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NON-ASYMPTOTIC RESULTS FOR SINGULAR VALUES OF
GAUSSIAN MATRIX PRODUCTS

Boris Hanin and Grigoris Paouris

Abstract. This article provides a non-asymptotic analysis of the singular values
(and Lyapunov exponents) of Gaussian matrix products in the regime where N, the
number of terms in the product, is large and n, the size of the matrices, may be
large or small and may depend on N . We obtain concentration estimates for sums of
Lyapunov exponents, a quantitative rate for convergence of the empirical measure of
the squared singular values to the uniform distribution on [0, 1], and results on the
joint normality of Lyapunov exponents when N is sufficiently large as a function of
n. Our technique consists of non-asymptotic versions of the ergodic theory approach
at N = ∞ due originally to Furstenberg and Kesten (Ann Math Stat 31(2):457–
469, 1960) in the 1960s, which were then further developed by Newman (Commun
Math Phys 103(1):121–126, 1986) and Isopi and Newman (Commun Math Phys
143(3):591–598, 1992) as well as by a number of other authors in the 1980s. Our
key technical idea is that small ball probabilities for volumes of random projections
gives a way to quantify convergence in the multiplicative ergodic theorem for random
matrices.

1 Introduction

This article is about the spectral theory of random matrix products

XN,n := AN · · ·A1, (1.1)

where Ai are independent n × n matrices with independent real Gaussian entries
(Ai)αβ ∼ N (0, 1/n) of mean zero and variance 1/n. We are primarily interested in
the situation when N is large and finite, while n may depend on N and may be
either small or large. Our results concern the singular values of XN,n:

s1(XN,n) ≥ · · · ≥ sn(XN,n), (1.2)

and can be summarized informally as follows:

1. We prove that as N, n tend to infinity at any relative rate the global distribution
of the normalized squared singular values

{
si(XN,n)2/N , i = 1, . . . , n

}
converges
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to the uniform distribution on [0, 1] (see Section 1.2 and Theorem 1.2). Unlike
previous results, we obtain quantitative concentration estimates valid for all
N, n larger than a fixed constant. See also Section 1.3 for a heuristic explanation
of why the uniform distribution appears in this context.

2. We prove that as long as N is sufficiently large as a function of n, the Lyapunov
exponents

λi = λi(XN,n) :=
1
N

log si(XN,n) (1.3)

of XN,n are approximately independent and Gaussian (see Theorem 1.3 in Sec-
tion 1.4). Unlike previous results, our estimates simultaneously treat all the
Lyapunov exponents and provide quantitative concentration estimates when N
is large but finite even when n grows with N.

3. The statements listed above derived from our main technical result, Theo-
rem 1.1, which gives quantitative deviation estimates on sums of Lyapunov
exponents of XN,n:

P

(∣∣∣
∣∣
1
n

k∑

i=m

(λi − μn,i)

∣
∣∣
∣∣
≥ s

)

≤ c1e
−c2nNs min{1,ngn,k(s)}, s ≥ k

nN
log

(en

k

)
,

where μn,i is defined in (1.5) and gn,k(s) is a function defined in (1.4). It is
known that (e.g. equations (1) and (7) in [New86]) μn,i is the almost sure limit
of λi when N → ∞.

In this article, we exclusively treat the case of Ai having iid real Gaussian entries.
This simplifies a number of arguments, but we conjecture that similar results hold if
we assume only that the distribution of the entries of Ai have finite fourth moments
and bounded density. We leave this for future work.

1.1 Main Technical Result. Let us set some notation. Denote as in (1.3) by
λi = λi(XN,n) the Lyapunov exponents of XN,n. Further, define for any s > 0

gn,k(s) =

{
min

{
1, ns

k

}
, k ≤ n

2 ,

min
{

δn,k,
s

log 1/δn,k

}
, n

2 < k ≤ n,
(1.4)

where for k ≥ n/2 we’ve set

δn,k :=
n − k + 1

n
∈
[

1
n

,
n − 1

n

]
.

Finally, write

μn,k := E

[
1
2

log
(

1
n

χ2
n−k+1

)]
=

1
2

(
log

(
2
n

)
+ ψ

(
n − k + 1

2

))
, (1.5)

where ψ(z) = d
dz log Γ(z) is the digamma function and χ2

m is a chi-squared random
variable with m degrees of freedom. Our main technical result is the following
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Theorem 1.1 (Deviation Estimates for Sums of Lyapunov Exponents). There exist
universal constants c1, c2, c3 > 0 with the following property. Fix 1 ≤ m ≤ k ≤ n as
well as N ≥ 1. Then,

P

(∣∣
∣
∣
∣
1
n

k∑

i=m

(λi − μn,i)

∣
∣
∣
∣
∣
≥ s

)

≤ c2 exp (−c3nNs min {1, ngn,k(s)}) , (1.6)

provided s ≥ c1
k

nN log(en/k).

Theorem 1.1 holds for every n, N ≥ 1 and reveals a great deal about the singular
values and Lyapunov exponents of XN,n. For instance, in the bulk (i.e. when k is
comparable to n), the restriction on s in (1.6) reduces simply to s > C/N , giving
information about XN,n as soon as N is large, regardless of n. This turns out to
be enough to prove Theorem 1.2, given in Section 1.2 below, which states that the
squared singular values of XN,n approximate the uniform distribution on [0, 1] when
N, n tend to infinity at any relative rate.

Theorem 1.1 also gives precise information about the top Lyapunov exponents of
XN,n. Indeed, taking k to be fixed in (1.6) gives non-trivial information on λ1, . . . , λk

as soon as N � log(n). Further, note that standard estimates for the digamma
function ψ yield

μn,k = log
(

1 − k − 1
n

)
− 1

n − k + 1
+ O

(
1

(n − k + 1)2

)
. (1.7)

This shows that the difference between the means μn,1 and μn,2 of λ1 and λ2 is on
the order of 1/n. As soon as N � n log(n), we may apply (1.6) with s 	 λ1 − λ2 to
conclude that

s1(XN,n)
s2(XN,n)

= eN(λ1−λ2) ≥ ecN/n with high probability.

Hence, we find that XN,n begins to have a large spectral gap in the “near ergodic”
regime N � n log(n). In fact, in Theorem 1.3, we prove that in this regime λ1, . . . , λk

are also approximately independent Gaussians. We refer the reader to Section 1.4
for the details.

A notable aspect of Theorem 1.1 is that it applies to any finite n, N ≥ 1, allowing
us to “interpolate” between the ergodic N � n and free n � N regimes. To explain
this point, note that matrix products of the form (1.1) have been studied primarily in
two setting. The first, which we refer to as the free probability regime occurs when
N is fixed and n → ∞. This is a kind of maximum entropy regime in which the
global distribution of singular values can be characterized in terms of maximizing
the non-commutative entropy (cf eg [AG97, BBCC11]). The second, which we call
the ergodic regime, occurs when n is fixed and N → ∞. This is a kind of minimal
entropy regime in which the Lyapunov exponents (and singular values of XN,n) tend
to almost sure limits.



GAFA SINGULAR VALUES OF GAUSSIAN MATRIX PRODUCTS 271

In both the ergodic and the free regimes, it is often difficult to obtain finite
size corrections. Theorem 1.1 supplies such information. Moreover, since the ergodic
and free regimes are usually treated by rather different means, it is unclear which
techniques can give information that can interpolate between them. Our approach
extends the ergodic techniques pioneered by Furstenburg–Kesten [FK60], further
developed in connection to random Schrödinger operators by Carmona [Car82] and
Le Page [LP82] (cf also [BLR85]), and applied in a very similar context as ours by
Newman [New86] and Isopi–Newman [IN92]. It is therefore not surprising that in
all of our results, we need N to be in some sense large.

Although we do not take this approach in the present article, it is also natu-
ral to study spectra of random matrix products by adapting techniques originally
developed to treat the case when N = 1. Indeed, in this setting, there has been con-
siderable effort to obtain non-asymptotic analogs of classical random matrix theory
results when n = ∞ [Rud14, Ver12, Rud17], culminating in the resolution of a num-
ber of long-standing open problems [RV08, RV09, ALPTJ10, Tik20]. More recently,
several groups of authors [HW20, HNWTW20, KMS20] have started to extend tech-
niques for obtaining concentration for random matrices tailored (see [Tro15]) to the
small N regime for understanding the kinds of matrix products considered in this
article. From this point of view, our article takes a complementary approach, finding
extensions of techniques originally coming from the ergodic theory used to analyze
the case when N = ∞.

1.2 Convergence of Squared Singular Values to the Uniform Distribu-
tion. Prior work [IN92, Kar08, Tuc10, GS18, LWW18, Ahn19] shows that in a
variety of settings where n, N → ∞, the global distribution of singular values of
X

1/N
N,n converges to the so-called triangle law after proper normalization. Informally,

this means

lim
N,n→∞

1
n

#
{

j ≤ n | s
1/N
i (XN,n) ≤ t

}
=

∫ t

−∞
2s1{s∈[0,1]}ds =: TL(t). (1.8)

The graph of the density 2s1{s∈[0,1]} of TL has the shape of a triangle, giving the
distribution its name. With the exception of the articles [LWW18, GS18], which
obtain much more precise information for products of complex Gaussian matrices
and the article [Ahn19] concerning β-Jacobi products as well as the real Gaussian
case, the majority of prior results about (1.8) (e.g. [IN92, Kar08, Tuc10]) do not allow
n, N to tend to infinity simultaneously. Moreover, all prior results we are aware of
do not give quantitative rates of convergence. Theorem 1.2 provides both for the
real Gaussian case we consider here. To state it, we note that if a random variable
T is distributed according to the triangle law, then T 2 is uniformly distributed on
[0, 1], i.e. has the following cumulative distribution function:

U(t) :=
∫ t

−∞
1[0,1](t)dt.
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Theorem 1.2 (Global Convergence to Triangle Law). There exist universal con-
stants c1, c2, c3, c4 > 0 with the following property. For all ε ∈ (0, c1), if N > c2/ε2

and n > c3 log(1/ε)/ε, then the probability

P

(
sup
t∈R

∣
∣
∣
∣
1
n

#
{

1 ≤ i ≤ n | s
2/N
i (XN,n) ≤ t

}
− U(t)

∣
∣
∣
∣ ≥ ε

)

that the cumulative distribution for the squared singular values of XN,n deviates
from the uniform distribution by more than ε is bounded above by

4 exp
[−c4nNε2 min

{
1, ngn,k(ε2)

}]
.

In the next section we use the circular law (1.12) for the (complex) eigenvalues
of X

1/N
N,n to give an intuitive but heuristic explanation for why the uniform distri-

bution (or equivalently the triangle law) should appear as the limiting distribution
of singular values on XN,n. Before doing so, we briefly discuss the dependence of
Theorem 1.2 on N, n, starting with the former. For fixed N , consider an iid random
sequence {XN,n}∞

n=1 with the product measure. Taking ε = 2(c2/N)1/2 =: CN−1/2,
Theorem 1.2 shows that

P

(
sup
t∈R

∣∣
∣∣
1
n

#
{

1 ≤ i ≤ n | s
2/N
i (XN,n) ≤ t

}
− U(t)

∣∣
∣∣ ≥ C√

N

)
≤ 4e−cn, c > 0.

Thus, by Borel–Cantelli, we find that

sup
t∈R

∣
∣∣
∣ lim
n→∞

1
n

#
{

1 ≤ i ≤ n | s
2/N
i (XN,n) ≤ t

}
− U(t)

∣
∣∣
∣ ≤ C√

N
with probability 1,

(1.9)

where by limn→∞ an we mean any limit point of the sequence an. This 1/
√

N can
be seen as a Berry–Esseen-type estimate. To make this precise, consider

ρN,∞ := lim
n→∞

1
n

n∑

i=1

δsi(XN,n)1/N ,

the large matrix limit for the empirical distribution of normalized singular values
for XN,n. It is known [BBCC11, Thm 6.1] that

ρN,∞ = qc�N , qc(x) :=
1
2π

√
x(2 − x)1{[0,2]}(x),

where qc is the quarter circle law and � is the multiplicative free convolution. Kargin
[Kar08] and Tucci [Tuc10] show that, consistent with Theorem 1.2,

lim
N→∞

ρN,∞ = TL.

As far as we know, the optimal rate of convergence for such repeated multiplicative
free convolution is unknown. However, from this point of view, (1.9) shows that the
rate of convergence is at least as fast as in the usual central limit theorem.
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To understand the dependence of Theorem 1.2 on n, we send N to infinity in
Theorem 1.2 to obtain as before that there is C > 0 so that

sup
t∈R

∣
∣
∣
∣ lim
N→∞

1

n
#
{
1 ≤ i ≤ n | s

2/N
i (XN,n) ≤ t

}
− U(t)

∣
∣
∣
∣ ≤ C log(n)

n
with probability 1,

(1.10)

Apart from the log(n), this estimate is sharp. Indeed, the empirical distribution

ρ∞,n := lim
N→∞

1
n

n∑

i=1

δsi(XN,n)1/N

of singular values in the large number of matrices limit exists almost surely and is
deterministic by the Multiplicative Ergodic Theorem. Among other things, Theo-
rem 1.3 below computes, in agreement with the early work of Newman [New86], this
limit in our Gaussian case. The subsequent work of Isopi–Newman [IN92] showed
that, under minimal assumptions,

lim
n→∞ ρ∞,n = TL.

This of course agrees with Theorem 1.2, which via (1.10) provides a natural rate
of convergence. This rate is optimal, perhaps up to the log(n), because the spacing
of the atoms in ρ∞,n is approximately 1/n. Hence, the distance between ρ∞,n and
triangle law TL, which is a continuous distribution, is bounded below by a constant
times 1/n.

1.3 Why the Uniform Distribution in Theorem 1.2? A number of articles
[New86, IN92, Kar08, Tuc10, LWW18, GS18] show as in (1.8) that in the limit
where n, N tend to infinity, the singular values si(XN,n)1/N (or for similar matrix
products) converge to the triangle law (and hence their squares converge to the
uniform distribution on [0, 1]). These articles use a variety of techniques ranging
from free probability to ergodic theory and special functions. Why does the uniform
distribution appear? The purpose of this section to give an intuitive explanation for
this phenomenon. After writing an initial draft of this article, we learned from G.
Akemann that an explanation similar to the one below can be found on pages 3, 4
in [ABK14]. We also refer the reader to the work of Kieberg–Kösters [KK16] about
an exact relation between eigenvalues and singular values for products of complex
Ginibre matrices.

Since XN,n is not normal with probability 1, its spectral properties are captured
not only its singular values but also by its eigenvalues

|ζ1(XN,n)| ≥ · · · ≥ |ζn(XN,n)| , ζi(XN,n) ∈ C. (1.11)

Our argument for why the triangle law appears in Theorem 1.2 relates the singular
values and eigenvalues of XN,n and consists of two observations. First, consider



274 B. HANIN, G. PAOURIS GAFA

the (complex) eigenvalues of X
1/N
N,n as defined in (1.11). It is shown in [GT10, OS11]

that for each fixed N the empirical distribution of the eigenvalues of X
1/N
N,n converges

weakly almost surely to the uniform measure on the unit disk in C. This result is
often called the circular law. Informally, it reads

lim
n→∞

1
n

n∑

i=1

δζ
1/N
i

(z) =
1
π
1{|z|≤1}, z ∈ C. (1.12)

Precise results on the rate of convergence can be found in [GJ18, Jal19] and local
limit theorems are obtained in [Nem17]. Since in polar coordinates (r, θ) the radial
part of the uniform measure on the unit disk is 2rdr, a corollary of the circular law
is that

For N fixed, as n → ∞, squared eigenvalue moduli |ζi|2/N of X
1/N
N,n converge to U .

(1.13)

Thus, the uniform distribution U appears naturally as the distribution of the squared
moduli of eigenvalues of X

1/N
N,n for every N ! On the other hand, it has been proved

that for any fixed finite n [Red16, Red19] that when N is large

∀i = 1, . . . , n |ζi|1/N ≈ s
1/N
i .

Thus, we extract another piece of intuition:

For n fixed, as N → ∞, eigenvalue moduli and singular values of X
1/N
N,n coincide.

(1.14)

Putting together (1.13) and (1.14), we conclude heuristically that if both n, N tend
to infinity then the distribution of the singular values s

1/N
i should converge to the

triangle law. This is precisely the content of Theorem 1.2. While the heuristic for
(1.14) was previously established only when n is fixed, we believe it can also be
proved in the regime where n is allowed to grow with N but leave this for future
work.

1.4 Distribution of Lyapunov Exponents in the Near Ergodic Regime.
In addition to studying the global distribution of singular values of XN,n, we also
obtain in Theorem 1.3 precise estimates for the joint distribution of the Lyapunov
exponents

λi = λi(XN,n) =
1
N

log si(XN,n) (1.15)

of XN,n in the regime when N � n log2(n). To state it, we need some notation.
Recall first that for each 1 ≤ k ≤ n we had set

μn,k = E

[
1
2

log
(

1
n

χ2
n−k+1

)]
=

1
2

(
log

(
2
n

)
+ ψ

(
n − k + 1

2

))
, (1.16)
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where ψ(z) = d
dz log Γ(z) is the digamma function and χ2

m is a chi-squared random
variable with m degrees of freedom. We also recall the estimate (1.7):

μn,k = log
(

1 − k − 1
n

)
− 1

n − k + 1
+ O

(
1

(n − k + 1)2

)
.

The quantity μn,k already appears in [New86, IN92] as the mean of λk when N → ∞.
We futher define

σ2
n,k := Var

[
1

2
log

(
1

n
χ2

n−k+1

)]
= ψ′

(
n − k + 1

2

)
=

1

2(n − k + 1)
+ O

(
1

(n − k + 1)2

)
,

(1.17)

and set

μn,≤k := (μn,1, . . . , μn,k) , σ2
n,≤k :=

(
σ2

n,1, . . . , σ
2
n,k

)
. (1.18)

Finally, we will consider for two R
k-valued random variables X, Y the following

high-dimensional generalization of the usual Kolmogorov–Smirnov distance:

d(X, Y ) := sup
C∈Ck

|P(X ∈ C) − P(Y ∈ C)| , (1.19)

where Ck is the collection of all convex subsets of Rk.

Theorem 1.3 (Asymptotic Normality of Lyapunov Exponents). There exist con-
stants C1, C2 > 0 with the following property. Suppose XN,n is as in (1.1), fix
1 ≤ k ≤ n, and write

Λk = (λ1, . . . , λk)

for the vector of the top k Lyapunov exponents of XN,n. Then, λ1, . . . , λk are ap-
proximately independent and Gaussian when N is sufficiently large as a function of
k, n:

d

(
Λk, N

(
μn,≤k,

1
N

Diag
(
σ2

n,≤k

)
))

≤ C2

(
k7/2n log2(n) log2(N/n)

N

)1/2

. (1.20)

Here N (μ,Σ) denotes a Gaussian with mean μ and co-variance Σ and for any v =
(v1, . . . , vk) ∈ R

k we have written Diag(v) for the diagonal matrix with Diag(v)ii =
vi.

Remark 1.4. The arguments in [AB12, AB12, ABK14, ABK19] strongly suggest
(see Section 2.2) that for k fixed and independent of n, a necessarily and sufficient
condition for λ1, . . . , λk to be close to independent and Gaussian is N � n. Thus, the
log2(n) log2(N/n) in (1.20) is likely sub-optimal. It is not clear whether the power
k7/2 can be improved.
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For k ≥ 1 fixed independent of n, N , Theorem 1.3 shows that the top k Lya-
punov exponents of XN,n are close to independent Gaussian as soon as N �
n log2(n) log2(N/n). This is a significant refinement of the result in [Car82] (see
also Theorem 5.4 in [BLR85]), which states that when n is fixed λ1 is asymptoti-
cally normal. It also refines the recent result of Reddy [Red19, Theorem 11], which
holds only for fixed finite n and does not give estimates at finite N . The advantage
of Theorem 1.3 is that it treats simultaneously any number of Lyapunov expo-
nents and gives a rate of convergence. For example, taking k = n, we find that
if N � n9/2 log2(n) log2(N/n), then all Lyapunov exponents of XN,n are approxi-
mately independent Gaussians. However, results in articles such as [Car82] are for
matrix products AN · · ·A1 in which the entries of Ai have mean zero, variance 1/n
and satisfy some mild regularity assumptions, whereas our results hold only for the
Gaussian case. We conjecture that Theorem 1.3 holds in this more general setting
as well but leave this to future work.

2 Prior Work and Intuitions

The purpose of this section is to give an exposition of prior work and provide several
intuitions for thinking about the matrix products XN,n, especially about the differ-
ences between the near-ergodic N � n and the near-free n � N regimes. We do
this by first giving in Section 2.1 a basic intuition from dynamical systems, which
suggests that one can think of N as a time variable and n as a system size. This in-
tuition dovetails with the multiplicative ergodic theorem. We proceed in Section 2.2
to explain an exact correspondence derived in [AB12, ABKN14, ABK14, ABK19]
at a physical level of rigor in which n/N plays the role of a time parameter for the
evolution of the n singular values of XN,n. This helps to explain why even simple
linear statistics behave differently depending on the relative size of n, N .

2.1 XN,n at Fixed n as a Dynamical System. One way to intuitively think
of XN,n = AN · · ·A1 is as defining the time 0 to time N map for a dynamical system
in which the time one dynamics are very chaotic and are modelled as multiplication
by an iid random matrix. In this analogy, N takes on the role of a time parameter,
whereas n denotes the system size. Since large systems take longer to come to equi-
librium, we should expect that N and n are “in tension.” If we fix n and let N tend
to infinity, then the size of the long time image ||XN,nu|| of an unit length input
u ∈ R

n satisfies a pointwise ergodic theorem:

lim
N→∞

1
N

log ||XN,nu|| = E, (2.1)

where E is a constant (independent of u) depending on the measure μ according
to which the entries of the matrices Ai making up the matrix product XN,n are
distributed. This can be proved in a variety of ways (e.g. Corollary 3.2 in [CN84]).
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In fact, much more is true. It was shown by Kesten–Furstenberg in [FK60], that this
statement tolerates taking a supremum over u:

lim
N→∞

λ1(XN,n) = E almost surely.

Later, in his seminal work [Ose68] Oseledets proved the multiplicative ergodic the-
orem. In the context of iid products of N matrices of size n × n, it says that under
some mild conditions on μ if n is fixed, then the full list of Lyapunov exponents
λ1(XN,n), . . . , λn(XN,n) converges almost surely to a deterministic limit. We refer
the reader to [Fil19] for a review of the vast literature on this subject and to [BLR85]
for an exposition specifically about matrix products.

Determining the values of the limiting Lyapunov exponents in the multiplica-
tive ergodic theorem is in general quite difficult and has applications to Anderson
localization for random Schrödinger operators [BLR85, Dam11].

Moreover, the work of LePage [LP82] as well as subsequent analysis [Car82,
BLR85] showed that the top Lyapunov exponent of matrix products such as XN,n

(not necessarily Gaussian) is asymptotically normal in the sense that there exist
an, bN,n ∈ R so that

bN,n (λ1(XN,n) − an) d−→ N (0, 1),

where the d indicates that the convergence is in the sense of distribution. As far as we
are aware, all known mathematical proofs of asymptotic normality results hold only
for finite fixed n, for the top Lyapunov exponent λ1 and do not include quantitative
rates of convergence. For the real Gaussian case we study, our Theorem 1.3 overcomes
these deficiencies. However, at the physical level of rigor, we refer the reader to the
excellent articles [AB12, ABKN14, ABK14, AI15, ABK19] that derive in the case
of complex Gaussian matrix products asymptotic normality and much more for the
top Lyapunov exponents (cf Section 2.2).

While the preceding discussion concerned matrix products with any entry distri-
bution μ with mean 0 and variance 1/n, the Gaussian μ = N (0, 1/n) considered in
this article leads to some significant simplifications. For instance, Newman [New86]
computed the exact expression, which can be written in terms of the digamma func-
tion, for the limiting Lyapunov exponents. Similarly, (2.1) is a simple fact in this case
since 1

N log ||XN,nu|| turns out to be sum of iid random variables (see Lemma 9.5).
These simplifications stem from the fact that the distribution of each matrix Ai is
left and right-invariant under multiplication by an orthogonal matrix.

2.2 n/N as a Time Parameter in an Interacting Particle System. In the
regime where n/N is bounded away from 0 and ∞ as n, N → ∞, even the behavior
of an innocuous seeming log-linear statistic depends very much on the ratio of n and
N . Informally,

log ||XN,nu|| ≈ N
(

− N

4n
,
N

4n

)
+ O

(
N

n2

)
, u ∈ R

n, ||u|| = 1, (2.2)
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where N (μ,Σ) denotes a Gaussian with mean μ and covariance Σ. As mentioned
above, in the Gaussian case we consider in this article, this approximate normality
is easy to see since log ||XN,nu|| is a sum of iid variables (see Lemma 9.5). Precise
versions of (2.2) also hold true when the matrices Ai in the definition (1.1) of XN,n

have symmetric but non-Gaussian entries (see Theorem 1 in [HN19]). It is interest-
ing to compare the almost sure convergence to a constant in (2.1) (note that 1/N
normalization) with the asymptotic normality in (2.2).

The relation (2.2) already suggests that t = n/N is an important parameter for
interpolating between the ergodic regime, defined by t = 0 and the asymptotically
free regime, in which t = ∞. A number of remarkable articles [AB12, ABKN14,
ABK14] and especially [ABK19] establish a correspondence between t and the time
parameter in the stochastic evolution of an interacting particle system. This cor-
respondence between singular values for products of complex Ginibre matrices and
DBM appears to be initially due to Maurice Duits.

The particles in question are the limiting Lyapunov exponents λi of XN,n. When
t = 0, they are approximately uniformly spaced (see Theorem 1.3) and are inter-
preted as an initial condition for Dyson Brownian motion (DBM)

dλi = dBi +
∑

j �=i

dt

λi − λj
, i = 1, . . . , n (2.3)

the dynamics induced on the spectrum of a matrix by allowing each entry to evolve
for time t under and independent Brownian motion [Dys62]. The surprising obser-
vation is that, at least in the bulk of the spectrum (i.e. λk with k proportional to
n) the joint distribution of the Lyapunov exponents of XN,n satisfies (2.3) at time t
with an equally spaced initial condition in the limit when n/N = t and n, N → ∞.

The idea of the derivations in [AB12, ABKN14, ABK14, ABK19] is to use that
when XN,n is a product of complex Ginibre matrices, the joint distribution of all of
its singular values, at any finite n, N , is given by a determinental point process. One
may then study the scaling limit of the corresponding determinental kernel at any
fixed t = n/N . This kernel coincides with the solution to DBM from equally spaced
initial conditions, which is also determinental [Joh04].

A rigorous analysis of the determinental kernel for the joint distribution of sin-
gular values for products of complex Gaussian matrices was undertaken in a variety
of articles [For13, For14, FL16, LWZ16, LWW18]. In particular, [LWZ16] shows that
when N is arbitrary but fixed and n → ∞, the determinental kernel for singular
values in products of N iid complex Gaussian matrices of size n × n converges to
the familiar sine and Airy kernels that arise in the local spectral statistics of large
GUE matrices in the bulk and edge, respectively. This agrees with the prediction
from [ABK19]. Indeed, in this regime, the time parameter t = n/N is infinite and
the limiting distribution of DBM is that of the eigenvalues for a large GUE matrix.
Moreover, [LWW18] rigorously obtained an expression for the limiting determinen-
tal kernel when t = n/N is arbitrary in the context of products of complex Ginibre
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matrices.We refer the reader also to the subsequent article of Liu–Wang [LW19] that
performs a similar analysis for the eigenvalues in the same setting.

Also in the regime where n/N is fixed while n, N → ∞, we refer the reader to
Gorin–Sun [GS18]. This article shows that the fluctuations of the singular values of
XN,n around the triangle law always converge to a Gaussian field. We also refer the
reader to [Ahn19], which obtains a CLT for linear statistics of top singular values
when n/N is fixed and finite.

3 Idea of Proof: Reduction to Small Ball Estimates

Before turning to the formal proofs of Theorems 1.2 and 1.3, we give a brief overview
of our approach, which begins with the following representation (cf e.g. [New86,
IN92]) for sums of Lyapunov exponents from Lemma 5.1 (see Section 5):

λ1 + · · · + λk = sup
Θ∈Frn,k

1
N

log ||XN,n(Θ)|| . (3.1)

In the previous line, we’ve denoted by Frn,k the collection of all orthonormal k-frames
in R

n (i.e. collections of k orthonormal vectors v1, . . . , vk). We have also set

XN,n(Θ) = XN,nθ1 ∧ · · · ∧ XN,nθk, Θ = (θ1, . . . , θk) ∈ Frn,k,

where we recall that for a, b ∈ R
n a1 ∧ · · · ∧ ak is the anti-symmetrization of a1 ⊗

· · · ⊗ ak. We refer the reader to Section 5 for more background and to the start of
Section 7 in [Spi70] and to Section 2.6.1 in [Tao10] for more on wedge products.
As pointed out in [IN92], information about the sums λ1 + · · · + λk can easily
be translated into the information about their cumulative distribution function,
ultimately resulting in Theorem 1.2. Similarly, the vector of the top k Lyapunov
exponents considered in Theorem 1.3 can be obtained by an affine transformation
of the vector of partial sums λ1, λ1 + λ2, . . . , λ1 + · · · + λk. Thus, the focus of our
proofs is to obtain precise concentration estimates for the expression on the right
hand side of (3.1). An important idea for analyzing (3.1), which goes back to the
work of Furstenburg–Kesten [FK60] is that when N is large, one can almost drop
the supremum:

lim
N→∞

∣
∣∣
∣∣
1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log
∣∣∣∣XN,n(Θ′)

∣∣∣∣

∣
∣∣
∣∣
= 0 (3.2)

for any fixed Θ ∈ Frn,k. As explained below this is plausible since the ratio
sk(XN,n)/sk+1(XN,n) of the kth and (k + 1)st singular values grows exponentially
with N , causing the wedge product XN,n(Θ) to align almost entirely with the wedge
product of the top k singular vectors of XN,n for almost every Θ.

The “pointwise” quantity 1
N log ||XN,n(Θ)|| is a sum of iid random variables

(Lemma 9.5) and can be analyzed using a result of �Lata�la [Lat97] (see Theorem 6.1).
It then remains to obtain quantitative versions of (3.1) valid for large but finite
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N, n. One possible approach is via energy-entropy estimates using ε-nets on Frn,k.
However, while this gives some results, this approach is suboptimal for large N . The
reason that ε-nets fail is that, due to the N−1 normalization,

N large ⇒ VarΘ

[
1
N

log ||XN,n(Θ)||
]

	 VarXN,n

[
1
N

log ||XN,n(Θ)||
]

by which we mean that the variance of 1
N log ||XN,n(Θ)|| over Θ ∈ Frn,k for a typical

realization of XN,n is much smaller than its variance over the randomness in XN,n

for any fixed Θ, causing the optimal net to have constant cardinality.
The main technical novelty of our proofs is that we quantify (3.2) not through net

arguments but rather via small ball probabilities for volumes of random projections,
which are already known (cf Proposition 8.3). The key result is the following:
Proposition 3.1. For any ε ∈ (0, 1) and any Θ ∈ Frn,k we have

P

(∣∣
∣
∣
∣

1
N

log ||XN,nΘ|| − sup
Θ′∈Frn,k

1
N

log ||XN,nΘ′||
∣∣
∣
∣
∣
≥ 1

N
log

(
1
ε

))

≤ P (||PF (Θ)|| ≤ ε) ,

where F is a Haar distributed k-dimensional subspace of Rn and

PF (Θ) = PF θ1 ∧ · · · ∧ PF θk

with PF denoting the orthogonal onto F.

For the proof of Proposition 3.1 see Lemma 8.2. The appearance of small ball prob-
abilities is natural, although perhaps somewhat unexpected. Let us briefly describe
why in the simplest case of k = 1. Denote by v(i) the right eigenvector of XN,n

corresponding to the singular value si(XN,n). For any θ ∈ Sn−1, we may write

||XN,nθ||2 =
n∑

i=1

∣∣
∣
〈
XN,nθ, v(i)

〉∣∣
∣
2
.

When N � n, the matrix XN,n is highly degenerate in the sense that there exists a
universal constant C > 0 so that

s1(XN,n)
s2(XN,n)

≥ eCN/n.

This is easy to see intuitively since in this regime λ1 − λ2 ≈ 1
n (cf Theorem 1.3).

Hence,

||XN,nθ||2 ≈
∣∣
∣
〈
XN,nθ, v(1)

〉∣∣
∣
2

(3.3)

unless
∣∣〈θ, v(1)

〉∣∣ is unusually small. In fact, for all θ

0 ≥ 1
N

log ||XN,nθ|| − λ1 =
1

2N
log

(
||XN,nθ||2
s2
1(XN,n)

)

≥ 1
N

log
∣
∣
∣
〈
θ, v(1)

〉∣∣
∣ .

This lower bound is essentially sharp by (3.3) unless θ has small overlap with v(1),
an event whose probability is controlled precisely by a small ball estimate.
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4 Organization of the Rest of the Article

The rest of this article is structured as follows. First, in Section 5 we collect some
well-known results on the relation between the exterior algebra of Rn and the sin-
gular values of any linear map A : R

n → R
n. We also record several elementary

observations (Lemmas 5.3 and 5.4) about polar decompositions and Haar measures
on orthonormal frames and their flags. We will use this formalism throughout our
proofs.

Next, in Section 6 recalls two kinds of results. The first, Theorem 6.1, is a re-
sult of �Lata�la [Lat97] that gives precise information on moments (and hence tail
behavior) for sums of independent centered random variables. The second is a set
of results related to the multivariate central limit theorem (Theorem 6.4) and the
Gaussian content of boundaries of convex sets (Theorem 6.5). The latter allows us to
prove Proposition 6.3, a stability result for the Kolmogorov–Smirnov-type distance
function d used in the statement of Theorem 1.3. Section 7 follows, containing a brief
road map to the proofs of Theorems 1.1, 1.2 and 1.3. Then, Section 8 is devoted
to explaining how to use small ball estimates on volumes of random projections to
formalize the ergodicity (3.2).

Further, the results in Section 9 are used in all our proofs. The main result there
is Proposition 9.1, which together with Proposition 8.1 and Lemma 9.5 explains
the appearance of chi-squared random variables in the statement of Theorem 1.3.
The proof of Proposition 9.6 is the most technical part of our arguments. Next,
we complete the proof of Theorem 1.1 in Section 10. We then use Theorem 1.1 to
complete in Sections 11 and 12 the proofs of Theorems 1.2 and 1.3, respectively.

5 Singular Values via Wedge Products

In this section, we recall some background on wedge products and refer the reader
to the start of Section 7 in [Spi70] and to Section 2.6.1 in [Tao10] for more details.
The usual 
2-structure on R

n gives rise in a functorial way to an 
2 structure on the
exterior powers Λk

R
n. If x1, · · · , xk are in R

n (e.g. are a frame for an element of
Gn,k) we denote the resulting norm by

||x1 ∧ · · · ∧ xk|| .

If we denote by X∗ the n × k matrix (x1, · · · , xk), the Gram identity reads

‖x1 ∧ · · · ∧ xk‖ =
√

det(XX∗) = volk (P (x1, . . . , xk)) , (5.1)

where P (x1, . . . , xk) is the parallelopiped spanned by x1, . . . , xk. The following
Lemma gives a well-known characterization of products of singular values in terms
of norms of wedge products, which we will use repeatedly in the proofs of our results.
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Lemma 5.1. Let A be an n × n real matrix with singular values s1(A) ≥ s2(A) ≥
· · · ≥ sn(A). If θ1, · · · , θk are unit vectors in R

n, then

‖Aθ1 ∧ · · · ∧ Aθk‖ ≤ sup
θ′
1,...,θ

′
k∈Sn−1

‖Aθ′
1 ∧ · · · ∧ Aθ′

k‖ =
k∏

i=1

si(A), (5.2)

with equality if and only if θi are orthonormal and span{θi, i ≤ k} is the subspace
spanned by the eigenvectors of AA∗ that correspond to the largest singular values
of A.

Proof. The inequality on the left is clear. To derive the equality, note that, for any
θ1,

′ , . . . , θ′
k ∈ Sn−1,

θ′
1 ∧ · · · ∧ θ′

k = θ′′
1 ∧ · · · ∧ θ′′

k ,

where

θ′′
j = Π⊥

≤j−1θ
′
j , θ′′

1 = θ1

and Π⊥
≤j−1 is the projection onto the orthogonal complement of the span of θ′

1, . . . , θ
′
j−1.

This follows immediately from the fact that a1 ∧ · · · ∧ ak is zero if {aj} is linearly
dependent. Thus, the supremum in (5.2) can be taken over θ′

1, . . . , θ
′
k that are or-

thogonal. Over such collections, the supremum is obtained by letting θ′
1, . . . , θ

′
k be

any permutation of the k right singular vectors of A. ��
Next, we record in Lemma 5.2 some basic properties of this norm of wedge products
that we will use.

Lemma 5.2. Let x, x1, · · · , xk be vectors in R
n. Then we have the following basic

properties:

1. Homogeneity: If λi > 0,

‖λx1 ∧ · · · ∧ λkxk‖ =

(
n∏

i=1

λi

)

‖x1 ∧ · · · ∧ xk‖. (5.3)

2. Projection formula: Let PV ⊥
i

be the orthogonal projection onto the orthog-
onal complement of Vi := span{x1, · · · , xk}, V0 = {0}, 1 ≤ k ≤ n − 1. We
have

‖x1 ∧ · · · ∧ xk‖ =
k∏

i=1

‖PV ⊥
i−1

xi‖2. (5.4)

3. Pythagorean Theorem: Let e1, . . . , en be any orthonormal basis of Rn, and
define for each multi-index I = (i1, . . . , ik)

eI := ei1 ∧ · · · ∧ eik
.
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Then,

||x1 ∧ · · · ∧ xk||2 =
∑

I=(i1,...,ik)
1≤i1<···<ik≤n

〈x1 ∧ · · · ∧ xk, eI〉2 . (5.5)

4. Generalized Gram Identity: Let Θ = (θ1, . . . , θk) be an orthonormal system
of k vectors in R

n and write PΘ for the orthogonal projection onto the span
of the θi. Consider arbitrary linearly independent vectors v1, . . . , vk in R

n, and
denote by V the n × k matrix whose columns are vi. Then

〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det(PΘV V ∗PΘ) = ||PΘv1 ∧ · · · ∧ PΘvk||2 .

(5.6)

Proof. Homogeneity is immediate from the multi-linearity of the determinant (5.1).
The projection formula (5.4) follows from (5.1) and the fact that

√
det(XX∗) is the

volume of the parallelopiped spanned by x1, . . . , xk.. Next, the Pythagorean theorem
follows from the fact that in the definition of the 
2 structure on Λk

R
n,

{eI , I = (i1, . . . , ik) , 1 ≤ i1 < · · · < ik ≤ n}
is an orthonormal basis. Finally, to show (5.6), assume first that

θj = ej , j = 1, . . . , k

are the first k standard unit vectors. Then the right equality follows immediately
from the Gram identity (5.1). To see the left equality, write

vj =
n∑

i=1

vj,iei.

We have

v1 ∧ · · · ∧ vk =
∑

i1,...,ik

k∏

j=1

vj,ij
ei1 ∧ · · · ∧ eik

=
∑

I=(i1,...,ik)
1≤i1<···<ik≤n

⎛

⎝
∑

σ∈Sk

(−1)sgn(σ)
k∏

j=1

vj,σ(j)

⎞

⎠ eI .

Hence, writing Vk for the matrix obtained from V by keeping only the first k rows,
we find from the Pythagorean theorem (5.5),

〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det(Vk)2 = det(VkV
∗
k ).

The case of general θi follows by considering any orthogonal matrix U satisfying

θi = Uei, i = 1, . . . , k.

Then

〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det((UT V )k(UT V )∗
k) = det(PΘV (PΘV )∗). ��
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5.1 Haar Measure on Frames. It well-know that if ξ is a standard Gaussian
on R

n, then ξ̂ = ξ/ ||ξ|| is independent of ||ξ|| and that ξ̂ is uniform on the unit
sphere. We will need natural generalizations of these facts to orthonormal frames,
Lemmas 5.3 and 5.4.

Lemma 5.3. (Polar Decomposition for Haar Measure on Flags) Fix integers n ≥
k ≥ 1. Let ξ1, . . . , ξk ∈ R

n be independent standard Gaussian random vectors. The
following collections of random variables are independent:

{||ξ1|| , ||ξ1 ∧ ξ2|| , . . . , ||ξ1 ∧ · · · ∧ ξk||} ,

{
ξ1

||ξ1|| , . . . ,
ξ1 ∧ · · · ∧ ξk

||ξ1 ∧ · · · ∧ ξk||
}

. (5.7)

Moreover, denote by P≤i the orthogonal projection onto the complement of the span
of ξ1, . . . , ξi. Then, the random variables terms ||P≤i−1ξi|| are joiltly independent.

Proof. We begin by recalling a fact from elementary probability. Namely, let X, Y, Z
be any random variables defined on the same probability space. Then,

X ⊥ Y and X ⊥ Z|Y ⇒ X ⊥ (Y, Z). (5.8)

In words, if X is independent of Y and Z is independent of X given Y , then, (Y, Z)
is independent of X.

We proceed by induction on k. The case k = 1 follows from the fact that the
radial and angular parts of a standard Gaussian are independent. Suppose now k ≥ 2
and we have proved the statement for k − 1. For any ξ ∈ R

k\ {0}, let us write Pξ⊥

for the orthogonal projection onto the orthogonal complement to the line spanned
by ξ. Define for 
 = 2, . . . , k

ξ′
	 := Pξ⊥

1
ξ	.

Note that

||ξ1 ∧ · · · ∧ ξ	|| = ||ξ1||
∣
∣
∣
∣ξ′

2 ∧ · · · ∧ ξ′
	

∣
∣
∣
∣

and that

ξ1 ∧ · · · ∧ ξ	 = ξ1 ∧ ξ′
2 ∧ · · · ∧ ξ′

	.

With this notation, it is enough to show that the collections

{||ξ1|| ,
∣
∣
∣
∣ξ′

2

∣
∣
∣
∣ , . . . ,

∣
∣
∣
∣ξ′

2 ∧ · · · ∧ ξ′
k

∣
∣
∣
∣} ,

{
ξ1

||ξ1|| ,
ξ′
2

||ξ′
2||

, . . . ,
ξ′
2 ∧ · · · ∧ ξ′

k∣
∣
∣
∣ξ′

2 ∧ · · · ∧ ξ′
k

∣
∣
∣
∣

}

are independent since if X, Y are independent, then so are f(X), g(Y ) for any mea-
surable functions f, g. To see this, first observe that, aside from ||ξ1||, all other ran-
dom variables in all both collections are measurable functions of ξ1/ ||ξ1|| , ξ2, . . . , ξk.
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Hence, ||ξ1|| is independent of all other variables in both collections. It therefore
remains to check only that

A =
{∣∣
∣
∣ξ′

2

∣
∣
∣
∣ , . . . ,

∣
∣
∣
∣ξ′

2 ∧ · · · ∧ ξ′
k

∣
∣
∣
∣} , B =

{
ξ1

||ξ1|| ,
ξ′
2

||ξ′
2||

, . . . ,
ξ′
2 ∧ · · · ∧ ξ′

k∣
∣
∣
∣ξ′

2 ∧ · · · ∧ ξ′
k

∣
∣
∣
∣

}

are independent. Observe that, given, ξ1/ ||ξ1||, the random variables ξ′
	, 
 = 2, . . . , k

are projections of iid standard Gaussians onto a fixed dimension k subspace and
hence are themselves iid standard Gaussians. By the inductive hypothesis, condi-
tional on ξ1/ ||ξ1||, the collection A is independent of the collection B\ {ξ1/ ||ξ1||}.
Moreover, the random variables in A are independent of ξ1. Invoking (5.8) therefore
completes the proof of the statement that the two collections in (5.7) are indepen-
dent. To finish the proof of this Lemma, let us check that the terms

||ξ1|| , ||P≤1ξ2|| , . . . , ||P≤k−1ξk|| (5.9)

are independent by induction on k. When k = 1 the claim is trivial. For the inductive
step, use the projection formula (5.4) to we write

||P≤k−1ξk|| =
∣∣
∣∣

∣∣
∣∣

ξ1 ∧ · · · ∧ ξk−1

||ξ1 ∧ · · · ∧ ξk−1|| ∧ ξk

∣∣
∣∣

∣∣
∣∣ .

By the first part of this Lemma, we know that

ξ1 ∧ · · · ∧ ξk−1

||ξ1 ∧ · · · ∧ ξk−1|| , {||ξ1 ∧ · · · ∧ ξj || , j ≤ k − 1}

are independent. Hence, since ξk is independent of ξ1, . . . , ξk−1, we conclude that the
terms in (5.9) are indepenedent as well. ��

We will also use this following result:

Lemma 5.4 (Haar Measure on Flags). Fix integers n ≥ k ≥ 1. Let ξ1, . . . , ξk ∈ R
n

be independent standard Gaussian random vectors. For each i = 1, . . . , k define

ξ′
i =

{
ξ1, i = 1,

PVi−1ξi, i > 1,

where Vi−1 = Span {ξj , 1 ≤ j < i}⊥ and PVi−1 is the orthogonal projection onto Vi−1.
Then {ξ′

i/ ||ξ′
i|| , i = 1, . . . , k} is distributed according to Haar measure on the space

of such flags of orthonormal frames. In particular, if v1, . . . , vk is Haar-distributed
in the space of k-frames in R

n, then

v1 ∧ · · · ∧ vk
d=

ξ1 ∧ · · · ∧ ξk

||ξ1 ∧ · · · ∧ ξk|| . (5.10)
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Proof. The random variable (ξ′
i, i = 1, . . . , k) clearly takes values in the set of k-

frames in R
n. Moreover, it is invariant under the action of the orthogonal group on

such frames and hence must be distributed according to the Haar measure. Indeed,
since the angular part of a standard Gaussian is uniform on the sphere, ξ′

1/ ||ξ′
i|| is

uniform on Sn−1. Similarly, ξ′
2 is a standard Gaussian in the orthogonal complement

ξ′
1
⊥ to ξ′

i. Hence, ξ′
2/ ||ξ′

2|| is uniform on the unit sphere in ξ′
1
⊥ and so on. Finally,

to derive (5.10), note that

ξ1 ∧ · · · ∧ ξk = ξ′
1 ∧ · · · ξ′

k

since the wedge product of any linearly dependent set of vectors vanishes. Combining
this with the projection formula (5.4), we conclude that

ξ1 ∧ · · · ∧ ξk

||ξ1 ∧ · · · ∧ ξk|| =
ξ′
1

||ξ′
1||

∧ · · · ∧ ξ′
k∣∣∣∣ξ′
k

∣∣∣∣

and (5.10) follows from the first part of this Lemma. ��

6 Background on Sums of Independent Random Variables

6.1 A Result of �Lata�la: Precise Behavior for Moments of Sums. In the
proof of our pointwise esimate Proposition 9.1, we will use the following result of R.
�Lata�la [Lat97, Thm. 2, Cor. 2, Rmk. 2]:

Theorem 6.1. Let X1, · · · , XN be mean zero, independent r.v. and p ≥ 1. Then

⎛

⎝E

⎡

⎣
∣∣
∣
∣

N∑

j=1

Xj

∣∣
∣
∣

p
⎤

⎦

⎞

⎠

1
p

� inf

⎧
⎨

⎩
t > 0 :

N∑

j=1

log
[
E|1 +

Xj

t
|p
]

≤ p

⎫
⎬

⎭
, (6.1)

where a � b means there exist universal constants c1, c2 so that c1a ≤ b ≤ ac2.
Moreover, if Xi are also identically distributed then

⎛

⎝E

⎡

⎣
∣
∣∣
∣

N∑

j=1

Xj

∣
∣∣
∣

p
⎤

⎦

⎞

⎠

1
p

� sup
max{2, p

N
}≤s≤p

p

s

(
N

p

) 1
s

‖Xi‖s. (6.2)

6.2 Small Ball Estimates for Sums of iid Random Variables with Bounded
Density. We will have occasion to use the following standard result (e.g. Lemma
2.2 in [RV08]).

Theorem 6.2. Let ζk, k = 1, . . . , n be iid non-negative random variables and sup-
pose there exists K such that P (ζk < ε) ≤ Kε for all ε ≥ 0, then for all ε ≥ 0

P

(
n∑

k=1

ζ2
k < nε2

)

≤ (CKε)n,

where C is an absolute constant.
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6.3 Quantitative Multivariate CLT. One of our goals in this article is to
measure the approximate normality for Lyapunov exponents of XN,n when N � n
(see Theorem 1.3). As explained in the introduction, we will measure normality
using a distance function that is a natural high-dimensional generalization of the
usual Kolmogorov–Smirnov distance:

d(X, Y ) := sup
C∈Ck

|P(X ∈ C) − P(Y ∈ C)| , (6.3)

where Ck is the collection of all convex subsets of Rk. The distance function d has
three desirable properties. First, it is affine invariant in sense that if T is any invert-
ible affine transformation and A is any convex set, then T−1A is also convex and
hence for any random variables X, Y on the same probability space

d(TX, TY ) = d(X, Y ). (6.4)

The second desirable property of d is that it is stable to small 
2 perturbations, as
explained in Proposition 6.3 below. To state this result, we write

N (μ,Σ), μ ∈ R
k, Σ ∈ Sym+

k

for a Gaussian with mean μ and invertible covariance Σ.

Proposition 6.3. There exists c > 0 with the following property. Suppose that
X, Y are R

k-valued random variables defined on the same probability space. For all
μ ∈ R

k, invertible symmetric matrices Σ ∈ Sym+
k , and δ > 0 we have

d(X + Y,N (μ,Σ)) ≤ 3d(X, N (μ,Σ)) + cδ
√

||Σ−1||HS + 2P (||Y ||2 > δ) . (6.5)

We prove Proposition 6.3 in Section 6.4 below. Before doing so, however, we state
the third desirable property of the distance d, namely, that it measures convergence
in the multivariate CLT. We follow the notation in Bentkus [Ben05] and define

S := SN = X1 + · · · + XN ,

where X1, . . . , XN are independent random vectors in R
k with common mean EXj =

0. We set

C := cov(S)

to be the covariance matrix of S, which we assume is invertible. With the definition

βj := E‖C− 1
2 Xj‖3

2, β :=
N∑

j=1

βj , (6.6)

we have the following [Ben05]:

Theorem 6.4 (Multivariate CLT with Rate). There exists an absolute constant
c > 0 such that

d(S, C
1
2 Z) ≤ ck

1
4 β, (6.7)

where Z ∼ N (0, Idk) denotes a standard Gaussian on R
k.
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6.4 Proof of Proposition 6.3. We rely on the following result (Theorem 6.5)
of Nazarov [Naz03], which was an extension of a Theorem of Ball [Bal93].
Let Zk be the standard Gaussian in R

k. Let C be a positive definite symmetric
matrix and let γC be the density of the C− 1

2 Zk, i.e.

dγC(y) :=

√| det C|
(2π)

k

2

e− 〈Cy,y〉
2 dy.

Let

Kε := {x ∈ R
k : ∃y ∈ K, ‖x − y‖2 < ε} and K−ε : {x ∈ K := x + εBk

2 ⊆ K}(6.8)

We define

Γ(C) := sup
K∈C

{
lim

ε→0+

γC (Kε\K)
ε

}
. (6.9)

Our proof of Proposition 6.3 crucially relies on the following result of Nazarov.

Theorem 6.5 ([Naz03]). There exists absolute constants c1, c2 > 0 such that

c1

√
‖C‖HS ≤ Γ(C) ≤ c2

√
‖C‖HS . (6.10)

We will need an elementary corollary of (6.10).

Corollary 6.6. For any ε ∈ (0, 1) and K ∈ Dk, we have
∣∣
∣P(C− 1

2 Zk ∈ Kε) − P(C− 1
2 Zk ∈ K−ε)

∣∣
∣ ≤ c2ε

√
‖C‖HS . (6.11)

Proof. Our argument is along the lines of the proof in [Ben05] of equations (1.3),
(1.4) or [Ben03] equation (1.2), which obtain similar statements in the special case
where C = Id. We will use a standard estimate (see e.g. Lemma 10.5 in [Kal02])
that if K is any convex set in R

k and (∂K)ε is the ε-neighborhood of the boundary
of K, then

vol((∂K)ε) ≤ 2

[(
1 +

ε

r(K)

)k

− 1

]

vol(Br(K)), (6.12)

where r(K) is the radius of the smallest ball containing K, vol is the Euclidean
volume, and Br is a ball of radius r. The crucial point is that the right hand side
is bounded for all ε ∈ (0, 1) by cε with c depending only on r(K) and the ambient
dimension k.

To derive from this estimate (6.11), observe that for every ε > 0, if K ∈ Ck then
also Kε and K−ε are in Ck. Note also that the difference of probabilities on the left-
hand side of (6.11) can be bounded above by P(W ∈ Kε\K)+P(W ∈ K\K−ε) where
W := C− 1

2 Zk. It is therefore enough to check that each of these probabilities is in



GAFA SINGULAR VALUES OF GAUSSIAN MATRIX PRODUCTS 289

turn bounded above by the right hand side of (6.11). To see this for P(W ∈ Kε\K),
denote for K convex and t > 0,

ωK(t) := P (W ∈ Kt\K) .

Since Kt+ε\K = (Kt+ε\Kt) ∪ (Kt\K) we have that

ωK(t + ε) − ωK(t) = ωKt
(ε). (6.13)

This relation, together with (6.12), implies that ωK(t) is absolutely continuous.
Indeed, we may write

ωKt
(ε) = P

(
Zk ∈ C1/2Kt+ε\C1/2Kt

)
≤ vol

(
C1/2Kt+ε\C1/2Kt

)

(2π)k/2
.

Denoting by λmax the maximal eigenvalue of C1/2, we may write

C1/2Kt+ε = C1/2 (Kt)ε ⊆ (C1/2Kt)λmaxε.

Thus,

ωKt
(ε) ≤ vol

(
(C1/2Kt)λmaxε\C1/2Kt

)

(2π)k/2
.

Denoting by R the radius of the smallest ball containing (C1/2K1)λmax , we obtain
from (6.12) that there exists a constant c > 0 depending on C, k and R so that for
any 0 ≤ t, ε ≤ 1

ωKt
(ε) ≤ cε.

Thus, using (6.13), we indeed see that ωK(t) is absolutely continuous on [0, 1]. Hence,
its derivative ω′

K(t) exists almost everywhere and

ωK(t) =
∫ t

0
ω′

K(s)ds.

Moreover, combining (6.13) with (6.10), we find for any t ∈ (0, 1) that

0 ≤ ω′
K(t) = lim

ε→0+

ωK(t + ε) − ωK(t)
ε

= lim
ε→0+

ωKt
(ε)

ε
≤ c

√
||C||HS

Hence, since ωK(0) = 0, we find that ωK(t) ≤ ct
√‖C‖HS , for all t ≤ 1. Using

a similar argument for ω̄K(t) := P(W ∈ K\K−t), we conclude that (6.11) indeed
holds. ��
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We are now ready to prove Proposition 6.3. Note that if S, T are any events on
the same probability space, then

|P (S) − P (T )| ≤ P (SΔT ) ,

where SΔT is the symmetric difference. For any convex set A ⊆ R
k, we have

|P (X + Y ∈ A) − P (X ∈ A)|
is bounded above by

|P (X + Y ∈ A, ||Y ||2 ≤ δ) − P (X ∈ A, ||Y ||2 ≤ δ)| + 2P (||Y ||2 > δ) .

Note that

{X + Y ∈ A, ||Y ||2 ≤ δ} Δ {X ∈ A, ||Y ||2 ≤ δ} ⊆ {X ∈ Aδ\A−δ}.

Thus, we find

|P (X + Y ∈ A) − P (X ∈ A)| ≤ P (X ∈ Aδ) − P (X ∈ A−δ) + 2P
(||Y ||2 > δ

)

≤ |P (X ∈ Aδ) − P (N (μ, Σ) ∈ Aδ) |
+ |P (X ∈ A−δ) − P (N (μ, Σ) ∈ A−δ) |
+ P (N (μ, Σ) ∈ Aδ) − P (N (μ, Σ) ∈ A−δ) + 2P

(||Y ||2 > δ
)

≤ 2d(X, N (μ, Σ)) + c0δ
√

||Σ−1||HS + 2P
(||Y ||2 > δ

)

where we have used (6.11). Putting this all together, we find

d(X + Y,N (μ,Σ)) ≤ d(X, N (μ,Σ)) + d(X + Y, X)

≤ 3d(X, N (μ,Σ)) + c0δ
√

||Σ−1||HS + 2P (||Y ||2 > δ) . ��

7 Roadmap for Proofs of Theorems 1.2 and 1.3

In this section, we explain the organization of the proofs of Theorems 1.2 and 1.3.
Our starting point is in Section 8. There, in Proposition 8.1 we explain how to
provide surprisingly useful bounds on the size of the difference

1
N

log ||XN,n(Θ)|| − (λ1 + · · · + λk) (7.1)

using small ball estimates on determinants of volumes of random projections. This
makes precise (3.2). We remind the reader that λ1, . . . , λk are the top k Lyapunov
exponents for XN,n and that

XN,n(Θ) = XN,nθ1 ∧ · · ·XN,nθk,
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where θj are is a fixed orthonormal k-frame in R
n. We think of XN,n(Θ) as a

pointwise analog of λ1 + · · · + λk since by Lemma 5.1 the supremum over Θ of
1
N log ||XN,n(Θ)|| equals λ1 + · · · + λk.

Using Proposition 8.1, we analyze in Section 9 the concentration properties of
1
N log ||XN,n(Θ)|| . By Lemma 9.5 it is a sum of independent random variables, al-
lowing us to apply Theorem 6.1 several times. The main result is Proposition 9.1,
whose proof is the most technical part of this article.

Combining these concentration estimates for 1
N log ||XN,n(Θ)|| with the bounds

on (7.1) derived in Proposition 8.1, we derive Theorem 1.2 in Section 11, giving
quantitative estimates about convergence of the global distribution of singular values
of XN,n to the Triangle Law.

Finally, in Section 12, we combine Theorem 1.1 with Proposition 9.1 and the
multivariate CLT (see Section 6.3) to prove the approximate normality of Lyapunov
exponents stated in Theorem 1.3.

8 Lyapunov Sums Via Small Ball Estimates

The purpose of this section is to explain how to use small ball estimates on volumes
of random projections to obtain concentration estimates on the difference

1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log ||XN,n(Θ′)|| =
1
N

log ||XN,n(Θ)|| − (λ1 + · · · + λk)

between the sum of the first k Lyapunov exponents of XN,n and the “pointwise”
analog of this quantity evaluated at any fixed orthonormal system Θ = (θ1, . . . , θk)
of k vectors in R

n. Our main result is the following

Proposition 8.1. There exists C > 0 with the following property. For any ε ∈ (0, 1)
and any Θ ∈ Frn,k we have

P

(∣∣
∣∣
∣
1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log
∣
∣
∣
∣XN,n(Θ′)

∣
∣
∣
∣

∣∣
∣∣
∣
≥ k

2N
log

( n

kε2

)
)

≤ (Cε)k/2 .

Proof. The key observation is the following:

Lemma 8.2. For any ε ∈ (0, 1) and any Θ ∈ Frn,k we have

P

(∣∣
∣
∣
∣
1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log ||XN,n(Θ′)||
∣
∣
∣
∣
∣
≥ 1

N
log

(
1
ε

))

≤ P (||PF (Θ)|| ≤ ε) ,

where F is a Haar distributed k-dimensional subspace of Rn and

PF (Θ) = PF θ1 ∧ · · · ∧ PF θk

with PF denoting the orthogonal onto F.
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Proof of Lemma 8.2. Denote by v(1), . . . , v(n) the right singular vectors of XN,n cor-
responding to its singular values s1 ≥ · · · ≥ sn. By abuse of notation, we will write
XN,n : Λk

R
n → Λk

R
n for the linear transformation given by

XN,n(x1 ∧ · · · ∧ xk) = XN,nx1 ∧ · · · ∧ XN,nxk.

The right singular vectors of XN,n acting on Λk
R

n are

v(I) := v(i1) ∧ · · · ∧ v(ik), I = (i1, . . . , ik) , i1 < · · · < ik

and the corresponding singular values are

sI :=
∏

i∈I

si.

Hence, the Pythagorean theorem for wedge products and the generalized Gram
identity (see Lemma 5.2) yield

||XN,n(Θ)||2 =
∑

I=(i1,...,ik)
1≤i1<···<ik≤n

s2I

〈
v(I), Θ

〉2

≥
(

k∏

i=1

s2i

)
〈
v(1,...,k), Θ

〉2

=

(
k∏

i=1

s2i

)

||Pk(Θ)||2 ,

where in the last equality we’ve denote by Pk the orthogonal projection into the span
of the top k right singular vectors of XN,n. We therefore obtain, using Lemma 5.1:

0 ≥ 1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log
∣
∣
∣
∣XN,nΘ′∣∣∣∣

=
1

2N
log

(
||XN,n(Θ)||2
∏k

i=1 s2
i

)

=
1
N

log ||Pk(Θ)|| .

Since XN,n is invariant under right multiplication by a Haar orthogonal matrix,
we see that Pk is equal in distribution to the orthogonal projection onto a Haar
distributed k-dimensional subspace of Rn. ��

In order to apply Lemma 8.2 we need small ball estimates on ||PF (Θ)||. Gaussian
analogs of such estimates are essentially available in the literature, but are phrased
in the language of determinants of random matrices. To reduce to this case, note
that if F is Haar distributed among k-dimensional subspaces of Rn, an orthonormal
basis v1, . . . , vk for F is Haar distributed on the space of such k-frames in R

n. Thus,
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by (5.10) from Lemma 5.4, we find

||PF (Θ)|| = ‖PF θ1 ∧ · · · ∧ PF θk‖
= |〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉|
d=
∣
∣
∣
∣

〈
g1 ∧ · · · ∧ gk

||g1 ∧ · · · ∧ gk|| , θ1 ∧ · · · ∧ θk

〉∣∣
∣
∣

d=
‖Gθ1 ∧ · · · ∧ Gθk‖

det(GG∗)
1
2

=
(

det(GkG
∗
k)

det(GG∗)

) 1
2

(8.1)

where d= denotes equality in distribution, G is a k × n matrix with iid standard
Gaussian columns gi, Gk is the obtained from G by keeping only the first k columns,
and we have used the Gram identity (5.1) and (5.6) in the last two lines. The relation
(8.1), combined in Lemma 8.2, therefore gives that

P

(∣∣
∣
∣∣
1
N

log ||XN,n(Θ)|| − sup
Θ′∈Frn,k

1
N

log
∣∣∣∣XN,n(Θ′)

∣∣∣∣

∣∣
∣
∣∣
≥ 1

N
log

(
1
ε

))

is bounded above by

P

((
det(GkG

∗
k)

det(GG∗)

) 1
2

≤ ε

)

, (8.2)

To complete the proof, we recall the following result.

Proposition 8.3 (Lemma 4.2 in [PP13]).
There exist universal constants c, C > 0 with the following property. Let G be a
k × n matrix with iid standard N (0, 1) Gaussian entries. Then

(
E

[
det(GG∗)

p

2k

]) 1
p ≤ C

√
n, 0 < p ≤ kn (8.3)

and
(
E

[
det(GG∗)− p

2k

])− 1
p ≥ c

√
n, 0 < p ≤ k(n − k + 1 − e−k(n−k+1)) (8.4)

This allows use to estimate the probability in (8.2) via the following corollary, which
in combination with (8.2) and Lemma 8.2 completes the proof of Proposition 8.1.

Corollary 8.4. There exists a universal constant c > 0 with the following prop-
erty. Let G be a k ×n matrix with iid Standard Gaussian entries, and denote by Gk

the matrix obtained from G by keeping only the first k columns.

P

((
det(GkG

∗
k)

det(GG∗)

) 1
2k

≤ ε

√
k

n

)

≤ (cε)
k

2 , ε > 0. (8.5)
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Proof. Using (8.3) and (8.4) and Markov’s inequality, we have that for t ≥ 1,

P

(
det(GG∗)

1
2k ≥ tC

√
n
)

≤ 1
tnk

and P

(
det(GG∗)

1
2k ≤ εc

√
n
)

≤ (cε)k(n−k+1−e−k(n−k+1)).

Note that Gk has the same distribution as a k × k matrix with iid standard N (0, 1)
Gaussian entries. So, we have that

P

((
det(GkG∗

k)

det(GG∗)

) 1
2k

≤ ε

√
k

n

)

≤ P

(
det(GkG∗

k)
1
2k

det(GG∗)
1
2k

≤ ε

√
k

n
and det(GG∗)

1
2k ≤ tC

√
n

)

+ P

(
det(GG∗)

1
2k ≥ tC

√
n
)

≤ P

(
det(GkG∗

k)
1
2k ≤ εtC

√
k
)

+ P

(
det(GG∗)

1
2k ≥ tC

√
n
)

≤ (c′tε)k(1−e−k) +
1

tkn
≤ (cε)k/2 ,

where in the last line we’ve taken t = ε−1/2n. ��

9 Concentration for 1
N

log ||XN,n(Θ)||
As mentioned above, a key step towards proving Theorems 1.2 and 1.3 is to obtain
precise concentration estimates for

1
N

log ||XN,n(Θ)|| =
1
N

log ||XN,nθ1 ∧ · · · ∧ XN,nθk|| , (9.1)

where Θ = (θ1, . . . , θk) is a fixed orthonormal system in R
n. Define

Mj := n − j + 1, ξn,k =
1
n

k∑

j=1

1
Mj

(9.2)

and as in (1.5) set

μn,j :=
1
2
E

[
log

(
1
n

χ2
n−j+1

)]
.

Our main result about the concentration for log ||XN,n(Θ)|| is the following.

Proposition 9.1. There exists a universal constant c > 0 with the following prop-
erty. Fix any orthonormal system Θ of k vectors in R

n. With XN,n(Θ) as in (9.1),
we have

P

⎛

⎝

∣∣
∣∣
∣
∣

1
nN

log ||XN,n(Θ)|| − 1
n

k∑

j=1

μn,j

∣∣
∣∣
∣
∣
≥ s

⎞

⎠ ≤ 2 exp
{

−cnN min
{

Mks,
s2

ξn,k

}}
, s > 0.

(9.3)
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Remark 9.2. The double behavior in the exponent of the estimates (9.3) is of
Bernstein-type. We do not use any off-the-shelf Bernstein estimates for deriving
it however, relying instead on Theorem 6.1 of �Lata�la [Lat97]. One advantage of our
approach is that �Lata�la’s estimates are all reversible (i.e. have matching upper and
lower bounds). Hence, with a bit more work it is possible to show that the estimate
(9.3) is sharp. We will not need this fact, however, and will provide only a proof of
the upper bound.

Remark 9.3. Although we focus in this article on the Gaussian case, we believe
it is possible to prove that Proposition 9.1 holds under minimal assumptions on
the distribution of the entries of Ai. Somewhat weaker results in this directions are
proved in [LP82, Thms. 7,8] and [BLR85, Thm. 5.1].

Remark 9.4. By Lemma 9.5 below, we have

E

[
1
N

log ||XN,n(Θ)||
]

=
k∑

j=1

μn,j .

The proof of Proposition 9.1 proceeds from the observation that for the Gaussian
case we consider here, log XN,n(Θ) is a sum of independent random variables.

Lemma 9.5. Fix n, N ≥ 1 and 1 ≤ k ≤ n as well as a collection Θ of k orthonormal
vectors in R

n. We have

log ||XN,n(Θ)|| d=
N∑

i=1

k∑

j=1

Yi,j ,

where
d= denotes equality in distribution, Yi,j are independent, and for each i, j the

random variable Yi,j is distributed like the logarithm 1
2 log( 1

nχ2
n−j+1) of a normalized

chi-squared random variable with n − j + 1 degrees of freedom.

Proof. We have

log ||XN,n(Θ)|| = log ||AN · · ·A1 (Θ)||

= log
∣
∣
∣∣

∣
∣
∣∣AN · · ·A2

A1 (Θ)
||A1(Θ)||

∣
∣
∣∣

∣
∣
∣∣+ log ||A1(Θ)|| . (9.4)

Note that by Lemma 5.3, we have that

||A1(Θ)|| = ||A1θ1 ∧ · · · ∧ A1θk||
is independent of

A1(Θ)
||A1(Θ)|| =

A1θ1 ∧ · · · ∧ A1θk

||A1θ1 ∧ · · · ∧ A1θk|| .
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Hence the two terms in (9.4) are independent. Moreover, A2

(
A1(Θ)

||A1(Θ)||
)

is indepen-
dent of A3, . . . , AN and, in distribution, we have

A2

(
A1(Θ)

||A1(Θ)||
)

d= A2(Θ). (9.5)

Indeed, we may write

A1(Θ)
||A1(Θ)|| =

A1θ1 ∧ · · · ∧ Akθk

||A1θ1 ∧ · · · ∧ Akθk|| =
A1θ1

||A1θ1|| ∧ Π≤1A1θ1

||Π≤1A1θ1|| ∧ · · · ∧ Π≤k−1A1θk

||Π≤k−1A1θk|| ,

where we’ve written Π≤i for the projection onto the complement of the span of
A1θ1, . . . , A1θi. Next, we may choose an orthogonal matrix M so that

Π≤i−1A1θi = Mei,

where ei is the ith standard basis vector. For this choice of M, we find

A1(Θ)
||A1(Θ)|| = Me1 ∧ · · · ∧ Mek = M(e1 ∧ · · · ∧ ek).

Since A2
d= A2M , we conclude that (9.5) holds. In particular, we find that, in

distribution,

log ||XN,n(Θ)|| d=
N∑

i=1

log ||Ai(Θ)||

is a sum of iid terms. Finally, for any fixed i = 1, . . . , N

||Ai(Θ)|| d= ||ξ1 ∧ · · · ∧ ξk|| ,
where ξi are iid n-dimensional standard Gaussians. Hence, by the projection formula
(5.4), we find that

||Ai(Θ)|| d=
k∏

i=1

||P≤i−1ξi|| ,

where we’ve denoted by P≤j the projection onto the orthogonal complement of the
span of ξ1, . . . , ξj . The terms in the product are independent by Lemma 5.3, and the

distribution of the ith term is precisely the same as that of
√

1
nχ2

n−i+1, completing
the proof. ��

Lemma 9.5 allows us to obtain precise estimates on the rate of growth of mo-
ments of log XN,n(Θ) using the result of �Lata�la [Lat97] (Theorem 6.1 above). These
moment estimates, in turn, yield Proposition 9.1 via Markov’s inequality applied to
the optimal power of log ||XN,n(Θ)||. We carry out these details in Section 9.1.
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9.1 Details for Proof of Proposition 9.1. The purpose of this section is
to prove Proposition 9.1. Throughout this section C, C ′, c, c′ etc will be universal
constants that may change from line to line. Recalling from (9.2) the notation

Mj = n − j + 1, ξn,k =
1
n

k∑

j=1

1
Mj

, (9.6)

we seek to show that for s > 0

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1
nN

log ||XN,n(Θ)|| − 1
n

k∑

j=1

μn,j

∣
∣
∣
∣
∣
∣
≥ s

⎞

⎠ ≤ 2 exp
(

−cnN min
{

Mks,
s2

ξn,k

})
.

(9.7)

where we remind the reader that as in (1.5), we’ve set

μn,j :=
1
2
E

[
log

(
1
n

χ2
n−j+1

)]
.

According to Lemma 9.5, we have in distribution that

2
N

log ||XN,n(Θ)|| =
1
N

N∑

i=1

Ti,

where Ti are independent and

Ti =
k∑

j=1

ti,j , ti,j ∼ log
(

1
n

χ2
n−j+1

)
iid. (9.8)

Hence, we find in particular that

E

[
1
N

log ||XN,n(Θ)||
]

=
k∑

j=1

μn,j (9.9)

and see that Proposition 9.1 is equivalent to showing that for any s > 0

P

(∣∣∣
∣
∣

1
nN

N∑

i=1

T i

∣
∣∣
∣
∣
≥ s

)

≤ 2 exp
(

−cnN min
{

Mks,
s2

ξn,k

})
, (9.10)

where for any random variable Y we will use the shorthand

Y := Y − E [Y ] .

We will obtain (9.10) by Markov’s inequality applied to certain moments of the sum
of the Ti’s. Specifically, we will prove the following estimate.
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Proposition 9.6. There exists a universal constant C so that for any n, N, k and
p ≥ 1

(

E

[∣
∣
∣
∣

N∑

i=1

T i

∣
∣
∣
∣

p
])1/p

≤ C

⎛

⎝

√√
√
√pN

k∑

j=1

1
Mj

+
p

Mk

⎞

⎠ .

The proof of Proposition 9.6, which is straightforward but tedious, is given in Sec-
tion 9.2 below. We assume it for now and complete the proof of (9.10). Write

p0 := M2
k

k∑

j=1

1
Mj

(9.11)

and note that

p ≤ Np0 ⇐⇒ p

Mk
≤
√√√
√pN

k∑

j=1

1
Mj

.

Thus, applying Markov’s inequality to Proposition 9.6 shows that there exists C > 0
so that for 1 ≤ p ≤ Np0

P

⎛

⎝
∣
∣∣
∣

1
nN

N∑

i=1

T i

∣
∣∣
∣ ≥ C

n
√

N

√√
√√p

k∑

j=1

1
Mj

⎞

⎠ ≤ e−p.

Equivalently, recalling that

ξn,k =
1
n

k∑

j=1

1
Mj

,

we see that there exists c > 0 so that

P

(∣∣
∣
∣

1
nN

N∑

i=1

T i

∣∣
∣
∣ ≥ s

)

≤ 2e
−cnN s2

ξn,k , 0 ≤ s ≤ Cξn,kMk.

This establishes (9.10) in this range of s. To treat s ≥ CMkξn,k, we again apply
Markov’s inequality to Proposition 9.6 to see that there exists C > 0 so that

p ≥ Np0 =⇒ P

(∣
∣∣
∣

N∑

i=1

T i

∣
∣∣
∣ > C

p

Mk

)

≤ e−p.

Hence, there exists c > 0 so that

P

(∣
∣∣
∣

1
nN

N∑

i=1

T i

∣
∣∣
∣ ≥ s

)

≤ e−cnNMks, s ≥ CMkξn,k,

completing the proof of (9.10).
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9.2 Proof of Proposition 9.6. We seek to estimate the moments of

N∑

i=1

Ti =
N∑

i=1

k∑

j=1

ti,j , ti,j ∼ log(
1
n

χ2
n−j+1).

By Theorem 6.1, we have
(

E

[∣
∣
∣
∣

N∑

i=1

T i

∣
∣
∣
∣

p
])1/p

� sup
max

{
2,

p
N

}
≤s≤p

p

s

(
N

p

) 1
s

E
[∣∣T i

∣
∣s]

1
s . (9.12)

Our strategy is therefore to estimate E
[∣∣T i

∣
∣s]1/s

and optimize over s. In particular,
we seek to show that there exists C > 0 so that for every p ≥ 1, we have

(
E
[∣∣T i

∣
∣p])1/p ≤ C

⎛

⎝

√√√
√p

k∑

j=1

M−1
j +

p

Mk

⎞

⎠ . (9.13)

Our first step towards showing (9.13) is to obtain the following estimates on the
moments of ti,j .

Lemma 9.7. There exist C1 > 0 such that

(
E
[∣∣ti,j

∣∣p])1/p ≤ C1 max
{√

p

Mj
,

p

Mj

}
.

Proof. We first make a reduction. Namely, let us check that the estimates in Lemma 9.7
for ti,j = ti,j − E

[
log(n−1χ2

Mj
)
]

follow from the same estimates for

t̂i,j := ti,j − log(n−1Mj).

To see this, recall that by (1.16) and (1.7), we have

E

[
log

(
1
n

χ2
Mj

)]
= log

(
2
n

)
+ ψ

(
Mj

2

)
= log

(
Mj

n

)
+ εj , εj = O(M−1

j )

where ψ is the digamma function, and we have used its asymptotic expansion ψ(z) ∼
log(z) + O(z−1) for large arguments. Thus, we have for each i that

E
[∣∣ti,j

∣
∣p] = E

[∣
∣t̂i,j + εj

∣
∣p
]

≤
p∑

k=0

(
p

k

)
E

[∣
∣t̂i,j

∣
∣k
]
|εj |p−k .

So assuming that t̂i,j satisfy the conclusion of Lemma 9.7, we find

E
[∣∣ti,j

∣∣p] ≤
p∑

k=0

(
p

k

)
ζk
k,j |εj |p−k , ζk,j := C max

{√
k

Mj
,

k

Mj

}

.
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Since for 0 ≤ k ≤ p we have ζk,j ≤ ζp,j , we see that

E
[∣∣ti,j

∣
∣p] ≤

p∑

k=0

(
p

k

)
ζk
p,j |εj |p−k ≤ (ζp,j + |εj |)p .

Finally, since εj = O(M−1
j ) = O(ζp,j), we find that there exists C > 0 so that

(
E
[∣∣ti,j

∣
∣p])1/p ≤ Cζp,j ≤ C max

{√
p

Mj
,

p

Mj

}
,

as desired. It therefore remains to show that t̂i,j = ti,j − log
(
n−1Mj

)
satisfies the

conclusion of Lemma 9.7. To do this, we begin by checking that there exists c1 > 0
so that, with Mj = n − j + 1, for all s ≥ 0

P

(∣∣∣
∣ti,j − log

(
Mj

n

)∣∣∣
∣ ≥ s

)
≤ 4e−c1Mj min{s,s2}. (9.14)

We have

P

(∣∣∣
∣ti,j − log

(
Mj

n

)∣∣∣
∣ ≥ s

)
= P

(∣∣∣
∣log

(
1
n

χ2
Mj

)
− log

(
Mj

n

)∣∣∣
∣ ≥ s

)

= P

(∣∣∣
∣log

(
1

Mj
χ2

Mj

)∣∣∣
∣ ≥ s

)

= P

(
χ2

Mj
≥ Mje

s
)

+ P

(
χ2

Mj
≤ Mje

−s
)

.

Let us first bound P

(
χ2

Mj
≥ Mje

s
)
. Note that the mean of χ2

Mj
is Mj and that

χ2
Mj

− Mj is a sub-exponential random variable with parameters (4Mj , 4). Thus,
Bernstein’s tail estimates for sub-exponential random variables yield the existence
of c > 0 such that for all t ≥ 0

P

(∣∣
∣M−1

j χ2
Mj

− 1
∣∣
∣ ≥ t

)
≤ 2e−cMj min{t,t2}. (9.15)

In particular,

P

(
χ2

Mj
≥ Mje

s
)

= P

(
M−1

j χ2
Mj

− 1 ≥ es − 1
)

≤ 2e−cMj min{es−1,(es−1)2} ≤ 2e−cMj min{s,s2},

where in the last inequality we used that es − 1 ≥ s. This gives the first half of
(9.14).

Let us now obtain a similar estimate on P

(
χ2

Mj
≤ Mje

−s
)
, which is a small

ball estimate for a sum of iid random variables with bounded density. We need to
consider two cases. Theorem 6.2 on small ball estimates for sums of iid random
variables shows that there exists a universal constant C > 0 so that

P

(
χ2

Mj
≤ Mje

−s
)

≤ (Ce−s/2)Mj .
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Hence,

s > s∗ := 2 log(C) ⇒ ∃c > 0 s.t. P
(
χ2

Mj
≤ Mje

−s
)

≤ e−csMj ,

giving the desired estimate in this range. Finally, suppose s ≤ s∗. Then,

e−s ≤ 1 − e−s∗s

since both sides equal 1 at s = 0 and the derivative −e−s of the left hand side is
more negative than the derivative −e−s∗ of the right hand side for all s ∈ (0, s∗).
Thus, we find for s ∈ (0, s∗) that

P

(
χ2

Mj
≤ Mje

−s
)

≤ P

(
χ2

Mj
≤ Mj(1 − e−s∗s)

)
≤ P

(∣∣
∣M−1

j χ2
Mj

− 1
∣
∣
∣ > e−s∗s

)
.

Using the Bernstein inequality (9.15), we obtain that there exists c > 0 depending
only on s∗ such that for s ∈ (0, s∗),

P

(
χ2

Mj
≤ Mje

−s
)

≤ 2e−cMj min{s,s2},

giving the desired estimate in this range as well. This establishes (9.14). To complete
the proof that t̂i,j satisfy Lemma 9.7, we use (9.14) to write

E

[∣
∣t̂i,j

∣
∣p
]

=
∫ ∞

0
P
(∣∣t̂i,j

∣
∣ > x

)
pxp−1dx

≤ p

[∫ 1

0
e−cMjx2

xp−1dx +
∫ ∞

1
e−cMjxxp−1dx

]
.

The first term can be estimated by comparing to the moments of a Gaussian as
follows:

p

∫ 1

0
e−cMjx2

xp−1dx = p (2cMj)
−p/2

∫ (2cMj)1/2

0
e−x2

xp−1dx

≤ p (2cMj)
−p/2

∫ ∞

0
e−x2

xp−1dx

≤ p (2cMj)
−p/2 2

p

2 Γ
(p

2

)

≤ p

(
p

2cMj

)p/2

,

where we used that for z > 0 we have Γ(z) ≤ zz. The second term can similarly be
estimated by comparing the moments of an exponential:

p

∫ ∞

1
e−cMjxxp−1dx = p(cMj)−p

∫ ∞

cMj

e−xxp−1dx

= p(cMj)−p(p − 1)!

≤ p

(
p

cMj

)p

.
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Putting these two estimates together and taking 1/p powers, we find that there
exists C > 0 so that

(
E

[∣
∣t̂i,j

∣
∣p
])1/p ≤ C max

{√
p

Mj
,

p

Mj

}

for all p ≥ 1. This completes the proof. ��
With Lemma 9.7 in hand, we are now in a position to show (9.13). Since

T i =
k∑

j=1

ti,j ,

we have by Theorem 6.1 that

(
E|T i|p

) 1
p � inf

⎧
⎨

⎩
t > 0 :

k∑

j=1

log
[
E|1 +

ti,j
t

|p
]

≤ p

⎫
⎬

⎭
, (9.16)

where � means bounded above and below by absolute constants. We will use the
notation from (9.11):

p0 = M2
k

k∑

j=1

M−1
j .

Since
√√
√
√p

k∑

j=1

M−1
j ≤ p

Mk
⇐⇒ p ≥ p0,

we will show (9.13) by breaking into two cases. Namely, we will show that there
exists C > 0 so that

p ≤ p0 =⇒ (
E
∣∣T i

∣
∣p)

1
p ≤ C

√√
√√p

k∑

j=1

M−1
j (9.17)

as well as

p ≥ p0 =⇒ (
E
∣
∣T i

∣
∣p)

1
p ≤ C

p

Mk
. (9.18)

We may assume without loss of generality that p is an even integer. Indeed, once
we’ve show (9.17) and (9.18) for even integers p (and a uniform constant C), we
may use that

(
E
[∣∣T i

∣
∣p])1/p ≤

(
E

[∣
∣T i

∣
∣p

′])1/p′

,
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where p′ is the smallest even integer greater than or equal to p. This yields (9.17)
and (9.18) for any p with C replaced by 2C.

We now turn to showing that (9.17) holds with p an even integer. To do this,
we will need to evaluate the expectation E

[|1 + t−1ti,j |p
]

appearing in (9.16). A key
point is to use that ti,j are centered. Since p is even, we may bring this to bear most
directly by noting that the absolute value in E

[|1 + t−1ti,j |p
]

is unnecessary and
using that E

[
ti,j

]
= 0. Lemma 9.7 and the well-known estimate

(n

k

)k ≤
(

n

k

)
≤
(n

k

)k
ek, k ≥ 1 (9.19)

yield that for all i, j we have:

E

[(
1 +

ti,j
t

)p]
= 1 +

p∑

	=2

(
p




)
E

[
t
	
i,j

]

t	

≤ 1 +
min{p,Mj}∑

	=2

(
p




)(
C


t2Mj

)	/2

+
p∑

	=Mj+1

(
p




)(
C


tMj

)	

≤ 1 +
min{p,Mj}∑

	=2

(p




)	
(

C


t2Mj

)	/2

+
p∑

	=Mj+1

(
Cp

tMj

)	

≤ 1 +
min{p,Mj}∑

	=2

(p




)	/2
(

Cp

t2Mj

)	/2

+
p∑

	=Mj+1

(
Cp

tMj

)	

. (9.20)

We now bound the first two terms in the previous line by breaking into the terms
where 
 is even and odd. When 
 is even the terms in (9.20) are bounded above by

1 +

min{p,Mj}∑

�=2
� even

(
p

�

)�/2
(

C′p
t2Mj

)�/2

≤ 1 +

min{p,Mj}∑

�=2
� even

(
p/2

�/2

)(
C′p

t2Mj

)�/2

≤
(

1 +
C′p

t2Mj

)p/2

.

(9.21)

To bound the odd terms in (9.20), let us first note that for any 0 ≤ m ≤ 
 ≤ p, we
have

(p




)	 ≤ pm

(
p


 − m

)
.

Indeed, when 
 = m, this equality simply reads
(p




)	 ≤ p	+1,

while if m < 
, we note that the inequality is equivalent to

p	−m


	
≤
(

p


 − m

)
,
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which follows by estimating the expression on the left hand side using (9.19) as
follows:

(p




)	−m 1

m

=
(

p


 − m

)	−m (

 − m




)	−m 1

m

≤
(

p


 − m

)
.

Thus, the odd terms in (9.20) are bounded above by

min{p,Mj}∑

	=3
	 odd

(p




)	/2
(

Cp

t2Mj

)	/2

≤ min
m=1,3

⎧
⎪⎨

⎪⎩

(
Cp2

t2Mj

)m

2
p−1∑

	=3
	 odd

(
p


 − m

) 1
2
(

Cp

t2Mj

) �−m

2

⎫
⎪⎬

⎪⎭
.

To proceed, note that for any 0 ≤ b ≤ a

(
2a

2b

)
≤ 2b

(
a

b

)2

.

This inequality follows by observing that for any j = 0, . . . , b − 1, we have

(2a − 2j)(2a − 2j − 1)
(2b − 2j − 1)

=
(a − j)(a − j − 1/2)
(b − j)(b − j − 1/2)

≤ 2
(

a − j

b − j

)2

and repeatedly applying this estimate to the terms in
(
2a
2b

)
. Thus, we obtain

min{p,Mj}∑

	=3
	 odd

(p




)	/2
(

Cp

t2Mj

)	/2

≤ min
m=1,3

{(
Cp2

t2Mj

)m

2

}
p/2∑

	=0

(
p/2



)(
Cp

t2Mj

)	

= min
m=1,3

{(
Cp2

t2Mj

)m

2

}(
1 +

Cp

t2Mj

)p/2

≤
(

Cp2

t2Mj

)(
1 +

Cp

t2Mj

)p/2

, (9.22)

where in the last inequality we’ve used that min
{
x1/2, x3/2

} ≤ x for all x ≥ 0.
Putting together (9.21) and (9.22) we see that there exists C > 0 so that

E

[(
1 +

ti,j
t

)p]
≤
(

1 +
Cp2

t2Mj

)(
1 +

Cp

t2Mj

)p/2

+
p∑

	=Mj+1

(
Cp

tMj

)	

. (9.23)

Let us now verify (9.17). Recall that for j ≤ k we have Mj ≥ Mk and that p ≤ p0 =
M2

k

∑k
j=1

1
Mj

. We set

t =

√√√
√C ′p

k∑

i=1

M−1
i (9.24)
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where

C ′ = max
{

(16C)2 , 2C1/2
}

is an absolute constant depending only on the constant C appearing in (9.23). For
this choice of C ′, we have

Cp

tMj
= C

√
p2

C ′pM2
j

∑k
i=1 M−1

i

≤ C

√
p

C ′M2
k

∑k
i=1 M−1

i

= C

√
p

C ′p0
≤ 1

16
, ∀j ≤ k

and

k∑

j=1

Cp

t2Mj
≤ C

(C ′)2
≤ 1

4
.

In particular for j ≤ k such that Mj ≤ p,

p∑

	=Mj+1

(
Cp

tMj

)	

≤
p∑

	=Mj+1

1
16	

≤ 1
4Mj

Hence, since log (a + b) ≤ (log a) + b for a ≥ 1 and b > 0,

k∑

j=1

logE
[(

1 +
(

ti,j
t

)p)]
≤ p

2

k∑

j=1

log
(

1 +
Cp

t2Mj

)
+

k∑

j=1

log
(

1 +
Cp2

t2Mj

)
+

k∑

j=1

(
1
4

)Mj

≤ p

2

k∑

j=1

Cp

t2Mj
+

k∑

j=1

Cp2

t2Mj
+

n∑

s=n−k+1

1
4s

=
3p

8
+

1
2

≤ p.

Hence, (9.17) follows from (9.16). We now turn to the case when p ≥ p0 and seek to
show (9.18). Rather than (9.24), to show (9.18), we set

t =
C ′p
Mk

(9.25)

with

C ′ = max
{

4C, 2C1/2
}

.

Then,

Cp

tMj
=

CMk

C ′Mj
<

C

C ′ ≤ 1
4
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and

k∑

j=1

Cp

t2Mj
=

k∑

j=1

CM2
k

(C ′)2pMj
=

C

(C ′)2
p0

p
≤ C

(C ′)2
≤ 1

4
.

Hence from (9.23), we find

k∑

j=1

logE
[(

1 +
(

ti,j
t

)p)]
≤ p

2

k∑

j=1

log
(

1 +
Cp

t2Mj

)
+

k∑

j=1

log
(

1 +
Cp2

t2Mj

)
+

k∑

j=1

(
1
4

)Mj

≤ p

2

k∑

j=1

Cp

t2Mj
+

k∑

j=1

Cp2

t2Mj
+

1
2

≤ 3Cp

2(C ′)2
+

1
2

≤ p.

Thus, we see that relation (9.18) also follows from (9.16). We are now in a position
to finish the proof of Proposition 9.1 by combining (9.12) with (9.17) and (9.18).
We find from (9.12) that

(

E

[∣∣
∣∣
∣

N∑

i=1

T i

∣∣
∣∣
∣

p])1/p

≤ sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s

E
[∣∣T i

∣∣s]1/s
.

If p ≤ p0, then (9.17) implies

(

E

[∣∣
∣∣
∣

N∑

i=1

T i

∣
∣
∣∣
∣

p])1/p

≤ C sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s
√√√
√s

k∑

j=1

M−1
j . (9.26)

Define

f(s) = log

(
p

s

(
N

p

)1/s √
s

)

= log(p) − 1
2

log(s) +
1
s

log
(

N

p

)
.

Note that

f ′(s) = − 1
2s

− 1
s2

log
(

N

p

)
.

When p ≤ N the function f is manifestly monotone decreasing in s > 0. Therefore,
taking s = 2, we find

p ≤ N ⇒
(

E

[∣∣∣
∣
∣

N∑

i=1

T i

∣
∣∣
∣
∣

p])1/p

≤ C

√√√
√pN

k∑

j=1

M−1
j .
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On the other hand, when p ≥ N , we have

p

s

(
N

p

)1/s
√√
√
√s

k∑

j=1

M−1
j ≤ ps−1/2

√√
√
√

k∑

j=1

M−1
j ,

which is strictly decreasing in s > 0. Hence, taking s = p/N , we again find

p ≥ N ⇒
(

E

[∣∣
∣
∣
∣

N∑

i=1

T i

∣
∣
∣
∣
∣

p])1/p

≤ C

√√
√
√pN

k∑

j=1

M−1
j .

Hence, we find that if p ≤ p0, then

(

E

[∣∣
∣
∣∣

N∑

i=1

T i

∣∣
∣
∣∣

p])1/p

≤ C

√√
√√pN

k∑

j=1

M−1
j ,

as desired. Finally, if p ≥ p0, then (9.18) implies

(

E

[∣∣∣
∣
∣

N∑

i=1

T i

∣
∣∣
∣
∣

p])1/p

≤ C sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s s

Mk
=

Cp

Mk
sup

max{2, p

N }≤s≤p

(
N

p

)1/s

.

(9.27)

Note that if p/N ≥ 1, then for every s ≥ 2 we have (N/p)1/s ≤ 1 and hence

Cp

Mk
sup

max{2, p

N }≤s≤p

(
N

p

)1/s

≤ Cp

Mk
.

Further, if p/N ≤ 1, then (N/p)1/s is monotonically decreasing with s and hence

Cp

Mk
sup

max{2, p

N }≤s≤p

(
N

p

)1/s

≤ Cp

Mk

(
N

p

)1/2

= C
√

pNM−2
k ≤ C

√√
√
√pN

k∑

j=1

M−1
j .

Thus, in all cases we find

(

E

[∣∣
∣
∣

N∑

i=1

T i

∣∣
∣
∣

p
])1/p

≤ C

⎛

⎝

√√√
√pN

k∑

j=1

1
Mj

+
p

Mk

⎞

⎠ ,

which is precisely the statement of Proposition 9.6. ��
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10 Lyapunov Sums: Proof of Theorem 1.1

To prove Theorem 1.1, we start by combining previous estimates for 1
N log ||XN,n(Θ)||

from Proposition 9.1 with the deviation estimates in Proposition 8.1. Let recall the
definition of the function g (cf (1.4))

gn,k(s) =

{
min

{
1, ns

k

}
, k ≤ n

2 ,

min
{

δn,k,
s

log 1/δn,k

}
, k > n

2 ,
(10.1)

where we recall that for k ≥ n
2

δn,k :=
n − k + 1

n
.

Let s > 0 and 1 ≤ k < m ≤ n. Writing

ps,k,m := P

(∣∣
∣∣
∣
1
n

k∑

i=m

(λi − μn,i)

∣∣
∣∣
∣
≥ s

)

,

we seek to show that there exist universal constants c1, c2, c3 > 0 such that for any
1 ≤ m ≤ k ≤ n and every s ≥ c1

k
nN log en

k we have

ps,k,m ≤ c2 exp
{−c3 min

{
nNs, n2Nsgn,k(s)

}}
. (10.2)

To see this, note that the triangle inequality yields

ps,k,m ≤ ps/2,k,1 + ps/2,m−1,1.

Hence, it suffices to prove (10.2) with m = 1. To do this, fix Θ ∈ Frn,k, an orthonor-
mal k-frame in R

n. We may write for any s > 0

ps,k,1 ≤ P

(∣∣
∣∣
∣
1
n

k∑

i=1

λi − 1
nN

log ||XN,n(Θ)||
∣
∣
∣∣
∣
≥ s

2

)

(10.3)

+ P

(∣∣∣
∣∣

1
nN

log ||XN,n(Θ)|| − 1
n

k∑

i=1

μn,i

∣
∣∣
∣∣
≥ s

2

)

. (10.4)

We will show separately that the probabilities in (10.3) and (10.4) are both bounded
above by the right hand side of (10.2). To check this for (10.4), note that Proposi-
tion 9.1 guarantees

P

⎛

⎝

∣∣
∣
∣∣
∣

log ‖XN,n(Θ)‖
nN

− 1
n

k∑

j=1

μn,j

∣∣
∣
∣∣
∣
≥ s

⎞

⎠ ≤ 2 exp
{

−cnN min{Mks,
s2

ξn,k
}
}

, s > 0,

(10.5)
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where we remind the reader that

Mj := n − j + 1, ξn,k :=
1
n

k∑

j=1

1
Mj

, μn,k :=
1
2
E

[
log

(
1
n

χ2
n−j+1

)]
.

Some routine algebra reveals

k ≤ n

2
⇒ nξn,k � k

n
, Mk � n (10.6)

and

k ≥ n

2
⇒ nξn,k � log

(
1

δn,k

)
, Mk = δn,kn, (10.7)

where a � b means that there exists c1, c2 > 0 so that c1a ≤ b ≤ c2a. Hence,

k ≤ n

2
⇒ min

{
Mks,

s2

ξn,k

}
� ns min

{
1,

ns

k

}

and similarly

k ≥ n

2
⇒ min

{
Mks,

s2

ξn,k

}
� ns

{
δn,k,

s

log(1/δn,k)

}
.

Putting these two estimates together, we find that (10.5) yields for any s > 0

P

⎛

⎝

∣
∣∣
∣∣
∣

log ||XN,n(Θ)||
nN

− 1
n

k∑

j=1

μn,j

∣
∣∣
∣∣
∣
≥ s

⎞

⎠ ≤ 2 exp
{−cn2Nsgn,k(s)

}
, (10.8)

as desired. Turning to the probability in (10.3), recall that in Proposition 8.1, we
have shown that for every ε ∈ (0, 1),

P

(∣∣
∣∣
∣

1
nN

log ||XN,n(Θ)|| − 1
n

k∑

i=1

λi

∣
∣
∣∣
∣
≥ k

2Nn
log

( n

kε2

)
)

≤ (Cε)
k

2 .

If we set s := k
nN log en

kε2 , then

(Cε)k/2 = exp
[
−1

4
snN +

k

4
log

(en

k

)
+

k

2
log(C)

]
.

Hence, assuming that

s ≥ C ′ k

nN
log

(en

k

)

for C ′ sufficiently large, we arrive to the following expression:

P

(∣∣∣
∣
∣
1
n

k∑

i=1

λi − log ||XN,n(Θ)||
nN

∣
∣∣
∣
∣
≥ s

)

≤ e− snN

4 , s ≥ C ′ k

nN
log

(en

k

)
. (10.9)

Thus, putting together (10.8) and (10.9), we find that

ps,k,1 ≤ c2 exp
{−c3 min

{
nNs, n2Nsgn,k(s)

}}
,

completing the proof. ��
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11 Convergence to the Triangle Law: Proof of Theorem 1.2

In this section, we derive Theorem 1.2 from Theorem 1.1. We will need the following
elementary result.

Lemma 11.1. Fix positive integers n, q, m satisfying 4 ≤ m ≤ q ≤ n. Then

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

μn,j ≥ (m − 1)2

4nq
.

Further, assuming that n − q − m ≥ 0, we also have

m

2n
log(q/n) − 1

n

n−q∑

j=n−q−m+1

μn,j ≤ −m(m − 3)
3nq

.

Proof. Let us first prove the lower bound. Recall that

μn,j =
1
2

(
log

(
2
n

)
+ ψ

(
n − j + 1

2

))
. (11.1)

Moreover, a well-known estimate [AS64, Equation 6.3.18, p.259] for the digamma
function is:

ψ(x) < log(x).

Using this we obtain

μn,j <
1
2

log
(

1 − j − 1
n

)
,

which allows us to write

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

μn,j ≥ 1
2n

n−q+m∑

j=n−q+1

log
(

q

n − j + 1

)
=

1
2n

m−1∑

j=1

log
(

1
1 − j/q

)
.

Since q, n are fixed, let us temporarily introduce

ξ :=
q

n
.

With this notation, because log(1/(1 − t)) is monotonically increasing for t ∈ [0, 1),
we have

1
2n

m−1∑

j=1

log
(

1
1 − j/q

)
=

1
2

m−1∑

j=1

1
n

log
(

1
1 − (j/n)/ξ

)
≥ 1

2

∫ m−1
n

0
log

(
1

1 − t/ξ

)
dt.

Some routine calculus therefore reveals that

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

μn,j ≥ ξ

2
[(1 − ε/ξ) log (1 − ε/ξ) + ε/ξ] ,
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where we’ve set ε := (m − 1)/n. Finally, note that for x > 0

(1 − x) log(1 − x) + x =
∑

k≥2

xk

k(k − 1)
≥ x2/2.

Hence, we obtain

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

μn,j ≥ ε2

4ξ
=

(m − 1)2

4nq
,

as claimed. Let us now derive the upper bound. Using (11.1), we get

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

μn,j =
1
2n

n−q∑

j=n−q−m+1

{
log

(q

2

)
− ψ

(
n − j + 1

2

)}

=
1
2n

m∑

j=1

{
log

(q

2

)
− ψ

(
q + j

2

)}
.

Using the inequality (see again [AS64, Equation 6.3.18, p.259])

ψ(x) > log (x) − 1/x,

we arrive at the estimate

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

μn,j ≤ 1
2n

m∑

j=1

{
log

(
q

q + j

)
+

2
q + j

}
.

As before, we will estimate this sum above by an integral. Still writing ξ = q/n, we
have as before

1
2n

m∑

j=1

log
(

1
1 + j/q

)
≤ ξ

2

∫ ε/ξ

0
log

(
1

1 + t

)
dt =

ξ

2
[−(1 + ε/ξ) log (1 + ε/ξ) + ε/ξ]

where we’ve now set ε = m/n (which is slightly different than above). For x ∈ (0, 1),
we have

−(1 + x) log(1 + x) + x =
∑

k≥2

(−1)k+1 xk

k(k − 1)
≤ −x2

2
+

x3

6
≤ −x2

3
,

we therefore find

1
2n

m∑

j=1

log
(

1
1 + j/q

)
≤ − ε2

3ξ
.

Next,

1
q

m∑

j=1

1
n

1
1 + ξ−1(j/n)

≤ 1
q

∫ ε

0

dt

1 + t/ξ
=

ξ

q
log (1 + ε/ξ) ≤ ε

q
.
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So all together we find the upper bound

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

μn,j ≤ − m2

3nq
+

m

nq
= −m(m − 3)

3nq
.

This completes the proof. ��
We now conclude the proof of Theorem 1.2. To do this, fix ε > 0 and assume that

n >
c1

√
log(1/ε)
ε

, N >
c2

ε2

for some constants c1, c2 > 1 that we will fix later. To prove Theorem 1.2 note that
the bound above on n guarantees that ε > c1/n. Hence, we need only consider such
ε. Moreover, we may always assume that

ε =
m

n

for some integer 5 ≤ m ≤ n since U(t) is 1-lipschitz, and will use ε and m/n
interchangeably. Next, recall the following notation for the cumulative distributions

HN,n(s) :=
1
n

#
{

j ≤ n
∣
∣ sj(XN,n)2/N ≤ s

}
, U(s) :=

⎧
⎪⎨

⎪⎩

0, s < 0,

s, 0 ≤ s ≤ 1,

1, s > 1,

of the squared singular values of XN,n and the uniform distribution on [0, 1]. Let us
define the event

Sn,m := {∀q ∈ {m + 1, . . . , n} |HN,n (q/n) − U (q/n)| ≤ ε} .

On this event, since HN,n and U are both monotone we have for t ≤ (m + 1)/n that

HN,n(t) ≤ HN,n ((m + 1)/n) ≤ ε + U ((m + 1)/n) = ε + (m + 1)/n ≤ 3ε.

Similarly if t > 1,

1 − HN,n(t) ≤ 1 − HN,n (1) ≤ 1 − U (1) + ε = ε

Using the same idea we may write for any t ∈ [(m + 1)/n, 1]

HN,n(t) − U(t) ≤ HN,n((j + 1)/n) − U((j + 1)/n) + U(t) − U((j + 1)/n)
≤ ε + 1/n

≤ 2ε,

where m + 1 ≤ j ≤ n is the unique integer for which

j

n
≤ t <

j + 1
n

.
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Hence,

P

(
sup
t∈R

|HN,n(t) − U(t)| > 3ε

)
≤ P

(
Sc

n,m

)

and we must therefore bound P
(
Sc

n,m

)
from above. We will do this by rewriting

all events involving the singular values si in terms of the Lyapunov exponents λj .
Moving forward, let us agree that any event that involves λ−s or λn+s for s > 0 is
by definition empty. Since

sj(XN,n)2/N ≤ q

n
⇔ λj ≤ 1

2
log

( q

n

)
,

we find

|HN,n (q/n) − U (q/n)| =
∣∣
∣
∣
1
n

#
{

j ≤ n : λj ≤ 1
2

log (q/n)
}

− q/n

∣∣
∣
∣

=
∣∣
∣
∣
1
n

#
{

j ≤ n : λj >
1
2

log (q/n)
}

− (n − q)/n

∣∣
∣
∣ .

For any positive integer m + 1 ≤ q ≤ n, define

p := p(n, m, q, N) = P

(∣∣
∣∣
1
n

#
{

j ≤ n : λj >
1
2

log (q/n)
}

− (n − q)/n

∣
∣
∣∣ ≥ m

n

)
.

(11.2)

We have

P
(
Sc

n,m

) ≤
n∑

q=m+1

p(n, m, q, N),

and the proof of Theorem 1.2 therefore reduces to estimating the probabilities in
this sum. To do this, we fix n, m, q, N and observe that since λj are decreasing, the
event whose probability we’ve denoted by p(n, m, q, N) is equal to

{
λn−q+m >

1
2

log (q/n)
}

∪
{

λn−q−m+1 ≤ 1
2

log (q/n)
}

,

where we remind the reader that the second event is empty if q ≥ n − m + 1. Again
using the monotonicity of λj , this implies

⎧
⎨

⎩
1
n

n−q+m∑

j=n−q+1

λj >
m

2n
log (q/n)

⎫
⎬

⎭
∪

⎧
⎨

⎩
1
n

n−q∑

j=n−q−m+1

λj ≤ m

2n
log (q/n)

⎫
⎬

⎭
.

So, the probability p(n, m, q, N) we seek to bound is itself bounded above by

p1 + p2 := P

⎛

⎝ 1
n

n−q+m∑

j=n−q+1

λj >
m

2n
log (q/n)

⎞

⎠ + P

⎛

⎝ 1
n

n−q∑

j=n−q−m+1

λj ≤ m

2n
log (q/n)

⎞

⎠ .
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To estimate p1 note that by Lemma 11.1,

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

μn,j ≥ (m − 1)2

4nq
.

Hence, we obtain

p1 ≤ P

⎛

⎝

∣
∣
∣
∣
∣
∣

1
n

n−q+m∑

j=n−q+1

{λj − μn,j}
∣
∣
∣
∣
∣
∣
≥ (m − 1)2

4nq

⎞

⎠ .

We will bound the right hand side by using Theorem 1.1. To do this, we must ensure
that for c2 sufficiently large, our assumption N > c2/ε2 implies that for the constant
c1 in Theorem 1.1, we have

(m − 1)2

4nq
≥ c1

n − q + m

nN
log

(
en

n − q + m

)
. (11.3)

To check this, note that since x log(e/x) ≤ 1 for x ∈ [0, 1] this estimate holds as
soon as

N ≥ c1
4nq

(m − 1)2
. (11.4)

Recall that by construction, we have

q ≤ n, (m − 1)2 ≥ 1
2
m2 =

1
2
ε2n2.

Hence, (11.4) is satisfied once

N ≥ 8c1ε
−2,

as claimed. Thus, we may apply Theorem 1.1 to conclude that

p1(n, m, q, N) ≤ c3 exp
(
c4 min

{
nNs, n2Nsgn,k(s)

})
, s = s(n, m, q) =

(m − 1)2

4nq
.

Since

inf
q=m+1,...,n

s(n, m, q) ≥ ε2

8
,

we find that
n∑

q=m+1

p1(m, n, q, N) ≤ c3 exp
(−c4 min

{
nNε2, n2Nε2gn,k(ε2)

}
+ log(n)

)

for some universal constants c3, c4 > 0. Further, note that by assumption,

nNε2 > c2n > log(n)
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as soon as c2 > 1. Hence, at the cost of replacing c4 by a slightly larger constant c′
4,

we find that
n∑

q=m+1

p1(m, n, q, N) ≤ c3 exp
(−c′

4 min
{
nNε2, n2Nε2gn,k(ε2)

})
.

Essentially the identical argument (but this time the upper bound from Lemma 11.1)
implies that this same upper bound holds for p2 as well, completing the proof of
Theorem 1.2. �

12 Asymptotic Normality: Proof for Theorem 1.3

Theorem 1.3 concerns

Λk = (λ1, . . . , λk) = (λ1(XN,n), . . . , λk(XN,n)) ,

the vector of the first k Lyapunov exponents of XN,n. Our aim is to prove that there
exist universal constants C, C ′ > 0 so that once N ≥ Cn log(n) we have

d (Λk, N (μn,≤k, Σn,k,N )) ≤ C′
(

k7/2n log2(n) log(N/n)

N

)1/2

, Σn,k,N :=
1

N
Diag(σ2

n,≤k)

(12.1)

where μn,≤k, σ
2
n,≤k are the vectors of means and variances of

(
1
2

log
(

1
n

χ2
n−m+1

)
, m = 1, . . . , k

)

(see (1.18)) and d is the distance function defined in (6.3). To prove (12.1), we
introduce

Sk = (λ1, λ1 + λ2, . . . , λ1 + · · · + λk)
∗

and note that

Sk = TΛk, (12.2)

where T is a lower triangular matrix all of whose lower-triangular entries are equal
to 1. The explain the strategy for proving Theorem 1.3, let us fix Θ = θ1 ∧ · · · ∧ θk,
where {θj} form an orthonormal k-frame in R

n. For 1 ≤ m ≤ k, we will abbreviate

Θ≤m = θ1 ∧ · · · ∧ θm.

The idea of the proof is to compare Sk, Λk to their “pointwise” analogs

Ŝk :=
1
N

(log ||XN,n(Θ≤1)|| , . . . , log ||XN,n(Θ≤k)||)∗
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and

Λ̂k := T−1Ŝk, (12.3)

where Θ = (θ1, . . . , θk) is any fixed collection of k orthonormal vectors in R
n. Specifi-

cally, by Proposition 6.3 and the affine invariance (6.4) of d, we find that there exists
c0 > 0 so that for all δ > 0

d (Λk, N (μn,k, Σn,k)) = d (Sk, N (Tμn,k, TΣn,k,NT ∗))

≤ 3d
(
Ŝk, N (Tμn,k, TΣn,k,NT ∗)

)
+ c0δ

∣
∣
∣
∣
∣
∣(TΣn,kT

∗)−1
∣
∣
∣
∣
∣
∣
1/2

HS

+ 2P
(∣∣
∣
∣
∣
∣Sk − Ŝk

∣
∣
∣
∣
∣
∣ > δ

)

= 3d
(
Λ̂k, N (μn,k, Σn,k,N )

)
+ c0δ

∣∣
∣
∣∣
∣(TΣn,k,NT ∗)−1

∣∣
∣
∣∣
∣
1/2

HS

+ 2P
(∣∣
∣
∣∣
∣Sk − Ŝk

∣∣
∣
∣∣
∣ > δ

)
. (12.4)

The remainder of the proof consists of bounding each of these three terms and then
optimizing over δ. To start, let us check that the first term in (12.4) is small:

Lemma 12.1. In distribution,

Λ̂k =
1
N

N∑

i=1

(Yi,1, . . . , Yi,k) , (12.5)

where {Yi,j , 1 ≤ i ≤ N, 1 ≤ j ≤ k} are independent with

Yi,j ∼ 1
2

log
(

1
n

χ2
n−j+1

)
.

Consequently, by the multivariate central limit theorem, there exists C > 0 so that

d
(
Λ̂k, N (μn,≤k, Σn,k,N )

)
≤ Ck7/4

N1/2
(12.6)

where Σn,k,N = 1
N Diag(σ2

n,≤k), σ2
n,j := Var

[
1
2 log

(
1
nχ2

n−j+1

)]
.

Proof. Fix integers N, n ≥ 1 and 1 ≤ k ≤ n and recall that XN,n = AN · · ·A1 with
Ai iid n × n Gaussian matrices. Note that for each 1 ≤ m ≤ k, we have

log ||XN,n(Θ≤m)|| =
N∑

i=1

log
∣
∣∣
∣
∣∣Ai(Θ

(i)
≤m)

∣
∣∣
∣
∣∣ , (12.7)

where

Θ(1)
≤m = Θ≤m, Θ(i+1)

≤m =
Ai

(
Θ(i)

≤m

)

∣∣
∣
∣∣
∣Ai

(
Θ(i)

≤m

)∣∣
∣
∣∣
∣
.
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Repeatedly applying Lemma 5.4, we therefore conclude that in distribution

Ŝk =
1
N

N∑

i=1

(log ||Ai(Θ≤1)|| , . . . , log ||Ai(Θ≤k)||)∗

is equal to a sum of iid random vectors. Thus, using the definition (12.3) of Λ̂k, we
find that in distribution

Λ̂k =
1
N

N∑

i=1

Λ̂k,i, Λ̂k,i := T−1 (log ||Ai(Θ≤1)|| , . . . , log ||Ai(Θ≤k)||)∗ ,

where we recall that T is a lower triangular matrix with all lower triangular entries
equal to 1. Namely,

T =

⎛

⎜⎜
⎜
⎜⎜
⎝

1 0 0 · · · 0
1 1 0 · · · 0
... · · · . . . . . .

...
1 · · · 1 1 0
1 · · · 1 1 1

⎞

⎟⎟
⎟
⎟⎟
⎠

, T−1 =

⎛

⎜⎜
⎜
⎜⎜
⎝

1 0 0 · · · 0
−1 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · −1 1 0
0 · · · 0 −1 1

⎞

⎟⎟
⎟
⎟⎟
⎠

.

Note that
{

Λ̂k,i, m = 1, . . . , k
}

are independent collection for different i. Next, the

mth component of Λ̂k,i is

(
Λ̂k,i

)

m
= log ||Ai(Θ≤m)|| − log ||Ai(Θ≤m−1)|| = log

∣
∣
∣∣

∣
∣
∣∣

Ai(Θ≤m−1)
||Ai(Θ≤m−1)|| ∧ Aθm

∣
∣
∣∣

∣
∣
∣∣ ,

(12.8)

Since {θi} are orthonormal, the collection {Aθi} are iid Gaussians. In particular, we
see that Aθm is independent of {A(Θ≤j), 1 ≤ j ≤ m − 1} . Also, by Lemma 5.3, the
following collections of random variables are independent:

{||A(Θ≤1)|| , . . . , ||A(Θ≤m−1)||} ,

{
A(Θ≤1)

||A(Θ≤1)|| , . . . ,
A(Θ≤m−1)

||A(Θ≤m−1)||
}

.

The left hand side of relation (12.8) shows that the 1, . . . , m−1st components of Λk,i

depend only {||A(Θ≤j)|| , j = 1, . . . , m − 1}, whereas the right hand side of (12.8)
shows that the mth component of Λk,i depends only on A(Θ≤m−1)/ ||A(Θ≤m−1)||
and on Aθm. Therefore, the mth component of Λ̂k,i is independent of all the previ-
ous components. Proceeding in this way for m = k, k − 1, . . . , 1, we find that the
components of Λ̂k,i are independent. Finally, let us denote by Π≤m−1 the orthogonal
projection onto the orthogonal complement of the span of {θ1, . . . , θm−1} . We have
by Lemma 5.2 that in distribution

(
Λ̂k,i

)

m
= log ||Π≤m−1(Aθm)|| .
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Note that Aθm is independent of Π≤m−1 since the latter depends only on Aθ1, . . . , Aθm−1.
Hence, we have the following equality in distribution:

(
Λ̂k,i

)

m
=

1
2

log
(

1
n

χ2
n−m+1

)
.

This completes the proof of (12.5). To conclude (12.6), we apply the multivariate
CLT (Theorem 6.4) to

Λ̂k − E

[
Λ̂k

]
=

N∑

i=1

1
N

(
Λ̂k,i − μn,≤k

)
.

Since the covariance matrix of (Yi,1, · · · , Yi,k) is Diag(σ2
n,≤k) by independence we

have that C := Cov(Λ̂K) := 1
N Diag(σ2

n,1, · · · , σ2
n,k). Recall that

βi := E‖C− 1
2 (Y i,1, · · · , Y i,k)‖3

2. It is not difficult to check that log χ2
m is a log-concave

random variable (i.e. its density is a log-concave function). Moreover, since σ−1
n,jY i,j

have mean zero and variance 1, D := (σ−1
i,1 Y i,1, · · · , σ−1

i,k Y i,k) is a log-concave random
vector in R

k with covariance matrix equals to the identity. Therefore E‖D‖2
2 = k.

It is known that the Euclidean norm of such vectors satisfies a reverse Hölder in-
equality with a universal constant, and in particular (see e.g. [Pao06] or [ [AAGM15]
Theorem 10.4.6] for a stronger result) that

(
E‖D‖3

2

) 1
3 ≤ C

(
E‖D‖2

2

) 1
2 = C

√
k,

where C > 0 is an absolute constant. So,

βi =
1

N
3
2

E‖D‖3
2 ≤ C3k

3
2

N
3
2

1 ≤ i ≤ N.

Therefore,

β :=
N∑

j=1

βj ≤ C3k
3
2

N
1
2

and we conclude that there exists an absolute constant c > 0 so that

d(Λ̂k, N (μn,≤k, Σn,k)) ≤ ck7/4N−1/2. ��
Having bounded the first term in (12.4), we write

(TΣn,k,NT ∗)−1 = (T ∗)−1 Σ−1
n,k,NT−1

and bound the second term using that the matrix Σ is diagonal and that T−1 a
bi-diagonal:
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Lemma 12.2. There exists C > 0 so that

∣
∣
∣
∣
∣
∣(TΣn,k,NT ∗)−1

∣
∣
∣
∣
∣
∣
1/2

HS
≤ Ck1/4(nN)1/2. (12.9)

Proof. We have

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
1 1 0 · · · 0
... · · · . . . . . .

...
1 · · · 1 1 0
1 · · · 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, T−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
−1 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · −1 1 0
0 · · · 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, recalling that

Σn,k,N =
1
N

Diag (σn,≤k) =
1
N

(
σ2

n,1, . . . , σ
2
n,k

)
,

we find

(T ∗)−1Σ−1
n,k,NT−1 = N

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

σ−2
n,1 + σ−2

n,2 −σ−2
n,2 0 · · · 0

−σ−2
n,2 σ−2

n,2 + σ−2
n,3 −σ−2

n,3 · · · 0
... · · · . . . . . .

...
0 · · · −σ−2

n,k−1 σ−2
n,k−1 + σ−2

n,k −σ−2
n,k

0 · · · 0 −σ−2
n,k σ−2

n,k

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

Hence, using (1.17), we find that for some C > 0

∣
∣
∣
∣
∣
∣(T ∗)−1Σ−1

n,k,NT−1
∣
∣
∣
∣
∣
∣
HS

≤ 2N

⎛

⎝
k∑

j=1

σ−4
n,k,j

⎞

⎠

1/2

≤ CN

⎛

⎝
k∑

j=1

(n − k + 1)2

⎞

⎠

1/2

≤ CNnk1/2,

and Lemma 12.2 follows. ��
Thus far, combining the previous two Lemma with (12.4), we’ve shown that

d (Λk, N (μn,k, Σn,k)) ≤ Ck7/4

N1/2
+ c0δk

1/4(nN)1/2 + 2P
(∣∣∣
∣
∣∣Sk − Ŝk

∣
∣∣
∣
∣∣ > δ

)
. (12.10)

So it remains to estimate

P

(∣∣∣
∣
∣∣Sk − Ŝk

∣
∣∣
∣
∣∣
2

≥ δ
)

and optimize over δ. To do this, write Sk,j , Ŝk,j for the jth components of Sk, Ŝk. By
(10.9), there exists C > 0 so that for 1 ≤ j ≤ k ≤ n,

P

(
|Sk,j − Ŝk,j | ≥ s

)
≤ 2e−sN/4, s ≥ C

j

N
log

(
en

j

)
.
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For any collection positive real numbers δj > C j
N log

(
en
j

)
we therefore have,

P

⎛

⎜
⎝
∣
∣
∣
∣
∣
∣Sk − Ŝk

∣
∣
∣
∣
∣
∣
2

≥
⎛

⎝
k∑

j=1

δ2
j

⎞

⎠

1/2
⎞

⎟
⎠ ≤

k∑

j=1

P

(
|Sk,j − Ŝk,j | ≥ δj

)
≤ 2

k∑

j=1

e−δjN/4.

Setting

δj :=
Cj

N
log

(
en

j

)
log

(
N

n

)
,

for a sufficiently large constant C we find

P

(∣∣
∣Sk,j − Ŝk,j

∣∣
∣ ≥ δj

)
≤ 2e−Cj log(en/j) log(N/n) ≤ 2(n/N)j/2.

Hence, as soon as N > n, we have

P

(∣∣
∣
∣∣
∣Sk − Ŝk

∣∣
∣
∣∣
∣
2

≥ δ
)

≤ C
( n

N

)1/2

where

δ :=

⎛

⎝
k∑

j=1

δ2
j

⎞

⎠

1/2

≤ Ck3/2 log(n) log(N/n)
N

.

In conjunction with (12.10) yields

d (Λk, N (μn,k, Σn,k)) ≤ Ck7/4

N1/2
+
(

Ck7/2n log2(n) log2(N/n)
N

)1/2

+ C
( n

N

)1/2

≤
(

4Ck7/2n log2(n) log2(N/n)
N

)1/2

,

as claimed.
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[KK16] M. Kieburg and H. Kösters. Exact relation between singular value

and eigenvalue statistics. Random Matrices: Theory and Applications, (04)5
(2016), 1650015

[KMS20] T. Kathuria, S. Mukherjee, and N. Srivastava. On concentration in-
equalities for random matrix products. arXiv preprint 2003.06319 (2020).

[Lat97] R. Lata�la. Estimation of moments of sums of independent real random
variables. The Annals of Probability, (3)25 (1997), 1502–1513
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