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1. Introduction

A bar-joint framework in d-dimensional Euclidean space R? is a pair (G,p) where G = (V,E) is a
simple undirected graph and p € (Rd)v is an assignment of points in R? to each of the vertices in G. The
edges of this embedded graph can be viewed as rigid bars of fixed length and the vertices as rotational
joints. Such models arise naturally in engineering and the natural sciences in contexts where their rigidity
and flexibility properties are of particular interest (e.g. structural engineering [15], mineralogy [9], protein
analysis [8], network localisation [1] and formation control [14]). In this article we continue the recent
development of operator theoretic methods for the analysis of infinitesimal (i.e. first-order) flexibility in
bar-joint frameworks (and other related frameworks). This line of research was initiated in Owen and Power
([18]). (See also [2,13,19,20].)

The presence of an infinitesimal flex can sometimes be explained by an inherent symmetry in the bar-joint
framework and in recent years this interplay between symmetry and rigidity has received considerable atten-
tion ([4,10]). For example, it is well-known that the rigidity matrix R(G, p) for a finite bar-joint framework
with an abelian symmetry group admits a block-diagonalisation over the irreducible representations of the
group. Moreover, the diagonal blocks can be described explicitly by associated orbit matrices. This property
has been utilised to obtain combinatorial characterisations of so-called forced and incidental rigidity for
finite bar-joint frameworks in dimension 2. (See [12,22].)

Periodic bar-joint frameworks have also received much attention in recent years. Here R(G,p) is an
infinite matrix and so operator theory naturally comes to the fore. In [18], it is shown that the rigidity
matrix for a periodic bar-joint framework gives rise to a Hilbert space operator which is unitarily equivalent
to a multiplication operator Mg. The symbol function @ is matrix-valued and defined on the d-torus T¢.
The set of points in T¢ where ® has a non-zero kernel is known as the RUM spectrum and takes its name
from the phenomenon of rigid unit modes (RUMs) in silicates and zeolites (see [5,6,9]).

RUM theory for periodic bar-joint frameworks and the aforementioned decomposition theory for finite
bar-joint frameworks can be viewed as two sides of the same coin. The first aim of this article is to formalise
this viewpoint using techniques from Fourier analysis. The second aim is to extend the theory so that it
may be applied in new contexts.

In Section 2, we prove a variant of the well-known result that intertwiners for the bilateral shift on ¢2(Z)
are unitarily equivalent to multiplication operators on L?(T) (Theorem 2.8). The distinguishing features of
our theorem are that it takes place in the setting of a general locally compact abelian group, with vector-
valued function spaces, and in the presence of an additional twist arising from a unitary representation.

In Section 3, we adopt the approach taken in [13] and introduce the more general notions of a frame-
work (G, @) for a pair of Hilbert spaces X and Y and an accompanying coboundary matriz C(G, ). This
convention simplifies the proofs and also allows the results to be applied in a much wider variety of settings
(as demonstrated in the final section). Applying the results of Section 2, we show that a framework with a
discrete abelian symmetry group gives rise to a Hilbert space coboundary operator C(G, ) which admits
a factorisation as illustrated in Fig. 1 (Theorem 3.6). Note that the block diagonalisation result for finite
bar-joint frameworks and the unitary equivalence result for periodic bar-joint frameworks described above
both follow from this factorisation. We then provide an explicit description of the associated symbol funetion
® in terms of generalised orbit matrices (Theorem 3.7) and as a trigonometric polynomial (Corollary 3.10).

In Section 4, we introduce a generalised RUM spectrum Q(G) for frameworks with a discrete abelian
symmetry group I' and show how to construct y-symmetric vectors z(,a) which lie in the kernel of the
coboundary matrix C(G, ¢) for each x € Q(G) (Theorem 4.1). Note that here we continue to work in the
more general setting of coboundary operators and that the RUM speetrum is presented as a subset of
the dual group . In the terminology of [5,6,9], characters x € r correspond to wave-vectors in reciprocal
space and y-symmetric vectors which lie in the kernel of C(G, @) correspond to generalised rigid unit
modes.
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Fig. 1. Factorisation of the £2-coboundary operator C(G, ¢) for a framework (&, ) with a discrete abelian symmetry group I

Finally, in Section 5, we illustrate the results of the preceding sections with several contrasting examples.
These include a bar-joint framework in R? with screw axis symmetry, a direction-length framework in R?
with both translational and reflectional symmetry and a symmetric bar-joint framework in R* with mixed-
norm distance constraints. For each example, we provide some necessary background, formulate the symbol
function @, compute the RUM spectrum Q(G) and construct generalised rigid unit modes 2z(x, a) for points
X € Q(G). To the best of our knowledge, the interplay between rigidity and symmetry has not previously
been explored in these contexts.

2. Intertwining relations

Let T be a locally compact Hausdorff abelian group. Denote by L*(T') the Hilbert space of square inte-
grable functions, i.e. Borel-measurable functions f : T" — C such that,

j F()Pdy < oo
T

where we use normalised Haar measure on I'. Recall the Haar measure of a locally compact group is
decomposable on T'; in particular, T’ contains a g-compact clopen subgroup ([7]).

2.1. The scalar case

Given a set S of bounded operators on a Hilbert space ‘H, recall that its commutant is the unital w*-closed
algebra

S§'={T'e B(H) : TS = 8T, forall S e S}
If § is a selfadjoint set, i.e. §* € § for all S € §, then &’ is also selfadjoint and hence a C*-algebra.
Moreover, § is a set of commuting operators if and only if § € &’. Thus, an operator set is mazimal abelian

if and only if § = &' ([16]).

Proposition 2.1. The algebra of multiplication operators M, = {M; : f € L*>(I')} is a mazimal abelian
selfadjoint subalgebra of B(L*(T)).

Proof. M, is abelian, so M, is a subset of its commutant. For the reverse inclusion, let T' € (M,,)". We
shall show that there exists g € L>(I"), such that T'= M,

(i) Suppose first that I' is compact, so p(I') < oo. Then the constant function 1p lies in L*(T'). Define
g =T1r € L*(T). Then for every f € L*(T'), we have
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Tf = T(flr) = Tﬂ/[flr = ﬂ[leF = ﬂffg = fg = gf.

Hence, it suffices to show that g € L®(I'). Let @ > 0 and I'y, = {y € I' : |g(7)| > a}. Let 1, be the
characteristic function of I',,. Then

171018 = [ lotaPau= [ loPdu> ouTa) = o*La]3,
F FQ

hence o < ||T'|| whenever p(Iy) > 0. Thus ||g|/- < |7

(ii) Suppose now that I' is o-compact. Then I' can be written as a countable union of pairwise disjoint
precompact sets I',,. Write 1,, for the characteristic function of I',, and let g, = 1'1,. Similarly to
the previous case, we obtain that TM;, = M, and |[g,|le < [T for every n € N. Hence define
g € L>(T) by g|Fn = gn|Fn, for every n € N. Then ||g|leo < sup,, |gnlloe < |T||, s0 g € L*°(T), and for
every f € L*(T') we have

Myf=> My Myf =Y My f=> TM f=> M, Tf=Tf.
n=1 n=1 n=1 n=1

(Each of the infinite sums should be interpreted as limits in L? of the partial sums.)

(iii) In the general case, let H be a clopen g-compact subgroup of T' and let Z be a subset of T that
contains exactly one element of each coset of H, so that I' can be written as the disjoint union of
the sets z + H, z € Z. For each z € Z, denote by 1. the characteristic function of z + H and let
g = T'1.. Similarly to the above cases, we have TM;, = M, and ||g.|[« < |1 for every z € Z.
Define g € L>(T") by g|z yH = 92|z o for every z € Z. Then g is locally almost everywhere well-
defined, ||g]loc < sup, ||g:]/co < || T, so g € L®°(T). Now given any function f € L?*(T), there exists a
countable family {2, : n € N} C Z such that the set supp(f) N (I'\(Uy, 2, + H)) is null ([21, Appendix
ES]). Check that since T" commutes with the multiplication operators of characteristic functions, it
follows that supp(7T'f) C supp(f). Hence

Myf =" My, M,f = Z My, f=Y TMy_ f=> M, Tf=Tf 0O
n=1 n=1 n=1 n=1

The Fourier transform F' : (L' N L2)(T) — L(T') given by the formula

fe) = / E )y

extends uniquely to a unitary isomorphism from L2(T') to L2(I') ([7,21]). The inverse Fourier transform of
a function f € L%(T') is denoted f.
For each v € I, denote by D, the unitary operator

Dy (1) = LA(T), () = f(' =)

Also, denote by 4, € [, the scalar function 0+(&) = &(y) for each £ € ['. Note that the map & : I' — T,
v = &, is the Pontryagin map ([7]).

Proposition 2.2. Let v € I' and let My be the multiplication operator on Lg(f) by the scalar function d.
Then,
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M5 = D FL.
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Thus, it follows that FD,F~! f = E f . The result now follows since the set of such functions f forms a
dense subspace in L2(I') ([17.21]). O

Corollary 2.3. Let L € B(L*(T)) and define A = FLF~' € B(L*(T")). Then, for each v € T, the following
statements are equivalent.

(i) DL = LD,
(i) Mg A=AM; .

Proof. Let v € I'. Note that D, L = LD, if and only if
FD,F'FLF'=FLF 'FD,F~ "
The result now follows by Proposition 2.2. 0O
Proposition 2.4. Let L € B(L*(T')). Then L satisfies the commuting property PvL = LD, for ally €T if
and only if L is unitarily equivalent to a multiplication operator Mg € B(L*(T')) for some & € L™ (f) In

particular, L = F~1MgF.

Proof. Suppose first that L € B(L*(T')) and D,L = LD, for all v € I'. By Corollary 2.3, setting A =
FLF~' e B(L*(T")), we obtain that

M A =AM,

for all v € I'. Let f.g € L2(I') N L>(I"). Then, for all v € I,

FAD0) = [ SN

r
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_ / (M, Af)(€)a(E)de

_ f (AM;. £)(&)g(&)d¢
r

= <AA[;7 f, g)LQ{f\)

Similarly, for all v € T,

= (M
(Aﬂ[* I g)[,z(]—'

Therefore, by the uniqueness of the Fourier transform we obtain

(Af)T = fA=g.
It now follows that, for all h € L=(T),
(MpAf, 9)L2(1‘“) = (Myf, A*9>L2(f) = (AMyf, 9>L2(f)
for every f,g € Lz(f‘) n L (f) and since these functions are dense in L2, we get MyA = AM,, so A
commutes with the algebra M,, of multiplication operators. Thus, the result follows from Proposition 2.1.

The reverse direction is obtained from Corollary 2.3, so the proof is complete. O

Remark 2.5. If T is a discrete abelian group and ® € L! (f) then the operator L in Proposition 2.4 satisfies,

/Ci)’y—/ ~¥)dy,
r

for all 4" € T'. In particular, if T' = Z then the matrix for L is the Laurent matrix with symbol ®.
2.2. Vector-valued functions
Let T be a locally compact abelian group and let X and Y be complex Hilbert spaces. Let also {z1,29,...}

and {y1,y2,...} be orthonormal bases on X and Y, respectively. Denote by L?(T, X) the Hilbert space of
square integrable X-valued functions. i.e. Bochner-measurable functions f : I' — X such that,

SR <0
r

where we use normalised Haar measure on I'. Note that we identify the Hilbert spaces L*(I', X) and L*(I') ®
X; given any g € L?(I), the function gr € L?(T', X) defined by gr(y) = g(7)xk, is identified with the
elementary tensor g @z € L*(I') ® X.
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The Fourier transform Fx € B(L*(T, X), Lg(f‘, X)) is the unitary operator given by F'x = F®1x, where
1x is the identity operator on X. For each vy € T', denote by U, and W, the unitary operators

Uy =Dy oLy : LA(T.X) = LAT.X), S() = £ =),
WVZD"f@ly:LQ(Pry)%Lz(rry)r g(’yf)'_}g<')’,7'7)-

Given now an operator T' € B(L*(T,X),L*(T,Y)), for each i,j let T;; € B(L?*(T)) be the bounded
operator that is uniquely defined by the sesquilinear form,

(Lijfo0) = (T(f@x),9 @), f.g € L*(T). (1)

We call Tj; a matriz element of T'. A bounded operator T' € B(L*(T, X), L*(T,Y)) is called a multiplication
operator if there exists & € L>(T', B(X,Y)) such that

Vier2aoxy (TH(y) =N f(y) ae .

We refer to the function ® as the operator-valued symbol function for T and we write 1T' = Mg. In terms of
the matrix elements Tj; from (1), we have Tj; = Mg, where ®;; € L>(I').

Proposition 2.6. Let L € B(L*(T', X), L*(I',Y)). Then L satisfies the intertwining property W.,.L. = LU, for
all v € T if and only if L is unitarily equivalent to a multiplication operator Mg € B(LQ(IA“,X),LQ(f,Y))
for some & € L (f B(X.Y)). In particular, L = F;lﬂf(bFX.

Proof. Suppose that the intertwining property holds. Then for every f,g € L?(T) we have

(L(f @), W(g@y) = Wy L(f @), g @yi) = (LW, (f @ x5),9 @ yi).
Equivalently, by the definition of W,

(L(f @ x5), (D39) @ i) = (L((D1f) @ 25). 9 D wi).
This implies,
which implies
(DyLijf,9) = (LijD- £, 9).
Thus, for each 4,7, the operator L;; commutes with D, for all v € I'. Hence by Proposition 2.4, for each
i,j we have L;; = F;lﬂifq,ijFx. for some ®;; € L"O(f‘),
Define T' = Fy LFy 1 This is a bounded operator that satisfies
(FyU,FyH)T = T(FxW,F5l) Yyel.

As Ty = Ms,,;, we conclude that T = Mg, where @ is the B(X,Y) valued function with matrix elements
®; ;. Moreover

||@HLoo(1"",B(x,y)) =Tl = [IL]-

Once again, the reverse direction follows by straightforward calculations. O
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2.3. Intertwining with a twist

Let U(X) denote the unitary group of X and let 7 : T' — U(X) be a unitary representation of T' on
X. Define Tx € B(L*(T, X)) by (Txf)(y) = n(—)f(7). For each v € T, define U, € B(L*T, X)) by
(UyxH)Y) =7(NF( =)

Lemma 2.7. Let m: T — U(X) be a unitary representation. Then, for each v €T,
T7Uym = U T
Proof. Given f € L*(T', X) and v € T, we have
(TxUy 2 /)() = 7(=1") Uya ) () = 7(=A)m(F (Y =) =7y =) (Y =),
while
(U5 T )(Y) = (T f) (Y =) = 7ly =) (Y =),
so the proof is complete. O

Theorem 2.8. Let C' € B(L*(T,X),L*(T,Y)) and let 7 : T — U(X) be a unitary representation. Then
W,C = CU, ; for all v € T if and only if C = LT, where L is unitarily equivalent to a multiplication
operator Mg € B(LA(T, X), L*(1,Y)) for some ® € L=(T', B(X,Y)). In particular, L = Fr'MyFx.

Proof. Suppose W, C = CU,  for all ¥ € I'. Then, by Lemma 2.7,
I/V,YCT;l = CU%ﬁTgl = CT;1U7

for all ¥ € T. The conclusion now follows from Proposition 2.6 on taking L = CT, !. Conversely, suppose
C = LT, where L is unitarily equivalent to a multiplication operator Mg € B (LQ(f, X), LQ(f, Y)) for some
NS Lm(f, B(X,Y)). By Proposition 2.6 and Lemma 2.7, for each v € T,

Wy C =WyLTy = LU = LT7Uy 7 = CUyr. O
3. Symbol functions for symmetric frameworks

In this section we introduce frameworks (G, ¢) and their associated coboundary matrices C(G, ). We
show that the action of a discrete abelian group on (G, @) gives rise to a Hilbert space coboundary operator
which satisfies twisted intertwining relations of the form considered in Section 2. In particular, this cobound-
ary operator can be expressed as a composition LT in the manner of Theorem 2.8, where L is unitarily
equivalent to a multiplication operator Mg. We then present an explicit formula for the operator-valued
symbol function .

3.1. Frameworks
Let X and YV be finite dimensional complex Hilbert spaces. A framework for X and Y is a pair (G, ¢)

consisting of a simple undirected graph G = (V. E) and a collection ¢ = (@yw)v,wev of linear maps
@y : X = Y with the property that ¢y = 0if vw € E and @y = —puw.» for all vw € E. We will assume
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v v U3 V4
Vg U3 U1v2 Pupva —Pur,vs 0 0
v2U3 0 Pug g —Puy,vy 0

U3V4 0 0 Pug, vy —Puz,uy

v vg vV \‘(Pvl,v,, 0 0 —Puy,uy

Fig. 2. A 4-cycle (left) and coboundary matrix (right).

throughout this section that the vertex set V' is a finite or countably infinite set. The graph G is said to
have bounded degree if sup, oy deg(v) < oo, where deg(v) denotes the degree of the vertex v € V.

A coboundary matriz for (G, ¢) is a matrix C(G, ¢) with rows indexed by E and columns indexed by V.
The row entries for a given edge vw € E are as follows,

v w

VW { 0 @pw O -+ 0 @y 0 ]

Example 3.1. Let (G, ) be a framework for X and ¥ where G = (V, E) is the 4-cycle with vertex set
V = {v1,v9,v3,v4} and edge set E = {vyva, vov3, v304, 1401 }. A coboundary matrix for (G, ¢) is shown in
Fig. 2.

Note that a coboundary matrix gives rise to the linear map,

C(G,p): XV S5 YE, (Zy)vev = (Pyw(Ty — a:w))vweE .
We recall the following result.

Proposition 3.2. [13, Corollary 2.9]. Let (G,¢) be a framework for X and Y. If G is a countably infinite
graph with bounded degree then the following statements are equivalent.

(1) supyuer [[#o,wllop < 00
(i) C(G,p) e B(e?(V,X),P(E,Y)), for all p € [1,00].
(ili) C(G,¢) € B(P(V,X). (P(E.Y)), for some p € [1,00].

3.2. Gain graphs

Let T' be an additive group with identity element 0. A T'-symmetric graph is a pair (G, #0) where G =
(V,E) is a simple undirected graph with antomorphism group Aut(G) and 0 : I' — Aut(G) is a group
homomorphism. For convenience, we suppress # and write v instead of #(y)v for each group element v € T
and each vertex v € V. We also write e instead of (yv)(yw) for each v € T and each edge e = vw € E.
The orbit of a vertex v € V' (respectively, an edge e € E) under 6 is the set [v] = {yv : v € I'} (respectively,
[e] = {ve:~veTl}). We denote by Vj the set of all vertex orbits and by Ep the set of all edge orbits.

We will assume throughout that 6 acts freely on the vertices and edges of G. This means yv # v and
ve # e for all v € I'\{0} and for all vertices v € V and edges e € E. We will also assume that Vp and Ep
are finite sets.

Lemma 3.3. Let (G,0) be a T'-symmetric graph where 8 acts freely on the vertices and edges of G and Ey is
finite. Then G has bounded degree.
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U3 vy

(o v2

Fig. 3. A Zo-symmetric graph (left) and gain graph (right).

Proof. Let v € V and suppose vwy, vwsy,vws € F are distinct edges which belong to the same edge orbit.
Then vwa = y(vwn) for some v € T\{0}. Since # acts freely on V' it follows that ws = v. Note that
vws = 4'(vwy) for some 7" € T\{0}. Again, since 8 acts freely on V it follows that v = y'ws = (y'y)v.
Thus 7" = —v and so vwy = —y(vwy) = ' (vwse) = vws, a contradiction. We conclude that each edge orbit
contains at most two edges which are incident with . Thus v has at most 2| Ep| incident edges. O

The quotient graph Gy is the multigraph with vertex set Vj, edge set Ey and incidence relation satisfying
[e] = [v][w] if some (equivalently, every) edge in [e] is incident with a vertex in [v] and a vertex in [w]. For
each vertex orbit [v] € Vp, choose a representative vertex @ € [v] and denote the set of all such representatives
by Vp. Now fix an orientation on the edges of the quotient graph Gy so that each edge in Gy is an ordered
pair [e] = ([v], [w]). Then for each directed edge [e] = ([v], [w]) there exists a unique group element v € T
such that #(vyw) € [¢]. This group element is referred to as the gain on the directed edge [e] and is denoted
Y. A gain graph for the I'-symmetric graph (G, #) is any edge-labelled directed multigraph obtained from
the quotient graph Gy in this way.

Example 3.4. Consider again the 4-cycle G = (V| F) with vertex set V' = {v1,vs,v3,v4} and edge set
FE = {vl'vg,wgm,1)3'04,1?41)1}. Let 6 : Zo — Aut(G) be the group homomorphism with #(1)v1 = vz and
6(1)vg = vy. The Zo-symumetric graph (G, #) has two distinet vertex orbits [v1] = {vy,v3} and [va] = {va, v4},
and two distinet edge orbits [vjve] = {v1va, vavy} and [vyvy] = {vivg, vov3}. A gain graph for (G,0) is
illustrated in Fig. 3.

For each directed edge [e] = ([v], [w]) in the gain graph with gain v we choose é = #(yw) € E to be the
representative edge for the edge orbit [e]. The set of all such representative edges will be denoted Ey. Note
that since # acts freely on the vertex set V and edge set E we have natural bijections,

Bv :TxVo—=V, (v,[v]) =0, and, Bp:TxEs—FE, (v,][e])— e
For more on gain graphs we refer the reader to [12].

3.3. Symmetric frameworks

Let T be a discrete abelian group and denote by Isom(X) the group of affine isometries of X. A T'-
symmetric framework is a tuple G = (G, ¢, 8, 7) where 7 : T — Isom(X) is a group homomorphism, (G, 8)
is a T-symmetric graph and (G, ¢) is a framework for X and Y with the property that,

Oy yw = Pow o T(—y), forallyeT andall v,weV.

For each v € T, let dr(v) denote the linear isometry on X that is uniquely defined by the linear part
of the affine isometry (7). We denote by 7 : ' — U(X"?) the unitary representation with 7(v)(z) =
(dT('Y)x[v])[v]evo for all x = (x[v])[u}eVg e XV,
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Given a vector z = (z,)pey € XV we will write 2, = 2, — 2, for each edge e = vw € E where the
corresponding directed edge [e] in the gain graph is directed from [v] to [w]. We will also write ¢, = @y 4
for such an edge.

For each p € [1, 00], the bijections v and Sg give rise to isometric isomorphisms,

Sy (V. X) » P(T,X%), 2= (5)uer = (Sv(2))er,
where Sy (2)y = (2y5)w)ev,» and,

SE - EP(E: Y) - g}p(l—\: YED): z= (ze,)eEE s (SE(Z)"y)'YEF;
where Sg(2)y = (248)(e)em,- We define the bounded operator,

C(G,p) = Sp o C(G,p) o Syt - P(0, XV0) — ¢2(T, Vo),

For each p € [1,00] and each v € I', we have an associated pair of isometric isomorphisms U, 7 €
B(¢P(T, X")) and W, € B(¢7(', Y £0)) where,

(Ut ) =T =), ¥V feT,X"),
(W9 (V) =9(+' =), Vge (T, Y5)
Proposition 3.5. Let G = (G, ¢, 0,7) be a T-symmetric framework for X and Y. Then, for all v €T,
Wy 0 C(G,p) = C(C,p) 0 Uy r.

Proof. Let v € T and let f € #7(T, X*0). Then f = Sy (u) where u = (uy)pey € 2(V, X) has components
w, = f(7 ) for v = By (7', [v]). We have,

C(C.)(f) = S5 0 C(C.) S5 () = St (Puaslits — 1))y =
where g € £7(T,Y0) satisfies g(v') = (¢ye(uye))eer, for each 4" € T. Note that,

VV’Y (g) (’yf) - (3‘9(7’77)5(“’(7’77)5))[E]EEO7 for each ’YI el

Let b= U, 7(f). Then h € £7(F, X"°) and h(y') = 7(7) f(y/ — ) for each 4" € T. Also, if v = By (7', [v])
then,

(Y ) = (V) F (Y = V) = dT(V) (=5 = dT(Y) 10

Thus h = Sy (2) where z = (2,)yev € P(V, X) has components z, = d7(y)u_-, for all v € V. We conclude
that,

(C(G,¢) o Uyz)f = Sp o C(G.9) 0 Sy (h) = Sk (¢e(2e))eer = -

where § € (7(T,Y ) satisfies §(7') = (¢ye(2y2)) ek, for each 4’ € T It remains to show that W,(g) = g.
To see this, note that for each [e] € Fy and each 4/ € T we have,

pye(zye) = PyeldT(V)uy—ye) = Pye(T(Nuy—me) = Pyr—meltiy—ye)- O
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For each p € [1, ], the unitary representation 7 : I' — U(X"0) defined above gives rise to an isometric
isomorphism 7> € B(¢P(T, X'°)) where,

(T:f)(y) =7 (= f(7), VeI, X").

Theorem 3.6. Let G = (G, @, 0,7) be a T-symmetric framework for X and Y where G has a finite or a
countably infinite vertex set, I is a discrete abelian group, 8 acts freely on the vertices and edges of G and

Vo and Ey are finite sets.
Then C(G,p) € B(F3(V, X),2(E,Y)) and,

?

C(G,p) — 5'51 OF;éD OJ\J(I) OFXVO OTT' OSV’

for some & € L>®(T', B(X"0, Y Eo)).

Proof. By Lemma 3.3, G has bounded degree. Note that ¢ satisfies Proposition 3.2(i) and so C(G,¢) €
B(2(V,X),2(E,Y)). The result now follows from Theorem 2.8 and Proposition 3.5. 0

We refer to @ in the above theorem as the symbol function for the symmetric framework G.
3.4. The symbol function

Let G = (G, p,8,7) be a T-symmetric framework for X and Y where T is a discrete abelian group. Fix a
gain graph for the T'-symmetric graph (G, #) and let y € [. A y-orbit matriz for G is a matrix Og(x) with
rows indexed by the directed edges of the gain graph and with columns indexed by V. The row entries for
a non-loop directed edge ([v], [w]) € Eop with gain v € T are as follows,

[v] [w]
[ 0 Yoy 0 -+ 0 X(V)@a—r5 O ]
The row entries for a loop edge ([v], [v]) € Eo with gain v € I" are as follows,

[v]

[ 0 @Yo +X(VPo,—y 0 }

Note that each orbit matrix gives rise in natural way to a linear map Og(x) : X'0 — Y0 and that the
function Og : I' — B(X"?,YE0), x — Og(x), is continous. In particular, Og € L=(I', B(X"?, Y E)) is the
operator-valued symbol function for a multiplication operator Mo, € B(Lg(f, X)), Lg(f‘, Y Foy).

We now show that Og is the symbol function for the symmetric framework G.

Theorem 3.7. Let G = (G, p, 0, 7) be a T-symmetric framework with symbol function ® L"O(f, B(X Vo YEo)).
Then,

®(y) = Oglx), ae xel.

Proof. Let f € L2(I', X") and let f = F;‘l,o(f) e /2(1, X"). Note that (T;'f)(y) = 7(7)f(7). Thus
T (f) = Sy (2) where 2 = (2,)pev € £2(V, X) has components z, = (F(Y) (1) for v = By (v, [v]). Now,

7

C(G,p) o T7 H(f) = Sp 0 C(G,9) 0 Sy o T H(f) = S (¢e(2e))eer = 95
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where g € £*(T, Y #0) satisfies g(7) = (¢+e(2y2)) (e m, for each v €T
Let [e] = ([v], [w]) € Ep be a directed edge with gain v € T and let g € £2(T,Y) be the [e]-component
of g. Note that for each v/ € T,

911(7) = pre(24e)
= @ye(dT(Y)F (V) — A7 (Y + T+ 7))
= @e(f(V)w) — ATV (U_ )V u)))-

Also, by Proposition 2.2, for almost every y € f‘,

—

U_,f(x) = 0, () f(x) = x(=1) f(x) = x(7) f(x),

and so,

Thus, for almost every y € f‘,

(Maf)(x) = (Fyro 0 C(G,9) o T f)(x) = §(x) = Og(x) f(x). O

Corollary 3.8. Let G = (G,p,0,7) be a T-symmetric framework with symbol function &. If G is a finite
graph then the coboundary matriz C(G, p) is equivalent to the direct sum,

@Og(){) : @XVD — @YED.

xel xel xel

Proof. By Theorem 3.6, C(G, ¢) is equivalent to Mg. Note that since G is a finite graph and 6 acts freely
on the vertices and edges of G it follows that I, and hence also f, is finite. Thus, My is equivalent to the
direct sum &, p®(x). Also, by Theorem 3.7, &(x) = Og(x) for all x € I' and so the result follows. O

Example 3.9. Consider again the framework (G, ) in Example 3.1 and let (G, #) be the Zo-symmetric graph
described in Example 3.4. Let [eq] be the directed edge in the accompanying gain graph with gain 0 and let
[e2] be the directed edge with gain 1. Note that the dual group for Zs consists of characters yo and x; which
satisfy xo(1) =1 and x1(1) = —1. If G = (G, ¢, 0, 7) is a Za-symmetric framework then the associated orbit
matrices for G take the following form,

[v1] [v2] [v1] [v2]

Og(xo0) = [e1] {%l,ﬁg — Py ,59 ]7 Og(x1) = le1] [fﬁl,?? *%Om,ng ]

Piy,04 Piig,via

Applying Corollary 3.8 we obtain the equivalence,

0] 0
c(@9)~ |8 o5ty

Corollary 3.10. Let G = (G,¢,0,7) be a T-symmetric framework with symbol function & = Og €
C(f,B(XVU,YEU)). Fiz a gain graph for (G,0) and let To C T' be the finite set of non-zero gains on
the edges of this gain graph.
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(i) P is the operator-valued trigonometric polynomial with,

B(x)=8(0)+ > d(yx(7), ¥xel.

v€lo

(ii) For each v € Ty, each [v] € Vi and each [e] € Ey,

~

P(V) e, ] = C(G, )z 45 0 dT (),

where @(7)[5],@] is the ([e], [v])-entry of cﬁ(ﬂ and C(G, p)e s is the (€,70)-entry of C(G,p).

Remark 3.11. The orbit matrix Og (1) was first introduced in [23] in the context of finite bar-joint frame-
works (G,p) with an abelian symmetry group. There the linear maps ¢, are derived from Euclidean
distance constraints and the orbit matrix is used to analyze fully symmetric motions of the framework in
Euclidean space R%. The general orbit matrices Og(x) were later introduced in [22] and used to derive the
block-diagonalisation result in Corollary 3.8.

The symbol function @ for periodic bar-joint frameworks in R?, again with Euclidean distance constraints,
was first introduced in [18]. In this setting the symmetry group is Z¢ and the dual group is the d-torus T*.
It is proved there that the rigidity matrix for the framework determines a Hilbert space operator R(G, p) :
2(V,C%) — 2(E,C) which is unitarily equivalent to the multiplication operator Mg : L2(T?, C4Voly —
L2(T4, CEol),

Theorem 3.7 unifies and generalises these two contexts to frameworks with a general (finite or infinite)
discrete abelian symmetry group and arbitrary linear edge constraints. See Section 5 for some examples.

4. A generalised RUM spectrum

Let G = (G, p,0,T) be a T-symmetric framework for X and Y with symbol function ® € C (f B(X Yo Y Eoy),
Fix x € I'and a € X"0 and define z(x, a) = (2, )vev € £2°(V, X) to be the bounded vector with components,

2y = x(Vdr(y)ap),  for v = pv(y,[v]).

We refer to z(x, a) as a x-symmetric vector in £*°(V, X).
In this section our aim is to prove the following result.

Theorem 4.1. If a € ker ©(x) then z(x, a) € ker C(G, ).
4.1. Key lemmas

Let (up)aca be an approximate identity for Ll(f‘) where, for each A € A, uy is a positive continuous
function satisfying uy(n) = ux(n~?!) for all n € T and [juy||; = 1. It is a standard procedure to show that,

llux = f— fllp = 0,

for all p € [1,00) when f € LP(T) and for p = oo when f € C(I'). (See [7, Proposition 2.42] e.g.) Note that
since uy(n) = ur(n~1) for all n € T it follows that iy = @y € Co(T).
For each A € A, denote by uy , : [ — X" the function 7 ux(n)a and define ¢, € C’(f, YEo)* hy,

0nlo) = [ (Bl ). glo) . Vg € CET™)
r
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Lemma 4.2. If a € ker &(x) then ¥, 0.
Proof. Let g € C(I,Y50) and define f € C(I') by,

f(n) = (@(xm)a, g(xn)), Vnel.

Note that f(15) = (®(x)a, g(x)) = 0. We have,

0a(o) = [ un(c ) (B(ma, glm)dn = (ur x £)(1¢) > F(1p) =

Hence 0. O

For each A € A, define v, € £1(T, Y E0)* by,

valg) =Y _(C(C ) o T; " o My, (tira) (7). 9(v)), Vge {(I,YH)

yer
Lemma 4.3. If a € ker () then vy “ 0.
Proof. For each A € A, define the continuous function ¢y € C (f, YED) by,
oa(n) = &(n)(ura(x ')
By Proposition 2.2 and Theorem 3.6 we obtain,
dr = C(G, ) o T 0 M, (ity0)-
Let g € ¢1(T,Y %), Then § € C(f‘, YE0) and so, using Lemma 4.2, we have,

nl9) =D (e, 9(7)

—%! v)oa(n) dn, 9(7))
f/ (Da(n ;’?

= f {éa(n), 4(m)) dn

@) 0

Thus vy 0. 0O

Denote by x @ a : I' — X' the function vy — x(7)a and define p(x, a) € ¢*(T, Y E0)* hy

pxa)(g) =D _(C(G,p) o Ty (x@a)(), 9(7)), Vge (T, Y™).

yer
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Lemma 4.4. vy plx,a).

Proof. Let ¢ € ¢Y(I,Y*°) and let € > 0. Choose a finite subset K C I' such that . [lg(7)]| < e
YEE
By [7, Lemma 4.46], 4y — 1 uniformly on compact subsets of T and so there exists A’ € A such that

max,ex |Ua(y) — 1| < € for all A > N,
Define fx € (T, X"0) by setting fx = Ms, (ix.a) — (x ® a) for each A € A. Since [|@x]oo < [Jualls =1
we have,

[falloo = sup [[x(7)(@x(v) = Dal| < 2[|al|.
yer
Let 1x denote the characteristic function for K. Then for all A > A we have,
1g|loe = max 1 —1 = max |u —1 < .
[ £rlkl max Ix(M)(@x(y) — Dall e () — Llllal| < lalle

Note that, by Proposition 3.2, C(G, @) o Tzt € B(£>°(I', X Vo), (T, Y #0)). Moreover, T ! is isometric and
so for all A € A,

max ||C(G, ) o T H ) ()| =

veK

(G ) o T

(G, @)llop | F31K [|oo-

Thus, for all A > A we have,

(v — D <D HCGC @) o T (1)), 9(7)))]
< NC@G, ) o T g ()l
yel

C(G, Dopllfrlrlloc D la+ I1CC @)llopll falloo D lg(7)

vEK vEK

(G, 9)llop(llglls +2)llalle

We conclude that vy(g) — p(x,a)(g). O

4.2. Proof of Theorem /.1

Proof. By Lemmas 4.3 and 4.4 we have, /) Y20 and U N p(x,a). Since the w*-topology is Hausdorff it
follows that p(y,a) = 0. Thus the function fy . € £°°(T, X"0) given by,

Fra() =T (x @ a)(v) = (X(VdT(Y)ag)wevs
lies in the kernel of C(G, ). The result now follows since z(x, a) = Sy (fya). O
The Rigid Unit Mode (RUM) spectrum of G is defined as follows,
Q(G) = {x e I' : ker ®(x) # {0}}.

Remark 4.5. The study of rigid unit modes and the RUM spectrum was initiated in [9] as a means of
understanding phase-transitions and structural stability in minerals. An operator-theoretic formulation
of these notions was introduced by Owen and Power in the context of periodic bar-joint frameworks in
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(vi,1) (v1,2) (v2,1) (v2,2) (v3,1) (v3,2) (v4,1) (va4,2)

Py Puy
ViU -1 0 1 0 0 0 0 0
V1Uy -1 -1 0 0 0 0 1 1
v2v3 0 0 1 —1 —1 1 0 0
V37U l 0 0 0 0 -1 0 1 0 J
Py P,y

Fig. 4. A bar-joint framework in R? (left) and rigidity matrix (right).

Euclidean space R? ([18]). In the above generalisation, characters x in the dual group [ can be thought
of as wave vectors in reciprocal space. The y-symmetric vectors z(y,a) which lie in the kernel of C(G, ¢)
correspond to generalised rigid unit modes for the symmetric framework.

5. Examples from discrete geometry

In this section we present some contrasting examples of symmetric frameworks arising from systems of
geometric constraints. In each case, the underlying geometric structure is provided by a simple undirected
graph G, a normed linear space X and an assignment p : V — X of points in X to each vertex in G.
We consider 1) Euclidean distance constraints for a bar-joint framework with screw axis symmetry, 2)
a direction-length framework with both periodic and reflectional symmetry and 3) mixed-norm distance
constraints for a finite bar-joint framework with symmetry group Cyp. Each vector in the kernel of the
associated coboundary matrix C'(G, ¢) represents an infinitesimal (or first-order) flex of the framework. We
derive the symbol function @, compute the RUM spectrum Q(G) and construct y-svmmetric infinitesimal
flexes (i.e. generalised rigid unit modes) for these frameworks.

5.1. Bar-joint frameworks in R?

A bar-joint framework in R? is a pair (G, p) consisting of a simple undirected graph ¢ = (V, E) and a
point p = (pu)vev € (]Rd)v with the property that p, # p, whenever vw € E. For each pair v,w € V| set
Pow C? 5 C,z— (pv — puw) - @ if vw € E and ¢, = 0 otherwise. Then the pair (G, ¢) is a framework
(for the Hilbert spaces C4 and C) in the sense of Section 3.

Expressing each linear map ¢, ,, as a row vector we obtain the rigidity matriz R(G, p) with rows indexed
by E and columns indexed by V' x {1,...,d}. The row entries for a given edge vw € E are as follows,

(v,1) -+ (v.d) (w,1) -+ (w,d)
vw [ 0 ph=pl, e pi=plh 0 e 0 ph—pl e ph—pd 0],

We begin with a small example.

Example 5.1. Let G = (V, E) be a four cycle with vertex set V = {v1,v2,v3,v4} and edge set £ =
{v1v9, vavs, U304, v4v1 b Let p = (py)vev € (R?)Y where,

po; = (0,0), pu, = (1,0), pu, =(0,1), pu, = (1,1).

The bar-joint framework (G, p) is illustrated in Fig. 4 together with an accompanying rigidity matrix R(G, p).

Let @ : Zo — Aut(G) be the group homomorphism deseribed in Example 3.4. Let 7 : Zg — Isom(R?) be
the group homomorphism for which 7(1) is the orthogonal reflection in the line y = % Then G = (G, ¢,0,7)
is a Zo-symmetric framework. With the notation of Example 3.9, the symbol function for G satisfies,
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v0,4

0,2

vo,1

0,0

v0,—1

V0,-2
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1,4

1,2

1,1

1,0

U1,—1

v1,-2

(—1,0,0)
P1,0

Fig. 5. The double helix framework Gg4; (centre), underlying graph (left) and gain graph (right).

([, 1) ([01],2) ([w2], 1) ([02],2)

e [ -1 0 1 0 |
¢'(;’(0) - [9;] i 1 1 1 1 ] )
(a1 ([1],2) ([w2], 1) ([v2],2)
Ce) [ -1 0 1 0
20a) = 1, 1 1 1 1

The multiplication operator Mg takes the form

Mg :CtaCt = C?2gC?, {

x
y

-]

®(x0)
0

0
®(x1)

I

T
Y

|

In particular, we obtain the block diagonalisation of the rigidity matrix R(G, p) noted in Corollary 3.8,

R(va) ~ |:¢‘(6(O)

0

‘I’(Xl)} '

Note that Q(G) = {x0, x1}. The yo-symmetric infinitesimal flexes derive from fully symmetric motions of
the framework and take the form,

where a,b € C. The yi-symmetric infinitesimal flexes take the form,

(2ai6)= Zvg = (;a), Zvg = (Qa_ib)'

Zyy =

We now present our first main example.
Example 5.2 (Double heliz framework). Consider the bar-joint framework (Gap, p) in R?, illustrated in Fig. 5.
The graph Gap has vertex set V = {v;x : j € {0,1},k € Z} and edge set £ = {e;x: j € {1,2,3},k € Z}

where e1r = vorv1k, €2k = UokV0,k+1 and e3r = v1 kU1 k+1. Lhe placement p : V — R3 is defined by
setting,
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(—l)j Cos("‘%) )
Pik =pik) = (c1ysn(kx) |, Vice{0,1}, ke Z.
k

Let 6 : Z — Aut(Gyy,) be the group homomorphism with,
0(n)(vjk) =Vjpen. Vie{0,1}, ke Z.

The quotient graph for the Z-symmetric graph (Gan,#) is the multigraph Gy = (Vo, Ep), where Vy =
{[vo.0], [v1,0]} is the set of vertex orbits and Ey = {[e1,0], [e2,0]. [e3,0]} is the set of edge orbits. Choosing vy o
and vy p as our vertex orbit representatives and fixing an orientation on the edges of Gy we obtain a gain
graph, such as the one shown in Fig. 5. Let 7 : Z — Isom(R?) be the group homomorphism which assigns

to each n € Z the affine isometry 7(n) with linear part,

and translation vector (0,0,n) € R3. Note that, for each n € Z, 7(n) is a screw rotation about the z-axis

by the angle * and satisfies,

T(n)(p) = p(O()(v5k)) = P(Vj+n) = Pign, Vi €{0,1}, ke Z.

Consider the Z-symmetric framework Gap = (Gan, ¢, #, 7). To formulate the symbol function for Gg, we

first compute,
2 1-2 -1
Poo—Pro=1|9): Poo—Poa=| -2 |, P1o—P1= 2 .
0
-1 -1

Recall that the dual group of Z consists of characters of the form v, : Z — T, k — w®, where w € T. Thus,
by Theorem 3.7, the symbol function ® : T — Ms.6(C) is given by,

([vo,0], 1) ([vo,0],2) ([vo,0],3) ([v1,0],1) ([v1,0],2) ([v1,0],3)
([vo,0], [v1,0]) 2 0 0 —2 0 0
P (w) = ([vo,0], [vo,0]) { — (14w w-Ll4w) w-1 0 0 0
([v1,0], [v1,0]) 0 0 0 V(4w -1 Ll+w)-—w w-1 J

Note that ®(w) has a 3-dimensional kernel for all w € T and so Q(Gg,) = T.
Calculating now the Fourier transform of ¢, we obtain .7 Msy6(C) where,

2 0 0 —2 0o 0
1= =@ -1 0 0 0} fl=0
0 0 0 1 2

N
@(k):/w’kd)(w)dw: o 000 0 o0
B e 0 01, ifk=1
T 0 2

036, otherwise.

Then ®(w) = $(0) + $(1)w, as expected by Corollary 3.10.
Given any w € T, it is easily checked that the vector a = (1, —1,1,1, —1, —1)" lies in the kernel of ®(w).
Thus, by Theorem 4.1, the function
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P11

(1,0)
[vo,0]
(0, (1,1)
€1.,(0,0)

Po,o P10

Fig. 6. The diamond lattice direction-length framework G4 (left) and its gain graph (right).

kw
4
2(Xw, )V — C3, Vi wk sin(£r) — cos(kf) . Jje{0,1} ke Z,

is a yw-symmetric infinitesimal flex of the double helix framework.
5.2. Direction-length frameworks

A direction-length framework in R is a pair (G, p) consisting of a simple undirected graph G' = (V, E), a
partition of the edge set E into two subsets D and L, and a point p = (p,)yey € (R9)Y with the property
that p, # pw whenever vw € E. For each pair v,w € V, set ¢y 4 : C? — C41 to be,

(i) a linear map with rank d — 1 and kernel spanned by p, — py,. if vw € D,
(i) the linear map x — ((py — pw) - ) lg—1. if vw € L, and,
(iii) 0, if vw ¢ E.

Note that the pair (G, ) is a framework (for the Hilbert spaces C¢ and C?~1) in the sense of Section 3. The
edges in D represent direction constraints and the edges in L represent length constraints. Mixed constraint
systems of this type arise naturally in CAD and network localisation for example (see [24,11]).

Example 5.3 (Diamond lattice framework). Consider the diamond lattice direction-length framework illus-
trated in Fig. 6. The graph Gy has vertex set V = {v,,; : n € Z, j € {0,1}} and edge set £ = DU L where
D ={v,jvnt1;: nel, je{0,1}} and L = {vy,0Un+1,1.Vn,otn—1,1: 7 € Z, j € {0,1}}. The placement p
of G in R? satisfies pynj := p(vn ;) = (n,(—1)771) for all n € Z and j € Zo.

Given v,w € V, define ¢y 4 : C2 — C by setting,

(i) Yow(r1,x2) = 29 if vw € D is an edge with v = v, 0 and w = vy4+1.0, o8, ¥ = vpp11 and w = vy, 1,

() = (pv — pw) - x if vw € L, and,

©
Ppw(T1, Ta) = —x9 if vw € D is an edge with v = vy, 1 and w = vyp411, O, ¥ = Vp11,0 and w = vy, 0,
Pv,w
(iv) @pw =0if vw & F.

Then (G, ¢) is a framework (for the Hilbert spaces €2 and C) in the sense of Section 3.
Define a group homomorphism 0 : Z x Zo — Aut(Gy) with,

O(m,j)(Vn k) = Vminj+k, M,ne€Z, j ke Zs.

Then the pair (Gg. #) is a Z x Zy-symmetric graph. The accompanying gain graph Gy = (Vy, Ep) has vertex
set Vo = {[vo,0]} and edge set Ey = {[e1,(0,0)], [€2,0,0]}, Where eq (0,0) = vo,0v1,0 and ea 0,0y = v0,001,1.
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Define a group homomorphism 7 : Z x Zg — Isom(R?) with linear part,
) 10 )
dr(m,j) = (0 (71)]-) , meZ,je Lo,
and translation vector ([1)) Note that 8 and 7 satisfy,

O(m,j)v,(mj)w = Pow o T(—m,—j), YmeZL, je s, viweV.

Thus Gy = (Gar, ¢, 0, 7) is a Z x Zg-symmetric framework.
Recall that the dual group of Z x Zs consists of characters of the form xu, : Z x Za — T, (n,j) > w™7,
where w € T and ¢ € Zy = {—1,1}. Applying again Theorem 3.7, we obtain the symbol function,

([vopls 1) ([vo,l],2)

B, = [rom] |0 1-w
’ [@,(o,oﬂ 14w —2(1+w)

where w € T and ¢ € Za. Note that Q(Ga) = {(1,1),(1,—1),(—1,—1)}. We now apply Theorem 4.1 to

b}

construct the associated y-symmetric infinitesimal flexes of Gg.

e Let w=1and ¢ = 1. Check that a := (é) € ker (1, 1). Hence we obtain a y; j-symmetric infinitesimal
flex 2(x1,1,a) = (2y)pev Where,
2y, = dT(m, j)a = (é) ., meZ, jE L.
Note that this is a trivial infinitesimal flex of G4 describing translation along the z-axis.
e Let w =1 and ¢+ = —1. Check that a = (0) € ker®(1,-1). Hence we obtain a yxi1,—1-symmetric

1
infinitesimal flex 2(y1,-1,a) = (2y)vev Where,

2o, = (—1)dr(m, j)a = ([1}) ., meZ, je L.
Note that this is a trivial infinitesimal flex of G4 describing translation along the y-axis.
e Let w= —1and ¢« = —1. Check that a := ([1)) € ker ®(—1,—1). Hence we obtain a y_q _j-symmetric
infinitesimal flex z(x—1,-1,a) = (2v)vev where,

2y, = (=1)™(=1)7d7(m, j)a = ((—1)0”’“) ., MEL, jE Ls.

Note that this is a non-trivial infinitesimal flex of Gg.
5.3. Norm distance constraints

Let X be a finite dimensional real normed linear space with unit ball B. There exists a unique ellipsoid in
X of minimal volume which contains B, known as the Léwner ellipsoid for B (see [25, p. 82]). The Lowner
ellipsoid is the unit ball for a norm which is derived from an inner product on X. Let X’ denote the real
linear space X together with this inner product and let X¢. denote the complexification of this real Hilbert
space.

A bar-joint framework in X is a pair (G,p) consisting of a simple undirected graph G = (V, ) and a
point p = (py)vev € XV with the property that p, — p,, is a non-zero smooth point in X whenever vw € E.
For each pair v,w € V, set ¢y : X — R where,
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(1,0)
[v0,0]
(1,1)
Fig. 7. The box kite bar-joint framework Gy, (centre), underlying graph (left) and gain graph (right).
o1
po.w(®) = = ((lpy = pu + 12| = [lpy = pul) - (2)

it vw e E and ¢, = 0if vw ¢ E. Each linear map ¢, ., extends in the natural way to a linear map from
X¢ to €. Thus the pair (G, ¢) is a framework (for the Hilbert spaces X(. and C) in the sense of Section 3.

Note that if 6 : I' — Aut(G) and 7 : I' — Isom(X) are group homomorphisms which satisfy p,, = 7(7)ps.
for all v € V and all v € T, then it is straightforward to check that,

Pyvyw = PowoT(—y), Yo,weV, yel.
The isometry group Isom(X) is a subgroup of Isom(X’) (see [25, Corollary 3.3.4]) and each isometry of X’
has a natural extension to an isometry of Xg. Thus, regarding 7 as a homomorphism into Isom(X¢), we

see that G = (G, ¢, 0, 7) is a T-symmetric framework in the sense of Section 3.

Example 5.4 (ﬁg‘q distance constraints). Let f%gq. where ¢ € (1,00), denote the vector space R? equipped
with the smooth mixed (2, g)-norm in R* given by,

2.0 = (12 + )3 +]209)7.

(2, y, 2)

Infinitesimal rigidity for non-symmetric bar-joint frameworks in these spaces has recently been studied in
[3]. In particular, it is shown there that the Lowner ellipsoid for the unit ball in Egzq is the Euclidean unit
ball in R®. Thus the associated complex Hilbert space is C3.

Consider the box kite bar-joint framework in E%} o> llustrated in Fig. 7. The underlying graph Gy has
vertex set V = {v,; : n € Zy, j € Zo } and edge set E = {vy, 0Vn41,1: Un,0Vn—1,1: Un,jUnt1,j . N € L, j €
Zs }. The placement p : V' — R? satisfies, for j € {0,1},

-9 92 9 _9
Po,j = -2 y D1 = —2 , Doy = 2 s P3yo=
(f1)1+1 (,1)J+1 (,1)1’—?—1 (,1)j+1

Define a group homomorphism 0 : Z4 x Zo — Aut(Gy) with,

Q(msj)(vn,k) - 'Um+n,j+k; VTTL,?’I. € Z4: j7 k € ZQ'

Then the pair (G, #) is a Z 4 x Zo-symmetric graph. The accompanying gain graph Go = (Vp, Ey) has vertex
set Vo = {[vo,0]} and edge set Ey = {[e1,(0,0)], [€2,0,0]}, Where eq (0,0) = vo,0v1,0 and ea 0,0y = v0,001,1.
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Define a group homomorphism 7 : Zy x Zoy — Isom(fqu) with,

cos(mm/2) —sin(mnw/2) 0
T(m,j) =dr(m,j) = (sin(mW/Q) cos(mm/2) 0 ) ., VmeZy, j< Zo.
0 0 (~1)7

Note that,
Popin ik — T(mvj)pn,k: VTTI, nec Z4, j ke Zo.

Thus the tuple Gor = (Gor, 9, 0,7) is a Za x Zo-symmetric framework (for the Hilbert spaces (E%,q)fc and
C).

Let now vw € E. Write py, — pyw = (x,y,2) € egq and d = \/x2 4 y2. Using the formula (2) we calculate
directly,

Yy wla,bc)=(d! + |z|q)%*1(dq’2(xa + yb) + sgn(z)

2|77 te), V(a,bc) € E%‘q.

Hence the functional ¢, ., can be identified with the row vector

i_

Pow = (d7 +|2]7)7 taa?

1
[I y sl }

The non-zero entries of the associated coboundary matrix are given by,

Puao,v10 — [_1 0 O]: Puo o — X {7211—1 0 *1} 5
Pua.o,vs0 — [O -1 O]: Puoovar — X {O —24-1 *1} 5

where a = (27 + 1)$71.
Recall that the dual group of Z4 x Z3 consists of characters of the form x,,, : ZgxZy — T, (m, j) — 5™,
where 5 € Zy = {1,i,—1,—i} and 1 € Zy = {—1,1}. By Theorem 3.7, the symbol function ® : Z4 x Zy —

Ms3(C) of Gy, takes the form,

([vo0), 1) ([vool.2)  ([vo,],3)
b — Le00)] l -1 1) 0
(1, 1) 827(070)] —2071g 29 lag —a(1+n) ’

Evidently we have RUM spectrum Q(Gy) = 24 X @2.
First we will construct a x1,1-symmetric infinitesimal flex of Gyi.. Note that such flexes represent a fully
symmetric motion of the bar-joint framework which preserves the edge-lengths induced by the (2, ¢)-norm.

1
The kernel of #(1,1) is spanned by @ = ( -1 ]. Thus, by Theorem 4.1, z(x1,1,a) is a fully symmetric

0
X1,1-symmetric infinitesimal flex of Gy, where, for j € Z,,

1 1 -1 -1
Zug, = -1y Eu =) Zw =0 ) Zu, = 1)
i 0 j o E 0 i 0

Note that the above fully symmetric infinitesimal flex is independent of ¢. By way of contrast we now
construct a x—_1,—1-symmetric infinitesimal flex for Gy which varies with ¢. Note that ker &(—1,—1) is
1
spanned by a = ( 1 1). By Theorem 4.1, z(x—1,_1,a) is a x_1,—1-svmmetric infinitesimal flex of Gy
_29*
where, for j € Zo,
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1 1 -1 -1
ZUD,j — '1 s zvl,j — 7.1 s Z'Uz,j — .71 , zﬂg,j — 1
(—1)7t+taa-t (—1)7ge—1 (=1)dttoa—t (—1)72e—1
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