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Abstract

An (n, r, s)-system is an r-uniform hypergraph on n vertices such that every pair of
edges has an intersection of size less than s. Using probabilistic arguments, Rödl and
Šiňajová showed that for all fixed integers r > s ≥ 2, there exists an (n, r, s)-system
with independence number O

(
n1−δ+o(1)

)
for some optimal constant δ > 0 only related

to r and s. We show that for certain pairs (r, s) with s ≤ r/2 there exists an explicit
construction of an (n, r, s)-system with independence number O

(
n1−ε

)
, where ε > 0

is an absolute constant only related to r and s. Previously this was known only for
s > r/2 by results of Chattopadhyay and Goodman

1 Introduction

For a finite set V and a positive integer r denote by
(
V
r

)
the collection of all r-subsets of

V . An r-uniform hypergraph (r-graph) H is a family of r-subsets of finite set which is
called the vertex set of H and is denoted by V (H). A set I ⊂ V (H) is independent in
H if it contains no edge of H. The independence number of H, denoted by α(H), is the
maximum size of an independent set in H.

For integers n ≥ r ≥ s ≥ 1 an (n, r, s)-system (also called design) is an r-graph on n
vertices such that every pair of edges has an intersection of size less than s. Rödl and
Šiňajová [13] proved a lower bound for the independence number of an (n, r, s)-system, and
moreover, they showed that there exists an (n, r, s)-system whose independence number
achieves the lower bound up to a multiplicative constant factor.

Theorem 1.1 (Rödl-Šiňajová [13]). For fixed integers r > s ≥ 2 there exists a constant

c = c(r, s) such that every (n, r, s)-system has independence number at least cn
r−s
r−1 (log n)

1
r−1 .

Moreover, there exists a constant C = C(r, s) such that there exists an (n, r, s)-system with

independence number at most Cn
r−s
r−1 (log n)

1
r−1 for every integer n ≥ r.

Definition 1.2. For fixed integers r ≥ s ≥ 1 we say there is an explicitly construction
of an (n, r, s)-system with property P if there exists an algorithm A such that for every
integer n as input, A runs in time poly(n) and outputs an (n, r, s)-system with property
P.
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Explicit constructions of (n, r, s)-systems with certain properties are very useful in theo-
retical computer science. For example, in the seminal work of Nisan and Wigderson [10],
dense (n, r, s)-systems are used to construct pseudorandom generators (PRGs) (see also
[17, 12] for more applications). More recently, explicit constructions of (n, r, s)-systems
with small independence number were used to construct extractors for adversarial sources
[4, 3].

In this note, we focus on the explicit constructions of (n, r, s)-systems with small indepen-
dence number. Rödl and Šiňajová’s proof of the existence of an (n, r, s)-system with small
independence number uses the Lovász local lemma, and hence it does not provide an ex-
plicit way to construct them. Perhaps the first explicit construction of an (n, 3, 2)-system
(also called a Steiner triple system) with independence number O(n1−ε) for some absolute
constant ε > 0 is due to Chattopadhyay, Goodman, Goyal, and Li [4]. Their proof uses
results about cap sets (see [5, 6]).

Theorem 1.3 (Chattopadhyay-Goodman-Goyal-Li [4]). There exists a constant C ≥ 1
such that for every integer n ≥ 3 there exists an explicit construction of an (n, 3, 2)-system
with independence number at most Cn0.9228.

Later, using results about linear codes [8, 2] and Sidorenko’s recent bounds on the size
of sets in Zn2 containing no r elements that sum to zero [14, 15], Chattopadhyay and
Goodman [3] extended Theorem 1.3 to all integers r > s ≥ 2 with s ≥ dr/2e.

Theorem 1.4 (Chattopadhyay-Goodman [3]). There exists a constant C ≥ 1 such that
for every integer s ≥ 2 and every even integer r > s there exists an explicit construction

of an (n, r, s)-system with independence number at most Cr4n
2(r−s)

r .

Remark. For odd r they showed that there exists an explicit construction of an (n, r, s)-

system with independence number at most C(r + 1)4n
2(r+1−s)

r+1 .

Our main results in this note extend Theorem 1.3 for certain values of r and s in the range
s < dr/2e which was not addressed by Theorem1.4.

Our proof of the first theorem below is based on a recent result about the maximum size
of a set in Zn6 that avoids 6-term arithmetic progressions [11].

Theorem 1.5. There exists a constant C > 0 such that for every integer r ∈ {4, 5, 6}
and every integer n ≥ r there exists an explicit construction of an (n, r, 2)-system H with
α(H) ≤ Cn0.973.

Using a lemma about the independence number of the product of two hypergraphs we are
able to extend Theorem 1.5 to a wider range of r and s.

For every integer s = 3`14`25`36`4 + 1, where `1, `2, `3, `4 ≥ 0 are integers, define

R(s) =


6(s− 1) if `1 = `2 = `3 = 0

5(s− 1) if `1 = `2 = 0 and `3 6= 0

4(s− 1) if `1 = 0 and `2 6= 0

3(s− 1) if `1 6= 0

Theorem 1.6. For every integer s of the form 3`14`25`36`4 + 1, where `1, `2, `3, `4 ≥ 0
are integers, and every integer r satisfying 2s ≤ r ≤ R(s) there exist constants C =
C(`1, `2, `3, `4), ε = ε(`1, `2, `3, `4) > 0 such that for every integer n ≥ r there exists an
explicit construction of an (n, r, s)-system with independence number at most Cn1−ε.
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The following result focusing on (n, 5, 4)-systems uses a different argument and it improves
the bound O(n2/3) given by Theorem 1.4.

Theorem 1.7. There exists a constant C > 0 such that for every integer n ≥ 5 there
exists an explicit construction of an (n, 5, 4)-systems with independence number at most
Cnlog3 2 ≤ Cn0.631.

We prove Theorems 1.5 and 1.6 in Section 2, and prove Theorem 1.7 in Section 3.

2 Proofs of Theorems 1.5 and 1.6

2.1 Proof of Theorems 1.5

Let us first introduce a construction of r-graphs based on r-term arithmetic progressions
(r-AP) over Zkr . We do not allow trivial progressions so an r-AP has r distinct elements.

Construction A(r, k). Let r ≥ 3 and k ≥ 1 be integers. The hypergraph A(r, k) is the
r-graph with vertex set V = Zkr and edge set{

{v1, . . . , vr} ∈
(
V

r

)
: v1, . . . , vr form an r-AP

}
.

Remarks.

• It is clear that A(r, k) can be constructed in time poly
(
rk
)

for all integers r, k ≥ 1.

• Even though we defined A(r, k) for all integers r ≥ 3, in the proof of Theorem 1.5
we will consider only the case r = 6.

The following easy proposition shows that for every integer r ≥ 3 the hypergraph A(r, k)
is linear, i.e. every pair of edges has an intersection of size at most one.

Proposition 2.1. Let r ≥ 3, k ≥ 1 be integers and n = rk. Then A(r, k) is an (n, r, 2)-
system.

Proof of Proposition 2.1. Suppose to the contrary that there exist two distinct edges
E,E′ ∈ H such that |E ∩ E′| ≥ 2. Assume that E = {a, a + d, . . . , a + (r − 1)d} for
some a, d ∈ Zkr and d is not the zero vector. Without loss of generality we may assume
that a ∈ E ∩ E′ (otherwise we can choose an arbitrary element in E ∩ E′ and rename
it as a) and assume that E′ = {a, a + id, . . . , a + (r − 1)id} for some integer i ∈ [r − 1].
Since |E′| = r, the set {0, id (mod r), . . . , (r − 1)id (mod r)} has size r. Therefore, sets
{0, id (mod r), . . . , (r − 1)id (mod r)} and {0, 1, . . . , r − 1} are identical, which implies
that E = E′, a contradiction. Therefore, A(r, k) is an (n, r, 2)-system.

The next proposition shows that in order to prove Theorem 1.5 it suffices to find an explicit
construction of an (n, 6, 2)-system with independence number O(n1−ε).

Proposition 2.2. Suppose that there exists an (n, r, s)-system with independence number
at most α. Then there exists an (n, r′, s)-system with independence number at most α for
every integer r′ ∈ [s+ 1, r].
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Proof of Proposition 2.2. Let H be an (n, r, s)-system with independence number at most
α. Let V = V (H). Fix an integer r′ ∈ [s+ 1, r]. Let the r′-graph H′ be obtained from H
in the following way: for every edge E ∈ H replace it by an arbitrary r′-set E′ ⊂ E. It is
clear that H′ is an r′-graph on V . Now suppose that S ⊂ V is a set of size strictly greater
than α. Then, by assumption, there exists an edge E ∈ H such that E ⊂ S. It follows
from the definition of H′ that there exists E′ ∈ H such that E′ ⊂ E ⊂ S. So, S is not an
independent set in H′, which implies that α(H′) ≤ α.

Another ingredient we need for the proof of Theorem 1.5 is the following result due to
Pach and Palincza [11].

Theorem 2.3 (Pach-Palincza [11]). Suppose that k is a sufficiently large integer. Then
every set of Zk6 of size greater than (5.709)k contains a 6-AP.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Proposition 2.2, it suffices to prove that there exists an (n, 6, 2)-
system H with α(H) = O(n0.973).

First, for all integers n of the form 6k we let the construction be H = A(6, k). It follows
from Proposition 2.1 that H is an (n, 6, 2)-system. On the other hand, it follows from the
definition of A(6, k) that a set S ⊂ V is independent in A(6, k) iff it does not contain a
6-AP. So, by Theorem 2.3, |S| ≤ (5.709)k. Therefore, α(H) ≤ (5.709)k ≤ n0.973.

Now suppose that n is not of the form 6k. Then let k be the smallest integer such that
n ≤ 6k. Let H be any n-vertex induced subgraph of A(6, k). Then α(H) ≤ α(A(6, k)) ≤
(5.709)k ≤ 6n0.973.

2.2 Proof of Theorem 1.6

Given two hypergraphs H1 and H2, the direct product of H1 and H2, denoted by H1�H2,
is the hypergraph on V (H1)× V (H2) with edge set

{E1 × E2 : E1 ∈ H1 and E2 ∈ H2} ,

where × denotes the usual cartesian product of sets.

Remark. It is clear that there exists an algorithm A′ such that for every input (H1,H2),
A′ runs in time poly (|H1| · |H2|) and outputs H1�H2.

One nice property of the operation defined above is that the direct product of two designs
is still a design.

Lemma 2.4. Suppose that H1 is an (n1, r1, s1)-system and H2 is an (n2, r2, s2)-system.
Then H1�H2 is an (n1n2, r1r2,max{r1(s2 − 1) + 1, r2(s1 − 1) + 1})-system.

Proof of Lemma 2.4. Let n = n1n2, r = r1r2, and s = max{r1(s2− 1) + 1, r2(s1− 1) + 1}.
It is clear that H1�H2 is an r-graph on n vertices. So it suffices to show that every s-set
of V (H1)× V (H2) is contained in at most one edge in H1�H2.

Fix an s-set S ⊂ V (H1) × V (H2). Suppose to the contrary that there exist two distinct
edges E,E′ ∈ H1�H2 such that S ⊂ E ∩ E′. Assume that E = E1 × E2 and E′ =
E′1 × E′2, where E1, E

′
1 ∈ H1, E2, E

′
2 ∈ H2, and (E1, E2) 6= (E′1, E

′
2). Since E ∩ E′ =
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(E1 ∩ E′1) × (E2 ∩ E′2), we have |E ∩ E′| = |E1 ∩ E′1| × |E2 ∩ E′2|. On the other hand,
since (E1, E2) 6= (E′1, E

′
2), we have either E1 6= E′1 or E2 6= E′2. In the former case we

have |E ∩ E′| = |E1 ∩ E′1| × |E2 ∩ E′2| ≤ r2(s1 − 1) < s, and in the latter case we have
|E ∩ E′| = |E1 ∩ E′1| × |E2 ∩ E′2| ≤ r1(s2 − 1) < s, both contradict the assumption that
S ⊂ E ∩ E′ and |S| = s.

Next, we will show that the independence number of the direct product of two hypergraphs
with small independence number is still relatively small. To prove this we will use the
following bipartite version of the Dependent random choice lemma. Its proof is basically
the same as proofs in [7, 9, 1, 16], and for the sack of completeness we include it here.

Lemma 2.5 (Dependent random choice, see [7, 9, 1, 16]). Let a,m, n1, n2, r be positive
integers and d1 ≥ 0 be a real number. Let G = G[V1, V2] be a bipartite graph with |V1| = n1,
|V2| = n2, and |G| ≥ d1n1. If there exists a positive integer t such that

n1d
t
1

nt2
−
(
n1
r

)(
m

n2

)t
≥ a.

Then there exists a subset U ⊂ V (G) of size at least a such that every set of r vertices in
U has at least m common neighbors.

Proof of Lemma 2.5. Pick a set T of t vertices from V2 uniformly at random with repe-
tition. Set A = N(T ) ⊂ V1 and let X denote the cardinality of A. By the linearity of
expectation,

E[X] =
∑
v∈V1

(
|N(v)|
n2

)t
= n−t2

∑
v∈V1

|N(v)|t ≥ n−t2 n1

(∑
v∈V1 |N(v)|

n1

)t
=
n1d

t
1

nt2
.

Let Y be the random variable counting the number of subsets S ⊂ A of size r with fewer
than m common neighbors. For a given such subset S the probability that it is a subset

of A equals
(
|N(S)|
n2

)t
. Since there are at most

(
n1

r

)
subsets S ⊂ V1 of size r for which

|N(S)| < m, it follows that

E[Y ] ≤
(
n1
r

)(
m

n2

)t
.

By the linearity of expectation,

E[X − Y ] ≥ n1d
t
1

nt2
−
(
n1
r

)(
m

n2

)t
≥ a.

Hence there exists a choice of T for which the corresponding set A = N(T ) satisfies
X − Y ≥ a. Deleting one vertex from each subset S of A of size r with fewer than m
common neighbors. We let U be the remaining subset of A. The set U has at least
X − Y ≥ a vertices and all subsets of size r have at least m common neighbors.

The following lemma gives an upper bound for the independence number of the direct
product of two hypergraphs.

Lemma 2.6. Suppose that H1 is an r1-graph on n1 vertices with α(H1) < n1/f(n1)
and H2 is an r2-graph on n2 vertices with α(H2) < n2/g(n2) for some real numbers
f(n1), g(n2) ≥ 1. Then H1�H2 is an r1r2-graph on n1n2 vertices with α(H1�H2) <

n1n2/h(n1, n2), where h(n1, n2) = (f(n1)/2)1/t and t = d
log

(
n
r1−1
1 f(n1)/r1!

)
log g(n2)

e.
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Proof of Lemma 2.6. Let f = f(n1), g = g(n2), t = d
log

(
n
r1−1
1 f/r1!

)
log g e, h = h(n1, n2) =

(f/2)1/t, d1 = n2/h, m = n2/g, and a = n1/f . Let S ⊂ V (H1) × V (H2) be a set of size
d1n1 = n1n2/h. Define an auxiliary bipartite graph G = G[V1, V2] with V1 = V (H1) and
V2 = V (H2), and u ∈ V1, v ∈ V2 are adjacent iff (u, v) ∈ S. Since

n1d
t
1

nt2
−
(
n1
r1

)(
m

n2

)t
− a ≥ n1

ht
− nr11
r1!

1

gt
− n1

f

= n1

(
2

f
− nr1−11

r1!

1

gt
− 1

f

)
≥ n1

(
2

f
− 1

f
− 1

f

)
= 0,

it follows from Lemma 2.5 that there exists a set U ⊂ V1 of size n1/f such that every
r1-subset of U has at least n2/g common neighbors. Since α(H1) < n1/f , there exists
an r1-subset E1 ⊂ U such that E1 ∈ H1. Let W = N(E1). Since |W | ≥ n2/g > α(H2),
there exists an r2-subset E2 ⊂W such that E2 ∈ H2. Since every pair {u, v} with u ∈ E1

and v ∈ E2 is an edge in G, the set E1 × E2 is contained in S. This implies that S is
not an independent set in H1�H2 as it contains the edge E1 × E2 ∈ H1�H2. Therefore,
α(H1�H2) < n1n2/h.

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We prove this theorem by induction on
∑

i∈[4] `i. Theorem 1.5
shows that the base case

∑
i∈[4] `i = 0 holds, so we may assume that

∑
i∈[4] `i ≥ 1. Let

s = 3`14`25`36`4 + 1, and let us assume, for the sack of simplicity, that `1 ≥ 1 (the other
cases can be proved using a similar argument). By Proposition 2.2 it suffices to show there
is an explicit construction of an (n,R(s), s)-system with independence number O(n1−ε).

Fix n and let m = d
√
ne, s1 = 3`1−14`25`36`4 + 1, r1 = 3(s1 − 1). By the induction

hypothesis, there exists an explicit construction H1 of an (m, r1, s1)-system with α(H1) ≤
C1m

1−ε1 , where C1 > 0 and ε1 > 0 are constants only related to r1 and s1. On the
other hand, by Theorem 1.5, there exists an explicit construction H2 of an (m, 3, 2)-
system with α(H2) ≤ C2m

1−ε2 , where C2 > 0 and ε2 > 0 are absolute constants. Let
C = C(C1, C2, ε1, ε2) > 0 be a sufficiently large constant, ε = ε(C1, C2, ε1, ε2) > 0 be
a sufficiently small constant (C and ε can be determined from the proof below), and
let H3 = H1�H2. Then by Lemma 2.4, H3 is an (m2, 3(s − 1), s)-system. Applying

Lemma 2.6 to H3 with f(m) = mε1/C1, g(m) = mε2/C2 we obtain t = d log(r1!C1)
logC2

r1−1+ε1
ε2
e,

h(m,m) = (mε1/2C1)
1/t, and α(H3) ≤ m2/h(m,m) ≤ Cn1−ε (we can choose C > 0 to be

sufficiently large and ε > 0 to be sufficiently small such that the last inequality holds for
all integers n). Finally, to obtain an explicit construction of an (n, 3(s−1), s)-system with
independent number at most Cn1−ε one just needs to take any n-vertex induced subgraph
of H3.

3 (n, 5, 4)-systems

We prove Theorem 1.7 in this section.

Proof of Theorem 1.7. We will show that it suffices to choose C = 21. Similar to the
proof of Theorem 1.5 it suffices to show an explicit construction of an (n, 5, 4)-system with
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independence number at most 7nlog3 2 −
√
2

2−
√
3
n1/2 (this is slightly stronger that what we

need) for all integers n of the form 3k, and we will prove it by induction on k.

For k ≤ 3 we have 7
(
3k
)log3 2 − √

2
2−
√
3
3k/2 ≥ 3k, so we may assume that k ≥ 4 and

focus on the induction step. Fix an integer k and let Hk be a (3k, 5, 4)-system with

α(Hk) ≤ 7
(
3k
)log3 2 − √

2
2−
√
3
3k/2 = 7 · 2k −

√
2

2−
√
3
3k/2. Let ` ∈ N such that 2` ≥ 3k > 2`−1.

Let U1, U2, U3 be three pairwise disjoint copies of F2` \ {0}, where F2`
1 is the finite field

of order 2` with characteristic 2. For i ∈ [3] let ψi : V (Hk) → Ui be an injection and let
Vi = ψi(V (Hk)). Let Hk+1 be the 5-graph on V = V1 ∪ V2 ∪ V3 whose edge set is

Hk+1 =

{
{a1, b1, a2, b2, c} ∈

(
V

5

)
: a1, b1 ∈ V1, a2, b2 ∈ V2, c ∈ V3, a1 + b1 · c = a2 + b2 · c

}

∪

⋃
i∈[3]

ψi (Hk)

 .

Claim 3.1. Hk+1 is a (3k+1, 5, 4)-system.

Proof of Claim 3.1. Let S = {a, b, c, d} ⊂ V1 ∪ V2 ∪ V3 be a set of size 4. It is clear that if
|S ∩ Vi| ≥ 3 for some i ∈ [3] or |S ∩ V3| ≥ 2, then S can be contained in at most one edge
of Hk+1. So we may assume that |S ∩ V1|, |S ∩ V2| ≤ 2 and |S ∩ V3| ≤ 1.

Suppose that |S ∩ V1| = |S ∩ V2| = 2, and without loss of generality we may assume that
S ∩ V1 = {a, b} and S ∩ V2 = {c, d}. By the definition of Hk+1, every vertex e ∈ V3 that
satisfies {a, b, c, d, e} ∈ Hk+1 must satisfy a+c ·e = b+d ·e or a+d ·e = d+c ·e. Since both
equations yield e = a+b

c+d (here we used the fact that x− y = x+ y holds for all x, y ∈ F2`),
such vertex e is unique. Therefore, S is contained in at most one edge in Hk+1.

Suppose that |S ∩ V1| = 2 and |S ∩ V2| = |S ∩ V3| = 1. Without loss of generality we may
assume that S ∩ V1 = {a, b}, S ∩ V2 = {c}, and S ∩ V3 = {d}. It is easy to see that every
vertex e ∈ V that satisfies {a, b, c, d, e} ∈ Hk+1 must satisfy

• e ∈ V2, and

• a+ c · d = b+ e · d or a+ e · d = b+ c · d.

Since both a+ c · d = b+ e · d and a+ e · d = b+ c · d imply e = a+b
d + c (here we used the

fact that x− y = x+ y holds for all x, y ∈ F2` again), such vertex e is unique. Therefore,
S is contained in at most one edge in Hk+1.

By symmetry, for the other cases one can show that S is contained in at most one edge in
Hk+1. Therefore, Hk+1 is a (3k+1, 5, 4)-system.

Claim 3.2. α(Hk+1) ≤ 2
(

7 · 2k −
√
2

2−
√
3
3k/2

)
+
√

2 · 3k/2.

Proof of Claim 3.2. Suppose to the contrary that there exists an independent set S ⊂ V

of size greater than 2
(

7 · 2k −
√
2

2−
√
3
3k/2

)
+
√

2 · 3k/2. Let Si = S ⊂ Vi and si = |Si ∩ V |
for i ∈ [3]. Since S is independent in Hk+1, Si must be independent in ψi(Hk). Therefore,

1 It is clear that F2` can be constructed in time poly(2`) for every integer ` ≥ 1.
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si ≤ α(Hk) ≤ 7 · 2k −
√
2

2−
√
3
3k/2 for i ∈ [3] and consequently, si >

√
2 · 3k/2 for i ∈ [3].

Moreover, we have s1 + s2 > 7 · 2k −
√
2

2−
√
3
3k/2 +

√
2 · 3k/2 and hence,

s1 · s2 >

(
7 · 2k −

√
2

2−
√

3
3k/2

)
·
√

2 · 3k/2 ≥
√

2

(
7−

√
2

2−
√

3

)
· 2k · 3k/2 ≥ 2 · 3k ≥ 2`.

Fix z ∈ S3. Since s1s2 > 2`, by the Pigeonhole principle, there exists distinct elements
(a1, b1), (a2, b2) ∈ S1×S2 such that a1+b1 ·z = a2+b2 ·z. It is easy to see that a1 6= a2 and
b1 6= b2 since otherwise the equation a1 + b1 · z = a2 + b2 · z would imply (a1, b1) = (a2, b2),
a contradiction. Therefore, |{a1, a2, b1, b2, z}| = 5 and hence, {a1, a2, b1, b2, z} ∈ Hk+1.
However, this implies that S contains an edge in Hk+1, a contradiction.

Claim 3.2 shows that

α(Hk+1) ≤ 2

(
7 · 2k −

√
2

2−
√

3
3k/2

)
+
√

2 · 3k/2 = 7 · 2k+1 −
√

2

2−
√

3
3(k+1)/2.

This completes the proof of the induction step.

Notice that given Hk the r-graph Hk+1 can be constructed in time poly(|Hk|)+poly(2`) =
poly(3k). So for every integer k ≥ 1 the r-graph Hk can be constructed in time poly(3k).
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1994.

[14] A. Sidorenko. Extremal problems on the hypercube and the codegree Turán density
of complete r-graphs. SIAM J. Discrete Math., 32(4):2667–2674, 2018.
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