DEFORMATIONS OF VARIETIES OF GENERAL TYPE

JANOS KOLLAR

ABSTRACT. We prove that small deformations of a projective variety of general
type are also projective varieties of general type, with the same plurigenera.

Our aim is to prove the following.

Theorem 1. Let g : X — S be a flat, proper morphism of complex analytic spaces.
Fiz a point 0 € S and assume that the fiber Xy is projective, of general type, and
with canonical singularities. Then there is an open neighborhood 0 € U C S such
that

(1.1) the plurigenera of Xs are independent of s € U for every r, and
(1.2) the fibers X, are projective for every s € U.

Here the rth plurigenus of X is ho(}/'s7w§'/s), where Y; — X is any resolution
of X;. By [Nak04, VI.5.2] (see also (10.2)) X, has canonical singularities, so this

is the same as hO(XS,wEZ]S), where w[)z] denotes the double dual of the rth tensor
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Comments 1.3. Many cases of this have been proved, but I believe that the
general result is new, even for Xy smooth and S a disc.

For smooth surfaces proofs are given in [KS58, Iit69], and for 3-folds with ter-
minal singularities in [KM92, 12.5.1]. If g is assumed projective, then of course
all fibers are projective, and deformation invariance of plurigenera was proved by
[Siu98] for X, smooth, and by [Nak04, Chap.VI] when X, has canonical singu-
larities. However, frequently g is not projective; see Example 4 for some smooth,
2-dimensional examples. Many projective varieties have deformations that are not
projective, not even algebraic in any sense; K3 and elliptic surfaces furnish the best
known examples.

In Example 3 we construct a deformation of a projective surface with a quo-
tient singularity and ample canonical class, whose general fibers are non-algebraic,
smooth surfaces of Kodaira dimension 0. Thus canonical is likely the largest class
of singularities where Theorem 1 holds. See also Example 5 for surfaces with simple
elliptic singularities.

The projectivity of X is essential in our proof, but (1.1) should hold whenever
Xy is a proper algebraic space of general type with canonical singularities. Such
results are proved in [RT20], provided one assumes that either Xy is smooth and
all fibers are Moishezon, or almost all fibers are of general type.

Our main technical result says that the Minimal Model Program works for g :
X — 5. For dim Xy = 2 and X smooth, this goes back to [KS58]. For dim X, = 3
and terminal singularities, this was proved in [KM92, 12.4.4]. The next result
extends these to all dimensions.
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Theorem 2. Let g: X — S be a flat, proper morphism of reduced, complex analytic
spaces. Fix a point 0 € S and assume that Xy is projective and has canonical
singularities. Then every sequence of MMP-steps Xo = X --+ X --+ X2 —=» - -+
(see Definition 7) extends to a sequence of MMP-steps

X=X X' X% ..
over some open neighborhood 0 € U C S.

The proof is given in Paragraph 8 when S is a disc D, and in Paragraph 12
in general. The assumption that Xy has canonical singularities is necessary, as
shown by semistable 3-fold flips [KM92]. Extending MMP steps from divisors with
canonical singularities is also studied in [AK19].

If Xy is of general type, then a suitable MMP for X terminates with a minimal
model X" by [BCHM10], which then extends to ¢™ : X} — U by Theorem 2. For
minimal models of varieties of general type, deformation invariance of plurigenera
is easy, leading to a proof of (1.1) in Paragraph 13. This also implies that all fibers
are bimeromorphic to a projective variety.

If Xj is smooth, then it is Kahler, and the X are also Kéhler by [KS58]. A Kéahler
variety that is bimeromorphic to an algebraic variety is projective by [Moi66].

However, there are families of surfaces with simple elliptic singularities g : X — S
such that Kx, is ample, all fibers are bimeromorphic to an algebraic surface, yet the
projective fibers correspond to a countable, dense set on the base; see Example 5.

We use Theorem 14—taken from [Kol21b, Thm.2]—to obtain the projectivity of
the fibers and complete the proof of Theorem 1 in Paragraph 13.

1. EXAMPLES AND CONSEQUENCES

The first example shows that Theorem 1 fails very badly for surfaces with non-
canonical quotient singularities.

Example 3. We give an example of a flat, proper morphism of complex analytic
spaces g : X — D, such that

(3.1) Xg is a projective surface with a quotient singularity and ample canonical
class, yet

(3.2) X, is smooth, non-algebraic, and of Kodaira dimension 0 for very general

s €D.

Let us start with a K3 surface Yy C P? with a hyperplane section Cy C Yy that
is a rational curve with 3 nodes. We blow up the nodes Y; — ¥; and contract the
birational transform of Cy to get a surface 7o : Yy — Xo. Let Eq, Eq, E3 C X be
the images of the 3 exceptional curves of the blow-up.

By explicit computation, we get a quotient singularity of type C?/%(1,1), (E?) =
—% and (E; - E;) = % for i # j. Furthermore, F := F; + Es + F35 ~ Kx,
and it is ample by the Nakai-Moishezon criterion. (Note that (E - E;) = 1 and
Xo \ E= Y() \ C() is aﬂine.)

Take now a deformation Y — ID of Y;; whose very general fibers are non-algebraic
K3 surfaces that contain no proper curves. Take 3 sections B; C Y that pass
through the 3 nodes of Cjy. Blow them up and then contract the birational transform
of Cy; cf. [MR71]. In general [MR71] says that the normalization of the resulting
central fiber is Xy, but in our case the central fiber is isomorphic to Xy since
R! (T())*OYOI = 0. The contraction is an isomorphism on very general fibers since



DEFORMATIONS OF VARIETIES OF GENERAL TYPE 3

there are no curves to contract. We get g : X — D whose central fiber is Xy and
all other fibers are K3 surfaces blown up at 3 points.

In general, it is very unclear which complex varieties occur as deformations of
projective varieties; see [KLS21] for some of their properties.

Example 4. [Ati58] Let Sy := (¢ = 0) C P2 and S; := (f = 0) C P2 be surfaces of
the same degree. Assume that Sy has only ordinary nodes, S; is smooth, Pic(S7) is
generated by the restriction of Ops(1) and S7 does not contain any of the singular
points of Sy. Fix m > 2 and consider

X = (g—t™f=0) CPL x Al

The singularities are locally analytically of the form zy + 22 —t™ = 0. Thus X,,
is locally analytically factorial if m is odd. If m is even then X, is factorial since
the general fiber has Picard number 1, but it is not locally analytically factorial;
blowing up (z = z — tm/2 = 0) gives a small resolution. Thus we get that

(4.1) X,, is bimeromorphic to a proper, smooth family of projective surfaces iff
m is even, but

(4.2) X,, is not bimeromorphic to a smooth, projective family of surfaces.

Example 5. Let £ C P? be a smooth cubic and take r general lines L; C P2. To
get Sp, blow up all singular points of E + > L; and then contract the birational
transform of F 4+ > L;. A somewhat tedious computation shows that Kg, is ample
for r > 6. It has 1 simple elliptic singularity (coming from E) and r quotient
singularities (coming from the L;).

Deform this example by moving the 3r points E N Y L; into general position
pi,...,ps" € E and the points L; N L; into general position on P2. Blow up these
points and then contract the birational transform of E to get the surfaces S;. It
has only 1 simple elliptic singularity (coming from E).

We get a flat family of surfaces with central fiber Sy and general fibers S;. Let
L denote the restriction of the line class on P? to E.

It is easy to see that such a surface S; is non-projective if the pi and L are
linearly independent in Pic(E). Thus S; is not projective for very general ¢ and has
Kodaira dimension 0.

The next result is the scheme-theoretic version of Theorem 1. Ideally it should
be proved by the same argument. However, some of the references we use, especially
[Nak04], are worked out for analytic spaces, not for general schemes. So for now
we proceed in a somewhat roundabout way.

Corollary 6. Let S be a noetherian, excellent scheme over a field of characteristic
0. Let g : X — S be a flat, proper algebraic space. Fiz a point 0 € S and assume
that Xo is projective, of general type and with canonical singularities. Then there
is an open neighborhood 0 € S° C S such that, for every s € S°,

(6.1) the plurigenera hO(XS,wEZ]S) are independent of s for every r, and
(6.2) the fiber X is projective.

Proof. A proper algebraic space Y over a field k is projective iff Y is projective
over K for some field extension K D k. Noetherian induction then shows that it is
enough to prove the claims for the generic points of the completions (at the point
0 € S) of irreducible subvarieties 0 € T' C S. Since the defining equations of T
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and of X xg T involve only countably many coefficients, we may assume that the
residue field is C.

Consider now the local universal deformation space Def(Xy) of X¢ in the complex
analytic category; see [Bin87]. It is the germ of a complex analytic space and there is
a complex analytic universal family G : X — Def(Xj). Since a deformation over an
Artin sche/m\e is automatically complex analytic, we see that the formal completion
G : X — Def (Xo) is the universal formal deformation of Xy. In particular, X xg T
is the pull-back of G : X — ISe\f(XO) by a morphism 7" — ]5e\f(X0). Thus Theorem 1
implies both claims. O

2. RELATIVE MMP
See [KMO8] for a general introduction to the minimal model program.

Definition 7 (MMP-steps and their extensions). Let X — S be a proper morphism
of complex analytic spaces with irreducible fibers. Assume that K, g is Q-Cartier.
By an MMP-step for X over S we mean a diagram

x -5 oxt

N ot (7.1)
Z

where all morphisms are bimeromorphic and proper over S, —Kx/g is ample over
Z, Kx+ g is ample over Z and ¢7 is small (that is, without exceptional divisors).
If X is Q-factorial and the relative Picard number of X/Z is 1, then there are 2
possible MMP steps:
e Divisorial: ¢ contracts a single divisor and ¢ is the identity.
e Flipping: both ¢ and ¢+ are small.

However, in general there is a more complicated possibility:
e Mixed: ¢ contracts (possibly several) divisors and ¢* is small.
For our applications we only need to know that, by [KM98, 3.52], Xt exists iff
®r>0 w[ZT}S (which is equal to @rzo(b*w;]/s) is a finitely generated sheaf of Oz-
algebras, and then
X+ = Proj; @0 wy/g- (7.2)
We index a sequence of MMP-steps by setting X" := X and X+ := (X%)*.

Fix a point s € S and let X denote the fiber over S. We say that a sequence of
MMP-steps (over S) X9 --» X1 ——» X2 ——» ... extends a sequence of MMP-steps
(over s) X0 —-» X! --» X2 ——» ... if, for every i,

Xi NN Xt is the fiber X _ﬂ‘l" Xt
SN O eversor N @ (T

S
8 (Proof of Theorem 2 for S = D, the disc). Since MMP-steps preserve canonical
singularities, by induction it is enough to prove the claim for one MMP step. So
we drop the upper index 7 and identify Kx,p with Kx.
Let ¢o : Xo — Zp be an extremal contraction. By [MRT71]}, it extends to
a contraction ¢ : X — Z, where Z is flat over D with central fiber Z; since

IThis should be changed to [KM92, 11.4]
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R (¢0)+Ox, = 0. Note that Ky is Q-Cartier by (10.1), and ¢ is projective since
—Kx is ¢g-ample.

If ¢ is a divisorial contraction, then Kz, is Q-Cartier, and so is Kz by (10.1).
Thus X+ = Z.

If ¢ is a flipping or mixed contraction, then K is not Q-Cartier. By (7.2),

X+ =Proj, ®ys0 w, (8.1)

provided @,>¢ w[ZT]

Wz with wZ/D.)
Functoriality works better if we twist by the line bundle Oz(Z;) and write it as

is a finitely generated sheaf of Oz-algebras. (We have identified

Xt = Proj, Br>0 w[ZT] (rZy).

Let 7 : Y — X be a projective resolution of X (that is, 7 is projective) such that
Yy, the bimeromorphic transform of X, is also smooth. Set g := ¢ o 7.
The hardest part of the proof is Nakayama’s theorem (9) which gives a surjection

®r>09xwy (1Y) = ©r>0(g0)<wy, - (8.2)

Since Xo has canonical singularities T.wy, = w@o, and hence g.wy, = w[ZTi We also

have a natural inclusion g.w¥ (rYp) — w[Zr] (rZy). Thus pushing forward (8.2) we

get, a surjection

Br20g§ (1Y0) = Dr0 Wy (rZg) — Brzo wh. (8.3)

[r]

Note that ©,>0 wy, is a finitely generated sheaf of Oz,-algebras, defining the
MMP-step of Xg — Zj.

Now (11) says that @,>¢ w[ZT} (rZy) is also a finitely generated sheaf of Ogz-
algebras, at least in some neighborhood of the compact Zj. ([l

Next we discuss various results used in the proof.

Theorem 9. [Nak04, VI.3.8] Let w : Y — S be a projective, bimeromorphic mor-
phism of analytic spaces, Y smooth and S normal. Let D C'Y be a smooth, non-
exceptional divisor. Then the restriction map

mwy (mD) = m.w} s surjective for m > 1. O

This is a special case of [Nak04, VI.3.8] applied with A =0 and L = Ky + D.

Warning. The assumptions of [Nak04, VI.3.8] are a little hard to find. They
are outlined 11 pages earlier in [Nak04, VI.2.2]. It talks about varieties, which
usually suggest algebraic varieties, but [Nak04, p.231, line 13] explicitly states that
the proofs work with analytic spaces; see also [Nak04, p.14]. (The statements of
[Nak04] allow for a boundary A. However, Ky + D + A should be Q-linearly
equivalent to a Z-divisor and |A] = 0 is assumed on [Nak04, p.231]. There seem
to be few cases when both of these can be satisfied.)

Lemma 10. [Nak04, VI.5.2] Let g : X — S be a flat morphism of complex analytic
spaces. Assume that Xo has a canonical singularity at a point x € Xo. Then there
is an open neighborhood x € X* C X such that

. x+/g 18 Q-Cartier, an
10.1) Kx- ;g is Q-Carti d
(10.2) all fibers of g|x~ : X* — S have canonical singularities.
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Proof. (1) is proved in [Kol83, 3.2.2]; see also [Kol95, 12.7] and [Kol21a, 2.8]. The
harder part is (2), proved in [Nak04, VI.5.2]. O

Remark 10.3. If S is smooth then X™* has canonical singularities. By induction,
it is enough to prove this when S = . Then the proof of [Nak04, VI.5.2] shows
that even the pair (X*, Xo N X*) has canonical singularities.

Lemma 11. Let m : X — S be a proper morphism of normal, complex spaces.
Let L be a line bundle on X and W C S a Zariski closed subset. Assume that
Ow ®s (@TZQ’/T*LT) is a finitely generated sheaf of Oy -algebras.

Then every compact subset W' C W has an open neighborhood W' c U C S
such that Oy ®g (@TZOW*L") is a finitely generated sheaf of Oy -algebras.

Proof. The question is local on S, so we may as well assume that W is a single point.
We may also assume that Oy ®g (@rzmr*lf) is generated by 7, L. After suitable
blow-ups we are reduced to the case when the base locus of L is a Cartier divisor
D. By passing to a smaller neighborhood, we may assume that every irreducible
component of D intersects 7~!(WW). By the Nakayama lemma, the base locus of L"
is a subscheme of rD that agrees with it along rD N7~ (W). Thus rD is the the
base locus of L" for every . We may thus replace L by L(—D) and assume that L
is globally generated.

Thus L defines a morphism X — Projg @,>omL", let 7’ : X’ — S be its Stein
factorization. Then L is the pull-back of a line bundle L’ that is ample on X’ — §
and ®,>om.L" = @,>om, L' is finitely generated. O

2 (Proof of Theorem 2 for general S). As in Paragraph 8, it is enough to prove
the claim for one MMP step, so let ¢g : Xg — Zy be an extremal contraction and
¢ : X — Z its extension. As before, Z is flat over S with central fiber Zj.

We claim that, for every r,

(12.1) w[ZT}S is flat over S, and
[r]

(12.2) wh)glz, = wy.
In the language of [Kol08] or [Kol21a, Chap.9], this says that w[ZT} g is its own relative
hull. There is an issue with precise references here, since [Kol21a, Chap.9] is written
in the algebraic setting. However, [Kol21a, 9.72] considers hulls over the spectra of
complete local rings. Thus we get that there is a unique largest subscheme Suc S
(the formal completion of S at 0) such that (1-2) hold after base change to S*.
By Paragraph 8 we know that (1-2) hold after base change to any disc D — S,
which implies that $* = §. That is, (1-2) hold for S. Since both properties are

invariant under formal completion, we are done.
Now we know that

X* 1= Proj; &,0 wy/g, (12.3)
is flat over S and its central fiber is X . Thus it gives the required extension of

the flip of Xo — Zj. O

3. PROOF OF THEOREM 1

We give a proof using only the S = D case of Theorem 2.
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13. Fix r > 2 and assume first that S = ID. Since X is of general type, a suitable
MMP for Xy ends with a minimal model X§*, and, by Theorem 2, Xy --+» X"
extends to a fiberwise bimeromorphic map X --» X™. We have g™ : X™ — D.

(From now on, we replace D with a smaller disc whenever necessary.) Since K xm

is nef and big, the higher cohomology groups of wgg vanish for » > 2. Thus

s— H O(Xén,wgz]?) is locally constant at the origin.

By (10.2) X, and X both have canonical singularities, so they have the same
plurigenera. Therefore s — H°(Xj, wgz]) is also locally constant at the origin. By
Serre duality, the deformation invariance of H%(X,,wx,) is equivalent to the defor-
mation invariance of H" (X, Ox.). In fact, all the H'(X,,Ox,) are deformation
invariant. For this the key idea is in [DJ74], which treats deformations of varieties
with normal crossing singularities. The method works for varieties with canonical
(even log canonical) singularities; this is worked out in [Kol21a, Sec.2.5].

For arbitrary S, note that s — H O(Xs,wgz]s) is a constructible function on S,
thus locally constant at 0 € S iff it is locally constant on every disc D — S. Once

s— H O(Xs,wg?]s) is locally constant at 0 € S, Grauert’s theorem guarantees that

g*wg@/ g is locally free at 0 € S and commutes with base changes.

In principle it could happen that for each r we need a smaller and smaller
neighborhood, but the same neighborhood works for all » > 1 by Lemma 11.

Thus the plurigenera are deformation invariant, all fibers are of general type,
and g is fiberwise bimeromorphic to the relative canonical model

X°¢:= Projg @T.Zoginwgz]m/s,
which is projective over S. The projectivity of all fibers now follows from the more
precise Theorem 14. O
The following is a special case of [Kol21b, Thm.2].

Theorem 14. Let g : X — S be a flat, proper morphism of complex analytic spaces
whose fibers have rational singularities only. Assume that g is bimeromorphic to a
projective morphism gP : XP — S, and X is projective for some 0 € S.

Then there is a Zariski open neighborhood 0 € U C S and a locally closed, Zariski
stratification S = U;S; such that each

glx, : Xi =g '(S:) = S; is projective. O

4. OPEN PROBLEMS
For deformations of varieties of general type, the following should be true.

Conjecture 15. Let X be a projective variety of general type with canonical singu-
larities. Then its universal deformation space Def(Xy) has a representative X — S
where S is a scheme of finite type and X is an algebraic space.

For varieties of non-general type, the following is likely true [RT20, 1.10].

Conjecture 16. Let g : X — S be a flat, proper morphism of complex analytic
spaces. Assume that Xg is projective and with canonical singularities. Then the
[r]

plurigenera hO(XS,wXS) are independent of s € S for every r, in some neighborhood

of 0 € S.
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Comments. One can try to follow the proof of Theorem 1. If X is not of general
type, we run into several difficulties in relative dimensions > 4. MMP is not know
to terminate and even if we get a minimal model, abundance is not known. If we
have a good minimal model, then we run into the following.

Conjecture 17. Let X be a complex space and g : X — S a flat, proper morphism.
Assume that X is projective, has canonical singularities and wgz]o s globally gen-

erated for some r > 0. Then the plurigenera are locally constant at 0 € S.

Comments. More generally, the same may hold if X, is Moishezon (that is,
bimeromorphic to a projective variety), Kéahler or in Fujiki’s class C (that is, bimero-
morphic to a compact Kéahler manifold; see [Uen83] for an introduction).

A positive answer is known in many cases. [KM92, 12.5.5] proves this if X is
projective and has terminal singularities. However, the proof works for the Moishe-
zon and class C cases as well.

The projective case with canonical singularities is discussed in [Nak04, VI.3.15—
16]; T believe that the projectivity assumption is very much built into the proof
given there; see [Nak04, VI.3.11].
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