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ABSTRACT

Context. The magnetic field is the underlying cause of solar activities. Spectropolarimetric Stokes inversions have been routinely
used to extract the vector magnetic field from observations for about 40 years. In contrast, the photospheric continuum images have
an observational history of more than 100 years.
Aims. We suggest a new method to quickly estimate the unsigned radial component of the magnetic field, |Br|, and the transverse field,
Bt, just from photospheric continuum images (I) using deep convolutional neural networks (CNN).
Methods. Two independent models, that is, I versus |Br| and I versus Bt, are trained by the CNN with a residual architecture. A total
of 7800 sets of data (I, Br and Bt) covering 17 active region patches from 2011 to 2015 from the Helioseismic and Magnetic Imager
are used to train and validate the models.
Results. The CNN models can successfully estimate |Br| as well as Bt maps in sunspot umbra, penumbra, pore, and strong network
regions based on the evaluation of four active regions (test datasets). From a series of continuum images, we can also detect the
emergence of a transverse magnetic field quantitatively with the trained CNN model. The three-day evolution of the averaged value
of the estimated |Br| and Bt from continuum images follows that from Stokes inversions well. Furthermore, our models can reproduce
the nonlinear relationships between I and |Br| as well as Bt, explaining why we can estimate these relationships just from continuum
images.
Conclusions. Our method provides an effective way to quickly estimate |Br| and Bt maps from photospheric continuum images. The
method can be applied to the reconstruction of the historical magnetic fields and to future observations for providing the quick look
data of the magnetic fields.
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1. Introduction

The magnetic field is the underlying cause of solar activities.
The strength of the magnetic field has strong correlations with
the solar cycle and irradiance variability. Therefore the mag-
netic field is generally considered as the most important phys-
ical parameter and holds a central position in solar physics
(Solanki et al. 2006).

The measurement of the photospheric magnetic field relies
on remote sensing data by means of the Zeeman effect. George
Ellery Hale was the first person who found a strong magnetic
field in a sunspot based on the triplet splitting of the photospheric
spectral lines. Later, Babcock (1953) developed a magnetograph
that can measure the circular polarization and weak photospheric
magnetic fields. Severny (1964) invented a vector magnetograph,
which has the ability to obtain the total polarization informa-
tion, that is, Stokes I, Q, U, and V profiles of a magnetic sen-

? Movie is available at https://www.aanda.org

sitive line. After obtaining the Stokes profiles, the vector mag-
netic field (longitudinal and transverse magnetic fields as well
as the azimuth angle) is then derived using the Stokes inver-
sion technique, which minimizes the observed and synthetic
profiles calculated from polarized radiative transfer theory. So
far, analytical and numerical solutions are generally employed
for synthetic Stokes profiles (de la Cruz Rodríguez & van Noort
2017; Li et al. 2019; Lagg et al. 2017; Iglesias & Feller 2019;
Bai et al. 2013, 2014). Since 2000 the machine learning method
has also been employed to derive vector magnetic field
from Stokes parameters (Rees et al. 2000; Socas-Navarro 2003;
Asensio Ramos & Díaz Baso 2019; Guo et al. 2020; Liu et al.
2020).

In addition to the methods mentioned above, we can also
use indirect manifestation to estimate the photospheric mag-
netic field, such as the relatively dark parts in the sunspots,
enhanced emission in chromosphere, and the corona in net-
work magnetic field regions. Chatzistergos et al. (2019) recov-
ered the unsigned longitudinal photospheric magnetic field from
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Ca II K observations based on the statistical relation between
magnetic field strength and Ca II K core brightness. Similar stud-
ies have also been carried out by Virtanen et al. (2019). With
a machine learning method, Kim et al. (2019) tried to con-
struct far-side longitudinal magnetograms from the Extreme
UltraViolet Imager (EUVI) 304 Å images on board the Solar
Terrestrial Relations Observatory (STEREO) with the trained
model of the longitudinal magnetograms from the Helioseis-
mic and Magnetic Imager (HMI) on board the Solar Dynam-
ics Observatory (SDO) and the EUVI images using conditional
generative adversarial networks (cGANS). Combining front-side
longitudinal magnetograms from HMI with far-side longitudi-
nal magnetograms from the STEREO EUV observations by the
deep learning model, Jeong et al. (2020) made global magnetic
field synchronic maps. Discussion regarding the reliability of
AI generated magnetograms just from EUV images are avail-
able in Liu et al. (2021) and Park et al. (2021). Shin et al. (2020)
also generated longitudinal magnetic fields with polarities from
Ca II K observations using novel deep learning models based on
cGAN.

In the paper, we propose a new machine learning method to
estimate the photospheric magnetic fields from the correspond-
ing continuum images. Our estimated magnetic fields include
both the radial and transverse components. This is distinct
from current reconstruction models (Chatzistergos et al. 2019;
Kim et al. 2019; Shin et al. 2020; Jeong et al. 2020), which only
consider the radial or line-of-sight component of the solar mag-
netic fields. The transverse magnetic field is very important in
the understanding of solar activity, for example, the variations
of the transverse magnetic field during solar flares (Wang et al.
2002; Song & Zhang 2016; Su et al. 2011; Wang & Liu 2015).

The paper is organized as follows. We present the data and
the machine learning method in Sect. 2. In Sect. 3, the results
are presented and their reliability is evaluated by comparisons
of radial and transverse photospheric magnetic fields from the
Stokes inversion and machine learning methods. Section 4 sum-
marizes our conclusions.

2. Data and machine learning method

We use Space-weather HMI active region patches (SHARPs)
data (Hoeksema et al. 2014). The data are in a heliographic
cylindrical equal-area (CEA) coordinate system with the
cadence of 720 s. In the data, the projection effect is corrected.
Furthermore, the vector field B is transformed into the compo-
nents Br, Bθ, and Bφ in standard heliographic spherical coordi-
nates. In the paper, four kinds of images, that is, the continuum
(I), Br, Bθ, and Bφ images are used in the preprocessing step. The
continuum images are calculated by fitting the full Stokes pro-
files of the Fe I 617.3 nm magnetic sensitive line computed from
the integrated observation of 12 min (Hoeksema et al. 2014). In
this work we only consider the unsigned radial component of
the magnetic field, |Br|. The other two components, Bθ and Bφ
are combined to create the transverse field, Bt, according to the
following formula:

Bt =

√
B2
θ + B2

φ. (1)

We built two independent models to estimate |Br| and Bt from
the corresponding continuum images. For the training dataset, its
input is the continuum image, which is normalized by its mean
value. The outputs for the two models are |Br| and Bt, respec-
tively. A total of 7890 groups of data covering 17 SHARPs from
2011 to 2015 (see Table 1) are used to construct the model. Two

Table 1. Detailed information of the training and validation datasets.

HARP Start date End Number of
number date datasets

5916 Aug. 29, 2015 Sep. 1, 2015 427
5908 Aug. 25, 2015 Sep. 1, 2015 675
5894 Aug. 22, 2015 Aug. 27, 2015 634
5885 Aug. 21, 2015 Aug. 25, 2015 514
5112 Jan. 24, 2015 Jan. 28, 2015 352
4868 Nov. 24, 2014 Nov. 29, 2014 657
4570 Sep. 15, 2014 Sep. 16, 2014 176
4231 Jun. 10, 2014 Jun. 16, 2014 734
3877 Mar. 18, 2014 Mar. 19, 2014 178
3845 Mar. 09, 2014 Mar. 12, 2014 353
3741 Feb. 10, 2014 Feb. 11, 2014 205
3244 Sep. 29, 2013 Oct. 4, 2013 592
3149 Aug. 30, 2013 Sep. 5, 2013 596
3097 Aug. 17, 2013 Aug. 19, 2013 212
2912 Jun. 27, 2013 Jul. 2, 2013 619
2822 Jun. 2, 2013 Jun. 2, 2013 116
377 Feb. 10, 2011 Feb. 17, 2011 850

Total 7890

criteria are employed to select the dataset. One criterion is that
the number of rows in the SHARP data should be larger than
200 pixels, covering a large field of view. The other criterion is
that the SHARP data within the range of ±65◦ from disk cen-
ter are used. We randomly selected 15% of the whole dataset as
the validation data and the remaining 85% are used for the train-
ing data. The trained model, test code, and the result of the test
datasets (five SHARP numbers) are publicly available1.

Each model is constructed by a deep convolution neural net-
work (CNN) with a residual architecture (He et al. 2015), which
is a wide adopted algorithm of machine learning. The initial lay-
ers and residual group of the network extract features from the
input photospheric continuum image, while the final convolu-
tional layers predict the corresponding magnetic field (|Br| or
Bt). The full network is shown in Fig. 1, where different col-
ored cubes represent different layers. The initial layer is a con-
volutional layer, and its outputs serve as inputs to the residual
blocks for further deep residual learning. Ten residual blocks are
stacked, and each block contains a residual channel with a sin-
gle shortcut connection. The residual block is essentially made
up of two weight-shared convolution layers, each followed by a
batch normalization layer and ReLU activation with a skip con-
nection to before the last ReLU activation. Each convolutional
layer has 256 kernels of 3 × 3 and keeps the size of each feature
map fixed by one stride and zero padding. In the last layer, the
network ends with a 3 × 3 convolutional layer to reconstruct the
magnetic field image. Finally, the goal of the training model is
to minimize the loss function, which is the mean squares error
(MSE) and is defined by Eq. (2) as

MSE =

N∑
i=1

(IMAGEinv − IMAGECNN)2/N, (2)

where IMAGEinv represents either |Br| or Bt from SHARP data,
IMAGECNN is the image from the trained model, and N is the
pixel numbers. Our model is trained by the Adam optimizer
with the default setting for the configuration parameters, that is,

1 https://github.com/jikaifan/IC2mag/

A143, page 2 of 10

https://github.com/jikaifan/IC2mag/


X. Bai et al.: Solar active region magnetic field

)5 *VU] )5 9L3< *VU]

)5*VU] 9L3< )5 9L3<

9LZPK\HS�ISVJRZ

0UW\[ 6\[W\[

*VU]

Fig. 1. Architecture of the deep neural network used in the paper.

α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. We also tried to
generate Br. The CNN model is not converged if Br with polarity
is investigated. Therefore, we use only |Br| other than Br in the
following.

3. Results and comprehensive evaluations of the
models

SHARP No. 2875 observed from June 18 to June 21, 2013 cov-
ers the evolution of the active region (AR) from small pores
to a complex sunspot group. Hence we take it as a representa-
tive of the test dataset and present comprehensive comparisons
of the magnetic field between the inversion and CNN model in
Sect. 3.1. We then give overall comparisons of the other three
ARs in Sect. 3.2.

3.1. SHARPS No. 2875 as a representative of the test
dataset

From the continuum image in Fig. 2a, we can see a pore in
region R1 surrounded by several mini-pores. The correspond-
ing Br−inv, |Br−inv|, and Bt−inv from Stokes inversions are shown
in Figs. 2b–d, respectively. The |Br−CNN| and Bt−CNN from the
trained CNN models are shown in Figs. 2e and f, respectively.
This shows that we can estimate the |Br| and Bt not only for the
pore regions but also for the strong network regions (Region R2).
The correlation coefficient (CC) between |Br−inv| and |Br−CNN|

is 0.90, while the CC for Bt is 0.82. Figure 2g is the differ-
ence map between |Br−inv| and |Br−CNN|, while that of Bt is rep-
resented in Fig. 2h. The difference maps show a nonuniform
pattern owing to the diverse accuracy of the estimated magnetic
fields for various solar features. The values at the pore or strong
network region are the lowest, while those at the weak network
regions are the largest. The mean and standard deviation values
of the difference maps are 4.3 G and 37.1 G for the |Br|, while
the corresponding values for the Bt are 15.3 and 35.1 G. The
results for the other times can be found in the online movie. The

last row in Fig. 2 is the scatter plots of |Br−inv| versus |Br−CNN|

(Fig. 2i) and Bt−inv versus Bt−CNN (Fig. 2j). We carried out lin-
ear fittings of the scatter plots. The regions with |Br−inv| greater
than 30 G and Bt−inv greater than 100 G are used for the fit-
ting. The final results are |Br−CNN| = −5.78 + 0.89 × |Br−inv|,
Bt−CNN = −13.1 + 0.95 × Bt−inv, respectively. The estimated val-
ues of |Br−CNN| and Bt−CNN are slightly lower than those from
Stokes inversions.

Figures 3a–g illustrate the evolution of the photospheric con-
tinuum images in Region R1 in Fig. 2a from 13:12 to 16:48 UT
with a cadence of 36 min. At 13:12 UT, there are two pores with
opposite polarities denoted as N1 and P1. Later, the distance
between N1 and P1 becomes larger and some filament-like (or
elongate dark) structures occur between them (see the ellipse E1
region), indicating the scenario of the emergence of bipolar mag-
netic regions. The evolution of Br from the Stokes inversion (the
second column in Fig. 3) confirms the flux emergence process.
From the evolution of Bt (see E1 region in the fifth column),
it also clearly shows the emergence of the transverse magnetic
field between the two pores. The filament-like structures seen in
the continuum images mainly represent the transverse magnetic
field with negligible Br. With the help of photospheric continuum
images and our trained CNN model, we derived the |Br−CNN|map
(the third column) and the transverse magnetic field Bt−CNN map
(the sixth column). The morphology of |Br| and Bt maps between
the two methods is very similar. The CCs for |Br| are all above
0.95 for the seven images, while those for Bt are between 0.91
and 0.95. From the distribution of the scatter plots of |Br−inv|versus
|Br−CNN| (the fourth column) and Bt−inv versus Bt−CNN (the seventh
column), it is found that they are all near the diagonal line, indicat-
ing that the estimated values from the CNN method are consistent
with those from Stokes inversions. It is worth mentioning that the
emergence of the transverse magnetic field Bt is estimated well
quantitatively from the filament structures with a mean system-
atic difference about 30 G.

In addition to the bipolar regions with magnetic field emer-
gence, we further show the estimated magnetic fields for a
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(i)Y=(−5.78±1.2)+(0.894±0.02)X (j)Y=(−13.1±1.7)+(0.947±0.03)X

Fig. 2. Result from SHARP No. 2875. Panels a–d: image of continuum, Br, |Br|, and Bt from Stokes inversion, respectively. Panels e and f: |Br| and
Bt estimated from panel a with the trained CNN model. Panel g is the difference map of |Br| between Stokes inversion and the CNN model, while
panel h is that of Bt. Panels i and j: scatter plots of |Br| and Bt between the two methods. Regions R1 and R3 indicate the region used in Fig. 3.
Region R2 and red line L1 are used in Fig. 4. An associated animation of these panels is available online.

sunspot region (R3 region at 05:00 UT on June 21) containing
both umbra and penumbra. The result is indicated in the last row
of Fig. 3. The CCs between the two methods are 0.97 and 0.93
for the |Br| and Bt, respectively. The distributions of the scatter
plots of |Br−inv| versus |Br−CNN| (the fourth column) and Bt−inv
versus Bt−CNN (the seventh column) are both near the diagonal

line, indicating that the values are very similar. Generally, the
value of |Br| is higher while that for Bt is lower in the center of
umbra than the nearby regions. Our reproduced |Br| and Bt maps
are consistent with the scenario.

To better verify the estimated |Br| and Bt maps from the
photospheric continuum images with our trained CNN model,

A143, page 4 of 10
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Intensity Br from Inv. obs(Br) from CNN Scatter plots of 81 Bt from Inv. Bt from CNN Scatter plots of Bt 
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Fig. 3. Evolution of the Region R1 in Fig. 2a from 13:12 to 17:24 UT (panels a–g). The columns from left to right are, in order, the continuum
images, Br from Stokes inversion, |Br| from CNN model, scatter plots of |Br| between the two methods, Bt from Stokes inversion and CNN model,
and scatter plots of the two methods, respectively. The elliptical E1 indicates the region where the transverse magnetic field emerges. Panel h:
values for a sunspot from R3 region but for a different time.

we further calculate the evolution of |Br| and Bt for SHARP
No. 2875 within three days and compare these values with those
from the Stokes inversion method. Figure 4a shows the compar-
ison of the temporal evolution of the averaged |Br| between the
values from the CNN model and those from the Stokes inver-
sion method during three days. The two plots closely follow
each other. They both show a gradually increase in values due
to the magnetic emergence and some small-scale variations. The
CC of the two curves is 0.997. Figure 4b shows the compari-
son of the averaged Bt during the same time period as Fig. 4a.
Although the result of averaged Bt from the inversion shows sev-
eral small-scale fluctuations, our CNN model successfully repro-
duced these values, with a CC of 0.994. Except for the high

correlations, it is found that the estimated values of |Br| and Bt
from our CNN model are systematically underestimated. After
employing a simple linear fitting, we can correct the systematic
bias. The corrected plots are shown in Figs. 4a and b with orange
lines.

We ask why we can estimate |Br| and Bt maps just from pho-
tospheric continuum images. For the Stokes inversion method,
at least four parameters are needed, that is, the Stoke I, Q,
U, V maps from a magnetic sensitive line to derive Br, Bt,
and the azimuth angle (de la Cruz Rodríguez & van Noort 2017;
Li et al. 2019). The derived accuracy can further be improved if
we employ more spectral points. At this point, we would like
to emphasize that the Stokes inversion is done pixel by pixel

A143, page 5 of 10
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Fig. 4. Evolution of the averaged |Br| (panel a) and Bt (panel b) for SHARP number 2875 within about three days. Panels c and d: scatter
plots of the continuum brightness in Fig. 3h vs. the |Br| from Stokes inversion and CNN model methods, respectively. The one between the
continuum brightness and Bt is shown in panels e and f. The left and right images in panel g being Region R2 in Fig. 2a are the same with the
exception that the left part is overplotted with the contour of Br. The contour levels are 45 and 200 G. The green ellipse E2 denotes the strong
network region. Panel h: value of the continuum image extracted from the red line L1 in Fig. 2a, while the blue line represents the corresponding
Br value.

and does not consider the spatial relationship between adjacent
pixels. For the CNN models, we consider the spatial correlation
of the images with all kinds of solar features from the training
datasets so that the nonlinear relationships between I and |Br| as
well as Bt can be derived. In other words, the reason behind the
effectiveness of our method is the statistical spatial correlations
of I versus |Br| and I versus Bt identified by the CNN algorithm.

Figure 4c shows the relationship between I and |Br−inv| from
the Stokes inversion, while that of I and |Br−CNN| from the CNN
model is presented in Fig. 4d. The relations for the I versus
Bt−inv and I versus Bt−CNN are shown in Figs. 4e and f, respec-
tively. The results are based on the sunspot region presented in
Fig. 3h including both umbra and penumbra. We see that with
the decrease of the continuum intensity, the strength of |Br−CNN|

from the CNN model increases, which is a well-known property.
The CC value between I−|Br−CNN| and I−|Br−inv| is 0.97. The
well-reproduced I−|Br| relation by the CNN models illustrates

how well the |Br| map can be reproduced based on the contin-
uum images.

Because it is different from the monotonic relation between
|Br| and I, the relation between Bt and I from the inversion
(Bt−inv, Fig. 4e) and CNN model (Bt−CNN; Fig. 4f) shows a
crocodile-mouth-type shape with three branches. The upper
branch shows the decrease of I with the increase in Bt, which
is similar to the I−|Br| relation. The lower branch shows an
opposite trend. The intensity I increases with the increase
in Bt. Both the simulations (Rempel 2012) and data analysis
(Mathew et al. 2004; Borrero & Ichimoto 2011; Song & Zhang
2016; Sobotka & Rezaei 2017) show that Bt is larger with
the increasing continuum intensity in the umbra and umbra-
penumbra boundary region and then has the opposite tendency
in the outer penumbra regions. The Bt property of umbra and
penumbra contributes to the upper and lower branches. There
is no significant relationship between I and Bt in the middle

A143, page 6 of 10
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(h)Y=(2.789±0.8)+(0.975±0.008)X (i)Y=(39.45±1.8)+(0.828±0.016)X Fig. 5. Result from SHARP No. 26. Panels
a–c: image of continuum, |Br|, and Bt from
Stokes inversion, respectively. The unsigned
Br and Bt estimated from panel a with our
CNN model are shown in panels d and e.
Panel f is the difference map of |Br| between
Stokes inversion and CNN model, while
panel g is that of Bt. Panels h and j: scatter
plots of |Br| and Bt between the two methods.

branch when Bt is weaker than 700 G. The result from the CCN
model well reproduces the three branches (crocodile-mouth-
type shape). This verifies the effectiveness of the CCN model
to reconstruct the transverse field maps from the continuum
images.

Usually, the strong network region is located at the boundary
of supergranulation so we can see more small-scale and blurred
structures with less contrast relative to the nearby granulations
without magnetic fields, especially in the low-resolution data
(Kobel et al. 2012; Criscuoli 2013; Kahil et al. 2019). The sce-
nario can be found in Figs. 4g and h. The green ellipse E2 in
Fig. 4g indicates the strong network region. It has blurred pat-
terns relative to the nearby regions. The blue and red lines in
Fig. 4h represent the corresponding Br and I values, respectively,
which are extracted from the red line L1 in Fig. 2a. For the net-
work regions between the two green vertical dot-dashed lines

(the red line inside the green ellipse E2), the continuum inten-
sity with stronger magnetic field strength shows less contrast.

3.2. Overall comparisons of the other three ARs

In the above subsection, we showed the estimated magnetic
fields from series continuum images of an AR. In this subsec-
tion, we illustrate the results for the other three ARs in differ-
ent years. Only one continuum image is presented for each AR.
Figure 5 shows the result for SHARP No. 26, which is observed
on May 21, 2010. We can see the leading and the following
sunspots from the continuum image. The corresponding |Br−CNN|

and Bt−CNN maps estimated from the continuum image with our
trained CNN model are represented in Figs. 5d and e, respec-
tively. The CC between |Br−inv| and |Br−CNN| is 0.95, while that
for Bt is 0.91. Figure 5f is the |Br| difference map between the
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(h)Y=(−0.61±2.1)+(0.948±0.006)X (i)Y=(−21.9±3.6)+(1.013±0.01)X

Fig. 6. Same as Fig. 5, but for SHARP
No. 4375.

two methods, while that of Bt is shown in Fig. 5g. The difference
maps also have nonuniform patterns owing to the diverse accu-
racy of the estimated magnetic fields for various solar features.
The mean and standard deviation values of the difference map
for the |Br| are −2 G and 85.3 G, while the corresponding val-
ues for the Bt are −12 G and 73 G. The linear fittings of |Br| and
Bt between the two methods are carried out. The final results are
|Br−CNN| = 1.2+0.98×|Br−inv| and Bt−CNN = 35.19+0.83×Bt−inv.

We illustrate the estimated |Br−CNN| and Bt−CNN for SHARP
No. 4375 observed on July 19, 2014 in Fig. 6. It also consists
of the leading and the following sunspots, as seen from the con-
tinuum image in Fig. 6a. The other panels are arranged in the
same order as Fig. 5. The CC of |Br| between the Stokes inver-
sion and the CNN methods is 0.96, while the value for Bt is
0.94. Regarding the mean and standard deviation values of the
difference map, they are 5 G and 87 G for |Br| as well as 0.7 G
and 64 G for Bt, respectively. The linear fitting of the scatter

plots in Figs. 6h and i are |Br−CNN| = −0.6 + 0.95 × |Br−inv| and
Bt−CNN = −21.9 + 1.01 × Bt−inv.

The last test dataset is from SHARP No. 5118 observed on
Jan. 26, 2015 and its comparison results are shown in Fig. 7.
SHARP No. 5118 is the bipolar sunspots again. The CCs of
|Br| and Bt between the two methods are 0.95 and 0.94, respec-
tively. The mean and stand deviation values of the difference
map are 6 G and 84 G for |Br|. The values for Bt are −3 G and
69 G, respectively. We get |Br−CNN| = −5.68 + 0.96× |Br−inv|, and
Bt−CNN = 19.66 + 0.92× Bt−inv after employing the linear fittings
of the scatter plots.

The above results further demonstrate that our CNN method
has the ability to estimate both the |Br| and Bt maps just from
the continuum image for the sunspot region. From the compari-
son of panels a and b in Figs. 5–7, the regions with lower values
in the continuum image have larger |Br|. Our estimated |Br−CNN|

value is higher in the umbra center, which is consistent with the
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(h)Y=(−5.60±0.9)+(0.959±0.009)X (i)Y=(27.31±1.5)+(0.907±0.012)X

Fig. 7. Same as Fig. 5, but for SHARP
No. 5118.

well-known I−|Br| relationship. Regarding the one between I and
Bt, the strength of Bt firstly increases with the decreasing inten-
sity for the outer penumbra region. Then a reverse trend is found
in the umbra and umbra-penumbra boundary region as seen from
Fig. 4e. Therefore the Bt map is dark in the center of the umbra.
Our estimated Bt−CNN can also recover the above relationship
from the comparison of panels a and e in Figs. 5–7.

4. Conclusions and discussion

In the paper, we have suggested a method to reproduce the pho-
tospheric unsigned radial field |Br| and the transverse field Bt for
the ARs utilizing the corresponding continuum images by a deep
convolutional network with a residual architecture. We use the
Stokes inversion result to train our model. Our purpose is not to
replace the Stokes inversion method, which is generally regarded
as an accurate and robust method. Our method provides an alter-
native tool to quickly reconstruct |Br| and Bt maps for the solar

irradiance and flare-related research. Our models can especially
be applied to future solar instrumental projects for providing the
quick look maps of |Br| and Bt with observed continuum images
since the computing time spent on spectropolarimetric inversions
is very large. The main conclusions can be summarized in the
following:

– From the photospheric continuum image, we can estimate
the photospheric |Br| map for the strong network, pore, and
sunspot (penumbra and umbra) regions. More importantly,
the transverse magnetogram is also obtained in the sunspot
regions. The values of the estimated |Br| and Bt are slightly
less (in the range of 3%−10%) than those from Stokes inver-
sion method, as seen from the last row of Figs. 2, 5–7.
The evolution of the averaged |Br| and Bt for the SHARP
No. 2875 from our trained CNN model follows well that
from Stokes inversion method for both the large- and small-
scale fluctuations, verifying the consistency and stability of
the CNN model. The estimated |Br−CNN| and Bt−CNN maps
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for the other three ARs observed at different years also agree
well with those from Stokes inversion method.

– From series of continuum images, we can even detect the
emergence of transverse magnetic fields (filament-like pat-
tern) quantitatively with the trained CNN model. The power-
ful studying and generalizing ability of the CNN model can
reproduce the complicated nonlinear relationship between
the continuum intensity versus the |Br| and the Bt. That is
possibly the reason we can estimate the magnetic fields just
from photospheric continuum images.

The relationship between the magnetic field strength and photo-
spheric continuum brightness is obvious in the sunspot; thus the
method proposed in the paper can be applied to estimate |Br| and
Bt maps based on 100 years of photospheric continuum images
for the ARs. However, the relationship of I−|Br| and I−Bt is
very weak for the network regions (Kobel et al. 2012). From the
online movie, some brightness scintillation is found in the con-
tinuum image possibly related to the p-mode oscillation, result-
ing oscillations in the estimated |Br| and Bt with the CNN model.
We will try to remove them and check if it is possible to estimate
the weak magnetic fields in the network regions in the following
work. Moreover, we would like to train the model combining the
three-dimensional magnetohydrodynamics simulation data with
very high spatial resolution (Cheung & Isobe 2014). This may
provide an alternative way to diagnose the fast evolution of trans-
verse magnetic fields during small-scale and short-lived solar
activities, which are found by the ground-based high-resolution
telescopes and are very difficult to derive because it takes a long
time to carry out Stokes observations and inversions (Bai et al.
2019; Louis et al. 2015; Lim et al. 2011; Yang et al. 2019).
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