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Abstract—This paper presents a dynamic model and a control
system for a flapping-wing unmanned aerial vehicle. Inspired
by flight characteristics captured from live Monarch butterflies,
a new dynamic model is presented to account the effects of
low-frequency flapping and abdomen undulation. It is developed
according to Lagrangian mechanics on a Lie group to obtain
an elegant, global formulation of dynamics. Then, a feedback
control system is presented to asymptotically stabilize periodic
motions with active motion of abdomen, and its stability is
verified according to Floquet theory. In particular, it is illustrated
that the abdomen undulation has the desirable effects of reducing
the variation of the total energy and also improving the stability
of the proposed control system.

I. INTRODUCTION

Flight controls of flapping wing unmanned aerial vehicles
(FWUAVs) are challenging as they are essentially infinite
dimensional, nonlinear time-varying systems, where the equa-
tions of motion describing displacement and the deformation
of a flexible multi-body system are coupled with the Navier-
Stokes equations. As such, stability analyses of such FWUAVs
rely on various assumptions [1]. Most of the current flight
dynamics and control of FWUAVs have been conducted by
linearizing the dynamic model around a selected operating
point, and taking the average over a cycle of flapping [2],
[3], [4]. For instance, a longitudinal flight control has been
designed using the time-averaging theory [5].

Recent works include adaptive controller implementation
by employing neural networks along with disturbance ob-
servers [6], and a path tracking control based on learning [7].
These work exploit the large disparity in time scales of
wingbeat frequency and flight dynamics by utilizing high
frequency oscillations of small wings.

On the other hand, there have been a few studies for the
interaction of abdomen with the remaining body and wings.
It has been shown that abdomen undulation may reduce
power consumption from the dynamic coupling of wing-
body motion [8]. Also, a simple two-dimensional model has
been utilized to understand pitch instability of thorax and the
effects of abdominal controls [9]. It is further reported that
moths actively modulate their body shape to control flight in
response to visual pitch stimuli, and it may contribute to pitch
stability [10].
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In this paper, we utilize a dynamic model and a control
system inspired by Monarch butterflies. Their flight is char-
acterized by low flapping frequencies (10 Hz), relatively large
wingspans, and active abdomen undulation. And as such, the
existing approaches relying on the linearized dynamics over a
short flapping period are not suitable.

We first model a FWUAV as an articulated rigid body
composed of the head/thorax, abdomen, and two wings that
are interconnected by spherical joints, where the material
parameters, size, and shape are selected to resemble those
of Monarch butterflies. Then, its dynamics are studied us-
ing quasi-steady aerodynamics assumptions and Lagrangian
mechanics on a manifold [11]. This avoids complexities and
singularities associated with local coordinates in representing
complex maneuvers involving the dynamic coupling effects
of abdomen and low-frequency flapping. Also, it provides a
computationally efficient model that is suitable for design and
verification of nonlinear feedback control laws.

Next, we design a nonlinear control system for the presented
articulated rigid body model. In contrast to the current systems
based-on on linearized dynamics, the proposed feedback con-
trol system utilizes Floquet theory to ensure stability of the
controlled periodic orbit. More specifically, the control input
is formulated as the set of torques acting at each joint, and as
such, it yields an optimal motion of the thorax and abdomen
integrated with the wing flapping, thereby resembling the
distinct flight characteristics of the Monarchs.

Furthermore, we carefully analyze the effects of abdomen
undulation in the periodic motion and the stability. We show
that abdomen undulation improves an energy efficiency of
flight reducing the variation of the total energy and the power
over a flapping period, and it further improves stability prop-
erties by enhancing the rate of convergence and by enlarging
the region of attraction. Such advantageous effects of abdomen
undulation in the controlled dynamics of FWUAVs have not
been reported before. More detailed developments of the
proposed approaches are available at [12].

II. DYNAMICS OF FLAPPING-WING UAV

Here, we present an articulated rigid body model for a
flapping wing aerial vehicle [11]. Throughout this paper,
the three-dimensional special orthogonal group is denoted by
SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1}, and the
corresponding Lie algebra is so(3) = {A ∈ R3×3 | A =
−AT }. The Hat map ∧ : R3 → s0(3) is defined such that
x̂y = x × y for any x, y ∈ R3. And its inverse map is the
vee map, ∨ : so(3) → R3. Next, ei ∈ Rn denotes the i-th
standard basis of Rn for an appropriate dimension n, e.g.,
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φ > 0

sy

ry

(a) flapping angle,
φR ∈ [−π, π)

θ > 0

rx

sx

(b) pitch angle,
θR ∈ [−π, π)

ψ > 0 ry

sy

(c) deviation angle,
ψR ∈ [−π, π)

Fig. 1. Euler angles [11] : positive values are indicated from FS (green) to
FR (red)

e1 = (1, 0, . . . , 0) ∈ Rn. Throughout this paper, the units are
in kg, m, s, and rad, unless specified otherwise.

A. Multibody Formulation

Consider a flapping wing UAV that is composed of a body,
an abdomen, and two wings attached to the body which is
taken to be the combination of head and thorax into a single
rigid body. Define an inertial frame FI = {ix, iy, iz}, which is
compatible to the NED (north-east-down) frame. The various
components of this model are described below.
• Body: The origin of the body-fixed frame FB =
{bx,by,bz} is defined at the mass center of the body.
Its attitude is given by R ∈ SO(3) and the position of
mass center is given by x ∈ R3 in FI . The kinematics
of the attitude is Ṙ = RΩ̂, where Ω ∈ R3 is the angular
velocity of the body resolved in FB .

• Right wing: Let FR = {rx, ry, rz} be the frame fixed to
the right wing at its root. And let FS = {sx, sy, sz}
be the stroke frame obtained by translating the ori-
gin of FB to the center of wing roots, and rotat-
ing it about by by a fixed angle β ∈ [−π, π). Let
µR ∈ R3 be the fixed vector from the origin of FB
to that of FR. The attitude of the right wing rela-
tive to FS , namely QR ∈ SO(3) is described by 1–
3–2 Euler angles (φR(t), ψR(t), θR(t)) (Figure 1) as
QR = exp(βê2) exp(φRê1) exp(−ψRê3) exp(θRê2), and
its time-derivative is Q̇R = QRΩ̂R for ΩR ∈ R3.

• Left Wing: Similarly, for the left wing, QL =
exp(βê2) exp(−φLê1) exp(ψLê3) exp(θLê2), with the
set of Euler-angles (φL(t), ψL(t), θL(t)), and Q̇L =
QLΩ̂L for ΩL ∈ R3.

• Abdomen: The abdomen is considered as a rigid body
attached to the body via a spherical joint. The frame fixed
to the abdomen is FA = {ax,ay,az}, and its attitude
relative to the body is denoted by QA ∈ SO(3) with
Q̇A = QAΩ̂A for ΩA ∈ R3.

B. Wing Kinematics

Here we consider the particular model presented in [13,
Section 2.1] for the motion of the wing relative to the body.
Let f ∈ R be the frequency of flapping in Hz and T = 1

f
be the period in seconds. The flapping angle is given by a
smoothed triangular waveform,

φ(t) =
φm

sin−1 φK
sin−1(φK cos(2πft)) + φ0, (1)

where φm ∈ R is the amplitude, φ0 ∈ R is the offset, and
0 < φK ≤ 1 determines waveform shape.

The pitch angle is given by a hyperbolic function,

θ(t) =
θm

tanh θC
tanh(θC sin(2πft+ θa)) + θ0, (2)

where θm ∈ R is the amplitude of pitching, θ0 ∈ R
is the offset, θC ∈ (0,∞) determines the waveform, and
θa ∈ (−π, π) describes phase offset.

Finally, the deviation angle is given by

ψ(t) = ψm cos(2πψNft+ ψa) + ψ0, (3)

where ψm ∈ R is the amplitude, ψ0 ∈ R is the offset, and the
parameter ψa ∈ (−π, π) is the phase offset.

C. Body/Abdomen Kinematics

When generating a periodic motion, the body and the ab-
domen are assumed to undulate [11]. Specifically, the attitude
of the body is defined as R(t) = exp(θB(t)ê2), where the
body pitch angle is θB(t) = θBm

cos (2πft+ θBa
) + θB0

,
for fixed parameters θBm , θBa , and θB0 ∈ R. Similarly, the
attitude of the abdomen relative to the body is QA(t) =
exp(θA(t)ê2), where θA(t) = θAm

cos (2πft+ θAa
) + θA0

,
for θAm

, θAa
, θA0

∈ R.

D. Lagrangian Mechanics

The configuration of the above flapping wing UAV model
is described by g = (x,R,QR, QL, QA), and as such, it is
a mechanical system evolving on the Lie group G = R3 ×
SO(3)

4, whose Lie algebra is simply g = R3×so(3)4 ' R3×
(R3)4. Therefore, its equation of motion can be formulated by
Lagrangian mechanics on a manifold [11], [14].

Here, it is assumed that the motion of the wings, abdomen,
and body are prescribed, i.e., (R(t), QR(t), QL(t), QA(t)) are
given as functions of time. This is common in the literature,
as the inertia of the wings are relatively small. Substituting
these, the reduced equation of motion for the position is

mẍ+
∑

i∈{R,L,A}

{
Ji12Ω̇ + Ji13Ω̇i + Ki12Ω + Ki13Ωi

}
= R

∑
i∈{R,L,A}

QiFi +mge3, (4)

where Fi = Li +Di ∈ R3 denotes the resultant aerodynamic
force at each component, m ∈ R is the total mass, and g ∈ R
is the gravitational acceleration. The explicit expressions for
each term of the above equation are available in [11].

For numerical analyses presented in the remainder of this
paper, the wing morphological parameters and the mass prop-
erties are chosen to be similar with those of Monarch, and
the specific values are summarized in [11]. For the aerody-
namic coefficients, we adopt the experimental results presented
in [15], [16] as mentioned in [13], [12]. Next, the aerodynamic
force generated by the body and the abdomen is ignored, i.e.,
FA = 0. This is reasonable as the projected surface area of the
body and the abdomen is negligible compared with the wings.
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(a) Position x (b) Velocity ẋ

(c) Wing kinematics angles (φ, θ, ψ)
(in degrees)

(d) Relative abdomen/ body pitch
θB , θA (in degrees)

Fig. 2. Hovering periodic orbit generated using optimized parameters; shaded
region corresponds to downstrokes

III. CONSTRUCTION OF PERIODIC MOTION

In this section, we construct a periodic motion for the above
dynamic model by finding corresponding wing kinematics
parameters. Here we focus on a hovering flight, i.e., at the
end of one cycle of wing flapping the position and the velocity
returns to the initial values so that its motion can be repeated.

A. Problem Formulation

An optimization problem to generate this motion is formu-
lated as follows,

• The objective function is the absolute amount of energy
input into the system and corresponding power required:

J = w1

∫ T

0

|E(t)|dt+ w2

∫ T

0

|Ė(t)|dt, (5)

where w1, w2 ∈ R are positive weighting factors, and
E(t) ∈ R is composed of the kinetic energy and the
gravitational potential energy, E(t) = 1

2m ‖ẋ(t)‖2 −
mgeT3 x(t).

• The parameters being optimized are,
– flapping frequency: f , stroke plane angle: β
– wing kinematics, body and abdomen undulation:

(φm, φK , φ0), (θm, θC , θ0, θa), (ψm, ψ0, ψa),
(θBm

, θB0
, θBa

), (θAm
, θA0

, θAa
)

– initial velocity: ẋ(0)

• There are equality constraints to ensure periodicity:
x(0) = x(T ), ẋ(0) = ẋ(T ). There is an inequality
constraint for feasibly flapping: |φm| + |φ0| < π/2. All
of the optimization parameters are bounded by prescribed
limits.

(a) Energy (b) Power

(c) Torque

Fig. 3. Comparison between hovering with abdomen undulation (blue) and
hovering without abdomen undulation (red); energy and power input to the
model is relatively low if there is abdomen movement, i.e., 1.8% reduction
in total mean power and 20.7% reduction in mean energy

It is considered that the motion of the left wing is always
symmetric to the right wing. The above parameter optimiza-
tion problem is solved via multistart in MATLAB. The
optimized parameters are summarized at [12, Table I], and the
corresponding periodic maneuver is illustrated at Figure 2.

B. Effects of Abdomen in Energy and Power

To further study the effects of abdomen, another optimiza-
tion is carried out while assuming that the abdomen does
not undulate relative to the body. The resulting optimized
parameters are summarized at the second column of [12, Table
I], where the optimal value of the objective function is in-
creased by 23% when the abdomen is fixed. The corresponding
variation of E and Ė are presented at Figure 3.(a). It is shown
that the abdomen undulation reduces the variation of the total
energy and its time-derivatives.

Next, the torques required at the wing joints and abdomen
(τR, τL, τA) are reconstructed from the equations of motion.
The corresponding power at the joints are computed as PR =
τTR (QRΩR), PA = τTA (QAΩA). The change of power over
a flapping period is illustrated at Figure 3.(b), which shows
1.8% reduction of the power with abdomen undulation.

IV. FEEDBACK CONTROL OF FLAPPING-WING UAV

In this section, we study the open-loop stability of the
hovering flight acquired in the preceding section, and then, we
propose a feedback control to improve the stability properties
of the corresponding periodic orbit. The flapping frequency
constructed from the morphological parameters of Monarch
is f = 10.22 Hz, which is relatively lower than the flapping
frequencies of other FWUAVs ranging up to 200 Hz. As such,
the common approaches relying on the linearized dynamics
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averaged over a flapping cycle are ill-suited. Here we study
the stability of the periodic orbit using Floquet stability theory,
and design a feedback control system accordingly. 1

A. Floquet Stability

Let x ∈ R6 be the congregated state of the position and the
velocity, i.e., x = (x, ẋ) ∈ R6. Also, let xd = (xd, ẋd) ∈ R6

be the periodic orbit for hovering constructed in the preceding
subsection, satisfying xd(t+ T ) = xd(t) for any t > 0.

The perturbation of the state x from the periodic orbit xd is
denoted by δx = x−xd = (δx, δẋ) ∈ R6. Ignoring the higher-
order terms, the evolution of the perturbation is described by
the equation of motion, namely (4) linearized about xd as

d(δx)

dt
= δẋ (6)

m
d(δẋ)

dt
= R(t){QR(t)δFR(t, δẋ(t)) +QL(t)δFL(t, δẋ(t))},

(7)

where δFR, δFL represent variation of the aerodynamic force
due to perturbation of the velocity. Their specific expressions
can be found in [13, Section 4.1].

Utilizing these, the linearized equations of motion, (6), (7)
can be rearranged into the following matrix form:

δẋ = A(t)δx, (8)

where the matrix A(t) ∈ R6×6 is periodic with the period
T . While the solution of (8), namely δx(t) is not periodic
in general, it can be written as a linear combination of a
set of periodic solutions multiplied by so-called characteristic
multiplier [17]. More specifically, let Ψ(t) ∈ R6×6 be the
solution of the matrix differential equation Ψ̇ = AΨ, starting
from a nonsigular Ψ(0) ∈ R6×6. There exists a non-singular
constant matrix M ∈ R6×6, referred to as the monodromy
matrix, such that Ψ(t + T ) = Ψ(t)M for all t. One of the
simplest way to compute it is M = Ψ(T ) if Ψ(0) = I6×6.
Let the i-th pair of the eigenvalue and the eigenvector of
M be (ρi,vi) ∈ R × R6, and suppose they are real. The
eigenvalues ρi are referred to as the characteristic multipliers
of (8), corresponding to which the periodic orbit is attractive
if |ρi| < 1 for all i [12].

B. Stability of Hovering Flight

The characteristic multiplier of the hovering flight con-
structed in Section III are as follows.

ρ = {1, 1, 1, 0.3763, 0.6234, 0.5023}, (9)

and the corresponding eigenvectors are

[v1, . . .v6] =


1 0 0 0.01 −0.03 0
0 1 0 0 0 0.13
0 0 1 0.00 −0.19 0
0 0 0 −0.99 0.63 0
0 0 0 0 0 −0.99
0 0 0 0.02 0.75 0

 .

1The Matlab software utilized for dynamics and control of the flapping
wing model is available at https://github.com/fdcl-gwu/FWUAV.

Since |ρi| ≤ 1, the periodic orbit of hovering is stable.
The first three characteristic mode with ρ = 1 corresponds to
the perturbation of the position which are undamped. As the
last three components of (v4,v5,v6) span R3, any velocity
perturbation can be written as a linear combination of those
three asymptotically stable modes with |ρ4|, |ρ5|, |ρ6| < 1.
These results are consistent with [11], where it is reported
that the velocity trajectory of the forward climbing flight of
Monarch is asymptotically stable.

C. Control System Design

Next, we design a feedback control system to asymptotically
stabilize the periodic orbit of hovering. The objective is to
stabilize the position modes and to improve the stability prop-
erties of the velocity modes. The control input corresponds to
the wing kinematics parameters and the abdomen undulation,
which are adjusted to the current position and the velocity that
are assumed to be available.

First, we study the relation between these wing kinematic
angles, as modeled in (1), (2), (3), and the aerodynamic forces
acting on the body. Let the resultant aerodynamic force and
the coupling effects of the abdomen undulation be fa ∈ R3,

fa = R(QRFR +QLFL)− (JA13
Ω̇A + KA13

ΩA). (10)

We choose the following four control parameters:
• ∆φms

= (∆φm,R+∆φm,L)/2: the mean of the flapping
amplitude of the right wing and the left wing for overall
magnitude of the aerodynamic force

• ∆φmk
= (∆φm,R − ∆φm,L)/2: the difference of the

flapping amplitude to generate a lateral force
• ∆θ0: the shifts in the pitching angle of both wings

to rotate the direction of the aerodynamic force in the
longitudinal plane

• ∆θAm
: the amplitude of the abdomen undulation

Figure 4 illustrates the variation of fa averaged over a
flapping frequency, namely f̄a ∈ R3 with respect to the
variations of the above parameters. We take the average of
the positive values of fa, separately from the negative values.
For example, the mean of the positive values of the first

element of fa is constructed as, f̄a1,p =

∫
t∈Tp

fa1
(τ)dτ∫

t∈Tp
dτ

, where

Tp = {t ∈ [0, T ] | fa1(t) > 0}. The mean of the negative
values f̄a1,n are defined similarly. The reason is that the
variation of the control parameters affects fa1 in the opposite
way, depending on the sign of fa1 . These are summarized
in Figure 4, with the corresponding slope for the positive
values, namely mp, and the slope mn for the negative values.

Employing these relations, we choose the wing kinematics
parameters such that the variation of the averaged force ∆f̄a
matches with a PID controller as

∆f̄a = m(KP δx(t) +KDδẋ(t) +KI

∫ t

0

δx(τ)dτ), (11)

where KP ,KD,KI > 0 are the controller gains. After decom-
posing the longitudinal motion from the lateral motion, the
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(b) Lateral force

Fig. 4. Effects of control parameters on the aerodynamic forces: mean of
positive values (blue) and mean of negative values (red)

wing kinematics parameters are computed from the following
linear approximation. For the longitudinal forces, we have

S

∆φms

∆θ0
∆θAm

 =

[
∆f̄a1
∆f̄a3

]
, (12)

where the matrix S ∈ R2×3 is defined as

S =


∂f̄a1
∂φms

∂f̄a1
∂θ0

∂f̄a1
∂θAm

∂f̄a3
∂φms

∂f̄a3
∂θ0

∂f̄a3
∂θAm

 . (13)

When calculating S, the value of the sensitivity is chosen
according to the sign of f̄ai as discussed above. For example,

when fa1 > 0, we use
∂f̄a1
∂φms

=
∂f̄a1,p
∂φms

. As (12) is underde-

termined, the control parameters are obtained by the minimum
norm solution as∆φms

∆θ0
∆θAm

 = ST (SST )−1
[
∆f̄a1
∆f̄a3

]
.

For a comparison, we consider another case when the
abdomen is not actively controlled, i.e., ∆θAm

= 0. The
corresponding active control parameters ∆φms

,∆θ0 are com-
puted by inverting the square matrix composed of the first two

columns of (13). These ensure that the resultant aerodynamic
forces in the longitudinal plane match with (11).

Next, for the lateral force,

∆φmk
=

(
∂f̄a2
∂φmk

)−1
∆f̄a2 . (14)

D. Stability of Controlled Hovering Flight

In this subsection, we present simulation results with active
abdomen control. The controller gains are chosen as KP =
421.88,KD = 15.60,KI = 1.26. Corresponding roots of the
characteristic equation λ3 +KDλ

2 +KPλ+KI are −7.8 +
19i,−7.8− 19i,−0.003. Figure 5 illustrates the position and
the velocity trajectory over the controlled dynamics starting
from a perturbed initial condition, and it is shown that the
states asymptotically converge to the desired periodic orbit.

Next, we verify the stability of the periodic orbit of the
controlled dynamics via Floquet theory. Define an additional
state δIx ∈ R3 for the integral term as δIx =

∫ t
0
δx(τ)dτ .

And, the controlled dynamics of (4), where Qi,Ωi are de-
pendent of δx and δẋ, are numerically linearized. This yields
the system matrix A(t) ∈ R9×9 in (8), from which the mon-
odromy matrix is computed. The corresponding characteristic
multipliers are complex numbers with the magnitudes: |ρ| =
{1, 1, 1, 0.1186, 0.1186, 0.2835, 0.2835, 0.6326, 0.6326}.
Since the magnitude of all of the characteristic multipliers
is less than or equal 1, the periodic orbit for the proposed
controlled dynamics is stable. Moreover, the characteristic
modes for the first three with ρ = 1 predominantly consist of
the integral term. Next, the modes with |ρ| = {0.1186, 0.2835}
correspond to the longitudinal dynamics and they are much
smaller than those of uncontrolled ones, namely |ρ| =
{0.3763, 0.6234} in (9), thereby illustrating an improvement in
stability. Finally, |ρ| = {0.6326} corresponding to the lateral
mode is greater than |ρ| = {0.5023} of (9). However, it
guarantees asymptotic stability of both of the position and the
velocity dynamics.

E. Effects of Abdomen in Control

Finally, we study the effects of the abdomen in the stability
of the controlled dynamics. We consider two cases depending
on whether the abdomen is actively controlled or not. For
each case we estimate the region of attraction with respect
to the initial position error in the longitudinal plane. More
specifically, we select 10, 000 random initial position errors
of the form δx(0) = [ex, 0, ez], where (ex, ez) are sampled
from the uniform distribution on the circle represented by
{(r cos θ, r sin θ) | (r, θ) ∈ (0, 3) × (0, 2π)}. Each random
initial point is propagated through the controlled dynamics,
and it is determined to be converged if the position and the
velocity error from the desired periodic orbit becomes less
than 1× 10−4 within 100 periods. Figure 6 represents the set
of initial conditions from which the controlled trajectory con-
verged, and it is illustrated that the active abdomen undulation
increases the region of attraction substantially.

Next, for the initial conditions that yield convergence for
both cases, we compare the rate of convergence. It is observed
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(a) Position (b) Velocity

(c) 3D position trajectory (d) Control inputs

Fig. 5. Position, velocity and control input trajectory obtained through the
controlled dynamics: actual (blue), ideal (black); corresponding animated
simulation can be found at https://youtu.be/tMmmaVAm5D0

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 6. Initial position errors which yield converging trajectories through
control design; corresponding bounded curves depict region of convergence

that the number of flapping cycles required for convergence
is smaller when the abdomen is actively controlled. The
corresponding reduction of the flapping cycles cased by active
abdomen control is illustrated at Figure 7, with respect to the
varying magnitude of the initial error. For a wide variety of
perturbations, it is found that there is a significant reduction.

In summary, the abdomen undulation can be actively con-
trolled to improve the controller performance both by en-
larging the region of attraction and by improving the rate of
convergence.
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