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Abstract

An (n,r, s)-system is an r-uniform hypergraph on n vertices such that every pair of
edges has an intersection of size less than s. Using probabilistic arguments, Rédl and
Sifiajova showed that for all fixed integers r > s > 2, there exists an (n,, s)-system
with independence number O (n!~9+°()) for some optimal constant § > 0 only related
to r and s. We show that for certain pairs (r,s) with s < r/2 there exists an explicit
construction of an (n,r, s)-system with independence number O (nl_f), where ¢ > 0
is an absolute constant only related to r and s. Previously this was known only for
s > r/2 by results of Chattopadhyay and Goodman

1 Introduction

For a finite set V and a positive integer r denote by (‘7{) the collection of all r-subsets of
V. An r-uniform hypergraph (r-graph) H is a family of r-subsets of finite set which is
called the vertex set of H and is denoted by V(#). A set I C V(H) is independent in
H if it contains no edge of H. The independence number of H, denoted by a(H), is the
maximum size of an independent set in H.

For integers n > r > s > 1 an (n,r,s)-system (also called design) is an r-graph on n
vertices such that every pair of edges has an intersection of size less than s. Rodl and
Sifiajova, [13] proved a lower bound for the independence number of an (n, , s)-system, and
moreover, they showed that there exists an (n,r, s)-system whose independence number
achieves the lower bound up to a multiplicative constant factor.

Theorem 1.1 (Rodl-Sinajova [13]). For fized integers r > s > 2 there exists a constant

r—s 1
¢ = c(r, s) such that every (n,r, s)-system has independence number at least cn™1 (logn)™1.
Moreover, there exists a constant C' = C(r, s) such that there exists an (n,r, s)-system with

T—s 1
independence number at most Cnr=1 (logn)™1 for every integer n > r.

Definition 1.2. For fized integers r > s > 1 we say there is an explicitly construction
of an (n,r,s)-system with property P if there exists an algorithm A such that for every
integer n as input, A runs in time poly(n) and outputs an (n,r,s)-system with property

P.
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Explicit constructions of (n,r, s)-systems with certain properties are very useful in theo-
retical computer science. For example, in the seminal work of Nisan and Wigderson [10],
dense (n,r, s)-systems are used to construct pseudorandom generators (PRGs) (see also
[17, 12] for more applications). More recently, explicit constructions of (n,r, s)-systems
with small independence number were used to construct extractors for adversarial sources
[4, 3].

In this note, we focus on the explicit constructions of (n,r, s)-systems with small indepen-
dence number. Rodl and Sifiajovéa’s proof of the existence of an (n, r, s)-system with small
independence number uses the Lovasz local lemma, and hence it does not provide an ex-
plicit way to construct them. Perhaps the first explicit construction of an (n, 3, 2)-system
(also called a Steiner triple system) with independence number O(n!=¢) for some absolute
constant € > 0 is due to Chattopadhyay, Goodman, Goyal, and Li [4]. Their proof uses
results about cap sets (see [5, 6]).

Theorem 1.3 (Chattopadhyay-Goodman-Goyal-Li [4]). There exists a constant C > 1
such that for every integer n > 3 there exists an explicit construction of an (n,3,2)-system
with independence number at most Cn9228,

Later, using results about linear codes [8, 2] and Sidorenko’s recent bounds on the size
of sets in Z§ containing no r elements that sum to zero [14, 15|, Chattopadhyay and
Goodman [3] extended Theorem 1.3 to all integers r > s > 2 with s > [r/2].

Theorem 1.4 (Chattopadhyay-Goodman [3]). There exists a constant C' > 1 such that

for every integer s > 2 and every even integer v > s there exists an explicit construction
. . 2(r—s)
of an (n,r, s)-system with independence number at most Crin~ r

Remark. For odd r they showed that there exists an explicit construction of an (n,r, s)-
2(r+1—s)
system with independence number at most C(r + 1)*n~ 71

Our main results in this note extend Theorem 1.3 for certain values of r and s in the range
s < [r/2] which was not addressed by Theorem]1.4.

Our proof of the first theorem below is based on a recent result about the maximum size
of a set in Z§ that avoids 6-term arithmetic progressions [11].

Theorem 1.5. There exists a constant C > 0 such that for every integer r € {4,5,6}

and every integer n > r there exists an explicit construction of an (n,r,2)-system H with
a(H) < Cno973,

Using a lemma about the independence number of the product of two hypergraphs we are
able to extend Theorem 1.5 to a wider range of r and s.

For every integer s = 3014%2506% + 1, where (1, £o, (3,04 > 0 are integers, define
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Theorem 1.6. For every integer s of the form 3914%566% 4 1, where (1,05,03,04 > 0
are integers, and every integer r satisfying 2s < r < R(s) there exist constants C =
C(l1,02,03,04),€ = €(l1,02,03,04) > 0 such that for every integer n > r there exists an

explicit construction of an (n,r, s)-system with independence number at most Cn'=¢.



The following result focusing on (n, 5, 4)-systems uses a different argument and it improves
the bound O(n?/?) given by Theorem 1.4.

Theorem 1.7. There exists a constant C > 0 such that for every integer n > 5 there
exists an explicit construction of an (n,5,4)-systems with independence number at most
Cnlog32 < O'n0-631

We prove Theorems 1.5 and 1.6 in Section 2, and prove Theorem 1.7 in Section 3.

2 Proofs of Theorems 1.5 and 1.6

2.1 Proof of Theorems 1.5

Let us first introduce a construction of r-graphs based on r-term arithmetic progressions
(r-AP) over Z¥. We do not allow trivial progressions so an r-AP has r distinct elements.

Construction A(r, k). Let » > 3 and k > 1 be integers. The hypergraph A(r, k) is the
r-graph with vertex set V' = ZF and edge set

%
{{vl,...,w} € (7‘) :v1,...,v, form an r—AP}.

Remarks.

e It is clear that A(r, k) can be constructed in time poly (rk) for all integers r, k > 1.

e Even though we defined A(r, k) for all integers > 3, in the proof of Theorem 1.5
we will consider only the case r = 6.

The following easy proposition shows that for every integer r > 3 the hypergraph A(r, k)
is linear, i.e. every pair of edges has an intersection of size at most one.

Proposition 2.1. Let r > 3, k > 1 be integers and n = r*. Then A(r, k) is an (n,r,2)-
system.

Proof of Proposition 2.1. Suppose to the contrary that there exist two distinct edges
E,E' € H such that |E N E'| > 2. Assume that £ = {a,a+d,...,a + (r — 1)d} for
some a,d € ZF and d is not the zero vector. Without loss of generality we may assume
that @ € F N E’ (otherwise we can choose an arbitrary element in £ N E’ and rename
it as a) and assume that E' = {a,a +id,...,a+ (r — 1)id} for some integer i € [r — 1].
Since |E'| = r, the set {0,id (mod r),...,(r — 1)id (mod r)} has size r. Therefore, sets
{0,id (mod r),...,(r — 1)id (mod r)} and {0,1,...,r — 1} are identical, which implies
that £ = FE’, a contradiction. Therefore, A(r, k) is an (n,r, 2)-system. [ |

The next proposition shows that in order to prove Theorem 1.5 it suffices to find an explicit
construction of an (n, 6, 2)-system with independence number O(n!=¢).

Proposition 2.2. Suppose that there exists an (n,r, s)-system with independence number
at most «. Then there exists an (n,r’, s)-system with independence number at most o for
every integer r' € [s 4+ 1,71].



Proof of Proposition 2.2. Let H be an (n,r, s)-system with independence number at most
a. Let V = V(H). Fix an integer 1’ € [s + 1,7]. Let the 7’-graph H’ be obtained from H
in the following way: for every edge E € H replace it by an arbitrary r’-set £/ C E. It is
clear that H' is an r’-graph on V. Now suppose that S C V is a set of size strictly greater
than «. Then, by assumption, there exists an edge F € H such that £ C S. It follows
from the definition of H' that there exists E' € H such that E' € E C S. So, S is not an
independent set in H’, which implies that a(H') < a. |

Another ingredient we need for the proof of Theorem 1.5 is the following result due to
Pach and Palincza [11].

Theorem 2.3 (Pach-Palincza [11]). Suppose that k is a sufficiently large integer. Then
every set of Z’g of size greater than (5.709)% contains a 6-AP.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Proposition 2.2, it suffices to prove that there exists an (n, 6, 2)-
system H with a(H) = O(n973).

First, for all integers n of the form 6% we let the construction be H = A(6, k). It follows
from Proposition 2.1 that H is an (n, 6, 2)-system. On the other hand, it follows from the
definition of A(6, k) that a set S C V is independent in A(6, k) iff it does not contain a
6-AP. So, by Theorem 2.3, |S| < (5.709)%. Therefore, a(H) < (5.709)F < n0-973,

Now suppose that n is not of the form 6*. Then let k be the smallest integer such that
n < 6%. Let H be any n-vertex induced subgraph of A(6,%). Then a(H) < a(A(6,k)) <
(5.709)F < 60973, |

2.2 Proof of Theorem 1.6

Given two hypergraphs H1 and Ha, the direct product of Hy and Ho, denoted by Hi[Ho,
is the hypergraph on V(#H;) x V(Hz) with edge set

{E1 x Ey: By € Hy and By € 7‘[2},
where x denotes the usual cartesian product of sets.

Remark. It is clear that there exists an algorithm A’ such that for every input (H1, Hsa),
A’ runs in time poly (|H1| - [H2]) and outputs HiOHs.

One nice property of the operation defined above is that the direct product of two designs
is still a design.

Lemma 2.4. Suppose that Hy is an (nq,r1, 81)-system and Ha is an (ng,ra, s2)-system.
Then H1OHs is an (ning, r1re, max{ri(so — 1) + 1,72(s1 — 1) + 1})-system.

Proof of Lemma 2.4. Let n = ning, r = rire, and s = max{ri(sa — 1)+ 1,72(s1 — 1) + 1}.
It is clear that H;[OHy is an r-graph on n vertices. So it suffices to show that every s-set
of V(H1) x V(Hz) is contained in at most one edge in H1OHo.

Fix an s-set S C V(H1) x V(Hz2). Suppose to the contrary that there exist two distinct
edges E,E' € HiOHs such that S € ENE'. Assume that £ = E; x Fy and E' =
Ei X Eé, where El,Ei € Hi, EQ,Eé € Ho, and (F4, E) # (Ei,Eé) Since ENE' =



(E1 N EY) x (B2 N EY), we have [ENE'| = |E1 N E}| x |E2 N ES|. On the other hand,
since (E1, Ey) # (Ef, E}), we have either Ey # E] or Ey # El. In the former case we
have |[ENE'| = |E1 N E}| x |[Ea N E)| < ra(s1 — 1) < s, and in the latter case we have
|[ENE'| = |E1NE] x|ExNE) <ri(sy—1) < s, both contradict the assumption that
SCENE and |S| =s. |

Next, we will show that the independence number of the direct product of two hypergraphs
with small independence number is still relatively small. To prove this we will use the
following bipartite version of the Dependent random choice lemma. Its proof is basically
the same as proofs in [7, 9, 1, 16], and for the sack of completeness we include it here.

Lemma 2.5 (Dependent random choice, see [7, 9, 1, 16]). Let a,m,ny,ne,r be positive
integers and dy > 0 be a real number. Let G = G[V1, V5] be a bipartite graph with |Vi| = nq,
|Va| = no, and |G| > diny. If there ezists a positive integer t such that

nldﬁ_ ny m t>a
nk r ne) —

Then there exists a subset U C V(G) of size at least a such that every set of r vertices in
U has at least m common neighbors.

Proof of Lemma 2.5. Pick a set T of t vertices from Vo uniformly at random with repe-
tition. Set A = N(T) C Vi and let X denote the cardinality of A. By the linearity of
expectation,

E[X]—Z(“\;2 )_ gt 37 IN@)I = ng'n (W)t_n:lgg'

veW veV

Let Y be the random variable counting the number of subsets S C A of size r with fewer
than m common neighbors. For a given such subset S the probability that it is a subset

IN(S)]

i
of A equals ( ) . Since there are at most ( 1) subsets S C Vj of size r for which

IN(S)| < m, it follows that

By the linearity of expectation,

t t
EX -Y] > nlfl - <n1> <m> > a.
nk r ) \ne

Hence there exists a choice of T' for which the corresponding set A = N(T') satisfies
X —Y > a. Deleting one vertex from each subset S of A of size r with fewer than m
common neighbors. We let U be the remaining subset of A. The set U has at least
X —Y > a vertices and all subsets of size r have at least m common neighbors. |

The following lemma gives an upper bound for the independence number of the direct
product of two hypergraphs.

Lemma 2.6. Suppose that Hi is an ri-graph on ny vertices with o(H1) < ni/f(n1)
and Ha 1is an ro-graph on ng vertices with a(Ha) < na2/g(n2) for some real numbers
f(n1),9(n2) > 1. Then H1OHz is an rira-graph on ning vertices with a(H,0OHa) <

log(njl™ f(n )/r
s (s, ), where Ay, o) = (F(nx) /27" and ¢ = 2500 10Dy




log (n? /e !)
Proof of Lemma 2.6. Let f = f(n1), g = g(na), t = [T], h = h(ni,ng) =

(f/2)1/t, dy = ng/h, m =ng/g, and a = n1/f. Let S C V(H1) x V(Hz2) be a set of size
diny = ninz/h. Define an auxiliary bipartite graph G = G[V1, V] with Vi = V(#;) and
Vo =V (Hz), and u € Vi, v € V5 are adjacent iff (u,v) € S. Since

mdi (m) (m\'m a1 om
nk r no ~ht rlgt f

it follows from Lemma 2.5 that there exists a set U C Vj of size n1/f such that every
ri-subset of U has at least ny/g common neighbors. Since a(H1) < ni/f, there exists
an ri-subset Ey C U such that Ey € Hy. Let W = N(E4). Since |W| > na/g > a(Ha),
there exists an ry-subset Fo C W such that Ey € Hy. Since every pair {u,v} with u € E;
and v € Fs is an edge in G, the set F x Fs is contained in S. This implies that S is
not an independent set in H1[0Hs as it contains the edge E; X Es € Hi[OHs. Therefore,
Oé(’HllijQ) < n1n2/h. [ |

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We prove this theorem by induction on Zie[4 £;. Theorem 1.5
shows that the base case Zie[él] ¢; = 0 holds, so we may assume that 516[4] l; > 1. Let

s = 30140506 4 1, and let us assume, for the sack of simplicity, that ¢; > 1 (the other
cases can be proved using a similar argument). By Proposition 2.2 it suffices to show there
is an explicit construction of an (n, R(s), s)-system with independence number O(n!~¢).

Fix n and let m = [\/n], s; = 3%714%25%6% + 1, 1y = 3(s; — 1). By the induction
hypothesis, there exists an explicit construction Hj of an (m,ry, s1)-system with a(H;) <
Cim!'=, where C; > 0 and €¢; > 0 are constants only related to r; and s;. On the
other hand, by Theorem 1.5, there exists an explicit construction Ho of an (m,3,2)-
system with a(Hsa) < Com'~2, where Cy > 0 and e > 0 are absolute constants. Let
C = C(Cy,Cq,€1,€62) > 0 be a sufficiently large constant, ¢ = €(Cy,Co,€1,e2) > 0 be
a sufficiently small constant (C' and € can be determined from the proof below), and
let Hs = H1OHs. Then by Lemma 2.4, H3 is an (m?,3(s — 1), s)-system. Applying

Lemma 2.6 to H3 with f(m) = m/Cy, g(m) = m®/Cy we obtain t = (loféggj) ”*61;61 ,

h(m,m) = (m€1/201)1/t, and a(H3) < m?/h(m,m) < Cn'=¢ (we can choose C > 0 to be
sufficiently large and € > 0 to be sufficiently small such that the last inequality holds for
all integers n). Finally, to obtain an explicit construction of an (n,3(s—1), s)-system with
independent number at most Cn'~¢ one just needs to take any n-vertex induced subgraph
of Hs. |

3 (n,5,4)-systems
We prove Theorem 1.7 in this section.

Proof of Theorem 1.7. We will show that it suffices to choose C' = 21. Similar to the
proof of Theorem 1.5 it suffices to show an explicit construction of an (n, 5,4)-system with



independence number at most 7n'°%s2 — T(/S 1/2 (this is slightly stronger that what we

need) for all integers n of the form 3%, and we will prove it by induction on k.

For £ < 3 we have 7 (Sk)log32 — 203’“/2 > 3%, so we may assume that & > 4 and

focus on the induction step. Fix an integer k and let Hp be a (3k,5,4) -system with
a(My) < T(3%)%%% — Y2gh/2 = 7.9k — V2_3H/2 Let ( € N such that 2° > 3% > 21,
Let Uy, Uy, Us be three pairwise disjoint copies of Fy \ {0}, where Fo.! is the finite field
of order 2¢ with characteristic 2. For i € [3] let 9;: V(H}) — U; be an injection and let

Vi = ¢i(V(Hy)). Let Hg+1 be the 5-graph on V = V; U V4 U V3 whose edge set is

Vv
Hir1 = {{a1,b1,a2,b270}€ <5)2a17b1 € Vi,a2,by €V2,C€V37a1+b1'62a2+52'6}

U Ul/}z Hk

i€(3]

Claim 3.1. Hy 1 is a (381, 5,4)-system.

Proof of Claim 3.1. Let S = {a,b,c,d} C V1 UVaU V3 be a set of size 4. It is clear that if
|SNV;| > 3 for some ¢ € [3] or |SN V3| > 2, then S can be contained in at most one edge
of Hi+1. So we may assume that [SNVy|,[SN Ve <2and |[SN V3| < 1.

Suppose that [S N Vi| =[S NV, =2, and without loss of generality we may assume that
SNVy ={a,b} and SNVy = {¢,d}. By the definition of Hjy1, every vertex e € V3 that

satisfies {a, b, ¢, d, e} € Hj11 must satisfy a+c-e = b+d-e or a+d-e = d+c-e. Since both

equations yield e = “—‘H’ (here we used the fact that x —y = x + y holds for all z,y € Fy),

such vertex e is umque Therefore, S is contained in at most one edge in Hy41.

Suppose that |SNVi| =2 and |SNVa| = |S N V3] = 1. Without loss of generality we may
assume that SN V) = {a,b}, SNV ={c}, and SN V3 = {d}. It is easy to see that every
vertex e € V that satisfies {a,b,c,d, e} € Hy1 must satisfy

e ec Vs, and
eag+c-d=b+e-dorat+e-d=b+c-d.
Sincebotha—i—c-dzb—i—e-danda—i—e-dzb+c-dimplye:“T‘H)—i—c(hereweusedthe

fact that  — y = x + y holds for all z,y € Fy again), such vertex e is unique. Therefore,
S is contained in at most one edge in Hgy1.

By symmetry, for the other cases one can show that S is contained in at most one edge in
Hyy1. Therefore, Hy i1 is a (38+1, 5, 4)-system. |

Claim 3.2. (M) <2 (7- 28— M2.35/2) 4 /3.342,
Proof of Claim 3.2. Suppose to the contrary that there exists an independent set S C V

of size greater than 2 <7 .ok — 203“2) +v/2-3%/2 Let Si=8cCViand s; = |S;NV]|
for i € [3]. Since S is independent in Hg1, S; must be independent in ¢;(Hy). Therefore,

! It is clear that F,e can be constructed in time poly(2°) for every integer £ > 1.



s; < a(Hy) <7-2F - %3"72 for i € [3] and consequently, s; > /2 - 3%/2 for i € [3].

Moreover, we have s; + s9 > 7 - 2F — %3’“/2 +v/2-3%/2 and hence,

V2 V2
s> [ T72F - Y2 _3k2) /2.3k2 > 2T - Lok . 3k/2 > 9.3k > 9of,
o1 ( 2-3 = 2-3 = =

Fix z € S3. Since siso > 2¢, by the Pigeonhole principle, there exists distinct elements
(a1,b1), (az,by) € S1x Sy such that a; +b1-2 = ag+by-z. It is easy to see that a1 # ag and
by # by since otherwise the equation aj + b1 - z = ag + by - z would imply (a1, b1) = (a2, ba),
a contradiction. Therefore, |{a1,a9,b1,b2,z}| = 5 and hence, {a1,as,b1,b2,2} € Hpi1.
However, this implies that S contains an edge in Hgy1, a contradiction. |

Claim 3.2 shows that

23 2-3

This completes the proof of the induction step.

a(Hps1) <2 (7 ok — ﬁs’“) +/2. 382 = 7. ok+1 _ ﬁ:s(k“)/?.

Notice that given Hj the r-graph Hj 1 can be constructed in time poly(|Hz|) +poly(2¢) =
poly(3¥). So for every integer k > 1 the r-graph H; can be constructed in time poly(3%).
|
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