koopmans theorem) or EKT1 describes well. As a result of
this, HF, EKT1-AFQMC, and EKT-HCI all fail to capture the
peak split and only yield a single peak. The correlation effect is
very marginal in the sense that nearly no improvement was
observed with the EKT1 methods compared to HF.

A significant improvement can be made by incorporating
higher-order terms such as 2hlp excitations. In other words,
core ionization satellite states (up to leading order) require
excitations such as

At A |a
Z Crigay |ax—o
K'#0

(s8)

where Cy are the excitation amplitudes. All of these excitations
are included in EKT3. EKT3-HCI can nearly completely
reproduce the exact spectral function despite the use of the
cumulant approximation for the 4-RDM. The cumulant
approximation error is small, especially in weakly correlated
cases such as ;= 0.5 where the connected component of 4-RDM
is expected to be small. This was indeed found to be the case
when we compared EKT3 spectral functions constructed with
the exact 4-RDM and the cumulant approximation to the 4-
RDM in a truncated basis set calculation (i.e. with 12 plane
waves). The difference between the two is not visible on the
plotted energy scale. In Figure 2b, we emphasize that we observe
meaningful improvements even from the EKTI methods
compared to HF. K = [0, 0, 27/L] corresponds to the top of
the valence band corresponding to the first IP of the 14-electron
19-plane-wave UEG model. There is no satellite peak visible at
this momentum and the single peak found from the EKT1
methods is reasonable. The peak location of HF is displaced by
around +0.9 eV from the correct location, while the EKT1
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Figure 3. Electron removal spectral functions of the 14-electron in 19-plane-wave UEG model from various methods at r, = 4.0: (a) K= [0, 0, 0] and
(b) K=[0,0,27/L]. In (a), note that EKT1-AFQMC, EKT1-HCI, and HF are right on top of each other. In (b), EKT1-AFQMC and EKT1-HCI are
nearly on top of each other. A broadening parameter of 0.2 eV was used for all plots. The location of the Fermi level is 3.5 eV.

methods yield a peak shifted by around —0.6 eV. We note that
EKT1-AFQMC is practically indistinguishable from EKT1-HCI
for both momenta, which indicates a small phaseless bias, a small
BP error, and good statistics for the estimators.

A similar conclusion can be drawn for r; = 4, as shown in
Figure 3. For the core excitation spectrum in Figure 3a, we
observe the same split peak structure observed at r, = 0.5. We see
another smaller peak emerging on the left shoulder of the peak
near —12 eV. While EKT3-HCI is no longer exact, it reproduces
most of the features in the exact spectral function including the
emergence of the third peak. While EKT1-HCI and EKTI-
AFQMC agree well, there is no visible improvement over HF.
The EKT1 methods all yield a single peak, which is qualitatively
wrong. The valence excitation structure illustrated in Figure 3b
is relatively featureless, but there are small peaks emerging in the
high-energy (more negative) region of the spectrum. EKT3-
HCI shows good agreement with Lanczos for the main
quasiparticle peak and also produces satellite features. There is
a visible improvement of EKT1 approaches (with a deviation of
the peak energy of approximately —0.25 eV) compared to HF
(with an approximate deviation of +0.34 eV). A slight deviation
of EKT1-AFQMC from EKT1-HCI is observed, but the
difference in the main quasiparticle peak location is only around
0.01 eV. Similar to r, = 0.5, a smaller basis set test suggests that
the cumulant approximation makes an error that is not visible on
the plotted scale even for r, = 4.

Overall, in this small benchmark study, the EKT1 approaches
provide some improvement over HF for valence excitations and
qualitatively fail for the core region. The agreement between the
EKT1 valence peaks and the Lanczos peaks is not perfect, with
an error of around —0.6 eV for r, = 0.5 and —0.25 eV for r, = 4.
However, we emphasize again that we expect EKT1 to become
exact for the first IP as the complete basis set limit is approached.
Finally, EKT1-AFQMC is able to reproduce EKT1-HCI nearly
perfectly even for r, = 4, where the phaseless error in the ground-
state energy is around 0.185(2) eV.

4.2.2. 54 Electrons/257 Plane Waves. Next, we consider a
larger UEG supercell (54 electrons in 257 plane waves) where
obtaining many BP samples is difficult. We study r, = 2, where
AFQMC can be reliably extrapolated to the basis set limit.”” We
produced 600 BP samples with a BP time of 8 a.u. This amounts
to a total of 4800 au. propagation time, which is a long
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propagation for this system size. Our approach yielded a
maximum statistical error in 1-RDM and Fock matrices of 4 X
1073, While this error is not small, the procedure described in
Appendix B was enough to stabilize the final results. Unlike
previous cases, we take the upper triangular part of the Fock
matrix and explicitly symmetrize the Fock matrix. A linear
dependency cutoff of 107 was used in EKT1-AFQMC. 1t is
difficult to generate highly accurate 1- and 2-RDMs from HCI
for this system size, so for this system, we do not have an exact
benchmark reference to compare to our EKT1-AFQMC results.
Similarly, EKT3-HCI is also intractable for this system size.
Instead, we have performed EOM-IP-CCSD and AAFQMC to
compare with and to gauge the magnitude of the errors of EKT1-
AFQMC.

In Figure 4, EKT1-AFQMC and HF spectral functions are
shown. As expected, EKT1-AFQMC does not show any satellite
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Figure 4. Electron removal spectral functions of the 54-electron in 257-
plane-wave model UEG at r, = 2 from EKT1-AFQMC and HF. The first
IPs from AAFQMC and EOM-IP-CCSD are shown for comparisons. A
broadening parameter of 0.2 eV was used for all plots. The location of
the Fermi level is 0.99 eV.

peaks at all and EKT1-AFQMC only introduces a shift to the HF
spectrum. Correlation effects in the peak height do not appear
large, but the peak location changes by around 1 eV going from
HF to EKT1-AFQMC. We also produced AAFQMC and EOM-
IP-CCSD for comparison. The AAFQMC IP is 2.18(1) eV,
EOM-IP-CCSD yields 1.91 eV, and EKT1-AFQMC gives 2.51
eV in this basis set. The deviation of EKT1-AFQMC from
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AAFQMC is 0.33(1) eV, whereas EOM-IP-CCSD deviates by
0.27(1) eV. These deviations are similar in magnitude but with
opposite signs. The accuracy of EOM-IP-CCSD is unclear
because the ground-state energy found from CCSD is higher
than that of AFQMC by 0.0291(1) eV per electron. In the basis
set limit, AFQMC was found to be as accurate as state-of-the-art
diffusion Monte Carlo for the ground-state energy, differing by
0.0088(9) eV per electron or less.”” This suggests that the
ground-state correlation energy of CCSD may be on the order of
0.03 eV per electron. How much of this error is propagated to
the EOM-IP-CCSD calculation remains unclear. In the
complete basis set limit, we believe that the first IP from
EKT1-AFQMC will become more accurate and closer to that of
AAFQMC. A more complete comparison should be conducted
in this limit, but such calculations are very difficult due to the
need to procure many BP samples in EKT1-AFQMC.

4.3. Toward Ab Initio Solids: Minimal Unit Cell
Diamond at the I'-Point. With recent advances in open-
source software such as PySCF,** performing calculations on ab
initio solids is relatively straightforward. While an implementa-
tion of AFQMC with k-points has been previously pre-
sented,””'"* we only present a I-point result in this work.
This is mainly because our current EKT1 implementation does
not explicitly consider k-points. We chose to study diamond
because it is one of the simplest solids just with two carbon
atoms in its unit cell. We used the GTH-PADE pseudopoten-
tial'>® and the GTH-DZVP basis set.'’° We do not converge our
calculation to the thermodynamic limit and consider only the
smallest unit cell (two atom cell) calculations. Therefore, one
cannot draw any physical conclusions from these calculations.
Nonetheless, we present this as a part of our initial benchmark
study. More careful assessment and extrapolation to the
thermodynamic and basis limits are left for future study.

This system is overall as small as the smaller systems
considered in this work. Therefore, we could obtain over 6000
BP samples with a 4 a.u. BP time. Even with these many samples,
the largest error bar in the Fock and 1-RDM matrices was 6 X
1073, Due to this large statistical error in the matrix elements, we
used a linear dependency cutoff of 0.01 and symmetrized the
Fock matrix by taking only the upper triangular part of it (see
Appendix B for details). We also included the shift by the
Madelung constant in the spectral functions.

As shown in Figure 5, EKT1-AFQMC successfully reproduces
EKT1-HCI. A small quasiparticle peak near —5 eV is not
accurately captured by EKT1-AFQMC largely due to statistical
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Figure S. EKT1-HCI and EKT1-AFQMC electron removal spectral
functions of a minimal unit cell model of diamond at the I'-point. A
broadening parameter 7 = 0.5 eV was used. The location of the Fermi
level is 8.47 eV.
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noise. Small peaks are difficult to resolve in EKT1-AFQMC
without reducing the statistical errors on each matrix element
further. Nonetheless, two other larger quasiparticle peaks are
well represented. Both peaks are well reproduced within 0.25 eV
from EKT1-HCIL The improvement over HF is around 1 eV or
so and the first IP from EOM-IP-CCSD is within 0.02 eV of the
EKT1-HCI result. It will be interesting to revisit the assessment
of EKT1-AFQMC in the basis set and thermodynamic limits via
direct comparisons to experiments.

5. CONCLUSIONS

In this work, we have explored the EKT approach to the
computation of spectral functions via phaseless AFQMC.
Previous attempts in AFQMC to obtaining spectral functions
have resorted to analytic continuation,”'”” which has well-
documented drawbacks. The EKT approach is attractive
because it requires neither an explicit representation of the
ground state wave function nor analytic continuation to
compute spectral functions. Instead, its only inputs are N-
particle RDMs which can be computed in AFQMC via the BP
algorithm. The motivation of our work was thus to use the EKT
approach with the aim of avoiding numerical problems arising in
analytic continuation for the accurate assessment of real-
frequency spectral information. While many studies have so
far focused on the simplest level of the EKT, the EKT approach
is systematically improvable with an increasing order of
excitations: 1h, 1p2h, and so forth for electron removal and
1p, 1h2p, and so forth for electron addition. We presented the
implementation of EKT1 (1h or 1p) and EKT3 (1p2h or 1h2p).
For EKT3, we proposed the use of a cumulant approximation to
the 4-RDM to avoid the steep storage requirements.

We produced preliminary results using EKT1 within AFQMC
(EKT1-AFQMC) for small molecular systems, the UEG
modeled by 14-electron and S54-electron supercells, and a
minimal unit cell model of diamond at the I"-point. We focused
on studying the first IP and electron removal spectral functions
of these systems. By comparing numerically exact EKT1 results
based on heat-bath CI (i.e., EKT1-HCI), we showed that despite
statistical noise, EKT1-AFQMC can capture most qualitative
teatures of EKT1-HCI. We provide a more detailed summary on
our findings as follows:

1. In small molecular benchmarks within the aug-cc-pVDZ
basis, we found the maximum deviation of EKTI-
AFQMC from EKT1-HCI in the first IP to be 0.19 eV.
These molecules have quite small phaseless biases in the
ground-state energy (<0.04 eV), so we attributed
additional biases to BP. Electron removal spectral
functions from EKT1-AFQMC look qualitatively similar
to that of EKT1-HCI even in the least accurate case (N,).

2. For the 14-electron UEG supercell (19-plane-wave)
benchmark, we observed a qualitative failure of EKT1
due to its inability to describe satellite states at K = 0. We
showed that EKT3 (within HCI) significantly improves
this. Despite these failures of EKT1, we found EKT1-
AFQMC to have peak locations that are nearly identical
(within 0.01 eV) to EKT1-HCI for both r,= 0.5 and r, = 4.
Given the noticeable phaseless bias at r, = 4, this result is
quite encouraging. Lastly, for the valence region of the
electron removal spectral function, we observed reason-
able accuracy of EKT1 compared to the exact spectral
function. The location of the first IP was off by 0.4 eV for r,
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=0.5and 0.25 eV for r, = 4.0, which we expect to improve
in larger bases.

. For the S54-electron UEG supercell (257-plane-wave)
benchmark, we could not obtain EKT1-HCI due
computational expense. Therefore, we attempted to
assess the accuracy of EKT1-AFQMC by comparing the
first IP of EKT1-AFQMC with that of EOM-IP-CCSD
and A-AFQMC. However, all three methods differ from
each other by more than 0.25 eV and a more thorough
benchmark in the basis set limit is highly desirable.

. For a minimal unit cell model of diamond at the I'-point,
EKT1-AFQMC produced a qualitatively correct electron
removal spectral function which agrees well with EKT1-
HCI. However, EKT1-AFQMC peak locations were off
by 0.2 eV from those of EKT1-HCI. We also noted that
EKT1-HCI first IP agrees with that of EOM-IP-CCSD
within 0.01 eV.

While a more extensive benchmark study is highly desirable,
we cautiously conclude that EKT1-AFQMC is useful for charge
excitations that are heavily dominated by Koopmans-like
excitations. EKT1-AFQMC errors in peak locations can be as
large as 0.25 eV compared to EKT1-HCI, but the line shapes of
EKT1-AFQMC closely follow those of EKT1-HCI in all systems
considered in this work.

The greatest challenge of EKT1-AFQMC is currently the
statistical inefficiency in obtaining relevant back-propagated
quantities with error bars small enough to enable the
construction of stable EKT1-AFQMC spectral functions. Future
work must first be dedicated to improving the statistical
efficiency of BP. Furthermore, better BP algorithms are needed
to reduce the BP error further. A practical implementation of
EKT3-AFQMC using an iterative eigenvalue solver will be an
interesting topic to explore in the future. Several interesting
extensions are immediately possible. First, extending the EKT
framework to neutral excitations®®’” is relatively straightforward
and could be interesting to explore. Next, the extension of the
EKT framework for finite-temperature coupled electron-
phonon problems would provide a way to compute temper-
ature-dependent vibronic spectra directly from AFQMC.'*"'%®
We also leave the comparison of these EKT-based spectral
functions to analytically continued spectral functions for a future
study.

B APPENDIX A

Review of ph-AFQMC

While the ph-AFQMC formalism has been presented before in
detail,”® we review the essence of the algorithm to provide a self-
contained description. The imaginary propagation is given as

I¥) & lim exp(—r?A{)kDO) = lim [¥(7)) (59)

where 7 is the imaginary time, I%¥) is the exact ground state of a

Hamiltonian A ,and |®,) is an initial starting wave function with
a nonzero overlap with I'¥). We assume no special structure in
the underlying Hamiltonian and work with the generic ab initio
Hamiltonians of eq 17.

In ph-AFQMC, this imaginary-time propagation is stochas-
tically implemented. One discretizes the imaginary time 7 with a
time step of A7 such that for N time steps, we have 7 = NA7.
Using the Trotter approximation and the Hubbard—Strato-
novich transformation,'*”"'" a single time step many-body
propagator can be written in an integral form
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exp(—ATH) = f &x p(x)B (AT, x)

where p(x) is the standard normal distribution, x is a vector of X
auxiliary fields, and B is defined as

(60)

B(At, x) = oA/ 2Bt —ar/2H, + O(A7?) (61)
where V is defined from
X
~ 1
7-(2 =—-= i\70:2
2
a (62)

X is the dimension of Cholesky vectors from the Cholesky
factorization''' or the dimension of the predefined density
fitting basis set,''> which asymptotically grows linearly with
system size for a fixed error per particle in the final energy. The
computation of the integral in eq 60 is carried out via Monte
Carlo sampling where each walker samples an instance of x.
The global wave function is, with importance sampling,
represented as a linear combination of walker wave functions

_ y (7))
¥ (7)) = Z w(z ><q, ()

where w; is the weight of the i-th walker, ly;(7)) is the single
Slater determinant of the i-th walker, and W) is the trial wave
function. At each time step, each walker samples a set of x, forms
B(A7,x), and updates its wave function by applying B( Azx) to
it. Practical implementations employ the so-called “optimal”
force bias which shifts the Gaussian distribution®”

(63)

()
VA <lPTh//,-(T)>

With the optimal force bias, a single time step propagation can
be summarized with two equations

x(At, 7) = —
(64)

Wi(T + At) = Iph(xi) X, T, At) X Wi(T)

X; — ii)h//,‘(T))

where the phaseless importance function in hybrid form is
defined as

Iph(xi) X, 7, At) = lI(x, X, 7, A7)l X max(0, cos(6(7)))

(65)

ly(z + At)) = B(Ar, (66)

(67)
with
I(X,: X, T, A’C) = S(T AT)e X —XX;/2 (68)
and
5(e, ag) = (BT % — Dy(@)
() (69)

With this specific walker update instruction, all walker weights
in eq 63 remain real and positive and thereby, it completely
eliminates the fermionic phase problem.

B APPENDIX B

Numerical Details of EKT

Determining the eigenvalues and eigenvectors of eq 11 from
noisy QMC density matrices is nontrivial. We first diagonalize
the metric matrices S,

S, = UAU' (70)
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and discard eigenvalues below a given threshold. In this work,
unless noted otherwise, in the main text, we used 10™* for all
EKT1-AFQMC results, which is on the order of the largest
statistical error in the EKT1 Fock matrix. We next construct the
transformation matrix
-1/2

X, = UA, (71)

This procedure is often referred to as canonical orthogonaliza-
tion in quantum chemistry. Then, we solve

e =6’ (72)
where
E =XEX, (73)

Finally, the eigenvectors in the original basis can be
determined from

(Ciy)p = Z (Xi)pl(eiy)l

(74)

Following Kent et al,* we explicitly zero out all matrix
elements whose magnitude is smaller than two times the
corresponding statistical error bar. We explicitly symmetrize
RDMs but leave the Fock matrix asymmetric as required for
approximate wave functions. However, for the more difficult
problems considered in this work, such as the 54-electron UEG
electron and diamond, we found that symmetrizing the Fock
matrix is useful, so we choose to symmetrize the Fock matrix in
such cases (by taking only the upper triangular part of the Fock
matrix). These steps improved the numerical stability of the
eigenvalue problem.

We also note that there are generic numerical issues arising in
EKT even without any statistical sampling error. These
numerical issues are present even with numerically exact
RDMs. This was observed in both EKT1-HCI and EKT3-
HCI, where spurious solutions with large negative IPs appear.
These states stem from the fact that the metric matrix in EKT
problems are generally low-rank as they are related to RDMs.
For instance, in the EKT1 formulation, the metric we
diagonalize for the IP problem is a 1-RDM, whose rank is not
so much larger than the number of electrons in the system.
These spurious states can be removed with larger cutoffs while
often affecting peak locations of quasiparticle states. Interest-
ingly, these spurious states all carry negligible spectral weights
and do not appear in spectra. Motivated by this observation, the
most satisfying solution we found was to use as a small threshold
as possible and to measure the overlap between Koopmans
states and eigenvectors to identify quasiparticle-like eigenvec-
tors. This was enough to identify physical IP excitations that are
quasiparticle-like. The same principle is applicable to EKT3-
HCI and also the EA calculations.

Spectral functions are plotted by approximating the o-
function in the spectral function expression as a Lorentzian
function

() = l{ﬁ]

for some small constant . To ensure reproducibility, we
specified the value of 7 in all relevant figures.

(75)
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B APPENDIX C

Spin-Explicit UEG Hamiltonian
Here, we provide the spin-explicit form of the UEG
Hamiltonian. The one-body Hamiltonian reads

2
(]—{1 = z z %a:(,aaK,a

ce{l) K (76)

while the electron—electron interaction operator is

A 1 4 ¥ B
H, = 20 Z 2 KR X AR +K, 09K, ~ K,0' VK, 00K, 0
0,0'€{1,l} K#0,K,K,
(77)

B AUTHOR INFORMATION

Corresponding Authors

Joonho Lee — Department of Chemistry, Columbia University,
New York 10027, United States; © orcid.org/0000-0002-
9667-1081; Email: j15653@columbia.edu

Fionn D. Malone — Quantum Simulations Group, Lawrence
Livermore National Laboratory, Livermore, California 94551,
United States; © orcid.org/0000-0001-9239-0162;
Email: fionn.malone@gmail.com

Miguel A. Morales — Quantum Simulations Group, Lawrence
Livermore National Laboratory, Livermore, California 94551,
United States; Email: moralessilva2@llnl.gov

David R. Reichman — Department of Chemistry, Columbia
University, New York 10027, United States; Email: drr2103@
columbia.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00100

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We thank Sandeep Sharma for providing access to a version of
Dice with the 3-RDM and 4-RDM capability, which was used in
testing and producing EKT3-HCI results presented in this work.
We also thank Garnet Chan for discussion about finite-size
corrections to ionization energies. D.R.R. acknowledges support
of NSF CHE-1954791. The work of FD.M. and M.A M. was
performed under the auspices of the U.S. Department of Energy
(DOE) by LLNL under contract no. DE-AC52-07NA27344 and
was supported by the U.S. DOE, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division, as part of
the Computational Materials Sciences Program and Center for
Predictive Simulation of Functional Materials (CPSFM).
Computing support for this work came from the LLNL
Institutional Computing Grand Challenge program.

B REFERENCES

(1) Ly, D.; Vishik, I. M,; Yi, M.; Chen, Y.; Moore, R. G.; Shen, Z.-X.
Angle-resolved photoemission studies of quantum materials. Annu. Rev.
Condens. Matter Phys. 2012, 3, 129—167.

(2) Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep.
Prog. Phys. 2008, 72, 016502.

(3) Andreani, C.; Colognesi, D.; Mayers, J.; Reiter, G. F.; Senesi, R.
Measurement of momentum distribution of lightatoms and molecules
in condensed matter systems using inelastic neutron scattering. Adv.
Phys. 2008, 54, 377—469.

(4) Fetter, A. L.; Walecka, J. D. Quantum Theory of Many-Particle
Systems, Dover Books on Physics; Dover Publications, 2003.

https://doi.org/10.1021/acs.jctc.1c00100
J. Chem. Theory Comput. 2021, 17, 3372-3387


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joonho+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9667-1081
https://orcid.org/0000-0002-9667-1081
mailto:jl5653@columbia.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fionn+D.+Malone"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9239-0162
mailto:fionn.malone@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Miguel+A.+Morales"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:moralessilva2@llnl.gov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+R.+Reichman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:drr2103@columbia.edu
mailto:drr2103@columbia.edu
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00100?ref=pdf
https://doi.org/10.1146/annurev-conmatphys-020911-125027
https://doi.org/10.1088/0034-4885/72/1/016502
https://doi.org/10.1080/00018730500403136
https://doi.org/10.1080/00018730500403136
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00100?rel=cite-as&ref=PDF&jav=VoR

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(5) Onida, G; Reining, L.; Rubio, A. Electronic excitations: density-
functional versus many-body Green’s-function approaches. Rev. Mod.
Phys. 2002, 74, 601,

(6) Cederbaum, L. S.; Domcke, W. Theoretical aspects of ionization
potentials and photoelectron spectroscopy: A Green’s function
approach. Adv. Chem. Phys. 1977, 36, 205—344.

(7) Hedin, L.; Michiels, J.; Inglesfield, J. Transition from the adiabatic
to the sudden limit in core-electron photoemission. Phys. Rev. B:
Condens. Matter Mater. Phys. 1998, 58, 15565.

(8) Duchemin, L; Blase, X. Robust Analytic-Continuation Approach
to Many-Body GW Calculations. J. Chem. Theory Comput. 2020, 16,
1742—1756.

(9) Monkhorst, H. J. Calculation of properties with the coupled-
cluster method. Int. J. Quantum Chem. 1977, 12, 421—432.

(10) Nooijen, M.; Snijders, J. G. Coupled cluster approach to the
single-particle Green’s function. Int. J. Quantum Chem. 1992, 44, 55—
83.

(11) Nooijen, M.; Snijders, J. G. Coupled cluster Green’s function
method: Working equations and applications. Int. ]. Quantum Chem.
1993, 48, 15—48.

(12) Peng, B.; Kowalski, K. Coupled-cluster Green’s function:
Analysis of properties originating in the exponential parametrization
of the ground-state wave function. Phys. Rev. A 2016, 94, 062512.

(13) Furukawa, Y.; Kosugi, T.; Nishi, H.; Matsushita, Y.<i. Band
structures in coupled-cluster singles-and-doubles Green’s function
(GFCCSD). J. Chem. Phys. 2018, 148, 204109.

(14) Peng, B.; Kowalski, K. Properties of advanced coupled-cluster
Green’s function. Mol. Phys. 2018, 116, 561—569.

(15) Shee, A,; Zgid, D. Coupled Cluster as an Impurity Solver for
Green’s Function Embedding Methods. J. Chem. Theory Comput. 2019,
15, 6010—6024.

(16) McClain, J.; Lischner, J.; Watson, T.; Matthews, D. A.; Ronca, E.;
Louie, S. G.; Berkelbach, T. C.; Chan, G. K.-L. Spectral functions of the
uniform electron gas via coupled-cluster theory and comparison to the
GW and related approximations. Phys. Rev. B: Condens. Matter Mater.
Phys. 2016, 93, 235139.

(17) McClain, J.; Sun, Q.; Chan, G. K.-L.; Berkelbach, T. C. Gaussian-
Based Coupled-Cluster Theory for the Ground-State and Band
Structure of Solids. J. Chem. Theory Comput. 2017, 13, 1209—1218.

(18) Blankenbecler, R.; Sugar, R. L. Projector Monte Carlo method.
Phys. Rev. D 1983, 27, 1304—1311.

(19) Becca, F.; Sorella, S. Quantum Monte Carlo Approaches for
Correlated Systems; Cambridge University Press: Cambridge, England,
UK, 2017.

(20) Foulkes, W. M. C.; Mitas, L.; Needs, R. J; Rajagopal, G.
Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 2001, 73,
33.

(21) Silver, R. N.; Sivia, D. S.; Gubernatis, J. E. Maximum-entropy
method for analytic continuation of quantum Monte Carlo data. Phys.
Rev. B: Condens. Matter Mater. Phys. 1990, 41, 2380—2389.

(22) Gubernatis, J. E.; Jarrell, M.; Silver, R. N.; Sivia, D. S. Quantum
Monte Carlo simulations and maximum entropy: Dynamics from
imaginary-time data. Phys. Rev. B: Condens. Matter Mater. Phys. 1991,
44, 6011—6029.

(23) Jarrell, M.; Gubernatis, J. E. Bayesian inference and the analytic
continuation of imaginary-time quantum Monte Carlo data. Phys. Rep.
1996, 269, 133—19S.

(24) Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E. Imaginary time
correlations and the phaseless auxiliary field quantum Monte Carlo. J.
Chem. Phys. 2014, 140, 024107.

(25) Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E. Imaginary time
density-density correlations for two-dimensional electron gases at high
density. J. Chem. Phys. 2015, 143, 164108.

(26) Otsuki, J.; Ohzeki, M.; Shinaoka, H.; Yoshimi, K. Sparse
modeling approach to analytical continuation of imaginary-time
quantum Monte Carlo data. Phys. Rev. E 2017, 95, 061302.

(27) Bertaina, G.; Galli, D. E.; Vitali, E. Statistical and computational
intelligence approach to analytic continuation in Quantum Monte
Carlo. Adv. Phys.: X 2017, 2, 302—323.

3385

(28) Reichman, D. R.; Rabani, E. Analytic continuation average
spectrum method for quantum liquids. J. Chem. Phys. 2009, 131,
054502.

(29) Goulko, O.; Mishchenko, A. S.; Pollet, L.; Prokofev, N.;
Svistunov, B. Numerical analytic continuation: Answers to well-posed
questions. Phys. Rev. B 2016, 95, 014102.

(30) Dornheim, T.; Groth, S.; Vorberger, J.; Bonitz, M. Ab initio Path
Integral Monte Carlo Results for the Dynamic Structure Factor of
Correlated Electrons: From the Electron Liquid to Warm Dense
Matter. Phys. Rev. Lett. 2018, 121, 255001.

(31) Day, O. W,; Smith, D. W.,; Morrison, R. C. Extension of
Koopmans’ theorem. II. Accurate ionization energies from correlated
wavefunctions for closed-shell atoms. J. Chem. Phys. 1975, 62,115—119.

(32) Smith, D. W.; Day, O. W. Extension of Koopmans’ theorem. L.
Derivation. J. Chem. Phys. 1975, 62, 113—114.

(33) Morrell, M. M; Parr, R. G.; Levy, M. Calculation of ionization
potentials from density matrices and natural functions, and the long-
range behavior of natural orbitals and electron density. J. Chem. Phys.
1975, 62, 549—554.

(34) Farnum, J. D.; Mazziotti, D. A. Extraction of ionization energies
from the ground-state two-particle reduced density matrix. Chem. Phys.
Lett. 2004, 400, 90—93.

(35) Pernal, K; Cioslowski, J. Ionization potentials from the extended
Koopmans’ theorem applied to density matrix functional theory. Chem.
Phys. Lett. 2005, 412, 71—75.

(36) Piris, M.; Matxain, J. M.; Lopez, X.; Ugalde, ]. M. The extended
Koopmans’ theorem: Vertical ionization potentials from natural orbital
functional theory. J. Chem. Phys. 2012, 136, 174116.

(37) Piris, M.; Matxain, J. M.; Lopez, X.; Ugalde, J. M. 8th Congress on
Electronic Structure: Principles and Applications (ESPA 2012): A
Conference Selection from Theoretical Chemistry Accounts; Springer:
Berlin, Germany, 2013; pp 5—15.

(38) Welden, A. R;; Phillips, J. J.; Zgid, D. Ionization potentials and
electron affinities from the extended Koopmans’ theorem in self-
consistent Green’s function theory. 20185, arXiv:1505.05575.

(39) Morrison, R. C. The extended Koopmans’ theorem and its
exactness. . Chem. Phys. 1992, 96, 3718—3722.

(40) Cioslowski, J.; Piskorz, P.; Liu, G. Lonization potentials and
electron affinities from the extended Koopmans’ theorem applied to
energy-derivative density matrices: The EKTMPn and EKTQCISD
methods. J. Chem. Phys. 1997, 107, 6804—6811.

(41) Bozkaya, U. The extended Koopmans’ theorem for orbital-
optimized methods: Accurate computation of ionization potentials. J.
Chem. Phys. 2013, 139, 154105.

(42) Bozkaya, U. Accurate Electron Affinities from the Extended
Koopmans’ Theorem Based on Orbital-Optimized Methods. J. Chem.
Theory Comput. 2014, 10, 2041—2048.

(43) Yildiz, D.; Bozkaya, U. Assessment of the extended Koopmans’
theorem for the chemical reactivity: Accurate computations of chemical
potentials, chemical hardnesses, and electrophilicity indices. J. Comput.
Chem. 2016, 37, 345—353.

(44) Bozkaya, U.; Unal, A. State-of-the-Art Computations of Vertical
Ionization Potentials with the Extended Koopmans’ Theorem
Integrated with the CCSD(T) Method. J. Phys. Chem. A 2018, 122,
4375—-4380.

(45) Kent, P. R. C; Hood, R. Q.; Towler, M. D.; Needs, R. J;
Rajagopal, G. Quantum Monte Carlo calculations of the one-body
density matrix and excitation energies of silicon. Phys. Rev. B: Condens.
Matter Mater. Phys. 1998, 57, 15293—15302.

(46) Zheng, H. First principles quantum Monte Carlo study of
correlated electronic systems. 2016, https://www.ideals.illinois.edu/
handle/2142/92794 [Online accessed 12 Jan 2021].

(47) Yoshioka, N.; Mizukami, W.; Nori, F. Neural-Network Quantum
States for the Electronic Structure of Real Solids. 2020,
arXiv:2008.09492.

(48) Zhang, S.; Carlson, J.; Gubernatis, J. E. Constrained Path
Quantum Monte Carlo Method for Fermion Ground States. Phys. Rev.
Lett. 1995, 74, 3652—36S5S.

https://doi.org/10.1021/acs.jctc.1c00100
J. Chem. Theory Comput. 2021, 17, 3372-3387


https://doi.org/10.1103/revmodphys.74.601
https://doi.org/10.1103/revmodphys.74.601
https://doi.org/10.1002/9780470142554.ch4
https://doi.org/10.1002/9780470142554.ch4
https://doi.org/10.1002/9780470142554.ch4
https://doi.org/10.1103/physrevb.58.15565
https://doi.org/10.1103/physrevb.58.15565
https://doi.org/10.1021/acs.jctc.9b01235
https://doi.org/10.1021/acs.jctc.9b01235
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1002/qua.560120850
https://doi.org/10.1002/qua.560440808
https://doi.org/10.1002/qua.560440808
https://doi.org/10.1002/qua.560480103
https://doi.org/10.1002/qua.560480103
https://doi.org/10.1103/physreva.94.062512
https://doi.org/10.1103/physreva.94.062512
https://doi.org/10.1103/physreva.94.062512
https://doi.org/10.1063/1.5029537
https://doi.org/10.1063/1.5029537
https://doi.org/10.1063/1.5029537
https://doi.org/10.1080/00268976.2017.1351630
https://doi.org/10.1080/00268976.2017.1351630
https://doi.org/10.1021/acs.jctc.9b00603
https://doi.org/10.1021/acs.jctc.9b00603
https://doi.org/10.1103/physrevb.93.235139
https://doi.org/10.1103/physrevb.93.235139
https://doi.org/10.1103/physrevb.93.235139
https://doi.org/10.1021/acs.jctc.7b00049
https://doi.org/10.1021/acs.jctc.7b00049
https://doi.org/10.1021/acs.jctc.7b00049
https://doi.org/10.1103/physrevd.27.1304
https://doi.org/10.1103/revmodphys.73.33
https://doi.org/10.1103/physrevb.41.2380
https://doi.org/10.1103/physrevb.41.2380
https://doi.org/10.1103/physrevb.44.6011
https://doi.org/10.1103/physrevb.44.6011
https://doi.org/10.1103/physrevb.44.6011
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1063/1.4861227
https://doi.org/10.1063/1.4861227
https://doi.org/10.1063/1.4934666
https://doi.org/10.1063/1.4934666
https://doi.org/10.1063/1.4934666
https://doi.org/10.1103/physreve.95.061302
https://doi.org/10.1103/physreve.95.061302
https://doi.org/10.1103/physreve.95.061302
https://doi.org/10.1080/23746149.2017.1288585
https://doi.org/10.1080/23746149.2017.1288585
https://doi.org/10.1080/23746149.2017.1288585
https://doi.org/10.1063/1.3185728
https://doi.org/10.1063/1.3185728
https://doi.org/10.1103/physrevb.95.014102
https://doi.org/10.1103/physrevb.95.014102
https://doi.org/10.1103/physrevlett.121.255001
https://doi.org/10.1103/physrevlett.121.255001
https://doi.org/10.1103/physrevlett.121.255001
https://doi.org/10.1103/physrevlett.121.255001
https://doi.org/10.1063/1.430254
https://doi.org/10.1063/1.430254
https://doi.org/10.1063/1.430254
https://doi.org/10.1063/1.430253
https://doi.org/10.1063/1.430253
https://doi.org/10.1063/1.430509
https://doi.org/10.1063/1.430509
https://doi.org/10.1063/1.430509
https://doi.org/10.1016/j.cplett.2004.10.075
https://doi.org/10.1016/j.cplett.2004.10.075
https://doi.org/10.1016/j.cplett.2005.06.103
https://doi.org/10.1016/j.cplett.2005.06.103
https://doi.org/10.1063/1.4709769
https://doi.org/10.1063/1.4709769
https://doi.org/10.1063/1.4709769
https://doi.org/10.1063/1.461875
https://doi.org/10.1063/1.461875
https://doi.org/10.1063/1.474921
https://doi.org/10.1063/1.474921
https://doi.org/10.1063/1.474921
https://doi.org/10.1063/1.474921
https://doi.org/10.1063/1.4825041
https://doi.org/10.1063/1.4825041
https://doi.org/10.1021/ct500186j
https://doi.org/10.1021/ct500186j
https://doi.org/10.1002/jcc.24225
https://doi.org/10.1002/jcc.24225
https://doi.org/10.1002/jcc.24225
https://doi.org/10.1021/acs.jpca.8b01851
https://doi.org/10.1021/acs.jpca.8b01851
https://doi.org/10.1021/acs.jpca.8b01851
https://doi.org/10.1103/physrevb.57.15293
https://doi.org/10.1103/physrevb.57.15293
https://www.ideals.illinois.edu/handle/2142/92794
https://www.ideals.illinois.edu/handle/2142/92794
https://doi.org/10.1103/physrevlett.74.3652
https://doi.org/10.1103/physrevlett.74.3652
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00100?rel=cite-as&ref=PDF&jav=VoR

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(49) Zhang, S.; Carlson, J.; Gubernatis, J. E. Constrained path Monte
Carlo method for fermion ground states. Phys. Rev. B: Condens. Matter
Mater. Phys. 1997, SS, 7464—7477.

(50) Zhang, S.; Krakauer, H. Quantum Monte Carlo method using
phase-free random walks with Slater determinants. Phys. Rev. Lett. 2003,
90, 136401.

(51) Carlson, J.; Gubernatis, J. E.; Ortiz, G.; Zhang, S. Issues and
observations on applications of the constrained-path Monte Carlo
method to many-fermion systems. Phys. Rev. B: Condens. Matter Mater.
Phys. 1999, 59, 12788.

(52) LeBlanc, J. P.; Antipov, A. E.; Becca, F.; Bulik, I. W.; Chan, G. K.-
L.; Chung, C.-M.; Deng, Y.; Ferrero, M.; Henderson, T. M.; Jiménez-
Hoyos, C. A,; et al. Solutions of the two-dimensional Hubbard model:
Benchmarks and results from a wide range of numerical algorithms.
Adv. Phys.: X 2018, 5, 041041.

(53) Zheng, B.-X,; Chung, C.-M.; Corboz, P.; Ehlers, G.; Qin, M.-P.;
Noack, R. M.; Shi, H,; White, S. R.; Zhang, S.; Chan, G. K.-L. Stripe
order in the underdoped region of the two-dimensional Hubbard
model. Science 2017, 358, 1155—1160.

(54) Motta, M.; Ceperley, D. M.; Chan, G. K.-L.; Gomez, J. A.; Gull,
E,; Guo, S.; Jiménez-Hoyos, C. A.; Lan, T. N,; Li, J.; Ma, E; et al.
Towards the solution of the many-electron problem in real materials:
Equation of state of the hydrogen chain with state-of-the-art many-body
methods. Adv. Phys.: X 2017, 7, 031059.

(55) Zhang, S.; Malone, F. D.; Morales, M. A. Auxiliary-field quantum
Monte Carlo calculations of the structural properties of nickel oxide. J.
Chem. Phys. 2018, 149, 164102.

(56) Motta, M.; Genovese, C.; Ma, F.; Cui, Z.-H.; Sawaya, R.; Chan,
G. K.-L.; Chepiga, N.; Helms, P.; Jiménez-Hoyos, C.; Millis, A. J.; et al.
Ground-state properties of the hydrogen chain: dimerization, insulator-
to-metal transition, and magnetic phases. Adv. Phys.: X 2020, 10,
031058.

(57) Lee, J.; Malone, F. D.; Morales, M. A. An auxiliary-Field quantum
Monte Carlo perspective on the ground state of the dense uniform
electron gas: An investigation with Hartree-Fock trial wavefunctions. J.
Chem. Phys. 2019, 151, 064122.

(58) Lee, J.; Malone, F. D.; Reichman, D. R. The performance of
phaseless auxiliary-field quantum Monte Carlo on the ground state
electronic energy of benzene. J. Chem. Phys. 2020, 153, 126101.

(59) Williams, K. T.; Yao, Y.; Li, J.; Chen, L.; Shi, H.; Motta, M.; Niu,
C.; Ray, U,; Guo, S.; Anderson, R. J.; et al. Direct comparison of many-
body methods for realistic electronic Hamiltonians. Adv. Phys.: X 2020,
10, 011041.

(60) Malone, F. D.; Zhang, S.; Morales, M. A. Accelerating Auxiliary-
Field Quantum Monte Carlo Simulations of Solids with Graphical
Processing Units. J. Chem. Theory Comput. 2020, 16, 4286—4297.

(61) Lee, J; Malone, F. D.; Morales, M. A. Utilizing Essential
Symmetry Breaking in Auxiliary-Field Quantum Monte Carlo:
Application to the Spin Gaps of the Ci¢ Fullerene and an Iron
Porphyrin Model Complex. J. Chem. Theory Comput. 2020, 16, 3019—
3027.

(62) Qin, M.; Chung, C.-M.; Shi, H.; Vitali, E.; Hubig, C.; Schollwéck,
U.; White, S. R;; Zhang, S.; et al. Absence of superconductivity in the
pure two-dimensional Hubbard model. Adv. Phys.: X 2020, 10,031016.

(63) Malone, F. D.; Benali, A.; Morales, M. A.; Caffarel, M.; Kent, P. R.
C.; Shulenburger, L. Systematic comparison and cross-validation of
fixed-node diffusion Monte Carlo and phaseless auxiliary-field quantum
Monte Carlo in solids. Phys. Rev. B 2020, 102, 161104.

(64) Malone, F. D.; Zhang, S.; Morales, M. A. Overcoming the
Memory Bottleneck in Auxiliary Field Quantum Monte Carlo
Simulations with Interpolative Separable Density Fitting. J. Chem.
Theory Comput. 2019, 15, 256.

(65) Lee, J.; Reichman, D. R. Stochastic Resolution-of-the-Identity
Auxiliary-Field Quantum Monte Carlo: Scaling Reduction without
Overhead. J. Chem. Phys. 2020, 153, 044131.

(66) Purwanto, W.; Zhang, S. Quantum Monte Carlo method for the
ground state of many-boson systems. Phys. Rev. E 2004, 70, 056702.

3386

(67) Motta, M.; Zhang, S. Computation of Ground-State Properties in
Molecular Systems: Back-Propagation with Auxiliary-Field Quantum
Monte Carlo. J. Chem. Theory Comput. 2017, 13, 5367.

(68) Pavlyukh, Y. Excited electronic states from a generalization of the
extended Koopmans theorem. Phys. Rev. A 2018, 98, 052508.

(69) Hedin, L. Effects of recoil on shake-up spectra in metals. Phys. Scr.
1980, 21, 477.

(70) Pavlyukh, Y. The Ubiquitous Extended Koopmans’ Theorem.
hys. Status Solidi B 2019, 256, 1800591.

(71) See https://github.com/msaitow/SecondQuantizationAlgebra
for details on how to obtain the source code (accessed 2021-01-20).

(72) Neuscamman, E.; Yanai, T.; Chan, G. K.-L. Quadratic canonical
transformation theory and higher order density matrices. J. Chem. Phys.
2009, 130, 124102.

(73) Saitow, M.; Kurashige, Y.; Yanai, T. Multireference configuration
interaction theory using cumulant reconstruction with internal
contraction of density matrix renormalization group wave function. J.
Chem. Phys. 2013, 139, 044118.

(74) Zgid, D.; Ghosh, D.; Neuscamman, E.; Chan, G. K.-L. A study of
cumulant approximations to n-electron valence multireference
perturbation theory. J. Chem. Phys. 2009, 130, 194107.

(75) Shavitt, L; Bartlett, R. J. Many-body Methods in Chemistry and
Physics: MBPT and Coupled-Cluster Theory; Cambridge University
Press, 2009; Chapter 7.3, pp 182—184.

(76) Motta, M; Zhang, S. Ab initio computations of molecular
systems by the auxiliary-field quantum Monte Carlo method. Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, No. e1364.

(77) Motta, M. Private Communication.

(78) Chen, S.; Motta, M.; Ma, F.; Zhang, S. Ab initio electronic density
in solids by many-body plane-wave auxiliary-field quantum Monte
Carlo calculations. 2020, arXiv:2011.08335, arXiv preprint.

(79) Hohenstein, E. G.; Parrish, R. M.; Martinez, T. J. Tensor
hypercontraction density fitting. I. Quartic scaling second- and third-
order Moller-Plesset perturbation theory. J. Chem. Phys. 2012, 137,
044103.

(80) Parrish, R. M.; Hohenstein, E. G.; Martinez, T. J.; Sherrill, C. D.
Tensor hypercontraction. II. Least-squares renormalization. J. Chem.
Phys. 2012, 137, 224106.

(81) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Martinez, T. J.
Communication: Tensor hypercontraction. III. Least-squares tensor
hypercontraction for the determination of correlated wavefunctions. J.
Chem. Phys. 2012, 137, 221101.

(82) Lee, J; Lin, L.; Head-Gordon, M. Systematically Improvable
Tensor Hypercontraction: Interpolative Separable Density-Fitting for
Molecules Applied to Exact Exchange, Second- and Third-Order
Moller-Plesset Perturbation Theory. J. Chem. Theory Comput. 2019, 16,
243-263.

(83) Schoof, T.; Groth, S.; Vorberger, J.; Bonitz, M. Ab Initio
Thermodynamic Results for the Degenerate Electron Gas at Finite
Temperature. Phys. Rev. Lett. 2015, 115, 130402.

(84) Yang, Y.; Gorelov, V.; Pierleoni, C.; Ceperley, D. M.; Holzmann,
M. Electronic band gaps from quantum Monte Carlo methods. Phys.
Rev. B 2020, 101, 085115.

(85) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li,
Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R;; Sharma, S.; Wouters, S.;
Chan, G. K. L. P y SCF: the Python-based simulations of chemistry
framework. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, No. e1340.

(86) Kent, P. R. C.; Annaberdiyev, A.; Benali, A.; Bennett, M. C,;
Landinez Borda, E. J.; Doak, P.; Hao, H,; Jordan, K. D.; Krogel, J. T;
Kylianpag, L; Lee, J.; Luo, Y.; Malone, F. D.; Melton, C. A.; Mitas, L,;
Morales, M. A.; Neuscamman, E.; Reboredo, F. A.; Rubenstein, B,;
Saritas, K.; Upadhyay, S.; Wang, G.; Zhang, S.; Zhao, L. QMCPACK:
Advances in the development, efficiency, and application of auxiliary
field and real-space variational and diffusion quantum Monte Carlo. J.
Chem. Phys. 2020, 152, 174105.

(87) See https://github.com/pauxy-qgmc/pauxy for details on how to
obtain the source code (accessed 2021-01-20).

(88) Holmes, A. A; Tubman, N. M.; Umrigar, C. J. Heat-Bath
Configuration Interaction: An Efficient Selected Configuration

https://doi.org/10.1021/acs.jctc.1c00100
J. Chem. Theory Comput. 2021, 17, 3372-3387


https://doi.org/10.1103/physrevb.55.7464
https://doi.org/10.1103/physrevb.55.7464
https://doi.org/10.1103/physrevlett.90.136401
https://doi.org/10.1103/physrevlett.90.136401
https://doi.org/10.1103/physrevb.59.12788
https://doi.org/10.1103/physrevb.59.12788
https://doi.org/10.1103/physrevb.59.12788
https://doi.org/10.1103/physrevx.5.041041
https://doi.org/10.1103/physrevx.5.041041
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1103/physrevx.7.031059
https://doi.org/10.1103/physrevx.7.031059
https://doi.org/10.1103/physrevx.7.031059
https://doi.org/10.1063/1.5040900
https://doi.org/10.1063/1.5040900
https://doi.org/10.1103/physrevx.10.031058
https://doi.org/10.1103/physrevx.10.031058
https://doi.org/10.1063/1.5109572
https://doi.org/10.1063/1.5109572
https://doi.org/10.1063/1.5109572
https://doi.org/10.1063/5.0024835
https://doi.org/10.1063/5.0024835
https://doi.org/10.1063/5.0024835
https://doi.org/10.1103/physrevx.10.011041
https://doi.org/10.1103/physrevx.10.011041
https://doi.org/10.1021/acs.jctc.0c00262
https://doi.org/10.1021/acs.jctc.0c00262
https://doi.org/10.1021/acs.jctc.0c00262
https://doi.org/10.1021/acs.jctc.0c00055
https://doi.org/10.1021/acs.jctc.0c00055
https://doi.org/10.1021/acs.jctc.0c00055
https://doi.org/10.1021/acs.jctc.0c00055
https://doi.org/10.1103/physrevx.10.031016
https://doi.org/10.1103/physrevx.10.031016
https://doi.org/10.1103/physrevb.102.161104
https://doi.org/10.1103/physrevb.102.161104
https://doi.org/10.1103/physrevb.102.161104
https://doi.org/10.1021/acs.jctc.8b00944
https://doi.org/10.1021/acs.jctc.8b00944
https://doi.org/10.1021/acs.jctc.8b00944
https://doi.org/10.1063/5.0015077
https://doi.org/10.1063/5.0015077
https://doi.org/10.1063/5.0015077
https://doi.org/10.1103/physreve.70.056702
https://doi.org/10.1103/physreve.70.056702
https://doi.org/10.1021/acs.jctc.7b00730
https://doi.org/10.1021/acs.jctc.7b00730
https://doi.org/10.1021/acs.jctc.7b00730
https://doi.org/10.1103/physreva.98.052508
https://doi.org/10.1103/physreva.98.052508
https://doi.org/10.1088/0031-8949/21/3-4/039
https://doi.org/10.1002/pssb.201800591
https://github.com/msaitow/SecondQuantizationAlgebra
https://doi.org/10.1063/1.3086932
https://doi.org/10.1063/1.3086932
https://doi.org/10.1063/1.4816627
https://doi.org/10.1063/1.4816627
https://doi.org/10.1063/1.4816627
https://doi.org/10.1063/1.3132922
https://doi.org/10.1063/1.3132922
https://doi.org/10.1063/1.3132922
https://doi.org/10.1002/wcms.1364
https://doi.org/10.1002/wcms.1364
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4768233
https://doi.org/10.1063/1.4768241
https://doi.org/10.1063/1.4768241
https://doi.org/10.1021/acs.jctc.9b00820
https://doi.org/10.1021/acs.jctc.9b00820
https://doi.org/10.1021/acs.jctc.9b00820
https://doi.org/10.1021/acs.jctc.9b00820
https://doi.org/10.1103/physrevlett.115.130402
https://doi.org/10.1103/physrevlett.115.130402
https://doi.org/10.1103/physrevlett.115.130402
https://doi.org/10.1103/physrevb.101.085115
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/5.0004860
https://doi.org/10.1063/5.0004860
https://doi.org/10.1063/5.0004860
https://github.com/pauxy-qmc/pauxy
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b00407
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00100?rel=cite-as&ref=PDF&jav=VoR

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Interaction Algorithm Inspired by Heat-Bath Sampling. J. Chem. Theory
Comput. 2016, 12, 3674—3680.

(89) Sharma, S.; Holmes, A. A.; Jeanmairet, G.; Alavi, A.; Umrigar, C.
J. Semistochastic Heat-Bath Configuration Interaction Method:
Selected Configuration Interaction with Semistochastic Perturbation
Theory. J. Chem. Theory Comput. 2017, 13, 1595—1604.

(90) Smith, J. E. T.; Mussard, B.; Holmes, A. A.; Sharma, S. Cheap and
Near Exact CASSCEF with Large Active Spaces. J. Chem. Theory Comput.
2017, 13, 5468—5478.

(91) Wagner, L. K;; Bajdich, M.; Mitas, L. QWalk: A quantum Monte
Carlo program for electronic structure. J. Comput. Phys. 2009, 228,
3390.

(92) Haydock, R.; Heine, V.; Kelly, M. J. Electronic structure based on
the local atomic environment for tight-binding bands. IL. J. Phys. C: Solid
State Phys. 1975, 8, 2591—2605.

(93) Dagotto, E. Correlated electrons in high-temperature super-
conductors. Rev. Mod. Phys. 1994, 66, 763—840.

(94) van Setten, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Scheffler,
M,; Liu, F; Lischner, J.; Lin, L.; Deslippe, J. R.; Louie, S. G.; Yang, C,;
Weigend, F.; Neaton, J. B.; Evers, F.; Rinke, P. GW100: Benchmarking
GOWO for Molecular Systems. J. Chem. Theory Comput. 2015, 11,
5665—5687.

(95) Dunning, T. H. Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007—1023.

(96) Sundholm, D.; Olsen, J. The exactness of the extended
Koopmans’ theorem: A numerical study. J. Chem. Phys. 1993, 98,
3999—4002.

(97) Ernzerhof, M. Validity of the Extended Koopmans’ Theorem. J.
Chem. Theory Comput. 2009, S, 793—797.

(98) Vanfleteren, D.; Van Neck, D.; Ayers, P. W.; Morrison, R. C.;
Bultinck, P. Exact ionization potentials from wavefunction asymptotics:
The extended Koopmans’ theorem, revisited. J. Chem. Phys. 2009, 130,
194104.

(99) Ceperley, D. M.; Bernu, B. The calculation of excited state
properties with quantum Monte Carlo. J. Chem. Phys. 1988, 89, 6316—
6328.

(100) Blunt, N. S.; Alavi, A,; Booth, G. H. Nonlinear biases,
stochastically sampled effective Hamiltonians, and spectral functions in
quantum Monte Carlo methods. Phys. Rev. B 2018, 98, 085118.

(101) Lee, J.; Morales, M. A.; Malone, F. D. A Phaseless Auxiliary-
Field Quantum Monte Carlo Perspective on the Uniform Electron Gas
at Finite Temperatures: Issues, Observations, and Benchmark Study.
2020, arXiv:2012.12228.

(102) von Barth, U.,; Holm, B. Self-consistentGWOresults for the
electron gas: Fixed screened potentialWOwithin the random-phase
approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54,
8411.

(103) Holm, B.; von Barth, U. Fully self-consistentGWself-energy of
the electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57,
2108.

(104) Motta, M.; Zhang, S.; Chan, G. K.-L. Hamiltonian symmetries
in auxiliary-field quantum Monte Carlo calculations for electronic
structure. Phys. Rev. B 2019, 100, 045127.

(105) Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space
Gaussian pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys.
1996, 54, 1703—1710.

(106) VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate
calculations on molecular systems in gas and condensed phases. J.
Chem. Phys. 2007, 127, 114105.

(107) Vitali, E.; Shi, H.; Qin, M.; Zhang, S. Computation of dynamical
correlation functions for many-fermion systems with auxiliary-field
quantum Monte Carlo. Phys. Rev. B 2016, 94, 085140.

(108) Lee, J.; Zhang, S.; Reichman, D. R. Constrained-Path Auxiliary-
Field Quantum Monte Carlo for Coupled Electrons and Phonons.
2020, arXiv:2012.13473v1.

(109) Hubbard, J. Calculation of Partition Functions. Phys. Rev. Lett.
1959, 3, 77-78.

3387

(110) Hirsch, J. E. Discrete Hubbard-Stratonovich transformation for
fermion lattice models. Phys. Rev. B: Condens. Matter Mater. Phys. 1983,
28, 4059—4061.

(111) Beebe, N. H. F.; Linderberg, J. Simplifications in the generation
and transformation of two-electron integrals in molecular calculations.
Int. J. Quantum Chem. 1977, 12, 683—705.

(112) Whitten, J. L. Coulombic potential energy integrals and
approximations. J. Chem. Phys. 1973, 58, 4496—4501.

https://doi.org/10.1021/acs.jctc.1c00100
J. Chem. Theory Comput. 2021, 17, 3372-3387


https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.6b01028
https://doi.org/10.1021/acs.jctc.7b00900
https://doi.org/10.1021/acs.jctc.7b00900
https://doi.org/10.1016/j.jcp.2009.01.017
https://doi.org/10.1016/j.jcp.2009.01.017
https://doi.org/10.1088/0022-3719/8/16/011
https://doi.org/10.1088/0022-3719/8/16/011
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1021/acs.jctc.5b00453
https://doi.org/10.1021/acs.jctc.5b00453
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.464028
https://doi.org/10.1063/1.464028
https://doi.org/10.1021/ct800552k
https://doi.org/10.1063/1.3130044
https://doi.org/10.1063/1.3130044
https://doi.org/10.1063/1.455398
https://doi.org/10.1063/1.455398
https://doi.org/10.1103/physrevb.98.085118
https://doi.org/10.1103/physrevb.98.085118
https://doi.org/10.1103/physrevb.98.085118
https://doi.org/10.1103/physrevb.54.8411
https://doi.org/10.1103/physrevb.54.8411
https://doi.org/10.1103/physrevb.54.8411
https://doi.org/10.1103/physrevb.57.2108
https://doi.org/10.1103/physrevb.57.2108
https://doi.org/10.1103/physrevb.100.045127
https://doi.org/10.1103/physrevb.100.045127
https://doi.org/10.1103/physrevb.100.045127
https://doi.org/10.1103/physrevb.54.1703
https://doi.org/10.1103/physrevb.54.1703
https://doi.org/10.1063/1.2770708
https://doi.org/10.1063/1.2770708
https://doi.org/10.1103/physrevb.94.085140
https://doi.org/10.1103/physrevb.94.085140
https://doi.org/10.1103/physrevb.94.085140
https://doi.org/10.1103/physrevlett.3.77
https://doi.org/10.1103/physrevb.28.4059
https://doi.org/10.1103/physrevb.28.4059
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1063/1.1679012
https://doi.org/10.1063/1.1679012
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00100?rel=cite-as&ref=PDF&jav=VoR

