
DEFORMATIONS OF VARIETIES OF GENERAL TYPE

JÁNOS KOLLÁR

Abstract. We prove that small deformations of a projective variety of general

type are also projective varieties of general type, with the same plurigenera.

Our aim is to prove the following.

Theorem 1. Let g : X → S be a flat, proper morphism of complex analytic spaces.
Fix a point 0 ∈ S and assume that the fiber X0 is projective, of general type, and
with canonical singularities. Then there is an open neighborhood 0 ∈ U ⊂ S such
that

(1.1) the plurigenera of Xs are independent of s ∈ U for every r, and

(1.2) the fibers Xs are projective for every s ∈ U .

Here the rth plurigenus of Xs is h0(Ys, ω
r
Ys

), where Ys → Xs is any resolution
of Xs. By [Nak04, VI.5.2] (see also (10.2)) Xs has canonical singularities, so this

is the same as h0(Xs, ω
[r]
Xs

), where ω
[r]
Xs

denotes the double dual of the rth tensor

power ω⊗rXs
.

Comments 1.3. Many cases of this have been proved, but I believe that the
general result is new, even for X0 smooth and S a disc.

For smooth surfaces proofs are given in [KS58, Iit69], and for 3-folds with ter-
minal singularities in [KM92, 12.5.1]. If g is assumed projective, then of course
all fibers are projective, and deformation invariance of plurigenera was proved by
[Siu98] for X0 smooth, and by [Nak04, Chap.VI] when X0 has canonical singu-
larities. However, frequently g is not projective; see Example 4 for some smooth,
2-dimensional examples. Many projective varieties have deformations that are not
projective, not even algebraic in any sense; K3 and elliptic surfaces furnish the best
known examples.

In Example 3 we construct a deformation of a projective surface with a quo-
tient singularity and ample canonical class, whose general fibers are non-algebraic,
smooth surfaces of Kodaira dimension 0. Thus canonical is likely the largest class
of singularities where Theorem 1 holds. See also Example 5 for surfaces with simple
elliptic singularities.

The projectivity of X0 is essential in our proof, but (1.1) should hold whenever
X0 is a proper algebraic space of general type with canonical singularities. Such
results are proved in [RT20], provided one assumes that either X0 is smooth and
all fibers are Moishezon, or almost all fibers are of general type.

Our main technical result says that the Minimal Model Program works for g :
X → S. For dimX0 = 2 and X0 smooth, this goes back to [KS58]. For dimX0 = 3
and terminal singularities, this was proved in [KM92, 12.4.4]. The next result
extends these to all dimensions.
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Theorem 2. Let g : X → S be a flat, proper morphism of reduced, complex analytic
spaces. Fix a point 0 ∈ S and assume that X0 is projective and has canonical
singularities. Then every sequence of MMP-steps X0 = X0

0 99K X
1
0 99K X

2
0 99K · · ·

(see Definition 7) extends to a sequence of MMP-steps

X = X0 99K X1 99K X2 99K · · · ,
over some open neighborhood 0 ∈ U ⊂ S.

The proof is given in Paragraph 8 when S is a disc D, and in Paragraph 12
in general. The assumption that X0 has canonical singularities is necessary, as
shown by semistable 3-fold flips [KM92]. Extending MMP steps from divisors with
canonical singularities is also studied in [AK19].

If X0 is of general type, then a suitable MMP for X0 terminates with a minimal
model Xm

0 by [BCHM10], which then extends to gm : Xm
U → U by Theorem 2. For

minimal models of varieties of general type, deformation invariance of plurigenera
is easy, leading to a proof of (1.1) in Paragraph 13. This also implies that all fibers
are bimeromorphic to a projective variety.

IfX0 is smooth, then it is Kähler, and the Xs are also Kähler by [KS58]. A Kähler
variety that is bimeromorphic to an algebraic variety is projective by [Moi66].

However, there are families of surfaces with simple elliptic singularities g : X → S
such that KX0

is ample, all fibers are bimeromorphic to an algebraic surface, yet the
projective fibers correspond to a countable, dense set on the base; see Example 5.

We use Theorem 14—taken from [Kol21b, Thm.2]—to obtain the projectivity of
the fibers and complete the proof of Theorem 1 in Paragraph 13.

1. Examples and consequences

The first example shows that Theorem 1 fails very badly for surfaces with non-
canonical quotient singularities.

Example 3. We give an example of a flat, proper morphism of complex analytic
spaces g : X → D, such that

(3.1) X0 is a projective surface with a quotient singularity and ample canonical
class, yet

(3.2) Xs is smooth, non-algebraic, and of Kodaira dimension 0 for very general
s ∈ D.

Let us start with a K3 surface Y0 ⊂ P3 with a hyperplane section C0 ⊂ Y0 that
is a rational curve with 3 nodes. We blow up the nodes Y ′0 → Y0 and contract the
birational transform of C0 to get a surface τ0 : Y ′0 → X0. Let E1, E2, E3 ⊂ X0 be
the images of the 3 exceptional curves of the blow-up.

By explicit computation, we get a quotient singularity of type C2/ 1
8 (1, 1), (E2

i ) =

− 1
2 and (Ei · Ej) = 1

2 for i 6= j. Furthermore, E := E1 + E2 + E3 ∼ KX0

and it is ample by the Nakai-Moishezon criterion. (Note that (E · Ei) = 1
2 and

X0 \ E ∼= Y0 \ C0 is affine.)
Take now a deformation Y → D of Y0 whose very general fibers are non-algebraic

K3 surfaces that contain no proper curves. Take 3 sections Bi ⊂ Y that pass
through the 3 nodes of C0. Blow them up and then contract the birational transform
of C0; cf. [MR71]. In general [MR71] says that the normalization of the resulting
central fiber is X0, but in our case the central fiber is isomorphic to X0 since
R1(τ0)∗OY ′0 = 0. The contraction is an isomorphism on very general fibers since
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there are no curves to contract. We get g : X → D whose central fiber is X0 and
all other fibers are K3 surfaces blown up at 3 points.

In general, it is very unclear which complex varieties occur as deformations of
projective varieties; see [KLS21] for some of their properties.

Example 4. [Ati58] Let S0 := (g = 0) ⊂ P3
x and S1 := (f = 0) ⊂ P3

x be surfaces of
the same degree. Assume that S0 has only ordinary nodes, S1 is smooth, Pic(S1) is
generated by the restriction of OP3(1) and S1 does not contain any of the singular
points of S0. Fix m ≥ 2 and consider

Xm := (g − tmf = 0) ⊂ P1
x × A1

t .

The singularities are locally analytically of the form xy + z2 − tm = 0. Thus Xm

is locally analytically factorial if m is odd. If m is even then Xm is factorial since
the general fiber has Picard number 1, but it is not locally analytically factorial;
blowing up (x = z − tm/2 = 0) gives a small resolution. Thus we get that

(4.1) Xm is bimeromorphic to a proper, smooth family of projective surfaces iff
m is even, but

(4.2) Xm is not bimeromorphic to a smooth, projective family of surfaces.

Example 5. Let E ⊂ P2 be a smooth cubic and take r general lines Li ⊂ P2. To
get S0, blow up all singular points of E +

∑
Li and then contract the birational

transform of E+
∑
Li. A somewhat tedious computation shows that KS0

is ample
for r ≥ 6. It has 1 simple elliptic singularity (coming from E) and r quotient
singularities (coming from the Li).

Deform this example by moving the 3r points E ∩
∑
Li into general position

p1
t , . . . , p

3r
t ∈ E and the points Li ∩ Lj into general position on P2. Blow up these

points and then contract the birational transform of E to get the surfaces St. It
has only 1 simple elliptic singularity (coming from E).

We get a flat family of surfaces with central fiber S0 and general fibers St. Let
L denote the restriction of the line class on P2 to E.

It is easy to see that such a surface St is non-projective if the pit and L are
linearly independent in Pic(E). Thus St is not projective for very general t and has
Kodaira dimension 0.

The next result is the scheme-theoretic version of Theorem 1. Ideally it should
be proved by the same argument. However, some of the references we use, especially
[Nak04], are worked out for analytic spaces, not for general schemes. So for now
we proceed in a somewhat roundabout way.

Corollary 6. Let S be a noetherian, excellent scheme over a field of characteristic
0. Let g : X → S be a flat, proper algebraic space. Fix a point 0 ∈ S and assume
that X0 is projective, of general type and with canonical singularities. Then there
is an open neighborhood 0 ∈ S◦ ⊂ S such that, for every s ∈ S◦,

(6.1) the plurigenera h0(Xs, ω
[r]
Xs

) are independent of s for every r, and

(6.2) the fiber Xs is projective.

Proof. A proper algebraic space Y over a field k is projective iff YK is projective
over K for some field extension K ⊃ k. Noetherian induction then shows that it is
enough to prove the claims for the generic points of the completions (at the point

0 ∈ S) of irreducible subvarieties 0 ∈ T ⊂ S. Since the defining equations of T̂
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and of X ×S T̂ involve only countably many coefficients, we may assume that the
residue field is C.

Consider now the local universal deformation space Def(X0) ofX0 in the complex
analytic category; see [Bin87]. It is the germ of a complex analytic space and there is
a complex analytic universal family G : X→ Def(X0). Since a deformation over an
Artin scheme is automatically complex analytic, we see that the formal completion

Ĝ : X̂→ D̂ef(X0) is the universal formal deformation of X0. In particular, X ×S T̂
is the pull-back of Ĝ : X̂→ D̂ef(X0) by a morphism T̂ → D̂ef(X0). Thus Theorem 1
implies both claims. �

2. Relative MMP

See [KM98] for a general introduction to the minimal model program.

Definition 7 (MMP-steps and their extensions). Let X → S be a proper morphism
of complex analytic spaces with irreducible fibers. Assume that KX/S is Q-Cartier.
By an MMP-step for X over S we mean a diagram

X
π
99K X+

φ↘ ↙ φ+

Z

(7.1)

where all morphisms are bimeromorphic and proper over S, −KX/S is ample over

Z, KX+/S is ample over Z and φ+ is small (that is, without exceptional divisors).
If X is Q-factorial and the relative Picard number of X/Z is 1, then there are 2

possible MMP steps:

• Divisorial: φ contracts a single divisor and φ+ is the identity.
• Flipping: both φ and φ+ are small.

However, in general there is a more complicated possibility:

• Mixed: φ contracts (possibly several) divisors and φ+ is small.

For our applications we only need to know that, by [KM98, 3.52], X+ exists iff

⊕r≥0 ω
[r]
Z/S (which is equal to ⊕r≥0φ∗ω

[r]
X/S) is a finitely generated sheaf of OZ-

algebras, and then

X+ = ProjZ ⊕r≥0 ω
[r]
Z/S . (7.2)

We index a sequence of MMP-steps by setting X0 := X and Xi+1 := (Xi)+.
Fix a point s ∈ S and let Xs denote the fiber over S. We say that a sequence of

MMP-steps (over S) X0 99K X1 99K X2 99K · · · extends a sequence of MMP-steps
(over s) X0

s 99K X
1
s 99K X

2
s 99K · · · if, for every i,

Xi
s

πi
s
99K Xi+1

s

φis ↘ ↙ (φis)
+

Zis

is the fiber
over s of

Xi πi

99K Xi+1

φi ↘ ↙ (φi)+

Zi
(7.3)

8 (Proof of Theorem 2 for S = D, the disc). Since MMP-steps preserve canonical
singularities, by induction it is enough to prove the claim for one MMP step. So
we drop the upper index i and identify KX/D with KX .

Let φ0 : X0 → Z0 be an extremal contraction. By [MR71]1, it extends to
a contraction φ : X → Z, where Z is flat over D with central fiber Z0 since

1This should be changed to [KM92, 11.4]
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R1(φ0)∗OX0
= 0. Note that KX is Q-Cartier by (10.1), and φ is projective since

−KX is φ-ample.
If φ0 is a divisorial contraction, then KZ0 is Q-Cartier, and so is KZ by (10.1).

Thus X+ = Z.
If φ0 is a flipping or mixed contraction, then KZ is not Q-Cartier. By (7.2),

X+ = ProjZ ⊕r≥0 ω
[r]
Z , (8.1)

provided ⊕r≥0 ω
[r]
Z is a finitely generated sheaf of OZ-algebras. (We have identified

ωZ with ωZ/D.)
Functoriality works better if we twist by the line bundle OZ(Z0) and write it as

X+ = ProjZ ⊕r≥0 ω
[r]
Z (rZ0).

Let τ : Y → X be a projective resolution of X (that is, τ is projective) such that
Y0, the bimeromorphic transform of X0, is also smooth. Set g := φ ◦ τ .

The hardest part of the proof is Nakayama’s theorem (9) which gives a surjection

⊕r≥0g∗ω
r
Y (rY0)� ⊕r≥0(g0)∗ω

r
Y0
. (8.2)

Since X0 has canonical singularities τ∗ω
r
Y0

= ω
[r]
X0

, and hence g∗ω
r
Y0

= ω
[r]
Z0

. We also

have a natural inclusion g∗ω
r
Y (rY0) ↪→ ω

[r]
Z (rZ0). Thus pushing forward (8.2) we

get a surjection

⊕r≥0g∗ω
r
Y (rY0)→ ⊕r≥0 ω

[r]
Z (rZ0)� ⊕r≥0 ω

[r]
Z0
. (8.3)

Note that ⊕r≥0 ω
[r]
Z0

is a finitely generated sheaf of OZ0 -algebras, defining the
MMP-step of X0 → Z0.

Now (11) says that ⊕r≥0 ω
[r]
Z (rZ0) is also a finitely generated sheaf of OZ-

algebras, at least in some neighborhood of the compact Z0. �

Next we discuss various results used in the proof.

Theorem 9. [Nak04, VI.3.8] Let π : Y → S be a projective, bimeromorphic mor-
phism of analytic spaces, Y smooth and S normal. Let D ⊂ Y be a smooth, non-
exceptional divisor. Then the restriction map

π∗ω
m
Y (mD)→ π∗ω

m
D is surjective for m ≥ 1. �

This is a special case of [Nak04, VI.3.8] applied with ∆ = 0 and L = KY +D.

Warning. The assumptions of [Nak04, VI.3.8] are a little hard to find. They
are outlined 11 pages earlier in [Nak04, VI.2.2]. It talks about varieties, which
usually suggest algebraic varieties, but [Nak04, p.231, line 13] explicitly states that
the proofs work with analytic spaces; see also [Nak04, p.14]. (The statements of
[Nak04] allow for a boundary ∆. However, KY + D + ∆ should be Q-linearly
equivalent to a Z-divisor and b∆c = 0 is assumed on [Nak04, p.231]. There seem
to be few cases when both of these can be satisfied.)

Lemma 10. [Nak04, VI.5.2] Let g : X → S be a flat morphism of complex analytic
spaces. Assume that X0 has a canonical singularity at a point x ∈ X0. Then there
is an open neighborhood x ∈ X∗ ⊂ X such that

(10.1) KX∗/S is Q-Cartier, and

(10.2) all fibers of g|X∗ : X∗ → S have canonical singularities.
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Proof. (1) is proved in [Kol83, 3.2.2]; see also [Kol95, 12.7] and [Kol21a, 2.8]. The
harder part is (2), proved in [Nak04, VI.5.2]. �

Remark 10.3. If S is smooth then X∗ has canonical singularities. By induction,
it is enough to prove this when S = D. Then the proof of [Nak04, VI.5.2] shows
that even the pair (X∗, X0 ∩X∗) has canonical singularities.

Lemma 11. Let π : X → S be a proper morphism of normal, complex spaces.
Let L be a line bundle on X and W ⊂ S a Zariski closed subset. Assume that
OW ⊗S

(
⊕r≥0π∗L

r
)

is a finitely generated sheaf of OW -algebras.
Then every compact subset W ′ ⊂ W has an open neighborhood W ′ ⊂ U ⊂ S

such that OU ⊗S
(
⊕r≥0π∗L

r
)

is a finitely generated sheaf of OU -algebras.

Proof. The question is local on S, so we may as well assume that W is a single point.
We may also assume that OW ⊗S

(
⊕r≥0π∗L

r
)

is generated by π∗L. After suitable
blow-ups we are reduced to the case when the base locus of L is a Cartier divisor
D. By passing to a smaller neighborhood, we may assume that every irreducible
component of D intersects π−1(W ). By the Nakayama lemma, the base locus of Lr

is a subscheme of rD that agrees with it along rD ∩ π−1(W ). Thus rD is the the
base locus of Lr for every r. We may thus replace L by L(−D) and assume that L
is globally generated.

Thus L defines a morphism X → ProjS ⊕r≥0π∗L
r, let π′ : X ′ → S be its Stein

factorization. Then L is the pull-back of a line bundle L′ that is ample on X ′ → S
and ⊕r≥0π∗L

r = ⊕r≥0π
′
∗L
′r is finitely generated. �

12 (Proof of Theorem 2 for general S). As in Paragraph 8, it is enough to prove
the claim for one MMP step, so let φ0 : X0 → Z0 be an extremal contraction and
φ : X → Z its extension. As before, Z is flat over S with central fiber Z0.

We claim that, for every r,

(12.1) ω
[r]
Z/S is flat over S, and

(12.2) ω
[r]
Z/S |Z0

∼= ω
[r]
Z0

.

In the language of [Kol08] or [Kol21a, Chap.9], this says that ω
[r]
Z/S is its own relative

hull. There is an issue with precise references here, since [Kol21a, Chap.9] is written
in the algebraic setting. However, [Kol21a, 9.72] considers hulls over the spectra of

complete local rings. Thus we get that there is a unique largest subscheme Ŝu ⊂ Ŝ
(the formal completion of S at 0) such that (1–2) hold after base change to Ŝu.

By Paragraph 8 we know that (1–2) hold after base change to any disc D→ S,

which implies that Ŝu = Ŝ. That is, (1–2) hold for Ŝ. Since both properties are
invariant under formal completion, we are done.

Now we know that

X+ := ProjZ ⊕r≥0 ω
[r]
Z/S , (12.3)

is flat over S and its central fiber is X+
0 . Thus it gives the required extension of

the flip of X0 → Z0. �

3. Proof of Theorem 1

We give a proof using only the S = D case of Theorem 2.
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13. Fix r ≥ 2 and assume first that S = D. Since X0 is of general type, a suitable
MMP for X0 ends with a minimal model Xm

0 , and, by Theorem 2, X0 99K Xm
0

extends to a fiberwise bimeromorphic map X 99K Xm. We have gm : Xm → D.
(From now on, we replace D with a smaller disc whenever necessary.) Since KXm

0

is nef and big, the higher cohomology groups of ω
[r]
X0

vanish for r ≥ 2. Thus

s 7→ H0(Xm
s , ω

[r]
Xm

s
) is locally constant at the origin.

By (10.2) Xs and Xm
s both have canonical singularities, so they have the same

plurigenera. Therefore s 7→ H0(Xs, ω
[r]
Xs

) is also locally constant at the origin. By

Serre duality, the deformation invariance of H0(Xs, ωXs) is equivalent to the defor-
mation invariance of Hn(Xs,OXs

). In fact, all the Hi(Xs,OXs
) are deformation

invariant. For this the key idea is in [DJ74], which treats deformations of varieties
with normal crossing singularities. The method works for varieties with canonical
(even log canonical) singularities; this is worked out in [Kol21a, Sec.2.5].

For arbitrary S, note that s 7→ H0(Xs, ω
[r]
Xs

) is a constructible function on S,
thus locally constant at 0 ∈ S iff it is locally constant on every disc D → S. Once

s 7→ H0(Xs, ω
[r]
Xs

) is locally constant at 0 ∈ S, Grauert’s theorem guarantees that

g∗ω
[r]
X/S is locally free at 0 ∈ S and commutes with base changes.

In principle it could happen that for each r we need a smaller and smaller
neighborhood, but the same neighborhood works for all r ≥ 1 by Lemma 11.

Thus the plurigenera are deformation invariant, all fibers are of general type,
and g is fiberwise bimeromorphic to the relative canonical model

Xc := ProjS ⊕r≥0g
m
∗ ω

[r]
Xm/S ,

which is projective over S. The projectivity of all fibers now follows from the more
precise Theorem 14. �

The following is a special case of [Kol21b, Thm.2].

Theorem 14. Let g : X → S be a flat, proper morphism of complex analytic spaces
whose fibers have rational singularities only. Assume that g is bimeromorphic to a
projective morphism gp : Xp → S, and X0 is projective for some 0 ∈ S.

Then there is a Zariski open neighborhood 0 ∈ U ⊂ S and a locally closed, Zariski
stratification S = ∪iSi such that each

g|Xi : Xi := g−1(Si)→ Si is projective. �

4. Open problems

For deformations of varieties of general type, the following should be true.

Conjecture 15. Let X0 be a projective variety of general type with canonical singu-
larities. Then its universal deformation space Def(X0) has a representative X→ S
where S is a scheme of finite type and X is an algebraic space.

For varieties of non-general type, the following is likely true [RT20, 1.10].

Conjecture 16. Let g : X → S be a flat, proper morphism of complex analytic
spaces. Assume that X0 is projective and with canonical singularities. Then the

plurigenera h0(Xs, ω
[r]
Xs

) are independent of s ∈ S for every r, in some neighborhood
of 0 ∈ S.
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Comments. One can try to follow the proof of Theorem 1. If X0 is not of general
type, we run into several difficulties in relative dimensions ≥ 4. MMP is not know
to terminate and even if we get a minimal model, abundance is not known. If we
have a good minimal model, then we run into the following.

Conjecture 17. Let X be a complex space and g : X → S a flat, proper morphism.

Assume that X0 is projective, has canonical singularities and ω
[r]
X0

is globally gen-
erated for some r > 0. Then the plurigenera are locally constant at 0 ∈ S.

Comments. More generally, the same may hold if X0 is Moishezon (that is,
bimeromorphic to a projective variety), Kähler or in Fujiki’s class C (that is, bimero-
morphic to a compact Kähler manifold; see [Uen83] for an introduction).

A positive answer is known in many cases. [KM92, 12.5.5] proves this if X0 is
projective and has terminal singularities. However, the proof works for the Moishe-
zon and class C cases as well.

The projective case with canonical singularities is discussed in [Nak04, VI.3.15–
16]; I believe that the projectivity assumption is very much built into the proof
given there; see [Nak04, VI.3.11].
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