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Abstract. We show that if the minimum entropy for a polynomial with roots
on the unit circle is attained by polynomials with equally spaced roots, then, under
a generic hypothesis about the nature of the extremum, the Krzyz conjecture on
the maximum modulus of the Taylor coefficients of a holomorphic function that
maps the disk to the punctured disk is true.

1 Introduction

Let � denote the set of holomorphic functions that map the unit disk D to D \ {0}.
The Krzyż conjecture, due to J. Krzyż [11], is the following conjecture about the
size of Taylor coefficients of functions in �.

Conjecture 1.1. Let n be a positive integer. Then

(1.2) K•
n := sup

f∈�

{|f̂ (n)| : f ∈ �} =
2
e
.

Moreover, equality is obtained in (1.2) only for functions of the form

(1.3) f (z) = ζ exp
( zn + ω

zn − ω

)
,

where ζ and ω are unimodular constants.

For any function f defined and holomorphic on a neighborhood of the origin,
we use f̂ (k) to denote the kth Taylor coefficient at 0, so

f̂ (k) =
f (k)(0)

k!
.

For a history of theKrzyż conjecture and a summary of known results, see Section 2.
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The purpose of this note is to establish a connection between the Krzyż conjec-
ture and the following conjecture about the entropy of polynomials with roots on
the unit circle T.

Conjecture 1.4. Let p be a non-constant polynomial, all of whose roots lie
on T, and normalized so that 1

2π

∫ 2π
0 |p(eiθ)|2dθ = 1. Then

(1.5)
1
2π

∫ 2π

0
|p(eiθ)|2 log |p(eiθ)|2dθ ≥ 1 − log(2).

Moreover, equality occurs in (1.5) only for polynomials of the form

(1.6) p(z) =
ζ√
2
(ω + zn),

where ζ and ω are unimodular constants, and n is a positive integer.

We shall let H denote the Herglotz class, the holomorphic functions on the unit
disk that have non-negative real part. A function f is in � if and only if there is a
function g ∈ H so that

f = e−g.

Given an (n + 1)-tuple a = (a0, . . . , an) of complex numbers, we shall say that a is
solvable Herglotz data if there exists g ∈ H satisfying

ĝ(k) = ak, for k = 0, . . . , n.

We shall say that a is extremal Herglotz data if it is solvable but for any r > 1,
the data (a0, ra1, . . . , rnan) is not solvable.

We shall say that f is K•
n -extremal if f is in � and f̂ (n) = K•

n . It was proved
in [10] that if f is K•

n-extremal, and g = − log(f ), then the first n + 1 Taylor
coefficients of g are extremal Herglotz data (we give a proof of this in Lemma 3.3).
By a theorem of G. Pick [13], this means g must have the form

(1.7) g(z) = ai +
m∑

�=1

w�
τ� + z
τ� − z

,

where a ∈ R, the number m satisfies 1 ≤ m ≤ n, each w� > 0, and each τ� is a
distinct point on T. We shall let Rm denote the set of rational functions that have
the form (1.7) (that is, rational functions of degree m that are m-fold covers of the
right-half plane by the unit disk), and we shall let R•

n =
⋃

1≤m≤n Rm.
Our first main result analyzes the critical points for the Krzyż functional. We

prove in Theorem 5.1 that if g is in Rn (and is normalized in a way described in
Section 6), then f = e−g is a critical point for K•

n with critical value η if and only if

e−g n∼ηγ2,
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where γ is a polynomial of degree n of unit norm in the kernel of Re g(Sn), where Sn

is the compression of the unilateral shift to polynomials of degree less than or equal
to n, and the notation

n∼ means that the functions have the same Taylor coefficients
up to degree n.

We use this result to prove that if the extremals f for the Krzyż problem have
g = − log f of full degree, then the entropy conjecture implies the Krzyż conjecture.

Theorem 1.8. Let f be K•
n-extremal, and assume that g = − log f is in Rn. If

Conjecture 1.4 is true, then f has the form (1.3).

We prove Theorem 1.8 in Section 7. In Section 8 we study critical points
of the entropy functional from (1.5). In Section 9, we prove a special case of
Conjecture 1.4. Finally, in Section 10, we show how Conjecture 1.4 would follow
from Conjecture 2.2, due to A. Baernstein II.

2 History of the Krzyż conjecture

J. Krzyż proved Conjecture 1.1 for n = 2, and conjectured it for all n. The n = 3
case was proved by J. Hummel, S. Scheinberg and L. Zalcman [10]; they also
proved Lemma 3.3 below, and that (1.3) is a strict local maximum for (1.2) (after
normalizing so that f (0) and f̂ (n) are both positive). The n = 4 case was proved
first by D. Tan [15], and later by a different method by J. Brown [5]. The n = 5
case was proved by N. Samaris [14].

C. Horowitz [9] proved that there is some constant H < 1 such that K•
n ≤ H

for all n; his proof showed H ≤ 0.99987 . . . . This was improved by R. Ermers to
H ≤ 0.9991 . . . [6].

In [12], M. Martin, E. Sawyer, I. Uriarte-Tuero and D. Vukotić prove that 16
different conditions are all equivalent to the Krzyż conjecture. The paper also
includes a useful historical summary.

Conjecture 1.4 may be compared with the following sharp inequality, conjec-
tured by I. Hirschman [8] and proved by W. Beckner [4]:

If f ∈ L2(R) has norm 1, and Ff denotes the Fourier transform of f , then

(2.1)
∫

|f |2 log |f |2 +
∫

|Ff |2 log |Ff |2 ≤ log(2) − 1.

Equality is obtained in (2.1) for Gaussians.

A. Baernstein II made the following conjecture in 2008 [2], where the quasi-
norms are with respect to normalized Lebesgue measure on the circle. By ‖f‖0 we
mean exp(

∫
T

log |f |).
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Conjecture 2.2. Let Q(z) = 1 + zn. Then for all 0 ≤ s ≤ t ≤ ∞, and for all

non-constant polynomials p with all their roots on the unit circle,

(2.3)
‖p‖s

‖Q‖s
≤ ‖p‖t

‖Q‖t
.

In Section 10 we show how Baernstein’s conjecture implies the entropy
conjecture.

3 Preliminaries

Suppose f and g are analytic functions on a neighborhood of 0, and n ∈ N. Say

f
n∼g

if f̂ (k) = ĝ(k) for 0 ≤ k ≤ n. We leave the proof of the following lemma to the
reader.

Lemma 3.1. Suppose f and g are analytic on a neighborhood of zero. Assume
that f (0) = g(0) = b, and φ is analytic in a neighborhood of b. If f

n∼g, then

φ ◦ f
n∼φ ◦ g.

The following result is due to G. Pick [13], and can be found in any book on
Pick interpolation such as [3, 7, 1].

Lemma 3.2. If a = (a0, . . . , an) is extremal Herglotz data, then there exists

a unique function g ∈ H such that ĝ(k) = ak, for 0 ≤ k ≤ n. Moreover, g ∈ R•
n.

Conversely, if g ∈ R•
n, then a = (ĝ(0), . . . , ĝ(n)) is extremal Herglotz data.

Lemma 3.3. Fix n ≥ 1 and assume that f is K•
n -extremal. Define g by f = e−g.

Then g ∈ R•
n.

Proof. We know that g must be in H, so by Lemma 3.2, if g is not in R•
n, then

for some r > 1 we have a function h ∈ H such that

ĥ(k) = rkĝ(k), 0 ≤ k ≤ n.

Then φ = e−h is in �, and by Lemma 3.1, φ(z)
n∼f (rz), so

|φ̂(n)| = rn|f̂ (n)| > |f̂ (n)|.

This contradicts the claim that f is extremal. �
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Corollary 3.4.

K•
n = sup

g∈R•
n

|(̂e−g)(n)|.

Given that R•
n =

⋃n
m=0 Rm, Corollary 3.4 suggests the following optimization

problem. For each n ≥ 1, define

Kn = sup
g∈Rn

|(̂e−g)(n)|.

Remark 3.5. As Rn is a dense open set in R•
n, we have Kn = K•

n . However,
whereas a normal families argument guarantees that an extremal function for K•

n

always exists, it is not obvious that an extremal for Kn exists. If Krzyż’s conjecture
is true, then the supremum is attained.

4 The critical points of Kn

4.1 The definition of critical points. For the rest of the paper, n will
be a positive integer. There are a number of equivalent ways to view Rn as a
topological space:

(1) using the a, w, τ parameters of (1.7) (where m = n);
(2) as the subset of the space of extremal Herglotz data points a = (a0, . . . , an)

with the property that (a0, . . . , an−1) is not extremal;
(3) with the topology of uniform convergence on compact subsets of D.

We would like to consider the local maxima of the function F : Rn → R defined by

(4.1) F(g) = |(̂e−g)(n)|2.

Let P•
n denote the set of complex polynomials of degree less than or equal to n,

and Pn the polynomials of degree exactly n.

Definition 4.2. Let g ∈ Rn. We say d is an admissible direction at g if
d ∈ P•

n and there exists ε > 0 such that

(ĝ(0) + td̂(0), . . . , ĝ(n) + td̂(n))

is solvable Herglotz data for all t in (0, ε). We say that g is a critical point for Kn if

(4.3)
d
dt

|ê−(g+td)(n)|2∣∣t=0+ ≤ 0

whenever d is an admissible direction at g. If g is a critical point for Kn, then we
refer to η = ê−g(n) as the critical value.
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4.2 A Hilbert space setting for the analysis of critical points. Let H2

denote the classical Hardy space on the unit disk. We shall think of P•
n as a

subspace of H2, and let Pn be the orthogonal projection from H2 onto P•
n. Define

an operator Sn on P•
n by the formula

(Snq)(z) = Pn(zq(z)), q(z) ∈ P•
n.

The operator Sn is the truncated shift, and is nilpotent of order n + 1. Hence if f

is any holomorphic function on a neighborhood of 0, we can define f (Sn) by the
Riesz functional calculus, or by either of the two equivalent formulas

f (Sn) =
n∑

k=0

f̂ (k)Sk
n,

f (Sn)q = Pn(fq).

Observe that if f and g are both holomorphic on a neighborhood of 0, then

f
n∼g ⇔ f (Sn) = g(Sn).

The following two propositions are basically a reformulation of Lemma 3.2 to the
Hilbert space interpretation of interpolation. Recall that for a matrix T , its real part
Re (T) = 1

2 (T + T∗). We say T is positive semi-definite if 〈Tv, v 〉 ≥ 0 for every
vector v ; this is equivalent to saying that T is self-adjoint and all its eigenvalues
are non-negative. Also, T is positive definite if 〈Tv, v 〉 > 0 for every non-zero
vector v ; equivalently it is self-adjoint and all its eigenvalues are strictly positive.
It follows that a matrix that is positive semi-definite but not positive definite must
be singular, i.e., non-invertible.

Proposition 4.4. Let a be an (n + 1)-tuple of complex numbers. Then a is
solvable Herglotz data if and only if

Re
n∑

k=0

akS
k
n ≥ 0.

Moreover a is extremal Herglotz data if and only if Re
∑n

k=0 akSk
n is positive semi-

definite but not positive definite.

Proposition 4.5. Assume g ∈ H.

(1) Re g(Sn) ≥ 0.

(2) The function g is in R•
n if and only if Re g(Sn) is singular.

(3) If 0 ≤ m ≤ n, then g ∈ Rm if and only if rank(g(Sn)) = m.
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4.3 Local maxima are critical points. We need to show that there is
enough smoothness at local maxima to make sense of (4.3), at least when the local
maximum is in Rn.

Proposition 4.6. Let F be defined by (4.1). If g ∈ Rn is a local maximum

for F, then g is a critical point for Kn.

Proof. Let d be an admissible direction for g. Thus by Proposition 4.4 there
exists ε > 0 so that

Re [g(Sn) + td(Sn)] ≥ 0 ∀t ∈ [0, ε).

Let ρ(t) denote the smallest eigenvalue of Re [g(Sn) + td(Sn)], so for each t we have
Re [g(Sn)+ td(Sn)−ρ(t)] is positive semi-definite and singular. By Proposition 4.4,
for every t there exists gt ∈ R•

n such that

gt
n∼[g + td − ρ(t)].

Since g is a local maximum, we have ρ(t) → 0 as t → 0+, and gt → g. As Rn is
open in R•

n, this means for some δ > 0, we have gt ∈ Rn for all t in [0, δ). As g is
a local maximum for F, we have

F(gt) ≤ F(g) ∀t ∈ [0, δ).

As
F(g + td) = |ê−(g+td)(n)|2,

it is differentiable with respect to t, and as

F(g + td) = e−2ρ(t)F(gt) ≤ F(g),

the derivative of F(g + td) is non-positive at 0. �

4.4 Some lemmas about critical points. We shall let ‖γ‖ denote the
H2-norm, so

‖γ‖2 =
1
2π

∫ 2π

0
|γ(eiθ)|2dθ.

We shall let n be fixed, and write S for Sn for legibility. Note that Re g(S)γ means
1
2 (g(S) + g(S)∗)γ, and not Re

[
g(S)γ

]
.

Lemma 4.7. If g ∈ Rn, then there exists a unique vector γ in Pn such that

γ̂(n) > 0, ‖γ‖ = 1 and Re g(S)γ = 0. Furthermore, if

g(z) = ai +
n∑

�=1

w�
τ� + z
τ� − z

,
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then

γ(z) =
1
ν

n∏
�=1

(z − τl),

where

ν =

∥∥∥∥
n∏

�=1

(z − τl)

∥∥∥∥.
Proof. By Proposition 4.5, rank(g(S)) = n. Hence there exists some nonzero

vector q in ker Re g(S). We will show that q(τ�) = 0 for each �, and then define

γ(z) =
|q̂(n)|

q̂(n)‖q‖q.

As

Re
τ + S
τ − S

=
1
2

( τ + S
τ − S

+
τ̄ + S∗

τ̄ − S∗
)

= (τ̄ − S∗)−1(1 − S∗S)(τ − S)−1

= (τ̄ − S∗)−1(zn ⊗ zn)(τ − S)−1

= [(τ̄ − S∗)−1zn] ⊗ [(τ̄ − S∗)−1zn],

we have

Re g(S) =
n∑

�=1

w�[(τ̄� − S∗)−1zn] ⊗ [(τ̄� − S∗)−1zn].

Since each w� > 0, we can only have 〈Re g(S)q, q〉 = 0 if for each � = 1, . . . , n we
have

〈q, (τ̄� − S∗)−1zn〉 = 0.

As
(τ̄� − S∗)−1zn = τn+1

� (1 + τ̄�z + · · · + τ̄�
nzn),

we get

〈q, (τ̄� − S∗)−1zn〉 = τ̄�
n+1〈q̂(0) + · · · + q̂(n)zn, 1 + τ̄�z + · · · τ̄�

nzn〉
= τ̄�

n+1q(τ�).

Therefore 〈Re g(S)q, q〉 = 0 implies that q vanishes at each τ�, as claimed. �

Lemma 4.8. Let g ∈ Rn and let γ be the vector described in Lemma 4.7. For
d ∈ P•

n, the following hold:

(1) If d is an admissible direction at g, then 〈Re d(S)γ, γ〉 ≥ 0.
(2) If 〈Re d(S)γ, γ〉 = 0, then d is an admissible direction at g if and only if

Re d(S)γ = 0.
(3) If 〈Re d(S)γ, γ〉 = 0, then d + ε is an admissible direction for every ε > 0.
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Proof.
(1) Since g + td ∈ H for t small and positive, we must have

〈Re [g(S) + td(S)]γ, γ〉 = t〈Re d(S)γ, γ〉 ≥ 0.

(2) If β ⊥ γ, then

〈Re [g(S) + td(S)](γ+ β), (γ+ β)〉 = 2t〈Re d(S)γ, β〉+ 〈Re [g(S) + td(S)]β, β〉.
The right-hand side is non-negative for all β and small positive t if and only
if Re d(S)γ = 0.

(3) If β ⊥ γ, then

(4.9)
〈Re [g(S) + t(d(S) + ε)](aγ + β), (aγ + β)〉
= 2t〈Re d(S)aγ, β〉 + tε(‖aγ‖2 + ‖β‖2) + 〈Re g(S)β, β〉.

As β is perpendicular to the kernel of Re g(S), the right-hand side is non-
negative for t positive and sufficiently small. (The requirement that ε > 0 is
only needed if β = 0.) �

Lemma 4.10. Let g ∈ Rn and let γ be the vector described in Lemma 4.7. If
g is a critical point for Kn and d ∈ P•

n satisfies Re 〈d(S)γ, γ〉 = 0, then

d
dt

F(g + td)|t=0+ ≤ 0.

Proof. By Lemma 4.8, for all ε > 0 we have d + ε is admissible, so by
Proposition 4.6 we have

d
dt

F(g + t(d + ε))|t=0+ ≤ 0.

Now let ε → 0+. �

Lemma 4.11. If g is analytic on a neighborhood of 0 and d ∈ P•
n, then

d
dt

|ê−g+td(n)|2
∣∣∣
t=0

= −2Re 〈zn, e−g(S)1〉〈d(S)e−g(S)1, zn〉.

Proof. Computation. �

5 The critical point equation

We fix n ≥ 1, and write S for Sn. For p ∈ P•
n, define p̃ by

p̃(z) = znp
(1

z̄

)
.

So if p(z) = a0 + a1z + · · · + anzn, then p̃(z) = ān + ān−1z + · · · + ā0zn. We shall say p
is self-inversive if p = p̃.
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Theorem 5.1. Let g ∈ Rn and let γ be the vector described in Lemma 4.7.

Then g is a critical point of Kn with non-zero critical value η if and only if

(5.2) e−g n∼ηγγ̃.

Proof. Suppose g is a critical point of Kn with critical value η. If d ∈ P•
n and

Re 〈d(S)γ, γ〉 = 0, then by Lemma 4.10,

d
dt

|〈e−(g+td)(S)1, zn〉|2
∣∣∣
t=0+

=
d
dt

F(g + td)
∣∣∣
t=0+

≤ 0.

Hence if 〈d(S)γ, γ〉 = 0, so Re 〈ζd(S)γ, γ〉 = 0 for all ζ ∈ T, we get by Lemma 4.11

−2Re ζη̄〈d(S)e−g(S)1, zn〉 ≤ 0.

As this holds for all ζ ∈ T, we get that

(5.3) d ∈ P•
n and 〈d(S)γ, γ〉 = 0 ⇒ 〈d(S)e−g(S)1, zn〉 = 0.

Equivalently,

n∑
k=0

d̂(k)〈Skγ, γ〉 = 0 ⇒
n∑

k=0

d̂(k)〈Ske−g(S)1, zn〉 = 0.

By duality (in the finite-dimensional space P•
n), this means there exists c ∈ C so

that

(5.4) 〈Ske−g(S)1, zn〉 = c〈Skγ, γ〉, 0 ≤ k ≤ n.

Letting k = 0 in (5.4), we get c = η. So for 0 ≤ k ≤ n, (5.4) gives

ê−g(n − k) = 〈Ske−g(S)1, zn〉 = η〈Skγ, γ〉 = η〈zkγ, γ〉H2

= η

∫ 2π

0
eikθγ(eiθ)γ(eiθ)

dθ

2π

= η

∫ 2π

0
eikθγ(eiθ)[e−inθγ̃(eiθ)]

dθ

2π

= ηγ̂γ̃(n − k).

Therefore e−g n∼ηγγ̃, as desired.
Conversely, suppose (5.2) holds. Reversing the logic, we get that (5.3) holds.

This means that on the n-dimensional subspace of P•
n given by

(5.5) {d : 〈d(S)γ, γ〉 = 0},
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we have
d
dt

F(g + td)
∣∣∣
t=0

= 0.

The orthocomplement of the subspace (5.5) is spanned by the functionβ = Pn(|γ|2).
An arbitrary polynomial in P•

n can be written as d + aβ, where d is in (5.5) and
a ∈ C. By Lemma 4.8, this is an admissible direction if and only if Re a ≥ 0. By
Lemma 4.11, and using (5.2),

d
dt

F(g + t(d + aβ))
∣∣∣
t=0+

= −2Re 〈zn, ηγγ̃〉[a〈βηγγ̃, zn〉 + 〈dηγγ̃, zn〉]
= −2Re a|η|2〈zn, γznγ̄〉 〈Pn(|γ|2)γznγ̄, zn〉
= −2Re a|η|2〈Pn(|γ|2),Pn(|γ|2)〉

and this is less than or equal to 0 whenever Re a ≥ 0. This means g is a Kn critical
point. Finally,

ê−g(n) = 〈ηγγ̃, zn〉 = η〈γznγ̄, zn〉 = η. �

6 Normalization

If g is as in (1.7) and is a local maximum for F, then bi + g(ζz) is also a local
maximum for any unimodular ζ and real b. We can choose ζ and b so that a = 0
and

∏
�(−τ�) = 1.

Definition 6.1. If g ∈ Rn, we say that g is normalized if g has the form

(6.2) g(z) =
n∑

�=1

w�
τ� + z
τ� − z

,

where
∏n

�=1(−τ�) = 1.

Lemma 6.3. Let g ∈ Rn be a local maximum for F with critical value η and

let γ be as in Lemma 4.7. Assume �g(0) is chosen in the range [−π, π). Then g is
normalized if and only if η > 0 and γ is self-inversive.

Proof. We have

∏
�

(z − τ�) =
n∏

�=1

(−τ�)
[∏

�

(z − τ�)
]̃
.

So by Lemma 4.7, γ = γ̃ if and only if
∏

�(−τ�) = 1. From (1.7), we have

g(0) = ai +
n∑

�=1

w�,
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and from Theorem 5.1, we have

e−g(0) = ηγ(0)γ̃(0) =
η

ν2

∏
�

(−τ�).

So if
∏

�(−τ�) = 1, then η is positive if and only if �g(0) is a multiple of 2π. �

Proposition 6.4. If g is a normalized local maximum for F with critical

value η, then

(6.5) −g
n∼ log

η

ν2
+ log

( n∏
�=1

(1 − τ̄�z)
2
)

.

Proof. Since g is normalized, we have

γ(z)γ̃(z) =
1
ν2

n∏
�=1

(z − τ�)
n∏

�=1

(1 − τ̄�z) =
1
ν2

n∏
�=1

(1 − τ̄�z)
2.

So from Theorem 5.1, we have

e−g n∼ η

ν2

n∏
�=1

(1 − τ̄�z)
2.

Then (6.5) follows from Lemma 3.1. �

Proposition 6.6. If g is a normalized local maximum for F with critical value

η then
n∑

�=1

w� = − log
η

ν2
.

For k = 1, . . . , n,
n∑

�=1

w�τ
k
� =

1
k

n∑
�=1

τk
�.

Proof. Expand both sides of (6.5) into power series and equate coefficients.
From (6.2),

−g(z) = −
n∑

�=1

w� − 2
∞∑
k=1

( n∑
�=1

w�τ̄�
k
)

zk.

We have

log
( n∏

�=1

(1 − τ̄�z)
2
)

= −2
∞∑
k=1

( n∑
�=1

τ̄�
k

k

)
zk.

Comparing these we get the result. �
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7 The proof of Theorem 1.8

Let us assume that the EntropyConjecture 1.4 holds, and thatg ∈ Rn is a normalized
local maximum for F with critical value η. Let γ be as in Lemma 4.7.

By Proposition 4.6, g is a critical point for Kn, and by Theorem 5.1 and
Proposition 6.4, the (n + 1)-by-(n+ 1) Toeplitz matrix −Re g(Sn) is the same as the
Toeplitz matrix onP•

n whose entries come from the Fourier series of log η+log |γ|2.
In particular, for any polynomials p, q ∈ P•

n, we have

(7.1) 〈−Re g(Sn)p, q〉 =
1
2π

∫ 2π

0
[logη + log |γ(eiθ)|2]p(eiθ)q(eiθ)dθ.

Indeed, if we let p(eiθ) = ei�θ and q(eiθ) = eijθ, for � and j between 0 and n, then the
left-hand side of (7.1) is

−1
2

n∑
k=0

〈ĝ(k)z�+k + ĝ(k)z�−k, zj〉,

and the right-hand side is

1
2π

∫ 2π

0

1
2
(g(eiθ) + g(eiθ)) ei�θe−ijθdθ,

and these are equal.
Let p = q = γ, and observe that the left-hand side of (7.1) vanishes, so

1
2π

∫ 2π

0
|γ(eiθ)|2 log |γ(eiθ)|2]dθ = − logη.

If (1.5) of Conjecture 1.4 holds, then

− log η ≥ 1 − log 2,

and so η ≤ 2
e . If the uniqueness part of the Conjecture also holds, then γ must have

equally spaced zeros, which would in turn imply uniqueness in Conjecture 1.1. �

8 Entropy conjecture

Let us establish some notation. We shall fix n ≥ 1 a positive integer. All integrals
are integrals over the unit circle with respect to normalized Lebesgue measure, and
norms and inner products are in L2(T) with respect to this measure.

If p is self-inversive, then all its zeros either occur on T, the unit circle, or occur
in pairs (ζ, 1/ζ̄), or occur at the origin if deg(p) < n. We shall let PT

n denote the set
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of polynomials in Pn that are self-inversive and have all their zeros on T, and PT

n;1

denote the unit sphere of PT

n , viz. the polynomials of norm 1 in PT

n .
We shall let �n be the orthogonal projection from L2(T) onto P•

n, i.e.,

�n

( ∞∑
−∞

ckz
k
)

=
n∑
0

ckz
k.

If f, g are in L2(T), we shall write f ∼ g to mean �nf = �ng, i.e.,

f ∼ g ⇔ f̂ (k) = ĝ(k) ∀0 ≤ k ≤ n.

Note that if p, q ∈ P•
n, then

〈p̃, q̃〉 = 〈q, p〉;

in particular, if p and q are both self-inversive, then their inner product is real.
If p ∈ P•

n, then p� denotes the polynomial

p�(z) = i
(
p(z) − 2

n
zp′(z)

)
.

In terms of Fourier coefficients,

p̂�(k) = i
(n − 2k

n

)
p̂(k).

Lemma 8.1. If p is in PT

n , then so is p�.

Proof. A calculation shows that for p self-inversive

(8.2)
d
dθ

|p(eiθ)|2 = −nz̄np(z)p�(z).

So p� has zeros at the local maxima of |p|2 on T; these interleave the zeroes of p.
If p has a zero of order k > 1 at some point τ on T, then (8.2) vanishes to order
2k − 1 at τ, so p� has a zero of order k − 1. Counting them all up, we get that p�

has n zeroes on T, and since it is of degree n, it must be in PT

n . �
Observe that 〈p, p�〉 = 0 for all self-inversive p in Pn.
Let

F(p) =
∫

|p|2 log |p|2.
If γ is norm one and F(γ) = m, then minimizing F(cγ) over all c ≥ 0, one gets that

(8.3) F(cγ) ≥ −e−1−m,
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with equality when c2 = e−1−m. The Entropy Conjecture 1.4 is equivalent to the
conjecture that the minimum of F(p) over all p ∈ PT

n (not just those of norm one)
is −2e−2, and that, up to the normalization of requiring that p̂(0) and p̂(n) are
positive, this value is attained uniquely by the polynomial

(8.4) p(z) = e−1(1 + zn).

For any function f in L2, we shall let
[
f
]
denote the (n + 1)-by-(n + 1) Toeplitz

matrix with (i, j) entry f̂ (j − i). We shall think of this as acting on P•
n. If

p(z) = c
∏n

�=1(1 − τ̄�z), then

[log |p|2] =

⎡
⎢⎢⎢⎢⎢⎢⎣

log |c|2 −∑
τ� −1

2

∑
τ2
� · · · −1

n

∑
τn
�

−∑
τ̄� log |c|2 −∑

τ� · · · − 1
n−1

∑
τn−1
�

...
...

...
...

...
− 1

n

∑
τ̄�

n − 1
n−1

∑
τ̄�

n−1 − 1
n−2

∑
τ̄�

n−2 · · · log |c|2

⎤
⎥⎥⎥⎥⎥⎥⎦

Theorem 8.5. Suppose γ is a local minimum for F on PT

n , and that all the

zeros of γ are distinct. Then

[log |γ|2]γ = −γ,(8.6)

[log |γ|2] ≥ −3.(8.7)

Proof. Since all the zeros of γ are distinct, it q is any self-inversive polynomial
in P•

n, then for t small and real, γ + tq is self-inversive, and the zeros must be close
to the zeros of γ, so they must all lie on the circle. Therefore if we expand F(γ+ tq)
in powers of t, the first order term must vanish, since γ is a critical point, and the
coefficient of t2 must be non-negative, since γ is a local minimum.

Calculating, using the fact that if p is self-inversive, then on the unit circle
znp(z) = p(z), and writing

log |γ + tq|2 = log |γ|2 + 2Re t
q
γ

− Re t2
q2

γ2
+ O(t3),

we get,

F(γ + tq) =
∫ (

log |γ|2 + 2Re t
q
γ

− Re t2
q2

γ2

)
(|γ|2 + 2Re tγq̄ + t2|q|2) + O(t3)

= F(γ) + t(2Re 〈[log |γ|2]γ, q〉 + 2Re 〈γ, q〉)
+ t2(〈[log |γ|2]q, q〉 + 4〈q, q〉 − 〈q, q〉) + O(t3).

Since at a critical point the coefficient of t must vanish for all q, we get
[log |γ|2]γ + γ = 0, giving (8.6). The non-negativity of the coefficient of t2

gives (8.7). �
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At a critical point, [log |γ|2] will have one eigenvalue equal to −3, so the
inequality in (8.7) cannot be strict.

Proposition 8.8. Suppose γ is in PT

n and

(8.9) [log |γ|2]γ = κγ.

Then

(8.10) [log |γ|2]γ� = (κ − 2)γ�.

Proof. Equation (8.9) can be written as

(8.11) (log |γ(eiθ)|2)γ(eiθ) ∼ κγ(eiθ).

Differentiate both sides with respect to θ. Writing γ′ for the derivative with respect
to z, then (8.11) becomes

(8.12)
izγ′

γ
γ − iz̄γ̄′

γ̄
γ + log |γ|2(izγ′) ∼ κ(izγ′).

If we differentiate the equation znγ̄ = γ with respect to θ, and use the fact that
d
dθ

γ̄ = −iz̄γ̄′, then (8.12) becomes

log |γ|2(izγ′) ∼ κ(izγ′) − izγ′ + izn−1γ̄′

= κ(izγ′) − izγ′ + inγ − izγ′.

Therefore

log |γ|2
(
iγ − 2i

n
zγ′

)
∼ iκγ − 2i

n

(
κ(zγ′) − zγ′ + nγ − zγ′

)
= i(κ − 2)

(
γ − 2

n
zγ′

)
.

This yields (8.10). �
It is plausible that the only polynomial satisfying (8.6) and (8.7) and with

positive 0th and nth coefficients is (8.4), but we cannot resolve whether this is true.

9 A special case of the entropy conjecture

Self-inversive polynomials p in Pn can be written as

(9.1) p = q + q̃,
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where q is a polynomial in Pm, with m = � n
2�. Specifically, if n is odd, then q is an

arbitrary polynomial in P n−1
2

, and defined by

q = � n−1
2

p;

if n is even, then q is a polynomial in P n
2

whose ( n
2)

th coefficient is real (and half
of the coefficient for p).

Theorem 9.2. Let p be a self-inversive non-constant polynomial of degree
n, normalized as in Conjecture 1.4 to have L2 norm one, and write p as in (9.1).
If q has no zeros in the closed unit disk, then Inequality (1.5) holds, with strict
inequality unless p is given by (1.6).

Proof. Let us decompose the integral into two pieces, I + II:

(9.3)
∫

|p|2 log |p|2 =
∫

|p|2 log |q|2 +
∫

|p|2 log |1 + q̃/q|2.

To estimate I, the first term on the right-hand side of (9.3), write∫
|p|2 log |q|2 =

∫
|q|2 log |q|2||1 + q̃/q|2.

Note that ∫
|1 + q̃/q|2 =

∫
2 + 2Re

q̃
q

= 2,

since q̃(0) = 0. So if we apply Jensen’s inequality to the convex function �(x) =
x log x and the probability measure 1

2 |1 + q̃/q|2, we get

∫
�(|q|2)1

2
|1 + q̃/q|2 ≥ �

(∫
|q|2 1

2
|1 + q̃/q|2

)
.

This gives
1
2

∫
|q|2 log |q|2||1 + q̃/q|2 ≥ �(

1
2
) = −1

2
log 2.

Therefore we have I ≥ − log 2.

To estimate II, first assume that n is odd. Note that by the maximum principle,
q̃
q has modulus less than one in the unit disk, so log(1 + q̃/q) is analytic on the unit
disk and has only logarithmic singularities on the unit circle, and so is in the Hardy
space, and therefore its Fourier series agrees with its Maclaurin series. Therefore

log(1 + q̃/q) = q̃/q + O(zn+1),
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so ∫
|p|2 log |1 + q̃/q|2 = 2Re

∫
|q + q̃|2q̃/q

= 2Re
∫

(2|q|2 + znq̄2 + z̄nq2)(znq̄/q)

= 2Re
∫

2q̄2zn + z2nq̄3/q + |q|2

= 2Re
∫

|q|2

= 1.

Now assume n = 2m is even. Write

q(z) = a0 + · · · + amzm,

so
q̃(z) = amzm + ām−1z

m+1 + · · · + ā0z
n.

When expanding log(1 + q̃/q) we get

log(1 + q̃/q) =
q̃
q

− 1
2

a2
m

a2
0

zn + O(zn+1).

Therefore

(9.4)

∫
|p|2 log |1 + q̃/q|2 = 2Re

∫
2q̄2zn + z2nq̄3/q + |q|2 − 1

2
a2

m

= 3a2
m + 1

≥ 1.

Therefore
I + II ≥ 1 − log 2,

as required.
Finally, note that the inequality for I using Jensen’s inequality is strict unless

|q| is constant. �
Note that a simple continuity argument applied to q(rz) shows that (1.5) holds

provided q has no zeros in the open unit disk.

10 Baernstein’s conjecture implies the entropy conjec-
ture

Assume Baernstein’s Conjecture 2.2 holds. Let Q(z) = (1 + zn)/
√

2 and p be any
non-constant polynomial with all its roots on the unit circle, and with ‖p‖2 = 1.



KRZYŻ CONJECTURE AND AN ENTROPY CONJECTURE 225

Let s ≤ 2, and let t = s
s−1 be the conjugate exponent. Then, taking logarithms of

(2.3) we have

log ‖p‖s − log ‖p‖t ≤ log ‖Q‖s − log ‖Q‖t.

This means that
(10.1)
1
s

log
∫

|Q|s − s − 1
s

log
∫

|Q|s/(s−1) − 1
s

log
∫

|p|s +
s − 1

s
log

∫
|p|s/(s−1) ≥ 0.

Let �(s) denote the left-hand side of (10.1). We have that �(s) ≥ 0 for s ≤ 2, and
�(2) = 0. Therefore �′(2) ≤ 0. Calculating, we get

�′(s) = − 1
s2

log
∫

|Q|s +
1
s

1∫ |Q|s
∫

|Q|s log |Q| − 1
s2

log
∫

|Q| s
s−1

+
1

s(s − 1)
1∫ |Q| s

s−1

∫
|Q| s

s−1 log |Q|

+
1
s2

log
∫

|p|s − 1
s

1∫ |p|s
∫

|p|s log |p| +
1
s2

log
∫

|p| s
s−1

− 1
s(s − 1)

1∫ |p| s
s−1

∫
|p| s

s−1 log |p|.

Since both p and Q have 2-norm 1, we get that

�′(2) =
∫

|Q|2 log |Q| −
∫

|p|2 log |p|.

Since �′(2) ≤ 0, we get∫
|p|2 log |p|2 ≥

∫
|Q|2 log |Q|2 = 1 − log 2,

which is (1.5). �
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