

DEFORMATIONS OF VARIETIES OF GENERAL TYPE

JÁNOS KOLLÁR

ABSTRACT. We prove that small deformations of a projective variety of general type are also projective varieties of general type, with the same plurigenera.

Our aim is to prove the following.

Theorem 1. *Let $g : X \rightarrow S$ be a flat, proper morphism of complex analytic spaces. Fix a point $0 \in S$ and assume that the fiber X_0 is projective, of general type, and with canonical singularities. Then there is an open neighborhood $0 \in U \subset S$ such that*

- (1.1) *the plurigenera of X_s are independent of $s \in U$ for every r , and*
- (1.2) *the fibers X_s are projective for every $s \in U$.*

Here the r th plurigenus of X_s is $h^0(Y_s, \omega_{Y_s}^r)$, where $Y_s \rightarrow X_s$ is any resolution of X_s . By [Nak04, VI.5.2] (see also (10.2)) X_s has canonical singularities, so this is the same as $h^0(X_s, \omega_{X_s}^{[r]})$, where $\omega_{X_s}^{[r]}$ denotes the double dual of the r th tensor power $\omega_{X_s}^{\otimes r}$.

Comments 1.3. Many cases of this have been proved, but I believe that the general result is new, even for X_0 smooth and S a disc.

For smooth surfaces proofs are given in [KS58, Iit69], and for 3-folds with terminal singularities in [KM92, 12.5.1]. If g is assumed projective, then of course all fibers are projective, and deformation invariance of plurigenera was proved by [Siu98] for X_0 smooth, and by [Nak04, Chap.VI] when X_0 has canonical singularities. However, frequently g is not projective; see Example 4 for some smooth, 2-dimensional examples. Many projective varieties have deformations that are not projective, not even algebraic in any sense; K3 and elliptic surfaces furnish the best known examples.

In Example 3 we construct a deformation of a projective surface with a quotient singularity and ample canonical class, whose general fibers are non-algebraic, smooth surfaces of Kodaira dimension 0. Thus canonical is likely the largest class of singularities where Theorem 1 holds. See also Example 5 for surfaces with simple elliptic singularities.

The projectivity of X_0 is essential in our proof, but (1.1) should hold whenever X_0 is a proper algebraic space of general type with canonical singularities. Such results are proved in [RT20], provided one assumes that either X_0 is smooth and all fibers are Moishezon, or almost all fibers are of general type.

Our main technical result says that the Minimal Model Program works for $g : X \rightarrow S$. For $\dim X_0 = 2$ and X_0 smooth, this goes back to [KS58]. For $\dim X_0 = 3$ and terminal singularities, this was proved in [KM92, 12.4.4]. The next result extends these to all dimensions.

Theorem 2. *Let $g : X \rightarrow S$ be a flat, proper morphism of reduced, complex analytic spaces. Fix a point $0 \in S$ and assume that X_0 is projective and has canonical singularities. Then every sequence of MMP-steps $X_0 = X_0^0 \dashrightarrow X_0^1 \dashrightarrow X_0^2 \dashrightarrow \dots$ (see Definition 7) extends to a sequence of MMP-steps*

$$X = X^0 \dashrightarrow X^1 \dashrightarrow X^2 \dashrightarrow \dots,$$

over some open neighborhood $0 \in U \subset S$.

The proof is given in Paragraph 8 when S is a disc \mathbb{D} , and in Paragraph 12 in general. The assumption that X_0 has canonical singularities is necessary, as shown by semistable 3-fold flips [KM92]. Extending MMP steps from divisors with canonical singularities is also studied in [AK19].

If X_0 is of general type, then a suitable MMP for X_0 terminates with a minimal model X_0^m by [BCHM10], which then extends to $g^m : X_U^m \rightarrow U$ by Theorem 2. For minimal models of varieties of general type, deformation invariance of plurigenera is easy, leading to a proof of (1.1) in Paragraph 13. This also implies that all fibers are bimeromorphic to a projective variety.

If X_0 is smooth, then it is Kähler, and the X_s are also Kähler by [KS58]. A Kähler variety that is bimeromorphic to an algebraic variety is projective by [Moi66].

However, there are families of surfaces with simple elliptic singularities $g : X \rightarrow S$ such that K_{X_0} is ample, all fibers are bimeromorphic to an algebraic surface, yet the projective fibers correspond to a countable, dense set on the base; see Example 5.

We use Theorem 14—taken from [Kol21b, Thm.2]—to obtain the projectivity of the fibers and complete the proof of Theorem 1 in Paragraph 13.

1. EXAMPLES AND CONSEQUENCES

The first example shows that Theorem 1 fails very badly for surfaces with non-canonical quotient singularities.

Example 3. We give an example of a flat, proper morphism of complex analytic spaces $g : X \rightarrow \mathbb{D}$, such that

- (3.1) X_0 is a projective surface with a quotient singularity and ample canonical class, yet
- (3.2) X_s is smooth, non-algebraic, and of Kodaira dimension 0 for very general $s \in \mathbb{D}$.

Let us start with a K3 surface $Y_0 \subset \mathbb{P}^3$ with a hyperplane section $C_0 \subset Y_0$ that is a rational curve with 3 nodes. We blow up the nodes $Y'_0 \rightarrow Y_0$ and contract the birational transform of C_0 to get a surface $\tau_0 : Y'_0 \rightarrow X_0$. Let $E_1, E_2, E_3 \subset X_0$ be the images of the 3 exceptional curves of the blow-up.

By explicit computation, we get a quotient singularity of type $\mathbb{C}^2/\frac{1}{8}(1,1)$, $(E_i^2) = -\frac{1}{2}$ and $(E_i \cdot E_j) = \frac{1}{2}$ for $i \neq j$. Furthermore, $E := E_1 + E_2 + E_3 \sim K_{X_0}$ and it is ample by the Nakai-Moishezon criterion. (Note that $(E \cdot E_i) = \frac{1}{2}$ and $X_0 \setminus E \cong Y_0 \setminus C_0$ is affine.)

Take now a deformation $Y \rightarrow \mathbb{D}$ of Y_0 whose very general fibers are non-algebraic K3 surfaces that contain no proper curves. Take 3 sections $B_i \subset Y$ that pass through the 3 nodes of C_0 . Blow them up and then contract the birational transform of C_0 ; cf. [MR71]. In general [MR71] says that the normalization of the resulting central fiber is X_0 , but in our case the central fiber is isomorphic to X_0 since $R^1(\tau_0)_* \mathcal{O}_{Y'_0} = 0$. The contraction is an isomorphism on very general fibers since

there are no curves to contract. We get $g : X \rightarrow \mathbb{D}$ whose central fiber is X_0 and all other fibers are K3 surfaces blown up at 3 points.

In general, it is very unclear which complex varieties occur as deformations of projective varieties; see [KLS21] for some of their properties.

Example 4. [Ati58] Let $S_0 := (g = 0) \subset \mathbb{P}_{\mathbf{x}}^3$ and $S_1 := (f = 0) \subset \mathbb{P}_{\mathbf{x}}^3$ be surfaces of the same degree. Assume that S_0 has only ordinary nodes, S_1 is smooth, $\text{Pic}(S_1)$ is generated by the restriction of $\mathcal{O}_{\mathbb{P}^3}(1)$ and S_1 does not contain any of the singular points of S_0 . Fix $m \geq 2$ and consider

$$X_m := (g - t^m f = 0) \subset \mathbb{P}_{\mathbf{x}}^1 \times \mathbb{A}_t^1.$$

The singularities are locally analytically of the form $xy + z^2 - t^m = 0$. Thus X_m is locally analytically factorial if m is odd. If m is even then X_m is factorial since the general fiber has Picard number 1, but it is not locally analytically factorial; blowing up ($x = z - t^{m/2} = 0$) gives a small resolution. Thus we get that

- (4.1) X_m is bimeromorphic to a proper, smooth family of projective surfaces iff m is even, but
- (4.2) X_m is not bimeromorphic to a smooth, projective family of surfaces.

Example 5. Let $E \subset \mathbb{P}^2$ be a smooth cubic and take r general lines $L_i \subset \mathbb{P}^2$. To get S_0 , blow up all singular points of $E + \sum L_i$ and then contract the birational transform of $E + \sum L_i$. A somewhat tedious computation shows that K_{S_0} is ample for $r \geq 6$. It has 1 simple elliptic singularity (coming from E) and r quotient singularities (coming from the L_i).

Deform this example by moving the $3r$ points $E \cap \sum L_i$ into general position $p_t^1, \dots, p_t^{3r} \in E$ and the points $L_i \cap L_j$ into general position on \mathbb{P}^2 . Blow up these points and then contract the birational transform of E to get the surfaces S_t . It has only 1 simple elliptic singularity (coming from E).

We get a flat family of surfaces with central fiber S_0 and general fibers S_t . Let L denote the restriction of the line class on \mathbb{P}^2 to E .

It is easy to see that such a surface S_t is non-projective if the p_t^i and L are linearly independent in $\text{Pic}(E)$. Thus S_t is not projective for very general t and has Kodaira dimension 0.

The next result is the scheme-theoretic version of Theorem 1. Ideally it should be proved by the same argument. However, some of the references we use, especially [Nak04], are worked out for analytic spaces, not for general schemes. So for now we proceed in a somewhat roundabout way.

Corollary 6. *Let S be a noetherian, excellent scheme over a field of characteristic 0. Let $g : X \rightarrow S$ be a flat, proper algebraic space. Fix a point $0 \in S$ and assume that X_0 is projective, of general type and with canonical singularities. Then there is an open neighborhood $0 \in S^\circ \subset S$ such that, for every $s \in S^\circ$,*

- (6.1) *the plurigenera $h^0(X_s, \omega_{X_s}^{[r]})$ are independent of s for every r , and*
- (6.2) *the fiber X_s is projective.*

Proof. A proper algebraic space Y over a field k is projective iff Y_K is projective over K for some field extension $K \supset k$. Noetherian induction then shows that it is enough to prove the claims for the generic points of the completions (at the point $0 \in S$) of irreducible subvarieties $0 \in T \subset S$. Since the defining equations of \hat{T}

and of $X \times_S \hat{T}$ involve only countably many coefficients, we may assume that the residue field is \mathbb{C} .

Consider now the local universal deformation space $\text{Def}(X_0)$ of X_0 in the complex analytic category; see [Bin87]. It is the germ of a complex analytic space and there is a complex analytic universal family $G : \hat{\mathbf{X}} \rightarrow \text{Def}(X_0)$. Since a deformation over an Artin scheme is automatically complex analytic, we see that the formal completion $\hat{G} : \hat{\mathbf{X}} \rightarrow \widehat{\text{Def}}(X_0)$ is the universal formal deformation of X_0 . In particular, $X \times_S \hat{T}$ is the pull-back of $\hat{G} : \hat{\mathbf{X}} \rightarrow \widehat{\text{Def}}(X_0)$ by a morphism $\hat{T} \rightarrow \widehat{\text{Def}}(X_0)$. Thus Theorem 1 implies both claims. \square

2. RELATIVE MMP

See [KM98] for a general introduction to the minimal model program.

Definition 7 (MMP-steps and their extensions). Let $X \rightarrow S$ be a proper morphism of complex analytic spaces with irreducible fibers. Assume that $K_{X/S}$ is \mathbb{Q} -Cartier. By an *MMP-step* for X over S we mean a diagram

$$\begin{array}{ccc} X & \xrightarrow{\pi} & X^+ \\ \phi \searrow & & \swarrow \phi^+ \\ & Z & \end{array} \quad (7.1)$$

where all morphisms are bimeromorphic and proper over S , $-K_{X/S}$ is ample over Z , $K_{X^+/S}$ is ample over Z and ϕ^+ is small (that is, without exceptional divisors).

If X is \mathbb{Q} -factorial and the relative Picard number of X/Z is 1, then there are 2 possible MMP steps:

- Divisorial: ϕ contracts a single divisor and ϕ^+ is the identity.
- Flipping: both ϕ and ϕ^+ are small.

However, in general there is a more complicated possibility:

- Mixed: ϕ contracts (possibly several) divisors and ϕ^+ is small.

For our applications we only need to know that, by [KM98, 3.52], X^+ exists iff $\oplus_{r \geq 0} \omega_{Z/S}^{[r]}$ (which is equal to $\oplus_{r \geq 0} \phi_* \omega_{X/S}^{[r]}$) is a finitely generated sheaf of \mathcal{O}_Z -algebras, and then

$$X^+ = \text{Proj}_Z \oplus_{r \geq 0} \omega_{Z/S}^{[r]}. \quad (7.2)$$

We index a sequence of MMP-steps by setting $X^0 := X$ and $X^{i+1} := (X^i)^+$.

Fix a point $s \in S$ and let X_s denote the fiber over s . We say that a sequence of MMP-steps (over S) $X^0 \dashrightarrow X^1 \dashrightarrow X^2 \dashrightarrow \dots$ extends a sequence of MMP-steps (over s) $X_s^0 \dashrightarrow X_s^1 \dashrightarrow X_s^2 \dashrightarrow \dots$ if, for every i ,

$$\begin{array}{ccc} X_s^i & \xrightarrow{\pi_s^i} & X_s^{i+1} \\ \phi_s^i \searrow & & \swarrow (\phi_s^i)^+ \\ Z_s^i & & \end{array} \quad \text{is the fiber over } s \text{ of} \quad \begin{array}{ccc} X^i & \xrightarrow{\pi^i} & X^{i+1} \\ \phi^i \searrow & & \swarrow (\phi^i)^+ \\ Z^i & & \end{array} \quad (7.3)$$

8 (Proof of Theorem 2 for $S = \mathbb{D}$, the disc). Since MMP-steps preserve canonical singularities, by induction it is enough to prove the claim for one MMP step. So we drop the upper index i and identify $K_{X/\mathbb{D}}$ with K_X .

Let $\phi_0 : X_0 \rightarrow Z_0$ be an extremal contraction. By [MR71]¹, it extends to a contraction $\phi : X \rightarrow Z$, where Z is flat over \mathbb{D} with central fiber Z_0 since

¹This should be changed to [KM92, 11.4]

$R^1(\phi_0)_*\mathcal{O}_{X_0} = 0$. Note that K_X is \mathbb{Q} -Cartier by (10.1), and ϕ is projective since $-K_X$ is ϕ -ample.

If ϕ_0 is a divisorial contraction, then K_{Z_0} is \mathbb{Q} -Cartier, and so is K_Z by (10.1). Thus $X^+ = Z$.

If ϕ_0 is a flipping or mixed contraction, then K_Z is not \mathbb{Q} -Cartier. By (7.2),

$$X^+ = \text{Proj}_Z \oplus_{r \geq 0} \omega_Z^{[r]}, \quad (8.1)$$

provided $\oplus_{r \geq 0} \omega_Z^{[r]}$ is a finitely generated sheaf of \mathcal{O}_Z -algebras. (We have identified ω_Z with $\omega_{Z/\mathbb{D}}$.)

Functoriality works better if we twist by the line bundle $\mathcal{O}_Z(Z_0)$ and write it as

$$X^+ = \text{Proj}_Z \oplus_{r \geq 0} \omega_Z^{[r]}(rZ_0).$$

Let $\tau : Y \rightarrow X$ be a projective resolution of X (that is, τ is projective) such that Y_0 , the bimeromorphic transform of X_0 , is also smooth. Set $g := \phi \circ \tau$.

The hardest part of the proof is Nakayama's theorem (9) which gives a surjection

$$\oplus_{r \geq 0} g_* \omega_Y^r(rY_0) \twoheadrightarrow \oplus_{r \geq 0} (g_0)_* \omega_{Y_0}^r. \quad (8.2)$$

Since X_0 has canonical singularities $\tau_* \omega_{Y_0}^r = \omega_{X_0}^{[r]}$, and hence $g_* \omega_{Y_0}^r = \omega_{Z_0}^{[r]}$. We also have a natural inclusion $g_* \omega_Y^r(rY_0) \hookrightarrow \omega_Z^{[r]}(rZ_0)$. Thus pushing forward (8.2) we get a surjection

$$\oplus_{r \geq 0} g_* \omega_Y^r(rY_0) \rightarrow \oplus_{r \geq 0} \omega_Z^{[r]}(rZ_0) \twoheadrightarrow \oplus_{r \geq 0} \omega_{Z_0}^{[r]}. \quad (8.3)$$

Note that $\oplus_{r \geq 0} \omega_{Z_0}^{[r]}$ is a finitely generated sheaf of \mathcal{O}_{Z_0} -algebras, defining the MMP-step of $X_0 \rightarrow Z_0$.

Now (11) says that $\oplus_{r \geq 0} \omega_Z^{[r]}(rZ_0)$ is also a finitely generated sheaf of \mathcal{O}_Z -algebras, at least in some neighborhood of the compact Z_0 . \square

Next we discuss various results used in the proof.

Theorem 9. [Nak04, VI.3.8] *Let $\pi : Y \rightarrow S$ be a projective, bimeromorphic morphism of analytic spaces, Y smooth and S normal. Let $D \subset Y$ be a smooth, non-exceptional divisor. Then the restriction map*

$$\pi_* \omega_Y^m(mD) \rightarrow \pi_* \omega_D^m \quad \text{is surjective for } m \geq 1. \quad \square$$

This is a special case of [Nak04, VI.3.8] applied with $\Delta = 0$ and $L = K_Y + D$.

Warning. The assumptions of [Nak04, VI.3.8] are a little hard to find. They are outlined 11 pages earlier in [Nak04, VI.2.2]. It talks about varieties, which usually suggest algebraic varieties, but [Nak04, p.231, line 13] explicitly states that the proofs work with analytic spaces; see also [Nak04, p.14]. (The statements of [Nak04] allow for a boundary Δ . However, $K_Y + D + \Delta$ should be \mathbb{Q} -linearly equivalent to a \mathbb{Z} -divisor and $[\Delta] = 0$ is assumed on [Nak04, p.231]. There seem to be few cases when both of these can be satisfied.)

Lemma 10. [Nak04, VI.5.2] *Let $g : X \rightarrow S$ be a flat morphism of complex analytic spaces. Assume that X_0 has a canonical singularity at a point $x \in X_0$. Then there is an open neighborhood $x \in X^* \subset X$ such that*

(10.1) $K_{X^*/S}$ is \mathbb{Q} -Cartier, and

(10.2) all fibers of $g|_{X^*} : X^* \rightarrow S$ have canonical singularities.

Proof. (1) is proved in [Kol83, 3.2.2]; see also [Kol95, 12.7] and [Kol21a, 2.8]. The harder part is (2), proved in [Nak04, VI.5.2]. \square

Remark 10.3. If S is smooth then X^* has canonical singularities. By induction, it is enough to prove this when $S = \mathbb{D}$. Then the proof of [Nak04, VI.5.2] shows that even the pair $(X^*, X_0 \cap X^*)$ has canonical singularities.

Lemma 11. *Let $\pi : X \rightarrow S$ be a proper morphism of normal, complex spaces. Let L be a line bundle on X and $W \subset S$ a Zariski closed subset. Assume that $\mathcal{O}_W \otimes_S (\bigoplus_{r \geq 0} \pi_* L^r)$ is a finitely generated sheaf of \mathcal{O}_W -algebras.*

Then every compact subset $W' \subset W$ has an open neighborhood $W' \subset U \subset S$ such that $\mathcal{O}_U \otimes_S (\bigoplus_{r \geq 0} \pi_ L^r)$ is a finitely generated sheaf of \mathcal{O}_U -algebras.*

Proof. The question is local on S , so we may as well assume that W is a single point. We may also assume that $\mathcal{O}_W \otimes_S (\bigoplus_{r \geq 0} \pi_* L^r)$ is generated by $\pi_* L$. After suitable blow-ups we are reduced to the case when the base locus of L is a Cartier divisor D . By passing to a smaller neighborhood, we may assume that every irreducible component of D intersects $\pi^{-1}(W)$. By the Nakayama lemma, the base locus of L^r is a subscheme of rD that agrees with it along $rD \cap \pi^{-1}(W)$. Thus rD is the the base locus of L^r for every r . We may thus replace L by $L(-D)$ and assume that L is globally generated.

Thus L defines a morphism $X \rightarrow \text{Proj}_S \bigoplus_{r \geq 0} \pi_* L^r$, let $\pi' : X' \rightarrow S$ be its Stein factorization. Then L is the pull-back of a line bundle L' that is ample on $X' \rightarrow S$ and $\bigoplus_{r \geq 0} \pi_* L^r = \bigoplus_{r \geq 0} \pi'_* L'^r$ is finitely generated. \square

12 (Proof of Theorem 2 for general S). As in Paragraph 8, it is enough to prove the claim for one MMP step, so let $\phi_0 : X_0 \rightarrow Z_0$ be an extremal contraction and $\phi : X \rightarrow Z$ its extension. As before, Z is flat over S with central fiber Z_0 .

We claim that, for every r ,

$$(12.1) \quad \omega_{Z/S}^{[r]} \text{ is flat over } S, \text{ and}$$

$$(12.2) \quad \omega_{Z/S}^{[r]}|_{Z_0} \cong \omega_{Z_0}^{[r]}.$$

In the language of [Kol08] or [Kol21a, Chap.9], this says that $\omega_{Z/S}^{[r]}$ is its own relative hull. There is an issue with precise references here, since [Kol21a, Chap.9] is written in the algebraic setting. However, [Kol21a, 9.72] considers hulls over the spectra of complete local rings. Thus we get that there is a unique largest subscheme $\hat{S}^u \subset \hat{S}$ (the formal completion of S at 0) such that (1-2) hold after base change to \hat{S}^u .

By Paragraph 8 we know that (1-2) hold after base change to any disc $\mathbb{D} \rightarrow S$, which implies that $\hat{S}^u = \hat{S}$. That is, (1-2) hold for \hat{S} . Since both properties are invariant under formal completion, we are done.

Now we know that

$$X^+ := \text{Proj}_Z \bigoplus_{r \geq 0} \omega_{Z/S}^{[r]}, \quad (12.3)$$

is flat over S and its central fiber is X_0^+ . Thus it gives the required extension of the flip of $X_0 \rightarrow Z_0$. \square

3. PROOF OF THEOREM 1

We give a proof using only the $S = \mathbb{D}$ case of Theorem 2.

13. Fix $r \geq 2$ and assume first that $S = \mathbb{D}$. Since X_0 is of general type, a suitable MMP for X_0 ends with a minimal model X_0^m , and, by Theorem 2, $X_0 \dashrightarrow X_0^m$ extends to a fiberwise bimeromorphic map $X \dashrightarrow X^m$. We have $g^m : X^m \rightarrow \mathbb{D}$. (From now on, we replace \mathbb{D} with a smaller disc whenever necessary.) Since $K_{X_0^m}$ is nef and big, the higher cohomology groups of $\omega_{X_0^m}^{[r]}$ vanish for $r \geq 2$. Thus $s \mapsto H^0(X_s^m, \omega_{X_s^m}^{[r]})$ is locally constant at the origin.

By (10.2) X_s and X_s^m both have canonical singularities, so they have the same plurigenera. Therefore $s \mapsto H^0(X_s, \omega_{X_s}^{[r]})$ is also locally constant at the origin. By Serre duality, the deformation invariance of $H^0(X_s, \omega_{X_s})$ is equivalent to the deformation invariance of $H^n(X_s, \mathcal{O}_{X_s})$. In fact, all the $H^i(X_s, \mathcal{O}_{X_s})$ are deformation invariant. For this the key idea is in [DJ74], which treats deformations of varieties with normal crossing singularities. The method works for varieties with canonical (even log canonical) singularities; this is worked out in [Kol21a, Sec.2.5].

For arbitrary S , note that $s \mapsto H^0(X_s, \omega_{X_s}^{[r]})$ is a constructible function on S , thus locally constant at $0 \in S$ iff it is locally constant on every disc $\mathbb{D} \rightarrow S$. Once $s \mapsto H^0(X_s, \omega_{X_s}^{[r]})$ is locally constant at $0 \in S$, Grauert's theorem guarantees that $g_*\omega_{X/S}^{[r]}$ is locally free at $0 \in S$ and commutes with base changes.

In principle it could happen that for each r we need a smaller and smaller neighborhood, but the same neighborhood works for all $r \geq 1$ by Lemma 11.

Thus the plurigenera are deformation invariant, all fibers are of general type, and g is fiberwise bimeromorphic to the relative canonical model

$$X^c := \text{Proj}_S \bigoplus_{r \geq 0} g_*^m \omega_{X^m/S}^{[r]},$$

which is projective over S . The projectivity of all fibers now follows from the more precise Theorem 14. \square

The following is a special case of [Kol21b, Thm.2].

Theorem 14. *Let $g : X \rightarrow S$ be a flat, proper morphism of complex analytic spaces whose fibers have rational singularities only. Assume that g is bimeromorphic to a projective morphism $g^p : X^p \rightarrow S$, and X_0 is projective for some $0 \in S$.*

Then there is a Zariski open neighborhood $0 \in U \subset S$ and a locally closed, Zariski stratification $S = \cup_i S_i$ such that each

$$g|_{X_i} : X_i := g^{-1}(S_i) \rightarrow S_i \quad \text{is projective.} \quad \square$$

4. OPEN PROBLEMS

For deformations of varieties of general type, the following should be true.

Conjecture 15. *Let X_0 be a projective variety of general type with canonical singularities. Then its universal deformation space $\text{Def}(X_0)$ has a representative $\mathbf{X} \rightarrow S$ where S is a scheme of finite type and \mathbf{X} is an algebraic space.*

For varieties of non-general type, the following is likely true [RT20, 1.10].

Conjecture 16. *Let $g : X \rightarrow S$ be a flat, proper morphism of complex analytic spaces. Assume that X_0 is projective and with canonical singularities. Then the plurigenera $h^0(X_s, \omega_{X_s}^{[r]})$ are independent of $s \in S$ for every r , in some neighborhood of $0 \in S$.*

Comments. One can try to follow the proof of Theorem 1. If X_0 is not of general type, we run into several difficulties in relative dimensions ≥ 4 . MMP is not known to terminate and even if we get a minimal model, abundance is not known. If we have a good minimal model, then we run into the following.

Conjecture 17. *Let X be a complex space and $g : X \rightarrow S$ a flat, proper morphism. Assume that X_0 is projective, has canonical singularities and $\omega_{X_0}^{[r]}$ is globally generated for some $r > 0$. Then the plurigenera are locally constant at $0 \in S$.*

Comments. More generally, the same may hold if X_0 is Moishezon (that is, bimeromorphic to a projective variety), Kähler or in Fujiki's class \mathcal{C} (that is, bimeromorphic to a compact Kähler manifold; see [Uen83] for an introduction).

A positive answer is known in many cases. [KM92, 12.5.5] proves this if X_0 is projective and has terminal singularities. However, the proof works for the Moishezon and class \mathcal{C} cases as well.

The projective case with canonical singularities is discussed in [Nak04, VI.3.15–16]; I believe that the projectivity assumption is very much built into the proof given there; see [Nak04, VI.3.11].

Acknowledgments. I thank D. Abramovich, F. Campana, J.-P. Demailly, O. Fujino, A. Landesman, S. Mori, T. Murayama, V. Tosatti, D. Villalobos-Paz, C. Voisin and C. Xu for helpful comments and corrections. Partial financial support was provided by the NSF under grant number DMS-1901855.

REFERENCES

- [AK19] Florin Ambro and János Kollár, *Minimal models of semi-log-canonical pairs*, Moduli of K-stable Varieties, Springer INdAM Ser., vol. 31, Springer, Cham, 2019, pp. 1–13.
- [Ati58] M. F. Atiyah, *On analytic surfaces with double points*, Proc. Roy. Soc. London. Ser. A **247** (1958), 237–244. MR MR0095974 (20 #2472)
- [BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, *Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc. **23** (2010), no. 2, 405–468.
- [Bin87] Jürgen Bingener, *Lokale Modulräume in den analytischen Geometrie I–II*, Aspects of math., vol. 302, Vieweg, Braunschweig, 1987.
- [DJ74] Philippe Dubois and Pierre Jarraud, *Une propriété de commutation au changement de base des images directes supérieures du faisceau structural*, C. R. Acad. Sci. Paris Sér. A **279** (1974), 745–747. MR 0376678 (51 #12853)
- [Iit69] Shigeru Iitaka, *Deformations of compact complex surfaces I*, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 267–272. MR MR0260746 (41 #5369)
- [KLS21] Matt Kerr, Radu Laza, and Morihiko Saito, *Deformation of rational singularities and Hodge structure*, 2021.
- [KM92] János Kollár and Shigefumi Mori, *Classification of three-dimensional flips*, J. Amer. Math. Soc. **5** (1992), no. 3, 533–703. MR 1149195 (93i:14015)
- [KM98] ———, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
- [Kol83] János Kollár, *Toward moduli of singular varieties*, Ph.D. thesis, 1983.
- [Kol95] ———, *Flatness criteria*, J. Algebra **175** (1995), no. 2, 715–727. MR 1339664 (96j:14010)
- [Kol08] ———, *Hulls and husks*, arXiv:0805.0576, 2008.
- [Kol21a] ———, *Moduli of varieties of general type*, (book in preparation, <https://web.math.princeton.edu/~kollar/FromMyHomePage/modbook.pdf>), 2021.
- [Kol21b] ———, *Seshadri's criterion and openness of projectivity*, math.AG: 2105.06242, 2021.

- [KS58] K. Kodaira and D. C. Spencer, *On deformations of complex analytic structures. I, II*, Ann. of Math. (2) **67** (1958), 328–466. MR MR0112154 (22 \#3009)
- [Moi66] Boris Moishezon, *On n -dimensional compact varieties with n algebraically independent meromorphic functions, I, II and III (in Russian)*, Izv. Akad. Nauk SSSR Ser. Mat. **30** (1966), 133–174, 345–386, 621–656.
- [MR71] A. Markoe and H. Rossi, *Families of strongly pseudoconvex manifolds*, Symposium on Several Complex Variables (Park City, Utah, 1970), Springer, Berlin, 1971, pp. 182–207. Lecture Notes in Math., Vol. 184. MR 0304703 (46 \#3835)
- [Nak04] Noboru Nakayama, *Zariski-decomposition and abundance*, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004.
- [RT20] Sheng Rao and I-Hsun Tsai, *Invariance of plurigenera and Chow-type lemma*, math.AG: 2011.03306, 2020.
- [Siu98] Yum-Tong Siu, *Invariance of plurigenera*, Invent. Math. **134** (1998), no. 3, 661–673. MR 1660941 (99i:32035)
- [Uen83] Kenji Ueno, *Introduction to the theory of compact complex spaces in the class \mathcal{C}* , Algebraic Varieties and Analytic Varieties, Advanced Studies in Pure Mathematics, vol. 1, 1983, pp. 219–230.

Princeton University, Princeton NJ 08544-1000,
 kollar@math.princeton.edu