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Abstract—Densification and multi-band operation in 5G and
beyond pose an unprecedented challenge for mobility manage-
ment, particularly for inter-frequency handovers. The challenge
is aggravated by the fact that the impact of key inter-frequency
mobility parameters, namely A5 time to trigger (TTT), A5
threshold1 and A5 threshold2 on the system’s performance is
not fully understood. These parameters are fixed to a gold
standard value or adjusted through hit and trial. This paper
presents a first study to analyze and optimize A5 parameters
for jointly maximizing two key performance indicators (KPIs):
Reference signal received power (RSRP) and handover success
rate (HOSR). As analytical modeling cannot capture the system-
level complexity, a data driven approach is used. By developing
XGBoost based model, that outperforms other models in terms
of accuracy, we first analyze the concurrent impact of the three
parameters on the two KPIs. The results reveal three key insights:
1) there exist optimal parameter values for each KPI; 2) these
optimal values do not necessarily belong to the current gold
standard; 3) the optimal parameter values for the two KPIs do
not overlap. We then leverage the Sobol variance-based sensitivity
analysis to draw some insights which can be used to avoid
the parametric conflict while jointly maximizing both KPIs. We
formulate the joint RSRP and HOSR optimization problem, show
that it is non-convex and solve it using the genetic algorithm
(GA). Comparison with the brute force-based results show that
the proposed data driven GA-aided solution is 48x faster with
negligible loss in optimality.

Index Terms—Mobility Management, Inter-frequency Han-
dovers, KPI Optimization, Measurement Events

I. INTRODUCTION

Network densification exploits spatial reuse to increase
the network capacity and coverage by deploying a dense
heterogeneous network of macro and small base stations (BSs).
On the other hand, moving to higher frequency bands also
requires reducing cell sizes and concurrent operation at mul-
tiple frequency bands [1]. However, one caveat of deploying
such a huge number of base stations operating on a motley
of frequency ranges is the increase in the complexity of the
mobility management as well as more pronounced effect of
misconfigured mobility parameters on user experience and
resource efficiency. This is due to the proportional increase in
the number of handovers (HO), with the increase in the number
of BS. It is imperative for the emerging and future networks
to have an optimal mobility management as there is a wide
range of key performance indicators (KPIs) that directly hinge
on user experience and network signaling overhead during

handovers. A poor HO management leads to the degradation
in several KPIs including data rates, latency, retainability, and
user quality of experience (QoE). Optimal HO performance
is particularly vital to support Ultra-Reliable Low-Latency
Communication (URLLC) use case in 5G [2].

The current industrial practice of optimizing mobility-
related KPIs involves the manual tuning of HO related config-
uration and optimization parameters (COPs). These COPs are
tuned by leveraging domain knowledge and sometimes based
on hit and trial approach. In addition to a large number of base
stations, an increase in the number of COPs per site emerging
network compared to legacy networks makes the problem
even more complex. Therefore, with current industry practice
manual hit and trial based COP tuning, managing handovers in
the future network is not viable. State of the art Self organizing
network (SON) solutions do provide some automation in COP
tuning and KPI optimization. For instance, mobility robustness
optimization (MRO) is one of the SON functions, which deals
with HO parameter management. MRO automatically adjusts
a parameter called cell individual offset (CIO) based on the
past HO performance of a BS. Though one step ahead of the
manual tuning, the current SON solutions would be insufficient
for the emerging and future networks due to being reactive
and relying on only past observations instead of complete
system behavior models [3]. In addition, SON solutions tap on
a very limited number of mobility COPs to optimize the KPIs.
An efficient and robust HO management can only be devised
if the COP-KPI relationship can be quantitatively modeled.
However, a tractable analytical COP-KPI model is not feasible
to derive due to the system level dynamics and complexity
of the cellular network involving mobile users. This calls for
investigating data driven models instead.

Data-driven models can be leveraged to quantify the COP-
KPI relationship. However, an efficient data driven model
needs training data with the following two underlying con-
ditions: 1) data should be sufficiently large and 2) data should
be representative. Although, massive data can be mined from
a real network meeting the first condition efficiently, the real
challenge lies in the representativeness of that data. Aside from
the privacy concerns from the subscribers, the main reason
for the lack of representative data is the valid reluctance of
network operators to test all COP combinations in the live
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TABLE I
USE OF MEASUREMENT EVENTS FOR INTER-FREQUENCY HO

Function Measurement
Event

Vendor
1

Vendor
2

Vendor
3

Inter-Frequency HO
A3 Yes No Yes
A4 No Yes No
A5 Yes Yes Yes

network. To address the issue, in this study we generate and
exploit reliable synthetic data to solve the important problem
of key mobility parameters optimization for inter-frequency
handovers.

A. Related Work
A handover is triggered by defined actions called ”Mea-

surement Events”. 3GPP release 16 [4] has defined standard
events for 5G NR which can be used to aid HO decision.
Most of the studies optimize HO related parameters of event
A3 to improve certain KPIs [5]–[9]. In [5], authors used CIO
as COP to develop a context aware MRO solution for reduction
in connection failures using event A3. The authors in [6]
extended the idea by using three COPs, time to trigger (TTT),
offset of event A3 and CIO, to develop a distributed MRO
algorithm to minimize radio link failures (RLF). Authors in [7]
expanded the analysis to 5G settings and used handover margin
(HOM) and TTT as COPs while considering user speed and
RSRP. They proposed an auto-tuning algorithm to optimize
number of handovers and HO failure ratio using event A3.
While all the previous studies considered a trade off between
ping pong and RLF, the authors in [8] extended the state of the
art by proving that optimal settings of A3 exist for minimizing
both ping pong rate and RLF. In contrast to the previous work,
authors in [9] studied the implication of using AHP-TOPSIS
method from WiMax for target BS selection in LTE-Advanced
cellular networks. They used Q-learning to find optimal value
of TTT and hysteresis of event A3. Perhaps, the only study
which ventured beyond event A3 was performed in [10].

In [10], a weighted sum optimization of HO failure ratio,
call drop ratio and ping pong ratio using reinforcement learn-
ing is done. The study considered TTT and HOM for events
A1, A2, A3, A4 and A5. However, this study considers same
TTT and HOM for all the events instead of optimizing distinct
values of TTT and HOM for different events.

The discussed literature investigates intra-frequency han-
dovers using event A3. There is second type of handover
called inter-frequency handover, which happens between cells
operating on different frequencies. These handovers are more
challenging to manage and lead to more signaling overhead
and quality of experience issues. Data collected from a leading
operator in the United States, operating with 6 frequency
bands, show that there are around 60% more inter-frequency
HO attempts compared to intra-frequency HO. This percentage
is likely to increase as the number of bands being used increase
e.g. due to co-existence of 4G and 5G at different bands. This
signifies the importance of inter-frequency HO for current
and future cellular networks. However, despite their signif-
icance and associated open challenges, inter-frequency HO
parameters optimization remains under explored in literature.
Table I shows the allowed use of each measurement event
for inter-frequency HO by the three major telecommunication

vendors. It is clear that all the three vendors support event A5
for inter-frequency HO, making it the best choice for a self-
optimization solution that will work across all the vendors.
The superiority of event A5 for managing inter-frequency HO
also stems from the increased flexibility and control it offers
over the HO execution conditions. With the right settings of
A5 parameters such as threshold1 and threshold2, HO can
be made sure to happen only at the cell edge. In contrast, A3
that checks only the relative difference between the source and
target BS, can lead to handovers even in the middle of cells
and is more prone to ping-pongs. However, to the best of the
authors’ knowledge, there does not exist a study in literature
that investigates optimal configuration of A5 parameters for
inter-frequency HO.

B. Contributions

The main contributions of this work are listed below:
1) This paper is the first study to quantitatively investi-

gate the impact of key event A5 parameters such as
threshold1, threshold2 and TTT on several KPIs such
as RSRP and handover success rate (HOSR) for inter-
frequency HO. The insights drawn from this analysis
show that state of the art gold standard based fixed
parameter configuration are not necessarily optimal. A
formulation and solution of a multi-KPI maximization
problem is required to determine the optimal values of
the three parameters.

2) We formulate and solve a multi-objective optimization
problem to determine the optimal values of threshold1,
threshold2 and TTT that jointly maximize the RSRP and
HOSR.

3) To overcome the system level complexity problem that
prohibit analytical modeling, we leverage data driven
modeling. We evaluate several state of the art machine
learning techniques for their potential to generate a
reliable COP-KPI model. Results show an XGboost
based model outperforms others with less than 2.5%
in HOSR and 0.074dBm in RSRP compared to ground
truth.

4) To resolve the parametric and objective conflicts ob-
served in the multi-parameters multi-objective optimiza-
tion problem, we perform Sobol variance based sensi-
tivity analysis. The insights drawn from this analysis are
useful for industry for obtaining desired level of gains
in HOSR without having to compromise RSRP and vice
versa.

The rest of the paper is organized as follows: Section II
describes the system model; the qualitative impact of inter-
frequency COPs on KPIs is presented in Section III; Section
IV discusses the performance of machine learning algorithms
in capturing the quantitative COP-KPI relationship; Section
V presents the KPI optimization using the machine learning
models while Section VI concludes the paper.

II. SYSTEM MODEL

This section describes the 3GPP defined measurement event
A5 together with the parameters to optimize the mean RSRP
and HOSR. We then formulate the COP-KPI optimization
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problem and lastly describe the simulation setup for data
generation.

A. Handover Event A5
Event A5 is triggered when RSRP of a user u from serving

gNB becomes less than A5 threshold1 and RSRP of the user
from target gNB becomes greater than the A5 threshold2. A
HO is triggered using event A5 if the following conditions are
fulfilled and maintained until TTT is exhausted:

ηus +A5hyst < A5th1

ηut +Os,t −A5hyst > A5th2
(1)

where ηus is the RSRP of the user with serving gNB, ηut is
the RSRP of the user with target gNB, Os,t is the cell specific
offset also known as CIO from the serving to target gNB,
A5hyst, A5th1 and A5th2 are the hysteresis, threshold1 and
threshold2 for event A5, respectively.

B. Problem Formulation
RSRP of the user is an important performance metric

because it gives an estimate of the link quality between user
and the serving BS. Serving cell RSRP also impacts other
KPIs such as signal to noise and interference ratio (SINR) and
throughput. The downlink RSRP ηus for a user u connected to
the serving BS s is given by:

ηus = Psd
u
s (2)

where Ps is the transmit power of serving BS s and dus is the
pathloss dependent component of the user u with the serving
BS s. Poor settings of HO parameters can impact the RSRP
of the user, i.e., a very high value of TTT can cause too late
HO keeping the user in inadequate RSRP for a long time.
Similarly, a bad settings of A5 thresholds, i.e., extreme setting
of -90dBm and -120dBm for A5th1 and A5th2, respectively,
will result in too early HO where UEs will be forced to move
to BS with much lower RSRP. The mean RSRP η of all the
users in the network can be described as:

η =

∑
∀i∈U

ηis

|U |
(3)

where U is a set of all the users in the network.
HOSR is another important KPI that captures the effec-

tiveness of the HO related parameter settings. It is important
to set the A5 parameters to minimize HO failures as poor
HOSR increases the signaling overhead, prolongs the user in
unsatisfactory signal conditions and can lead to radio link
failures. This will ultimately worsen the QoE of user. In
addition, the poor HOSR can become a key bottleneck for
URLLC in 5G and beyond particularly for applications such
as intelligent transport systems and autonomous cars. HOSR
ξ can be described as:

ξ =
HOS

HOS +HOF
× 100% (4)

where HOS and HOF are the number of successful and failed
handovers, respectively, in the network.

Mean RSRP and HOSR for the network can be maximized
jointly. We formulate a multi-objective optimization problem
to maximize η and ξ using A5 related COPs as follows:

TABLE II
DESCRIPTION OF SIMULATION PARAMETERS

Parameter Description Value
Number of Macro BS 2
Number of Small Cells per Macro BS 1
Macro BS and small BS height 30m and 20m
Macro BS and small BS transmit power 30dBm
Total bandwidth for 1.7, 2.1 and 3.5 GHz 10, 15 and 20 MHz
Total PRBs for 1.7, 2.1 and 3.5 GHz 52, 78, 106
Pathloss Exponent 3
Shadowing Standard Deviation 4
User density λu 15 per km2

Speed Vector V [3, 60, 120, 240] km/h

max
A5TTT ,A5th1,A5th2

αηnorm + (1− α)ξnorm;

subject to Tmin ≤ TTT ≤ Tmax

T1min ≤ A5th1 ≤ T1max

T2min ≤ A5th2 ≤ T2max

(5)

where ηnorm, ξnorm are the normalized values of RSRP and
HOSR, respectively while α ∈ [0, 1] ⊂ R is the factor that can
be used to adjust the relative importance of each KPI. T , T1,
T2 are the ranges of TTT, A5th1 and A5th2, respectively with
the subscript showing the minimum and maximum values. The
optimization variables are TTT of A5, A5th1 and A5th2. The
three constraints in (5) limit the values of the optimization
variables i.e. COPS in the 3GPP defined ranges.

Solving this problem using analytical method is not a viable
approach as tractable models for RSRP and particularly HOSR
as a function of the three COPs are very difficult if not
impossible to derive. Even if abstract mathematical models
are created, they cannot capture the dynamics caused by mo-
bility of users. Therefore, to enable practical self-optimization
solutions, as originally proposed in [1], data driven modeling
is a more viable approach to solve (5).

C. Data Generation
Collecting all the needed data from a live network though

plausible in theory, is impractical in practice. This happens
because operators cannot afford to try all possible combi-
nations of COPs on live network due to the inherent risk
of performance loss during the process. Secondly, such data
cannot be shared with academia for privacy and business
protection reasons. Even if painstakingly gathered and shared,
irrespective of the volume, experience shows in case of cellular
networks that real data alone is not representative enough to
train reliable models and it has to be augmented with authentic
synthetic data anyway.

In this backdrop, to generate the data, we exploit a state
of the art 3GPP-compliant system level simulator named
SyntheticNET [11]. This is the first simulator to model 5G
mobility parameters in detail needed for this study. As shown
in [11], this simulator has been calibrated against real network
measurements to ensure the authenticity of the data generated
through it.

A network with an area of size 2km×2km is used for
the data generation. We consider a three-tier heterogeneous
network where 2 layers are composed of macro cells and the
remaining layer is composed of small cells. Each macro cell
has three sectors and each sector operates at two frequency

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on March 26,2022 at 14:43:08 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
DESCRIPTION OF COPS TO GENERATE THE KPIS

COPs Values
A5TTT [64, 128, 256, 320, 512] ms
A5th1 [-90 to -120] dBm
A5th2 [-90 to -120] dBm

Fig. 1. Impact of A5 thresholds and TTT on mean RSRP.

bands, 1.7GHz and 2.1GHz. Small cells have omni-directional
antenna operating at frequency band of 3.5GHz. The initial
deployment of the users in the network follows a uniform
distribution with user density λu. Each user can move in the
network with speed vu chosen from a set V . All elements of
the set V are equally probable and the speed value remains
constant for a user. User mobility type is random way point.
The network level simulation parameters are summarized in
Table II and Table III shows the ranges of event A5 related
COPs used to generate the data. Such a wide range for A5th1
and A5th2 are chosen to cover the effect of hysteresis for
making event A5 parameters optimization more robust.

III. IMPACT OF INTER-FREQUENCY HANDOVER
PARAMETERS ON KPIS

To date, the effect of changing the values of A5 related
COPs on the KPIs such as RSRP and HOSR is not fully
understood, even in academic literature [12]. Industry practice
on the other hand is to use gold standard fixed values recom-
mended by the vendors for A5 parameter settings without any
consideration of their optimality. Qualitative and quantitative
insights into how A5 parameter values affect the KPIs are
essential to optimize these parameters. This section presents
the analysis to harness these insights. These insights are also
used to establish the structure of (5) to see whether or not it
is a convex optimization problem so an appropriate solution
approach can be adapted.

A. Impact on Mean RSRP

We begin by analyzing the impact of A5 TTT, A5th1, and
A5th2 on mean RSRP by changing the values of three A5
parameters and logging resultant mean RSRP. Result in Fig. 1
shows that the mean RSRP decreases when A5th2 values are
on the extreme sides. This happens because very high values of
A5th2 trigger late HO as users are unable to move towards the
target BS due to a very high threshold. This ultimately results

Fig. 2. Comparison of gold standard and simulation results. Red box
represents the range of threshold values recommended by the gold standard
used in industry. Blue box is the area of high mean RSRP, for analyzed
network scenario. This finding can be insightful for the industry.

in a longer stay of users under the coverage of a BS with
poorer RSRP. Similarly, lower values of A5th2 result in the
too early HO to BS with bad coverage lowering the overall
RSRP. An opposite effect is observed for variations in the
values of A5th1. Unlike in A5th2, very low values of A5th1
cause too late HO as event A5 is triggered when the serving
RSRP is already very poor. Meanwhile, very high values of
A5th1 result in too early HO. In terms of variations in TTT,
it is observed that different TTT values shift the high RSRP
area. As TTT increases, the concentration of higher RSRP
goes towards lower A5th2 and higher values of A5th1. This
observation provides insight that if larger TTT is used (i.e.,
dense urban area where mobility is slow), to maintain good
RSRP for the users, a higher value of A5th1 and a lower value
of A5th2 should be used. This will ensure that even if TTT is
longer; the conditions to fulfill HO will be relaxed, avoiding
instances of delayed HO resulting in good RSRP values.

Fig. 2 shows a 2D plot of mean RSRP versus A5th1 and
A5th2 for TTT of 64ms and 512ms. In this figure, we highlight
with a red box the A5 parameter values used as gold standards
(GS) by the leading operators in United States. We have also
highlighted the blue area where the highest average RSRP
has been observed for the analyzed scenario. This comparison
shows a significant overlap between the GS and our values
of A5th1 and A5th2 for TTT of 64. However, the location of
the blue box changes when TTT is 512ms i.e., optimal values
of A5 thresholds change. Therefore, current GS based fixed
value setting approach is not optimal and hence the need for
self-optimization solution as proposed in this study.

B. Impact on HOSR
The impact of different A5 thresholds and TTT setting on

HOSR is shown in Fig. 3. At first glance these results give the
impression that 100% HOSR can be achieved by using higher
values of A5th2 (i.e., greater than -100dBm). However, this
does not necessarily mean higher A5th2 is the optimal setting.
As HO conditions using higher A5th2 are more challenging to
achieve, very few handovers will occur leading to extremely
poor RSRP as seen in Fig. 1. In fact, using extreme thresholds
and TTT values results in no HO at all. Although these settings
result in lower HO failure, the users are forced to stay under
inadequate RSRP coverage for a long period leading to poor
SINR, throughput, and increased chances of RLF. This can
be also validated from Fig. 1, showing the worst mean RSRP
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Fig. 3. Impact of A5 thresholds and TTT on HOSR.

in the same area where the HOSR is the highest. Fig. 3 also
shows that most HO failures occur when lower A5th1 is used.
This result is expected as poor RSRP of the serving BS is one
of the main reasons for HO failure.

The conflicting trend between the results in Fig. 1 and Fig. 3
shows that there is a trade-off between maximizing RSRP and
maximizing HOSR, necessitating the joint optimization of the
two KPIs together as proposed in this paper. In the following
section, we perform the Sobol index-based sensitivity analysis
of the two KPIs with respect to the three cops of interest
to gather more insights that can enable joint optimization of
RSRP and HOSR.

IV. MACHINE LEARNING MODELS FOR COP-KPI
RELATIONSHIP

This section presents the performance of machine learning
algorithms in quantifying the COP-KPI relationship. A5th1,
A5th2, and TTT of A5 are used to predict the network perfor-
mance in terms of mean RSRP and HOSR. A 80%-20% train-
test data split is used and the performance of six different re-
gression techniques is evaluated. Fig. 4 shows the performance
of each algorithm in terms of root mean square error (RMSE).
Due to the complex non-linear relationship between COPs and
KPIs, linear regression is not able to capture the relationship
leading to a high RMSE of 0.461dBm and 5.59% for mean
RSRP and HOSR prediction, respectively. Similarly, fourth
order polynomial and support vector regression techniques also
failed to capture the COP-KPI relationship displaying higher
RMSE compared to other algorithms. Results also show that
tree-based algorithms exhibit promising results in predicting
the KPIs. Top 3 algorithms with lowest RMSE for both RSRP
and HOSR are all tree-based with XGBoost being the best
showing RMSE of only 0.074dBm and 2.5% for mean RSRP
and HOSR, respectively. Overall, results show that machine
learning algorithms can capture the relationship between COPs
and KPIs with fairly low error.

The relative effect of each of the three COPs on the
two KPIs using Sobol based variance sensitivity analysis
method [13] is plotted in Fig. 5. It is observed that A5th2 has
the largest impact on the performance of both mean RSRP and
HOSR followed by A5th1. This shows that a small variation
in A5th2 will have a large impact on both KPIs. Meanwhile,

Fig. 4. Comparison of different machine learning algorithms for RSRP and
HOSR prediction.

Fig. 5. Sobol sensitivity analysis.

TTT has almost no effect on HOSR while it has some impact
on mean RSRP. This shows that TTT can be varied to optimize
RSRP without significant degradation in HOSR. The conflict
between both KPIs can be avoided to some extent by varying
only TTT to optimize RSRP. In addition to avoiding parametric
conflict in existing SON functions [14], these insights are
useful for the operators while tuning the parameters of event
A5.

V. OBJECTIVE FUNCTION OPTIMIZATION

Fig. 6 shows the plot of the objective function defined
in eq. (5) with 0.5 value of α. This plot shows how the
objective function varies with changes in thresholds and
fixed TTT of 64ms. As shown in the plot, there are several
maxima located at around -90dBm to -100dBm for A5th1
and -110dBm to -120dBm for A5th2. It can be seen that
(5) is a non-convex optimization problem. This non-convex
problem can be solved either through brute force search or
heuristic solutions. We compare the performance of brute force
method for optimization with well-defined heuristic approach,
genetic algorithm (GA). Table IV shows that the GA can
converge 48 times faster compared to brute force method. The
fast convergence time especially can make the solution agile
for fast changing network conditions. Brute force guarantees
optimal value but is not computationally viable particularly for
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Fig. 6. Objective function defined in eq. (5) with α = 0.5 and TTT=64ms.

TABLE IV
COMPARISON BETWEEN GENETIC ALGORITHM AND BRUTE FORCE

Objective
Function

Mean RSRP
(dBm)

HOSR
(%)

Number of
Iterations

Genetic
Algorithm 0.9391 -109.47 92.44 100

Brute
Force 0.9709 -109.34 94.17 4806

large scale problems i.e. ones involving multiple parameters
and cells. In most cases, GA can converge quickly to near
optimal values.

A comparison of the best values from GA and brute force
with α = 0.5 is shown in Table IV. It can be seen that the value
of objective function returned by GA is slightly sub-optimal
compared to that returned by brute force. There is a minor
difference of 0.13dBm and 1.73% in optimal values of mean
RSRP and HOSR between GA and brute force. This difference
has two reasons, the sub-optimal convergence of GA and the
prediction error of the ML algorithm described in Section
IV. The optimal values of [TTT, A5th1, A5th2] through brute
force are [128ms, -104dBm, -110dBm] compared to [128ms,
-103dBm, -109dBm] through GA. The very small difference
in the optimal values of KPIs and COPs verifies the presented
solution, that combines ML for KPI prediction with heuristic
optimization, can enable self-optimization of A5 and other
similar parameters. Compared to gold standard such self-
optimization can improve the KPIs like RSRP and HOSR
substantially.

VI. CONCLUSION

In the wake of densification and multi-band operation envi-
sioned for 5G and 6G, inter-frequency handover can become
major bottle neck in user experience. This paper presents
the first solution to systematically analyze and optimize three
key mobility management COPs that dictate inter-frequency
handover: A5th1, A5th2 and TTT of event A5. The proposed
optimization solution jointly maximizes two KPIs: RSRP
and HOSR. As tractable analytical modeling is not a viable
approach due to the complexity of the system level dynamics,
a data driven approach is leveraged to solve the problem. To
address the shortage of data, synthetic data from 3GPP compli-
ant simulator that has been validated against real network data

is used. Several state-of-the-art machine learning techniques
are used to develop and test COP-KPI model. XGboost can
predict mean RSRP and HOSR with RMSE of 0.074dBm
and 2.5%, respectively. Sobol sensitivity analysis shows that
A5th2 has the highest impact on both RSRP and HOSR while
TTT has the least impact on RSRP and almost no impact on
HOSR. We solve the joint RSRP and HOSR problem using
GA. Results show that proposed data driven modeling and
GA based solution is 48 times faster compared to brute force
search at the cost of 0.13dBm and 1.73% reduction in RSRP
and HOSR, respectively.
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