THE KRZYZ CONJECTURE
AND AN ENTROPY CONJECTURE

By

JIM AGLER* AND JOHN E. MCCARTHY'

Abstract. We show that if the minimum entropy for a polynomial with roots
on the unit circle is attained by polynomials with equally spaced roots, then, under
a generic hypothesis about the nature of the extremum, the Krzyz conjecture on
the maximum modulus of the Taylor coefficients of a holomorphic function that
maps the disk to the punctured disk is true.

1 Introduction

Let Q denote the set of holomorphic functions that map the unit disk D to D \ {0}.
The Krzyz conjecture, due to J. Krzyz [11], is the following conjecture about the
size of Taylor coefficients of functions in Q.

Conjecture 1.1. Let n be a positive integer. Then

N 2
(1.2) K, =sup{lf(n)| : f e Q} = .
feQ e

Moreover, equality is obtained in (1.2) only for functions of the form

n

'+
1.3 =
(13) f@=cexp (3, 7).
where { and w are unimodular constants.

For any function f defined and holomorphic on a neighborhood of the origin,
we use f (k) to denote the k™ Taylor coefficient at 0, so

. fO0)
fuo="" "

For ahistory of the Krzyz conjecture and a summary of known results, see Section 2.
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The purpose of this note is to establish a connection between the Krzyz conjec-
ture and the following conjecture about the entropy of polynomials with roots on
the unit circle T.

Conjecture 1.4. Let p be a non-constant polynomial, all of whose roots lie

on T, and normalized so that . 02 T |p(e®)|?df = 1. Then

1 2r . .
(1.5) ) / Ip(e?)|* log |p(e™)|?do > 1 — log(2).
T Jo
Moreover, equality occurs in (1.5) only for polynomials of the form
¢
1.6 7) = w+7"),
(1.6) p(2) \/2( )

where ¢ and o are unimodular constants, and n is a positive integer.

We shall let I denote the Herglotz class, the holomorphic functions on the unit
disk that have non-negative real part. A function f is in Q if and only if there is a
function g € J so that

f=e8.
Given an (n + 1)-tuple a = (ay, . . . , a,) of complex numbers, we shall say that a is
solvable Herglotz data if there exists g € J{ satisfying

gky=ay, fork=0,...,n.

We shall say that a is extremal Herglotz data if it is solvable but for any r > 1,

the data (ag, ray, ..., r"a,) is not solvable.
We shall say that f is K}-extremal if f is in € and fn) = K». It was proved
in [10] that if f is K}-extremal, and g = —log(f), then the first n + 1 Taylor

coefficients of g are extremal Herglotz data (we give a proof of this in Lemma 3.3).
By a theorem of G. Pick [13], this means g must have the form
Tr+2

m

(1.7) g(z)—a1+;wgrg_z,
where a € R, the number m satisfies 1 < m < n, each wy, > 0, and each 7, is a
distinct point on T. We shall let R,, denote the set of rational functions that have
the form (1.7) (that is, rational functions of degree m that are m-fold covers of the
right-half plane by the unit disk), and we shall let R} = J;,,,<, Rin-

Our first main result analyzes the critical points for the Krzyz functional. We
prove in Theorem 5.1 that if g is in X, (and is normalized in a way described in

Section 6), then f = e~ ¢ is a critical point for K, with critical value # if and only if

)
e g’\/ny N
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where y is a polynomial of degree n of unit norm in the kernel of Re g(S,), where S,
is the compression of the unilateral shift to polynomials of degree less than or equal
to 1, and the notation ~ means that the functions have the same Taylor coefficients
up to degree n.

We use this result to prove that if the extremals f for the Krzyz problem have
g = — logf of full degree, then the entropy conjecture implies the Krzyz conjecture.

Theorem 1.8. Let f be K;-extremal, and assume that g = —logf is in R,. If
Conjecture 1.4 is true, then f has the form (1.3).

We prove Theorem 1.8 in Section 7. In Section 8 we study critical points
of the entropy functional from (1.5). In Section 9, we prove a special case of
Conjecture 1.4. Finally, in Section 10, we show how Conjecture 1.4 would follow
from Conjecture 2.2, due to A. Baernstein II.

2 History of the Krzyz conjecture

J. Krzyz proved Conjecture 1.1 for n = 2, and conjectured it for all n. The n =3
case was proved by J. Hummel, S. Scheinberg and L. Zalcman [10]; they also
proved Lemma 3.3 below, and that (1.3) is a strict local maximum for (1.2) (after
normalizing so that £(0) and f(n) are both positive). The n = 4 case was proved
first by D. Tan [15], and later by a different method by J. Brown [5]. The n =5
case was proved by N. Samaris [14].

C. Horowitz [9] proved that there is some constant H < 1 such that K} < H
for all n; his proof showed H < 0.99987.... This was improved by R. Ermers to
H <0.9991... [6].

In [12], M. Martin, E. Sawyer, 1. Uriarte-Tuero and D. Vukoti¢ prove that 16
different conditions are all equivalent to the Krzyz conjecture. The paper also
includes a useful historical summary.

Conjecture 1.4 may be compared with the following sharp inequality, conjec-
tured by I. Hirschman [8] and proved by W. Beckner [4]:

If f € L>(R) has norm 1, and Ff denotes the Fourier transform of f, then

2.1) / 1P log If + / \TFP log |51 < log(2) — 1.

Equality is obtained in (2.1) for Gaussians.
A. Baernstein II made the following conjecture in 2008 [2], where the quasi-
norms are with respect to normalized Lebesgue measure on the circle. By ||f||o we

mean exp( f1 log [f]).
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Conjecture 2.2. Let Q(z) = 1 +7" Thenforall 0 < s <t < oo, and for all

non-constant polynomials p with all their roots on the unit circle,

Pl < e
1Qlls = el

In Section 10 we show how Baernstein’s conjecture implies the entropy

(2.3)

conjecture.

3 Preliminaries
Suppose f and g are analytic functions on a neighborhood of 0, and n € N. Say
f~g

if f(k) = g(k) for 0 < k < n. We leave the proof of the following lemma to the
reader.

Lemma 3.1. Supposef and g are analytic on a neighborhood of zero. Assume
that f(0) = g(0) = b, and ¢ is analytic in a neighborhood of b. If f 2'g, then

pof~pog.

The following result is due to G. Pick [13], and can be found in any book on
Pick interpolation such as [3, 7, 1].

Lemma 3.2. Ifa = (ay, ..., a,) is extremal Herglotz data, then there exists
a unique function g € 3 such that g(k) = ai, for 0 < k < n. Moreover, g € R},.
Conversely, if g € R?, then a = (8(0), ..., g(n)) is extremal Herglotz data.

Lemma 3.3. Fixn > 1 and assume that f is K}, -extremal. Define g by f = e™8.
Then g € R.

Proof. We know that g must be in J{, so by Lemma 3.2, if g is not in R?, then
for some r > 1 we have a function 4 € J such that

h(k) = r*g(k), 0<k<n.
Then ¢ = e~ is in Q, and by Lemma 3.1, ¢(2)~f(rz), so
lp(n)| = " If ()| > If(n)].

This contradicts the claim that f is extremal. O
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Corollary 3.4.
K5, = sup [(e7$)(n)|.
geR;
Given that R? = (J;,_o Rm, Corollary 3.4 suggests the following optimization
problem. For each n > 1, define

—_—
K, = sup [(e=9)(n)|.
g€R,

Remark 3.5. As R, is a dense open set in R, we have K,, = K. However,
whereas a normal families argument guarantees that an extremal function for K}
always exists, it is not obvious that an extremal for K, exists. If Krzyz’s conjecture
is true, then the supremum is attained.

4 The critical points of K,

4.1 The definition of critical points. For the rest of the paper, n will
be a positive integer. There are a number of equivalent ways to view R, as a
topological space:

(1) using the a, w, T parameters of (1.7) (where m = n);
(2) as the subset of the space of extremal Herglotz data points a = (ay, . . ., a,)
with the property that (ao, . . ., a,—1) is not extremal;
(3) with the topology of uniform convergence on compact subsets of D.
We would like to consider the local maxima of the function F : R,, — R defined by

(4.1) F(g) = [(e=)(n)[*.

Let P;, denote the set of complex polynomials of degree less than or equal to =,
and P, the polynomials of degree exactly n.

Definition 4.2. Let g € R,. We say d is an admissible direction at g if
d € P; and there exists ¢ > 0 such that

(8(0) +1d(0), . . ., g(n) + td(n))

is solvable Herglotz data for all ¢ in (0, ). We say that g is a critical point for K,, if

d ——
4.3) dt|e—<g+td)(n)|2|t <0

=0+

whenever d is an admissible direction at g. If g is a critical point for K,,, then we
refer to 5 = e~#(n) as the critical value.
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4.2 A Hilbertspace setting for the analysis of critical points. Let H>
denote the classical Hardy space on the unit disk. We shall think of P as a
subspace of H?, and let P, be the orthogonal projection from H? onto P2. Define
an operator S, on P; by the formula

($nq)(2) = Pu(zq(2)), q(z) € P;.

The operator S, is the truncated shift, and is nilpotent of order n + 1. Hence if f
is any holomorphic function on a neighborhood of 0, we can define f(S,) by the
Riesz functional calculus, or by either of the two equivalent formulas

S =Y fss,

k=0

f(S)q = P.(fq).

Observe that if f and g are both holomorphic on a neighborhood of 0, then

frg & f(S) = g(Sy).

The following two propositions are basically a reformulation of Lemma 3.2 to the
Hilbert space interpretation of interpolation. Recall that for a matrix 7', its real part
Re(T) = J(T + T*). We say T is positive semi-definite if (Tv,v ) > 0 for every
vector v ; this is equivalent to saying that 7 is self-adjoint and all its eigenvalues
are non-negative. Also, T is positive definite if (7o, » ) > 0 for every non-zero
vector v ; equivalently it is self-adjoint and all its eigenvalues are strictly positive.
It follows that a matrix that is positive semi-definite but not positive definite must
be singular, i.e., non-invertible.

Proposition 4.4. Let a be an (n + 1)-tuple of complex numbers. Then a is
solvable Herglotz data if and only if

n
Re Y S, > 0.
k=0

Moreover a is extremal Herglotz data if and only if Re Y ;_, ai Sk is positive semi-
definite but not positive definite.

Proposition 4.5. Assume g € J.
(1) Reg(S,) = 0.
(2) The function g is in R}, if and only if Re g(S,) is singular.
(3) If 0 < m < n, then g € R, if and only if rank(g(S,)) = m.
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4.3 Local maxima are critical points. We need to show that there is
enough smoothness at local maxima to make sense of (4.3), at least when the local
maximum is in R,,.

Proposition 4.6. Let F be defined by (4.1). If g € R, is a local maximum

for F, then g is a critical point for K,,.

Proof. Letd be an admissible direction for g. Thus by Proposition 4.4 there
exists &€ > 0 so that

Re [g(Sy) +1d(S,)] > 0 Vt e [O0,e¢).

Let p(#) denote the smallest eigenvalue of Re [g(S,,) +td(S,)], so for each ¢ we have
Re [g(S,) +td(S,) — p(?)] is positive semi-definite and singular. By Proposition 4.4,
for every ¢ there exists g, € R}, such that

g~lg +1td — p(t)].

Since g is a local maximum, we have p(r) > Oast — 0%, and g, > g. As R, is
open in R?, this means for some J > 0, we have g, € R, for all 7 in [0, J). As g is
a local maximum for F, we have

F(g) < F(g) Vrel0,9).

As -
F(g +td) = |e~E+D(m)|%,
it is differentiable with respect to ¢, and as

F(g+1td) = e *DF(g,) < F(g),

the derivative of F(g + td) is non-positive at 0. ([l

4.4 Some lemmas about critical points. We shall let ||y|| denote the
H?-norm, so

1 27 )
9=, [ I
T Jo

We shall let n be fixed, and write S for S, for legibility. Note that Re g(S)y means
3(8(S) + g(5)*)y, and not Re [g(S)y].

Lemma 4.7. If g € R, then there exists a unique vector y in P, such that
p(n) > 0O, ||yl = 1 and Re g(S)y = 0. Furthermore, if
Te+2

g(x)=ai+ Z we

b
= <
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then

l n
y@= [le-wo,
=1

where

Vv =

| J CED)
=1

Proof. By Proposition 4.5, rank(g(S)) = n. Hence there exists some nonzero
vector ¢ in ker Re g(S). We will show that g(z,) = O for each £, and then define

)(2) = |g(m)| q
amligll ™
As s 1 S T+S8*
T+ T+ T+
Rer—SZZ(r—S-'-lT—S*)
=(z=5)"11 =8z —-9""
=-S5 ®MNr—-9""!
=[(t—S)"'21®[(r— )",
we have

Reg(8) =Y wel(te —SH ' & [(zc — $) 7',
=1

Since each w, > 0, we can only have (Re g(S)g, g) =0 if foreach £ =1,...,n we

have
(g, (zc = 5H)7'2") =0.
As
(e =S ' =M U+ 2+ + 72,
we get
(g, (ze = 871" = " HGO) + - - - + G, 1 + 7z + - - 7"2")
= 7" q(z0).
Therefore (Re g(S)q, g) = 0 implies that g vanishes at each 7, as claimed. ([

Lemma 4.8. Let g € R, and let y be the vector described in Lemma 4.7. For
d € P;, the following hold:
(1) Ifd is an admissible direction at g, then (Red(S)y, y) > 0.
(2) If (Red(S)y,y) = O, then d is an admissible direction at g if and only if
Red(S)y = 0.
(3) If Red(S)y, y) =0, then d + ¢ is an admissible direction for every ¢ > O.
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Proof.
(1) Since g + td € H for ¢ small and positive, we must have

(Re [g(S) +1d(D)]y, y) = t{Re d(S)y, 7) = 0.

2) If p L y, then
(Re [g(S) +d(D](y + B), (7 + B)) = 2t(Re d(S)y, B) + (Re [g(S) + 1d()], B).
The right-hand side is non-negative for all £ and small positive ¢ if and only
if Red(S)y =0.

(3) If p L y, then

(Re [g(S) + 1(d(S) + &)(ay + B), (ay + B))

=2t(Red(S)ay, B) +te(llay|* + | B1I*) + (Re g(S)B, ).

As f is perpendicular to the kernel of Re g(§), the right-hand side is non-

4.9)

negative for ¢ positive and sufficiently small. (The requirement that ¢ > 0 is
only needed if f=0.) O

Lemma 4.10. Let g € R, and let y be the vector described in Lemma 4.7. If
g is a critical point for K,, and d € P, satisfies Re (d(S)y, y) = 0, then

d
F(g+td)|,=o+ <O.
dr (g +1d)|=0+ <

Proof. By Lemma 4.8, for all ¢ > 0 we have d + ¢ is admissible, so by
Proposition 4.6 we have

d
th(g +1(d+ €)=+ < 0.

Now let ¢ — 0*. O

Lemma 4.11. If g is analytic on a neighborhood of 0 and d € P}, then
d ——
O |, = —2Re (&, O (d($)e 1, 7).

Proof. Computation. (|

5 The critical point equation
We fix n > 1, and write S for S,,. For p € P, define p by
- a1
P =2p().

Soif p(z) = ag+ajz+---+a,z", then p(z) = a, + a,_1z+- - - +apz". We shall say p
is self-inversive if p = p.
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Theorem 5.1. Let g € R, and let y be the vector described in Lemma 4.7.
Then g is a critical point of K,, with non-zero critical value 3 if and only if

(5.2) e‘giny?.

Proof. Suppose g is a critical point of K,, with critical value #. If d € P} and
Re (d(S)y, y) = 0, then by Lemma 4.10,

e L] = CFgra| <o
Hence if (d(S)y, y) =0, so Re {¢d(S)y, y) =0 forall ¢ € T, we get by Lemma 4.11
—2Re (n(d(S)e 4(S5)1,7") < 0.

As this holds for all ¢ € T, we get that
(5.3) d e P2 and (d(S)y, y) = 0 = (d(S)e™4(S)1, ") = 0.

Equivalently,

dk)(S*y, y) =0= Y d(k)(S*e~#($)1, ") = 0.
k=0 k=0

By duality (in the finite-dimensional space ), this means there exists ¢ € C so
that

(5.4) (Ske™8(S)1,2") = c(Sky, ), O0<k<n.
Letting k =0 1in (5.4), we get c = 5. So for 0 < k < n, (5.4) gives
e=8(n—k) = (Se™(S)1, 2") = n(S*y, y) = n('y, y)we
2r . _do
=1 [ Myeyen)
0 T
o df
— 17 / elkyy(ely)[e mey(ela)] 2
0 T
= nyy(n— k).

Therefore e™# 2/17)))7, as desired.
Conversely, suppose (5.2) holds. Reversing the logic, we get that (5.3) holds.
This means that on the n-dimensional subspace of P}, given by

(5.5) {d:(d(S)y,7) =0},
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we have 4
th(g +td) o= 0.

The orthocomplement of the subspace (5.5) is spanned by the function g = P,(|y|?).
An arbitrary polynomial in Py can be written as d + aff, where d is in (5.5) and
a € C. By Lemma 4.8, this is an admissible direction if and only if Rea > 0. By
Lemma 4.11, and using (5.2),

d
yF@rHd+ap)|  ==2Re (", nyp)lalfnyy, ") + (dny7, ")

= —2Realn|*(Z", y2'7) (Pu(1y1})y2"7. 2
= —2Realn* (P75, P.(Iy1%)

and this is less than or equal to O whenever Rea > 0. This means g is a K, critical
point. Finally,

e2(m) = (my7, ") = n(y2'7, 2') = n. 0

6 Normalization

If g is as in (1.7) and is a local maximum for F, then bi + g(¢z) is also a local
maximum for any unimodular ¢ and real b. We can choose ¢ and b so that a = 0
and [[,(—7,) = 1.

Definition 6.1. If g € R,, we say that g is normalized if g has the form

- Te+2
(6.2) g =Y we ',

=1 Tz
where [[7_;(—7,) = 1.

Lemma 6.3. Let g € R, be a local maximum for F with critical value n and
let y be as in Lemma 4.7. Assume 3g(0) is chosen in the range [—n, ). Then g is
normalized if and only if n > 0 and y is self-inversive.

Proof. We have

[[z—= H(—w)[]—[(z - m}.
4 =1 l

So by Lemma 4.7, y = 7 if and only if [[,(—7,) = 1. From (1.7), we have

g0)=ai+» wy,

=1
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and from Theorem 5.1, we have

O = 5y(0)5(0) = v’72 H(_”’)'
¢

Soif [[,(—7¢) = 1, then 7 is positive if and only if Ig(0) is a multiple of 2z. O

Proposition 6.4. If g is a normalized local maximum for F with critical
value 1, then

n
(6.5) —g%log 7 +log (H(l - r?z)2>.
v =1
Proof. Since g is normalized, we have
1 n n 1 n
1@Q7@ =, [[e—w ][0 -w2=, [0 -2’
v v
=1 =1 =1
So from Theorem 5.1, we have
’7 n
— JL _ — 2
e g(l 72)”.

Then (6.5) follows from Lemma 3.1. O

Proposition 6.6. If g is a normalized local maximum for F with critical value
n then

. n

ngz—log 5

=1 v
Fork=1,...,n,

n n
§ : k _ 1 § : k
U)[T[ - k Tg.

=1 =1

Proof. Expand both sides of (6.5) into power series and equate coefficients.
From (6.2),

n (o @] n
—g@ == w =2 (Z wﬂ_/‘)zk-
=1 =1 N ¢=1
We have

n 00 no "k
log (H(l — r?z)z) =-2 ( T]i )z".
=1 t

k=1

Comparing these we get the result. (]
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7 The proof of Theorem 1.8

Let us assume that the Entropy Conjecture 1.4 holds, and that g € R,, is anormalized
local maximum for F with critical value #. Let y be as in Lemma 4.7.

By Proposition 4.6, g is a critical point for K,, and by Theorem 5.1 and
Proposition 6.4, the (n+ 1)-by-(n+ 1) Toeplitz matrix —Re g(S,,) is the same as the
Toeplitz matrix on P? whose entries come from the Fourier series of log +log |y|>.
In particular, for any polynomials p, g € P, we have

1 2z . . ]
(7.1) (—Reg(Syp, q) = - /0 [log 77 + log | 7(?)|*1p(e?)q(e®®)db.

Indeed, if we let p(e’?) = €7 and g(e?) = €7, for £ and j between 0 and n, then the

left-hand side of (7.1) is

1<, ~ o
=, (@ + 22", 2),
k=0
and the right-hand side is
1?1 i0 0y 0 ,—ij0
2 ), 5 (8(e%) + g(e) e"e™db),

and these are equal.
Let p = g = 7, and observe that the left-hand side of (7.1) vanishes, so

1 2r ) )
[ e tog ey P1do =~ tog .
2 0
If (1.5) of Conjecture 1.4 holds, then
—logn >1—1log2,
andson < g If the uniqueness part of the Conjecture also holds, then y must have
equally spaced zeros, which would in turn imply uniqueness in Conjecture 1.1. [
8 Entropy conjecture

Let us establish some notation. We shall fix n > 1 a positive integer. All integrals
are integrals over the unit circle with respect to normalized Lebesgue measure, and
norms and inner products are in L?(T) with respect to this measure.

If p is self-inversive, then all its zeros either occur on T, the unit circle, or occur
in pairs (¢, 1/¢), or occur at the origin if deg(p) < n. We shall let PT denote the set
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of polynomials in P, that are self-inversive and have all their zeros on T, and iPE;]
denote the unit sphere of PY, viz. the polynomials of norm 1 in PI.
We shall let IT,, be the orthogonal projection from L?(T) onto P2, i.e.,

11, ( Z ckzk> = Z ckzk.
—00 0
If f, g are in L*(T), we shall write f ~ g to mean IT,f = I1,.g, i.e.,
f~gofl=8k YO<k<n
Note that if p, g € P}, then
(P, q) =(q.p);

in particular, if p and g are both self-inversive, then their inner product is real.
If p € P2, then p* denotes the polynomial

. 2,
P =i(p— @)
n
In terms of Fourier coefficients,

Y pat.

A~ /n—
P = i
n
Lemma 8.1. Ifp is in PY, then so is p*.

Proof. A calculation shows that for p self-inversive

d . -
(62 pPE@P = =nZ PP,

So pf has zeros at the local maxima of |p|?> on T; these interleave the zeroes of p.
If p has a zero of order k > 1 at some point 7 on T, then (8.2) vanishes to order
2k — 1 at 7, so pf has a zero of order k — 1. Counting them all up, we get that p*
has n zeroes on T, and since it is of degree n, it must be in TE. O
Observe that (p, p*) = 0 for all self-inversive p in P,,.
Let

F(p) = / I log IpI?.

If y is norm one and F(y) = m, then minimizing F(cy) over all ¢ > 0, one gets that

(8.3) F(ey) = —e 7,
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with equality when ¢?> = e~'~". The Entropy Conjecture 1.4 is equivalent to the
conjecture that the minimum of F(p) over all p € P} (not just those of norm one)
2

is —2¢7 -, and that, up to the normalization of requiring that p(0) and p(n) are

positive, this value is attained uniquely by the polynomial
(8.4) p@=e'd+2".

For any function f in L?, we shall let [ﬂ denote the (n + 1)-by-(n + 1) Toeplitz
matrix with (i,/) entry f(j — i). We shall think of this as acting on Pe. If
p(@) =c[lj_;(1 — 742), then

log |c|? - DIk AT DL 7
loglplP1=| — 2 T log |c|? -z _nll Sl
D L 7AE D DY TLat NN O LR log |c|?

Theorem 8.5. Suppose vy is a local minimum for F on ‘PE, and that all the
zeros of y are distinct. Then

(8.6) [log |y*1y = —7,
(8.7) [log |y*] > —3.

Proof. Since all the zeros of y are distinct, it g is any self-inversive polynomial
in Py, then for ¢ small and real, y + tg is self-inversive, and the zeros must be close
to the zeros of y, so they must all lie on the circle. Therefore if we expand F(y +1q)
in powers of ¢, the first order term must vanish, since y is a critical point, and the
coefficient of 72 must be non-negative, since y is a local minimum.

Calculating, using the fact that if p is self-inversive, then on the unit circle
7"p(z) = p(z), and writing

2
log |y + gl = log |yI* + 2Re 7 —Re? + 0@,
Y Y
we get,
q 7’ —
F(y +1g) =/ (1og ly]> +2Rer” — Rer? 2)(|y|2 +2Retyq + %|q]?) + O)
Y Y

= F(y) + t(2Re ([log 7117, q) + 2Re (7, q))
+2(([logy1*1q, q) + 4(q. q) — (. q)) + OF).

Since at a critical point the coefficient of # must vanish for all g, we get
[log|y|*]ly + y = 0, giving (8.6). The non-negativity of the coefficient of 7>
gives (8.7). ]
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At a critical point, [log|y|*] will have one eigenvalue equal to —3, so the
inequality in (8.7) cannot be strict.

Proposition 8.8. Suppose y is in P} and

(8.9) [log |y|*1y = xy.
Then
(8.10) [log |y1*1y* = (x — 2)y*.

Proof. Equation (8.9) can be written as
(8.11) (logy(e™)*)y(e?) ~ ry(e?).

Differentiate both sides with respect to 6. Writing y’ for the derivative with respect
to z, then (8.11) becomes

izy izy’ . .
(8.12) yy y — ; y +log |y1X(izy") ~ K(izy).

If we differentiate the equation z"y = y with respect to #, and use the fact that
4y = —izy', then (8.12) becomes
log ly*(izy") ~ w(izy") — izy’ +i2" ™'y

=k(izy’) — izy’ +iny — izy’.

Therefore
. 21 ’ . 21 / / /
toglyl? (iy = ~'zy') ~ iy = " (x@y) — 2y +ny — 27)
n n
: 2,
=i(k — 2)(y - nzy )
This yields (8.10). ]

It is plausible that the only polynomial satisfying (8.6) and (8.7) and with
positive 0" and n'" coefficients is (8.4), but we cannot resolve whether this is true.

9 A special case of the entropy conjecture
Self-inversive polynomials p in P, can be written as

9.1 pP=q9+4q,
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where ¢ is a polynomial in P, with m = | 7 ]. Specifically, if n is odd, then g is an
arbitrary polynomial in fP,,zl , and defined by

q= Hn;lp;

if n is even, then g is a polynomial in P» whose (’21)th coefficient is real (and half
of the coefficient for p).

Theorem 9.2. Let p be a self-inversive non-constant polynomial of degree
n, normalized as in Conjecture 1.4 to have L2 norm one, and write p as in (9.1).
If q has no zeros in the closed unit disk, then Inequality (1.5) holds, with strict
inequality unless p is given by (1.6).

Proof. Letus decompose the integral into two pieces, I + I1:

9.3) / I log [p|? = / PP log lqf> + / PP log]1 +3d/q

To estimate /, the first term on the right-hand side of (9.3), write

/ P log gl = / P log [qPI11 + @/al’.

Note that 3
/|1+q/q|2:/2+2Req =2,
q

since §(0) = 0. So if we apply Jensen’s inequality to the convex function ®(x) =
xlog x and the probability measure ;ll +4/q|?, we get

1 ~ 1 .
/ O(lg1*) 11 +G/ql* = © (/ lgl? ;11 + q/qﬁ) :
This gives
) [P ozl +a/a = 9 = ) tog2
) q glq q/4q91" = ) g <.
Therefore we have I > —log 2.
To estimate /1, first assume that » is odd. Note that by the maximum principle,
Z has modulus less than one in the unit disk, so log(1 + §/¢g) is analytic on the unit

disk and has only logarithmic singularities on the unit circle, and so is in the Hardy
space, and therefore its Fourier series agrees with its Maclaurin series. Therefore

log(1+3/9) = 4/q+O0E""),
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SO
/ PP log |1 +d/ql> = 2Re / lq+ald/q
— 2Re / Qlal? + '@ + 7PN T/a)

= 2Re / 27+ 2T g + |l
:2Re/|q|2
=1.

Now assume n = 2m is even. Write
qz)=aop+-- - +an?",

S0
q(z) = am?" + CYm—IZm-'-1 +---t 67OZn-
When expanding log(1 + §/q) we get

q 1a?
log(1+d/q) = Z — o,

2 a;
Therefore
[0t +aqP =2Re [ 242G g+ 1t - 5
©9 —3a2+1
> 1.
Therefore

I+1I >1—log2,

as required.
Finally, note that the inequality for / using Jensen’s inequality is strict unless
|g| is constant. [

Note that a simple continuity argument applied to g(rz) shows that (1.5) holds
provided g has no zeros in the open unit disk.

10 Baernstein’s conjecture implies the entropy conjec-
ture

Assume Baernstein’s Conjecture 2.2 holds. Let Q(z) = (1 +z")/v/2 and p be any
non-constant polynomial with all its roots on the unit circle, and with ||p], = 1.
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Lets < 2,and letr = *, be the conjugate exponent. Then, taking logarithms of
(2.3) we have

log [Iplls — log[Ipll: < log[|Qlls — log [ Q]

This means that
(10.1)

1 s—1 _ 1 s—1 _
s 10g/|Q|S— s IOg/lQIS/(S D _ s 10g/|p|5+ ¢ log/lpls/(s 1) > 0.

Let W(s) denote the left-hand side of (10.1). We have that W(s) > O for s < 2, and
Y(2) = 0. Therefore ¥'(2) < 0. Calculating, we get

1 1 1 1 s
V)=~ log [ 101+ o f 100 [1eriogion- ; tog [ 101

1
\11
S(S_l)lel /IQI og 0|

log/|p| i |S/|p| log [p| + log/|p|~

\11
s(s—l)fll /|p| og pl.

Since both p and Q have 2-norm 1, we get that

V() = / 1017 log Q] — / I log [p.

Since ¥'(2) < 0, we get

/|p|210g P > /IQI210g|Q|2 = 1—log2,

which is (1.5). g
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