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Abstract. We study a nonparametric contextual bandit problem in which the expected re-
ward functions belong to a Hölder class with smoothness parameter β. We show how this
interpolates between two extremes that were previously studied in isolation: nondifferen-
tiable bandits (β at most 1), with which rate-optimal regret is achieved by running separate
noncontextual bandits in different context regions, and parametric-response bandits (infi-
nite β), with which rate-optimal regret can be achieved with minimal or no exploration be-
cause of infinite extrapolatability. We develop a novel algorithm that carefully adjusts to
all smoothness settings, and we prove its regret is rate-optimal by establishing matching
upper and lower bounds, recovering the existing results at the two extremes. In this sense,
our work bridges the gap between the existing literature on parametric and nondifferentia-
ble contextual bandit problems and between bandit algorithms that exclusively use global
or local information, shedding light on the crucial interplay of complexity and regret in
contextual bandits.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2021.2237.
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1. Introduction
In many domains, including healthcare and e-commerce,
we frequently encounter the following decision-
making problem: we sequentially and repeatedly re-
ceive context information X (e.g., features of patients
or users), need to choose an action A ∈A from among
|A| <∞ actions (e.g., with which therapy, if any, to
treat a patient or which ad, if any, to show to a user),
and receive a reward Y(A) (e.g., patient’s health out-
come or user’s click minus ad spot costs) correspond-
ing to the chosen action. Our goal is to collect the
most reward over time. When contexts X and poten-
tial rewards {Y(a) : a ∈A} are drawn from a stationary
but unknown distribution, this setting is modeled by
the stochastic bandit problem (Wang et al. 2005, Bu-
beck and Cesa-Bianchi 2012). A special case is the
multiarmed bandit (MAB) problem in which there is
no contextual information (Lai and Robbins 1985,
Auer et al. 2002). In these problems, we quantify the
quality of an algorithm for choosing actions based on
available historical data in terms of its regret for every
horizon T: the expected additional cumulative reward

up to time T that we would obtain if we had full
knowledge of the stationary context–reward distribu-
tion (but not the realizations). The minimax regret is
the best (over algorithms) worst-case regret (over
problem instances).

The relevant part of the context–reward distribution
for maximum expected reward decision making is the
conditional mean reward functions, ηa(x) � E[Y(a)|X �
x] for a ∈A: if we knew these functions, we would
know what arm to pull. Because we only observe the
reward of the chosen action, Y(A), and never that of
the unchosen actions, Y(a) ∀a≠ A, we face the oft-
noted trade-off between exploration and exploitation:
we are motivated to greedily exploit the arm we cur-
rently think is best for the context so as to collect the
highest reward right now, but we also need to explore
other arms to learn about its expected reward function
for fear of missing better options in the future because
of lack of information.

The trade-off between exploration and exploitation
crucially depends on how we model the relationship
between the context and the reward, that is, ηa. When
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we restrict ηa to a model, such as linear functions, mini-
max regret gives rigorous meaning to our not know-
ing the particular instance being faced at the onset
and needing to learn the reward structure. Specifically,
it answers the question, given only the information
that ηa belongs to a certain model, how small can one
ensure regret is no matter what by learning and
adapting to any one instance. In the stochastic setting,
previous literature considers two extreme cases in iso-
lation: a parametric reward model, usually linear
(Goldenshluger and Zeevi 2013, Bastani and Bayati
2020, Bastani et al. 2020), and a nonparametric, nondif-
ferentiable reward model (Rigollet and Zeevi 2010,
Perchet and Rigollet 2013, Fontaine et al. 2019). We re-
view these before describing our contribution. We de-
fine the problem in complete formality in Section 2.

Linear-Response Bandit
One extreme is the linear-response bandit with which
the expected reward function is assumed to be linear
in context, ηa(x) � θ�

a x (Goldenshluger and Zeevi
2013, Bastani and Bayati 2020). This parametric as-
sumption imposes a global structure on the expected
reward function and permits extrapolation because all
samples from arm a are informative about the finite-
dimensional parameters θa regardless of the context
(see Figure 1(a)). Dramatically, this global structure al-
most entirely obviates the need for forced exploration.
In particular, Bastani et al. (2020) prove that, under very
mild conditions, the greedy algorithm is rate-optimal
for linear reward models, achieving logarithmic regret.
Consequently, the result shows that the classic trade-off
that characterizes contextual bandit problems is often
not present in linear-response bandits. Similar behavior
generally occurs whenwe impose other parametric mod-
els on expected rewards. At the same time, whereas
theoretically, regret is consequently very low, linear- and

parametric-response bandit algorithmsmay actually have
linear regret in practice because the parametric assump-
tion usually fails to hold exactly.

Nondifferentiable Nonparametric-Response
Bandit
Another line of literature considers nonparametric re-
ward models that satisfy a Hölder continuity condition
(Rigollet and Zeevi 2010, Perchet and Rigollet 2013),
the strongest form of which is Lipschitz continuity. In
stark contrast to the linear case, such functions need
not even be differentiable. (Note the difference to
Hölder smoothness, which imposes Hölder continuity
on derivatives.) In any nonparametric-response bandit,
extrapolation is limited because only nearby samples
are informative about the reward functions at each
context value (Figure 1(b)). Thus, we need to take a
more localized learning strategy: we have to actively
explore in every context region and learn the expected
reward functions using nearby samples. In the nondif-
ferentiable extreme, Rigollet and Zeevi (2010) show
that one can achieve rate-optimal regret by partition-
ing the context space into small hypercubes and run-
ning completely separate MAB algorithms (e.g., upper
confidence bound (UCB)) within each hypercube in
isolation (Figure 1(c)). In other words, we can almost
ignore the contextual structure because we obtain so
little information across contexts. However, the regret
is also correspondingly very high.

Our Contribution: Smooth Contextual
Bandits
In this paper, we consider a nonparametric-response
bandit problem with smooth expected reward func-
tions. This bridges the gap between the infinitely
smooth linear-response bandit and the unsmooth
nondifferentiable-response bandit. We characterize the

Figure 1. The Fundamental Nature of Contextual Bandit Problems Depends Crucially on the Assumed Structure of Expected
Reward Functions, ηa for Two Arms a ∈ A � {−1, + 1}

Notes. (a) A linear response bandit: samples in one context region are fully informative about expected rewards in any other context region.
(b) A nonparametric-response bandit: samples offer only limited extrapolation to learn expected rewards at nearby context values.
(c) A nondifferentiable-response bandit: rate-optimal regret obtainable by reducing the contextual bandit into multiple, separateMAB problems.
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smoothness of the expected reward functions in terms
of the highest order of continuous derivatives or, more
generally, in terms of a Hölder smoothness parameter
β, which generalizes both nondifferentiable Hölder
continuous functions (β ≤ 1) and infinitely extrapola-
table functions (such as linear, which we denote by
β �∞). Table 1 summarizes the landscape of the cur-
rent literature and where our paper lies in terms of
this new smoothness perspective and the sharpness α
of the margin (see Assumption 4).

We propose a novel algorithm for every level of
smoothness 1 ≤ β <∞ and prove that it achieves the
minimax optimal regret rate up to polylogs. In partic-
ular, when β > 1, we must leverage information across
farther apart contexts, and running separate MAB al-
gorithms is suboptimal. And, because β <∞, we must
ensure sufficient exploration everywhere. Thus, our
algorithm interpolates between the fully global learn-
ing of the linear-response bandit (which satisfies
β �∞) and the fully local learning of the nondifferen-
tiable bandit (0 < β ≤ 1), according to the smoothness
of the expected reward functions. The smoother the
expected reward functions, the more global reward in-
formation we incorporate. Moreover, our algorithm
judiciously balances exploration and exploitation: it
exploits only when we have certainty about which
arm is optimal, and it explores economically in a
shrinking margin region with fast diminishing error
costs. As a result, our algorithm achieves regret
bounded by Õ(T β+d−αβ

2β+d + 1) (where Õ means up to poly-
logarithmic factors). We show that, for any algorithm,
there exists an instance on which it must have regret
lower bounded by the same rate, showing that our al-
gorithm is rate-optimal and establishing the minimax
regret rate for the problem. Consequently, the minimax
regret, RT, which we define in Section 2.6, satisfies

RT � Θ̃(T β+d−αβ
2β+d + 1), and hence, limT→∞ log(RT)=log(T)

� (β+d−αβ)+
2β+d , where (·)+ denotes max{·, 0}.

Whereas this rate has the same form as the regret in
the nondifferentiable case studied by Rigollet and
Zeevi (2010), our results extend to the smooth (β > 1)
regime in which our algorithm can attain much lower

regret, arbitrarily approaching polylogarithmic rates
as smoothness increases. Our algorithm is fundamen-
tally different, leveraging contextual information from
farther away as smoothness increases without deteri-
orating estimation resolution, and our analysis is nec-
essarily much finer. Our work connects seemingly
disparate contextual bandit problems and reveals the
whole spectrum of minimax regret over varying lev-
els of function complexity.

1.1. Related Literature
Nonparametric Regression. Our algorithm leverages
nonparametric regression to learn expected reward
functions, namely, local polynomial regression. Non-
parametric regression seeks to estimate regression (aka
conditional expectation) functions without assuming
that they belong to an a priori known parametric fam-
ily. One of the most popular nonparametric regression
methods is the Nadaraya–Watson kernel regression es-
timator (Nadaraya 1964, Watson 1964), which estimates
the conditional expectation at a query point as the
weighted average of observed outcomes, weighted by
their closeness to the query using a similarity-measuring
function known as a kernel. Local polynomial estimators
generalize this by fitting a polynomial by kernel-
weighted least squares (Stone 1977), in which fitting a
constant recovers the former. Stone (1980) considers
function classes with different levels of smoothness β
and shows that local polynomial regression achieves
rate-optimal point convergence. Stone (1982) further
shows that a modification of this estimator can achieve
rate-optimal convergence in p-norm for 0 < p ≤∞. There
are a variety of other nonparametric estimators that can
achieve rate optimality in these classes, such as sieve es-
timators (e.g., Chen 2007, Belloni et al. 2015), but we do
not use these in our algorithm. For more detail and an
exhaustive bibliography on nonparametric regression,
see Tsybakov (2008).

Nonparametric regression also has broad applications
in decision making. In classification problems, Audibert
and Tsybakov (2007) establish fast convergence rates
for the zero–one error of plug-in estimators based on
local polynomial regression by leveraging a finite-

Table 1. The Lay of the Literature on Stochastic Contextual Bandits in Terms of Our Smoothness Perspective

β ≤ 1 Smoothness 1 ≤ β <∞ β �∞
Margin sharpness 0 ≤ α < 1

Ri
go
lle
t a
nd

Ze
ev
i (
20
10
)

—
T
hi
s
pa
pe
r
— Bastani et al. (2020)

α � 1 Goldenshluger and Zeevi (2013)

α > 1 Perchet and Rigollet (2013) Bastani et al. (2020)

Notes. For the most part, there has been a significant and wide divide between nondifferentiable- and parametric-response bandits. Our work

shows that (up to polylogs) the minimax regret rate Θ̃(T β+d−αβ
2β+d + 1) reigns across all regimes; see also Figure 2. (Note that additional linear

restrictions are made in the β �∞ column.)
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sample concentration bound. The rate depends on a
so-called margin condition number α originally pro-
posed by Mammen and Tsybakov (1999) and Tsybakov
(2004) that quantifies how well separated the classes
are when larger α corresponds to more separation (see
Assumption 4). Bertsimas and Kallus (2019) use similar
locally weighted nonparametric regression methods to
solve conditional stochastic optimization problems
with auxiliary observations and show that this provides
model-free asymptotic optimality.

Contextual Bandits. Whereas the literature noted usu-
ally considers an off-line problem with a given exoge-
nous sample of data, the literature on contextual bandit
problems considers adaptive data collection and se-
quential decision making (see Bubeck and Cesa-Bianchi
2012 for a complete bibliography). Some contextual
bandit literature allows for adversarially chosen con-
texts (e.g., Langford and Zhang 2007, Beygelzimer et al.
2011), but this leads to high regret and may be too pes-
simistic in real-world applications. For example, in clin-
ical trials for a noninfectious disease, the treatment de-
cisions for one patient do not have direct impacts on
the personal features of the next patient. One line of lit-
erature captures this stochastic structure by assuming
that contexts and rewards are drawn independently
and identically distributed (i.i.d.) from a stationary but
unknown distribution (e.g., Wang et al. 2005, Dudik
et al. 2011, Agarwal et al. 2014). The aforementioned
linear- and nonparametric-response bandits both fall
into this setting. Rigollet and Zeevi (2010), Golden-
shluger and Zeevi (2009, 2013), and Perchet and Rigol-
let (2013) introduce the use of the margin condition in
this setting to quantify how well separated the arms
are, a well-known determiner of regret in the simpler
MAB problem (Lai and Robbins 1985).

Goldenshluger and Zeevi (2013) assume a linear
model between rewards and covariates for each arm
and propose a novel rate-optimal algorithm that works
by maintaining two sets of parameter estimates for
each arm. Bastani et al. (2020) show that the greedy

algorithm is optimal under mild covariate diversity
conditions. Bastani and Bayati (2020) consider a
sparse linear model and use a LASSO estimator to
accommodate high-dimensional contextual features.
Whereas Goldenshluger and Zeevi (2013) and Bas-
tani and Bayati (2020) assume a sharp margin (α � 1),
Goldenshluger and Zeevi (2009) also consider more
general margin conditions in the one-armed linear-
response setting and (Bastani et al. 2020, appendix E)
considers these in the multiarmed linear-response set-
ting. All of these achieve regret bounds of order logT
under a sharp margin condition (α � 1). However, as
discussed, this relies heavily on the fact that every
observation is informative about expected rewards
everywhere.

Valko et al. (2013) assume that arm rewards belong
to a reproducing kernel Hilbert space (RKHS) with a
bounded kernel function (e.g., Gaussian). Whereas
this model considerably generalizes the linear model,
it is similar in two crucial ways: the learning rate is
similar and extrapolation is still possible. For off-line
regression in an RKHS, the rate is at worst O(n−1=2)
and at best Õ(n−1) (Bartlett et al. 2005, corollary 6.7),
which stands in stark contrast to the rate possible
when only assuming limited differentiability, which
only approaches O(n−1=2) as the number of derivatives
increases infinitely (Stone 1980, 1982). Furthermore,
assuming a bounded RKHS norm essentially enables
extrapolation: for example, for the Gaussian kernel, if
two functions agree on a nonempty open set, they
agree everywhere, meaning we can extrapolate from
such a subset (Steinwart et al. 2006, corollary 3.9). In
contrast, the lower bound we prove on regret in our
problem (Theorem 3) relies on constructing an exam-
ple with arbitrary constant values in different regions,
forcing one to explore each region as extrapolation is
not possible. Valko et al. (2013) indeed obtain a regret
bound of Õ( ��

T
√ ), which matches the bounds for linear

response (or our bound as β→∞) without a margin
condition (α � 0) as Valko et al. (2013) indeed do not
impose the margin condition.

Figure 2. TheMinimax Regret Rate Exponent, limT→∞log(RT)=log(T) � (β+d−αβ)+
2β+d , as Shown by Our Theorems 2 and 3

Notes. The minimax regretRT is defined in Section 2.6. Existing results shownwith arrows only characterize the two extreme regimes (RZ refers
to Rigollet and Zeevi 2010,GZ refers to Goldenshluger and Zeevi 2013, B+ refers to Bastani et al. 2020). In between, our results reveal the effect of
complexity on regret. (a) α � 1,d � 10. (b) α � 0:8,d � 10. (c) α � 0,d � 10.
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Rigollet and Zeevi (2010) and Perchet and Rigollet
(2013) study the case in which we only assume that
the expected reward functions are Hölder continuous,
that is, that |ηa(x) − ηa(x′)| ≤ ‖x− x′‖β. Note that β � 1
corresponds to Lipschitz continuity and is the stron-
gest variant of this assumption because β > 1 requires
the function to be constant and is, therefore, not con-
sidered. Rigollet and Zeevi (2010) study the two-arm
case and obtain optimal minimax-regret rates for mar-
gin condition α ≤ 1. The rate optimal algorithm in this
case (UCBogram) consists of segmenting the context
space at the beginning and running separate MAB algo-
rithms in parallel in each segment. Perchet and Rigollet
(2013) extend this to multiple arms and any α ≥ 0 by
proposing another algorithm (adaptively binned suc-
cessive elimination (ABSE)) that gradually refines the
segmentations of the context space (hence, avoiding
pulling each arm in each of very many segments when
the arm separation is strong) but still only uses data
within each segment to estimate the reward functions in
that segment. Crucially, this hyperlocal approach is no
longer rate-optimal when we impose smoothness, with
which we must use information from across such seg-
ments to fully leverage reward smoothness.

Reeve et al. (2018) also consider Lipschitz expected
reward functions (β� 1) but leverage a k-nearest
neighbor regression algorithm in order to adapt to the
underlying dimension of the support of covariates.
Their algorithm also avoids the need to segment the
context space. The regret bound is the same as Rigollet
and Zeevi (2010) and Perchet and Rigollet (2013) with
d replaced by the underlying dimension, which may
be smaller than the ambient dimension. In particular,
whereas they can leverage the lower underlying di-
mension when it exists, they cannot leverage higher
order differentiability. Slivkins (2011) considers a pos-
sibly infinite number of arms and assumes ηa(x) is
jointly Lipschitz in (a, x). When the number of arms is
finite, the regret bound matches Rigollet and Zeevi
(2010) and Perchet and Rigollet (2013) (or our bound
with β � 1) without margin a condition (α � 0), which
Slivkins (2011) does not impose.

As in Goldenshluger and Zeevi (2013), Rigollet
and Zeevi (2010), and Perchet and Rigollet (2013),
our work focuses on computing the minimax regret
rate, which is defined for a given class of bandit
problem instances. And, as in Rigollet and Zeevi
(2010) and Perchet and Rigollet (2013), the class of
instances we consider is parameterized by a constant
β controlling the smoothness of expected reward
functions, and we compute the minimax regret rate
for each β. The minimax regret is defined as the infi-
mum over policies of the supremum over instances
in the class (see Section 2.6). Although the infimizer
(over policies) in the minimax regret cannot know

the instance chosen by the inner supremum, it does
know the class of instances available to it. Both the
previously cited works and our work, therefore,
compute an upper bound on the minimax regret by
exhibiting a policy that depends on the class of instan-
ces being considered in the supremum and, there-
fore, on β in our case.

In addition to computing the minimax regret for
each β, an important supplementary question is adapt-
ability to β: does there exist a policy that does not de-
pend on β yet achieves the minimax regret rate for
each β? This question depends, of course, on first com-
puting the minimax regret rate for each β. Since our
paper and based on our work, Gur et al. (2019)
answered this question negatively in general and
positively if one further assumes a self-similarity con-
dition on expected reward functions. Under this as-
sumption, they show that, for adaptation, it suffices to

first explore arms evenly for o(T1−β(α+1)
2β+d ) time, which

only adds to the regret terms that are lower order
than what we show is the optimal rate, then use the
collected data to estimate β by β̂, and then run our
nonadaptive algorithm (Algorithm 1) with the smooth-
ness parameter set to β̂ if β̂ > 1 or run the nonadaptive
algorithm of Perchet and Rigollet (2013) with the
smoothness parameter set to β̂ if β̂ ≤ 1.

1.2. Notation
For any multiple index r � (r1, : : : , rd) ∈ Z

d
+ and any x �

(x1, : : : ,xd) ∈ R
d, define |r| � ∑d

i�1ri, r! � r1!⋯ rd!, xr �
xr11 ⋯ xrdd and the differential operator Dr :� ∂r1+: : : rd

∂xr11 ⋯∂x
rd
d

.

We use || · || to represent the Euclidean norm and
Leb[·] the Lebesgue measure. We let B(x,h) � {x′ ∈ R

d :
||x′ − x|| ≤ h} be the ball with center x and radius h > 0,
and vd � πd=2=Γ(d=2+ 1), the volume of a unit ball in
R

d. For any β > 0, let b(β) � sup{i ∈ Z : i < β} be the
maximal integer that is strictly less than β, and let Mβ

be the cardinality of the set {r ∈ Z
d
+ : |r| ≤ b(β)}. For an

event A, the indicator function I(A) is equal to one if A
is true and zero otherwise. For two scalars a,b ∈
R, a�b �min{a,b} and a�b �max{a,b}. For a matrix
A, its minimum eigenvalue is denoted as λmin(A). For
two functions f1(T) > 0 and f2(T) > 0, we use the stan-
dard notation for asymptotic order: f1(T) �O( f2(T))
represents limsupT→∞

f1(T)
f2(T) <∞, f1(T) �Ω( f2(T)) repre-

sents liminfT→∞ f1(T)
f2(T) > 0, and f1(T) �Θ( f2(T)) repre-

sents simultaneously f1(T) �Ω( f2(T)) and f1(T) �
O( f2(T)). We use Õ, Ω̃, Θ̃ to represent the same or-
der relationship up to polylogarithmic factors. For ex-
ample, f1(T) � Õ( f2(T)) means limsupT→∞

f1(T)
polylog(T)f2(T)

<∞ for a polylogarithmic function polylog(T).
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1.3. Organization
The rest of the paper is organized as follows. In
Section 2, we formally introduce the smooth nonpara-
metric bandit problem and assumptions. For a lucid ex-
position, we focus on the setting of two arms in the
main text and study the more general multiarmed set-
ting in Online Appendix A. We describe our proposed
algorithm in Section 3. In Section 4, we analyze our al-
gorithm theoretically: we derive an upper bound on
the regret of our algorithm in Section 4.1, and we
prove a matching lower bound on the regret of any
algorithm in Section 4.2. We provide a numerical
investigation with a simplified version of our algo-
rithm in Section 5. We conclude our paper in Section 6.
Whereas proof techniques are outlined, complete
proof details are relegated to the online appendix.

2. The Smooth Contextual Bandit
Problem

In this section, we formulate the smooth contextual
bandit problem that we consider in this paper. We
break up this formulation into parts, explaining the
significance or necessity of each part separately. We focus
on the two-armed smooth contextual bandit problem,
letting A � {−1, + 1}. We extend the problem, our al-
gorithm, and our analysis to multiarmed problems in
Online Appendix A.

2.1. Two-Armed Stochastic Contextual Bandits
Consider the following two-armed contextual bandit
problem. For t � 1, 2, : : : , nature draws (Xt,Yt(1),
Yt(−1)) i.i.d. from a common distribution P of
(X,Y(1),Y(−1)), where X ∈ X ⊆ R

d is the context (co-
variate) and Y(61) ∈ [0, 1] are random rewards corre-
sponding to arm 61. At each time step t, the decision
maker observes the context Xt, pulls an arm At ∈
{−1, 1} according to the observed context and history
so far, and then obtains the reward Yt � Yt(At) of the
chosen arm. Specifically, an admissible policy (alloca-
tion rule), π � {πt}, is a sequence of random functions
πt : X → {−1, 1} such that, for each t, πt is condition-
ally independent of (X1,A1,Y1(1),Y1(−1), : : : ) given
(X1,A1,Y1, : : : ,Xt−1,At−1,Yt−1), and we let At � πt(Xt),
Yt � Yt(At).

For x ∈ X , we denote the conditional expected re-
ward functions as

η61(x) � E[Y(61)|X � x],
and the conditional average treatment effect (CATE)
of pulling arm 1 versus arm –1 as

τ(x) � E[Y(1)|X � x] −E[Y(−1)|X � x] � η1(x) − η−1(x):
Obviously, if we had full knowledge of the regression
functions η61 or the CATE function τ, the optimal

decision at each time step would be the oracle policy
π∗ that always pulls the arm with higher expected re-
ward given Xt and regardless of history, namely,

π∗(x) � I(τ(x) ≥ 0) − I(τ(x) < 0) ∈ argmaxa∈{−1,1}ηa(x):
(1)

However, because we do not know these functions,
the oracle policy is infeasible in practice. We measure
the performance of a policy π by its (expected cumula-
tive) regret compared with the oracle policy π∗ up to
any time T, which quantifies how much the policy π
is inferior to the oracle policy π∗:

RT(π) � E

∑T
t�1

(Yt(π∗(Xt)) −Yt(πt(Xt)))
[ ]

: (2)

The growth of this function in T quantifies the quality
of π.

2.2. Smooth Rewards
In this paper, we aim to construct a decision policy that
achieves low regret without strong parametric assump-
tions on the expected reward functions. We instead fo-
cus on expected reward functions restricted to a Hölder
class of functions. This is the key restriction characteriz-
ing the nature of the bandit problem we consider.

Definition 1 (H€older Class of Functions). A function η :
X → [0, 1] belongs to the (β,L,X )-Hölder class of func-
tions if it is b(β)-times continuously differentiable and,
for any x,x′ ∈ X ,

η(x′) − ∑
|r|≤b(β)

(x′ − x)r
r!

Drη(x)
∣∣∣∣∣∣

∣∣∣∣∣∣ ≤ L||x′ − x||β: (3)

Recall that b(β) is the largest integer strictly smaller
than β. When β ≤ 1, Equation (3) reduces to Hölder
continuity (i.e., |η(x) − η(x′)| ≤ L||x′ − x||β), as consid-
ered in previous nondifferentiable bandit literature
(Rigollet and Zeevi 2010, Perchet and Rigollet 2013).
When β > 1, b(β) is the highest order of continuous de-
rivatives. For example, when X is compact, k-times
continuously differentiable functions are (k,L,X )-
Hölder for some L. Polynomials of bounded degree k
are (β, 0,X )-Hölder for all β > k.

In this paper, we focus on β ≥ 1, which crucially in-
cludes the smooth case (β > 1).

Assumption 1 (Smooth Conditional Expected Rewards).
For a �61, ηa is (β,L,X )-Hölder for β ≥ 1 and is also
(1,L1,X )-Hölder.

Given a function that is (β,L,X )-Hölder on a com-
pact X with β ≥ 1, there always exists a finite L1 > 0
such that the function is also (1,L1,X)-Hölder (i.e., L1-
Lipschitz). Thus, assuming Lipschitzness in the sec-
ond part of Assumption 1 is actually not necessary for
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characterizing the regret rate of our algorithm for any
single, fixed instance if we assume a compact X as
we do in Assumption 3. However, from the perspec-
tive of characterizing the minimax regret, with which
we take a supremum over instances, it is necessary as
the Lipschitz constant L1 may be arbitrarily large in
the (β,L,X)-Hölder class of functions.

2.3. Optimal Decision Region Regularity
We next introduce a regularity condition on the con-
text regions in which each arm is optimal, namely,

Qa � {x ∈ X : aτ(x) ≥ 0}:
When the expected rewards are not restricted parametri-
cally as we imposed earlier, we must use local informa-
tion to estimate them because extrapolation is limited. In
particular, in order to estimate ηa(x) consistently at a
given point x, we must have that the contexts of our
data on outcomes from arm a eventually become dense
around the point x. To formalize this notion, we intro-
duce weak and strong (c0, r0)-regularity conditions.

Definition 2 ((c0, r0)-Regularity).ALebesgue-measurable
setS ⊆ R

d is calledweakly (c0, r)-regular at point x ∈ S if

Leb[S ∩ B(x, r)] ≥ c0Leb[B(x, r)]:
If this condition holds for all 0 ≤ r ≤ r0, then set S is
called strongly (c0, r0)-regular at x. Furthermore, if S
is strongly (c0, r0)-regular at all x ∈ S, then the set S is
called a strongly (c0, r0)-regular set.

Essentially, if our data for arm a became dense in
the set S and if S is strongly (c0, r0)-regular at x, then
sufficient data are available within any small neigh-
borhood around x to estimate ηa(x) well. If S is not
strongly regular, then even if our data became dense
in S, there would be diminishing amounts of data
available as we looked closer and closer near x. For ex-
ample, the ℓq unit ball is strongly regular for q ≥ 1 and
irregular for q < 1 because the points at its corners are
too isolated from the rest of the set.

Naturally, we need enough data from arm a around
x to estimate ηa(x) accurately. Luckily, we need only
worry about high-accuracy estimation for both arms
near the decision boundary, at which it is hard to tell
which of the arms is optimal. (Intuitively, away from
the boundary, it is very easy to separate the arms with
very few samples as in the classic MAB case of Lai
and Robbins 1985.) But we cannot rely on having
enough data from arm a in a whole ball around every
point near the boundary as that would require us to
pull arm a too often across the boundary, in Q−a,
where it is not optimal. This would necessarily lead to
high regret. Instead, we must be able to rely mostly on
data from arm-a pulls in Qa. Therefore, we must have
that this set is strongly regular. If, otherwise, there ex-
ists such a point x ∈Qa that is sufficiently isolated

from the rest of Qa, then we cannot generate enough
samples to learn ηa(x) accurately enough without nec-
essarily incurring high regret.

Assumption 2 (Optimal Decision Regions). For a �
61, Qa is a nonempty strongly (c0, r0)-regular set.

An illustration of this condition is given in Figure 3.
We note that this condition is a refinement of the
usual condition for nonparametric estimation, which
simply requires the support X to be a strongly regular
set (Tsybakov 2008). This refinement is necessary for
the unique bandit setting we consider in which we
must worry about the costs of adaptive data collection
and may not simply assume a good data set is given.
Because the intersection of strongly regular sets may
not always be strongly regular, it is insufficient to
only assume the support X is strongly regular and ex-
pected rewards are smooth in order to guarantee As-
sumption 2, as seen in Figure 3(b).

Assumption 2 is necessary to guarantee the optimal
minimax regret regime we study, bridging the previ-
ous nondifferentiable and parametric regimes. In
particular, we show that, for any policy, there exist
problem instances satisfying all assumptions except
Assumption 2 for which the regret rate is higher than
the minimax regret rate for instances satisfying all as-
sumptions (see Theorem 4).

We end this section by demonstrating the value of c0
in concrete examples. If Qa � [0, r0]d is a d-dimensional
cube, we can easily verify that it is strongly (2−d, r0)-
regular. If Qa � B((12 , : : : , 12), r0) is a d-dimensional ball,

we can show that it is strongly ( ��
3

√ )d−1vd−1
2d−2dvd

, r0
( )

-regular.

Similarly, if Qa � B((12 , : : : , 12), r0) ∩ x : x1 ≥ 1
2

{ }
is a half

ball, then it is strongly ( ��
3

√ )d−1vd−1
2d−1dvd

, r0
( )

-regular. Generally,

we expect the c0 satisfying Assumption 2 to diminish
geometrically in d. However, as we see, its value does
not actually impact the regret rate in T, only the leading
constant, which is already exponential in d even if c0
were d-independent.

2.4. Bounded Covariate Density
Whereas Assumption 2 ensures there is sufficient vol-
ume around each point x at which we need to esti-
mate ηa(x), we also need to ensure that this translates
to being able to collect sufficient data around each
such point. Toward this end, we make the assumption
that the contexts have a density and it is bounded
away from zero and infinity.

Assumption 3 (Strong Density). The marginal distribu-
tion of X has density μ(x) with respect to the Lebesgue mea-
sure, and μ is bounded away from zero and infinity on its
support X :

0 < μmin ≤ μ(x) ≤ μmax <∞, ∀x ∈ X :
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Moreover, its support X is compact and X ⊆ [0,1]d.
Note that restricting X to [0,1]d is without loss of

generality, having assumed compactness. Scaling and
shifting the covariates to be in [0, 1] only affects the
constants L,L1 in Assumption 1.

Together, Assumptions 2 and 3 imply a lower
bound on the probability that each arm is optimal.

Lemma 1. Under Assumptions 2 and 3, we have P(X ∈
Qa) ≥ p for a �61, where

p � μminc0r
d
0vd:

2.5. Margin Condition
We further impose a margin condition commonly used
in stochastic contextual bandits (Rigollet and Zeevi
2010, Goldenshluger and Zeevi 2013) and classification
(Mammen and Tsybakov 1999, Tsybakov 2004), which
determines how the estimation error of expected re-
wards translates into regret of decision making.

Assumption 4 (Margin Condition). The conditional aver-
age treatment effect function τ satisfies the margin condi-
tion with parameters α ≥ 0 and γ:

P(0 < |τ(X)| ≤ t) ≤ γ tα ∀t > 0:

The margin condition quantifies the concentration of
contexts very near the decision boundary, at which
the optimal action transitions from one arm to the
other. This measures the difficulty of determining
which of the two arms is optimal. When α is very
small, the CATE function can be arbitrarily close to

zero with high probability, so even very small estima-
tion error of the CATE function may lead to subopti-
mal decisions. In contrast, when α is very large, the
probability that expected arm rewards are very close
to one another but not equal is very low, or, in other
words, the expected rewards for two arms are nicely
separated on most of X .

2.6. Minimax Regret
Having now defined the problem and our assump-
tions about the distribution P defining the problem in-
stance, we can introduce the notion of minimax regret.
The minimax regret is the minimum over admissible
policies π of the maximum of the regret of π over all
problem instances P that fit our assumptions. This de-
scribes the best achievable behavior in the problem
class we consider.

Formally, for β ≥ 1, we let P(β,L1,L, c0, r0,μmin,
μmax,γ,α) be the set of all distributions P on
(X,Y(−1),Y(+1)) ∈ [0,1]d × R × R that satisfy Assump-
tions 1–4 with these parameters. For brevity, we write
P, implicitly considering the parameters as fixed. Let-
ting Π denote all admissible policies, for some fixed
parameters specifying a class P, we then define the
minimax regret as

RT � inf
π∈Π sup

P∈P
RT(π):

The minimax regret exactly characterizes how well
we can hope to do in the given class of instances. It
can be thought of as a game against nature in which
nature plays second after we choose a policy, but we

Figure 3. Illustration of Assumption 2

Notes. Each optimal decision region must be strongly regular in that the neighborhood of every point in the region must contain at least some
constant fraction of the ball. (a) Assumption 2 is satisfied: every ball centered in Qa has at least c0 � 1=12 of its volume intersecting Qa. (b) As-
sumption 2 is violated: smaller balls centered at the corner have a vanishing fraction of their volume intersectingQa.
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know the set of plays available to nature (i.e., the in-
stance class P with given parameters). Restricting the
class is crucial for characterizing the dependence of re-
gret on smoothness because the minimax regret
against a single instance is always zero and the mini-
max regret against the class of instances with arbitrary
β is linear in T. The minimax regret, therefore, charac-
terizes the best achievable regret if one were only told
the smoothness parameter (and additional preceding
parameters) but the instance might be adversarially
bad in every other way.

Now, we describe a general strategy for computing
the minimax regret rate, which we follow in this pa-
per. Suppose that, on the one hand, we can find a
function f(T) and an admissible policy π̂ such that its
regret for every instance P ∈ P is bounded by the same
function, RT(π̂) ≤ f (T). Next, suppose that, on the
other hand, we can show that there exists a function
f ′(T) � Ω̃( f (T)), where, for every admissible policy π′,
there exists an instance P ∈ P such that the regret is
lower bounded by this same function, RT(π′) ≥ f ′(T).
Then we have shown two critical results: (a) the mini-
max regret satisfies the rate RT � Θ̃( f (T)), and (b) we
have a specific algorithm π̂ that can actually achieve
this best possible worst-case regret in rate, which also
means the regret of π̂ is known to be bounded in this
rate for every single instance encountered.

In this paper, we proceed exactly as in the preced-
ing. First, in Section 3, we develop a novel algorithm
that can adapt to every smoothness level. Then, in
Section 4.1 we prove a bound on its regret in every in-
stance. Because this bound depends only on the pa-
rameters of P, we, in fact, establish an upper bound
on the minimax regret as before. In Section 4.2 we find
a bad instance for every policy that yields a matching
(up to polylogs) lower bound on its regret, establish-
ing a lower bound on the minimax regret. This exactly
yields the desired conclusion: a characterization of the
minimax regret and the construction of a specific algo-
rithm that achieves it.

2.7. On the Relationship of Margin and
Smoothness

Before proceeding to develop a bandit algorithm for
the smooth bandit problem and characterizing the
minimax regret, we comment on the relationship
between the smoothness of expected rewards and
the margin assumption. Assumption 1 implies that
the CATE function τ(x) is a member of the (β, 2L,X)-
Hölder class with β ≥ 1. Intuitively, when τ(x) is
smooth, it cannot change too abruptly at the decision
boundary τ(x) � 0, so if it either touches or crosses the
decision boundary at all, the mass near it must be sig-
nificant (small α).

First, we present a direct corollary of proposition
3.4 of Audibert and Tsybakov (2005), who study (off-

line) classification with a smooth conditional probabil-
ity function.

Proposition 1. Suppose Assumptions 1–4 hold with
α > 1. Then, for all x ∈ interior(X ), there exists r > 0,σ ∈
{−1, 1} such that στ(x′) ≥ 0 for all ||x′ − x|| ≤ r.

Recall Assumptions 1–4 specify the class of the ban-
dit problem we consider, so Proposition 1 is a state-
ment about the instances in this class. Proposition 1
shows that, for a smooth bandit problem when α > 1,
all interior points have a neighborhood in which τ(x)
is only nonnegative or only nonpositive, meaning τ(x)
does not cross zero. Notice that, by continuity of τ,
this also implies that, if any x and x′ are in the same
connected component of the interior (i.e., are con-
nected by a interior path) then τ(x)τ(x′) ≥ 0 so that
there must exist an optimal policy π∗(x) in Equation
(1) that is constant on connected components of the in-
terior. However, τ(x) might still be arbitrarily close to
zero, especially as we vary the instance in the class of
instances P to compute the minimax regret, poten-
tially making it difficult to distinguish the optimal
arm and still requiring nontrivial regret.

We next show that this, however, does not happen
when the margin is very large.

Proposition 2. Suppose Assumptions 1–4 hold with
α > d. Then, there exists a positive constant τmin depending
only on the parameters of Assumptions 1–4 such that, for
any x ∈ X , we have either τ(x) � 0 or |τ(x)| ≥ τmin.

By continuity of τ(x), Proposition 2 implies that, on
each connected component of X , τ(x) has a constant
sign (negative, zero, or positive). In particular, as it
would contradict Lemma 1, Proposition 2 implies that
there exist no smooth bandit instances with α > d, X
connected and τ(x) not the constant zero function on
X as such would require P(X ∈Q1)�P(X ∈Q−1) � 0.

More crucially, Proposition 2 makes an implication
on minimax regret when α > d because τmin is a uni-
form bound (and, in this sense, the result is stronger
than the statement corresponding to α > d in pro-
position 3.4 of Audibert and Tsybakov 2005). Notice
that |τ(X)| ∈ {0}⋃ [τmin,∞) implies that Assumption 4
holds for any α ≥ 0 (simply let γ � τ−αmin). Recall that
the class of instances P in Section 2.6 is defined in
terms of the parameters of Assumptions 1–4. There-
fore, Proposition 2 shows that, for any α′ ≥ α > d (and
γ ≥ τ−α′

min sufficiently large), the minimax regret in the
class of instances P is upper bounded by the minimax
regret in the class P′, where we set α to the larger α′.
More to the point, in the following, by exhibiting a
feasible algorithm, we establish an upper bound on
minimax regret of Õ(1) whenever α ≥ 1+ d=β. Propo-
sition 2 shows that the same Õ(1) bound applies even
if just α > d� (1+ d=β).
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3. SMOOTHBANDIT: A Low-Regret Algorithm
for Any Smoothness Level

In this section, we develop our algorithm, SMOOTHBAN-

DIT (Algorithm 1). Various design choices in our algo-
rithm are made with an eye toward tractably analyzing
its regret. In Section 5, we propose a simplified version,
albeit heuristic and lacking analysis, and use it to con-
duct numeric experiments that demonstrate our theory
correctly predicts regret behavior in practice.

We first review local polynomial regression, which
we use in our algorithm to estimate ηa.

3.1. The Local Polynomial Regression Estimator
A standard result of (off-line) nonparametric regres-
sion is that the smoother a function is in terms of its
Hölder parameter β, the faster it can be estimated. Ap-
propriate convergence rates can, for example, be
achieved using local polynomial regression estimators
that adjust to different smoothness levels (Stone 1980,
1982). In this section, we briefly review local polyno-
mial regression and its statistical property in an off-line
bandit setting. Its use in our online algorithm is de-
scribed in Section 3.2. More details about local polyno-
mial regression can be found in Tsybakov (2008) and
Audibert and Tsybakov (2007).

Consider an off-line setting, in which we have
access to an exogenously collected i.i.d. sample,
S � {(Xt,Yt)}nt�1 drawn i.i.d. from (X, Y), where X has
support X ⊂ R

d. We can then estimate the regression
function η(x) � E[Y|X � x] at every point x using the
following local polynomial estimator.

Definition 3 (Local Polynomial Regression Estimator).
For any x ∈ X , given a bandwidth h > 0, an integer
l ≥ 0, samples S � {(Xt,Yt)}nt�1, and a degree-l polyno-
mial model θ(u;x,ϑ, l) � ∑

|r|≤lϑr(S)(u− x)r, define the
local polynomial estimate for η(x) as η̂LP(x;S,h, l) �
θ(x;x, ϑ̂x, l), where

ϑ̂x ∈ argmin
ϑ

∑
t:Xt∈B(x,h)

(Yt −θ(Xt;x,ϑ,l))2: (4)

For concreteness, we define η̂LP(x;S,h, l) � 0 if the min-
imizer is not unique.

In words, the local polynomial regression estimator
fits a polynomial by least squares to the data that is in
the h-neighborhood of the query point x and evaluates
this fit at x to predict η(x).

Because Equation (4) is a least squares problem, the
estimation accuracy of the local polynomial estimator
η̂LP(x;S,h, l) depends on the associated Gram matrix:

Â(x;S,h, l) � {Âr1,r2(x;S,h)}|r1 |,|r2 |≤l,

where Âr1,r2(x;S,h) �
∑

t:Xt∈B(x,h)

Xt − x
h

( )r1+r2
: (5)

The following proposition illustrates (using the off-line

setting as an example) why our Assumptions 1–3 are
crucial in our problem. In particular, it shows that
bounded density and strong regularity of the support
of the data ensure a well-conditioned, locally weighted
Gram matrix. Moreover, it shows how the bandwidth
and polynomial degree should adapt to the smooth-
ness level β. This proposition is a direct extension of
theorem 3.2 of Audibert and Tsybakov (2007). We in-
clude this result purely for motivation, whereas in our
online setting, we need to establish a more refined re-
sult that accounts for our adaptive data collection.
Proposition 3. Let S be an i.i.d. sample of (X, Y), where η is
(β,L,X )-Hölder, X is compact and strongly (c0, r0)-regular,
and X has a density bounded away from zero and infinity
on X . Then, there exist positive constants λ0,C1,C2 such
that, for any x ∈ X and ε > 0 with probability at least

1−C1exp{ −C2n
2β

2β+d
a ε2}, we have

λmin(Â(x;S,n−1=(2β+d),b(β))) ≥ λ0,

and |η̂LP(x;S,n−1=(2β+d),b(β)) − η(x)| ≤ ε:

In our online bandit setting, the samples for each arm
are collected in an adaptive way because both explo-
ration and exploitation can depend on data already
collected. As a result, the distribution of the samples
for each arm is considerably more complicated. Thus,
we need to use the local polynomial estimator in a
somewhat more sophisticated way and analyze it
more carefully. See Sections 3.2 and 4.1 for the details.

3.2. Our Algorithm

Algorithm 1 (SMOOTHBANDIT)
Input: Grid lattice G, epoch schedule {T k}Kk�1,
Hölder smoothness constant β, strong regularity
constant c0, context dimension d, context support X .
1: Initialize E61,1 � ∅,R1 � X (exploit nowhere, ex-

plore everywhere)
2: for t ∈ T 1, do
3: Pull At �61 randomly, equiprobably
4: end for
5: Log the samples S61,1 � {(Xt,Yt) : t ∈ T 1,At �61}
6: for k � 2, 3, : : : ,K, do
7: Identify inestimable regions for local polynomial

regression with bandwidthHa,k−1 (a �61):

Da,k−1 � ⋃
Cube(x) : x ∈Rk−1 ∩ G,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⋃k−1
j�1

Ea,j
⋃
Rk−1

( )
∩ X is not

weakly
c0
2d

,Ha,k−1
( )

-regular at x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

8: Set N61,k−1 � |S61,k−1|,H61,k−1 �N−1=(2β+d)
61,k−1
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9: Construct the CATE estimate for every x ∈ G ∩
Rk−1 ∩DC

1,k−1 ∩DC
−1,k−1,

τ̂k−1(x) � η̂LP(x;S+1,k−1,H+1,k−1,b(β))
− η̂LP(x;S−1,k−1,H−1,k−1,b(β)) (7)

10: Update decision regions: for a �61,

Ea,k �
⋃{Cube(x) : x ∈ G ∩Rk−1 ∩DC

1,k−1

∩DC
−1,k−1,aτ̂k−1(x) > εk−1}⋃D−a,k−1,

(8)

Rk �
⋃{Cube(x) : x ∈ G ∩Rk−1 ∩DC

1,k−1

∩DC
−1,k−1, |τ̂k−1(x)| ≤ εk−1}:

(9)

11: for t ∈ T k, do
12: if Xt ∈ ⋃k

j�1E+1,j, then pull At � +1
13: else if Xt ∈ ⋃k

j�1E−1,j, then pull At � −1
14: else pull At �61 randomly, equiprobably
15: end for
16: Log samples S61,k � {(Xt,Yt) : t ∈ T k,At �61}
17: end for

In this section, we present our new algorithm for
smooth contextual bandits, which uses local polyno-
mial regression estimators that adjust to any smooth-
ness level. The algorithm is summarized in Algorithm 1.
We review its salient features. In what follows, we as-
sume a fixed horizon T but can accommodate an un-
known, variable T using the well-known doubling trick
(see Auer et al. 1995, Cesa-Bianchi and Lugosi 2006).

3.2.1. Algorithm Overview. We begin with a rough
sketch of the overall structure of the algorithm. Specif-
ics are given in Algorithm 1 and in the sections that
follow. Our algorithm makes a cover C of the covariate
support using a grid of hypercubes, X � ⋃

S∈CS, where
C consists of the intersections of X with disjoint half-
open, half-closed hypercubes with a finely tuned side
length (see Section 3.2.2). Our algorithm then pro-
ceeds in epochs of (roughly) geometrically increasing
time lengths (see Section 3.2.3). At the beginning of
the kth epoch, each cube S ∈ C in the cover is assigned
either to the random exploration region, Rk, or to one
of two exploitation regions, E+1,k,E−1,k (see Section
3.2.6). During the kth epoch, if Xt falls in Rk, we pull
arms 61 with probability 1/2 each, and if Xt falls in
Ea,k, we pull arm a. We start out with randomizing ev-
erywhere, R0 � X . Then, as we collect more data, we
peel hypercubes away from the randomization region
and into the exploration region, in which we declare
one of the two arms is almost certainly optimal based
on observations from the epoch that just concluded.
There are two ways to infer that a hypercube should
be moved to an exploitation region: either we have

already declared one of the arms is almost certainly opti-
mal in very many nearby hypercubes (see Section 3.2.5),
or we have enough data near the center of the hyper-
cube x0 to fit a high-fidelity local polynomial regression
estimate for both η+1(x0),η−1(x0) (this involves data out-
side the hypercube), and the difference is large enough
to rule out (with high probability) that one arm appears
better only because of estimation noise, so we declare
the apparently dominant arm is indeed dominant (see
Section 3.2.4). Thus, we maintain a plan of action of how
we will act in each round t depending on the observed
context Xt, and at the end of each epoch, we update this
plan by declaring more context regions as exploitation
regions in which we only pull one of the two arms. This
structure is mimicked by our multi-arm extension in
which we maintain an active set of arms (subset of A)
for each hypercube (see Online Appendix A).

3.2.2. Grid Structure. Following Stone (1982) and simi-
larly to previous nonparametric-response bandit litera-
ture (Rigollet and Zeevi 2010, Perchet and Rigollet
2013), we partition the context space into small hyper-
cubes. For each time step, both our estimates of ηa(x)
and our policy πt(x) are piecewise constant on these hy-
percubes. Specifically, in each hypercube, we either pull
arm +1, pull arm –1, or equiprobably pull a random
arm from among the two (see Figure 4(c)). Crucially,
and differently from Rigollet and Zeevi (2010) and Per-
chet and Rigollet (2013), we use data from both inside
and outside each hypercube to define the estimates and
action inside each hypercube. In particular, these hyper-
cubes are different from the bandwidth that we use for es-
timation, which is orders of magnitude larger.

We first define a grid lattice G′ on [0,1]d: letting
δ � T− β

2β+d(logT)−1,

G′ �
{
2j1 + 1

2
δ, : : : ,

2jd + 1
2

δ

( )
:

ji ∈ 0, : : : , �δ−1� − 1
{ }

, i � 1, : : : ,d

}
:

For any x ∈ X ⊆ [0,1]d, we denote by g(x) � arg
minx′∈G′ ‖x− x′‖ the closest point to x in G′. If there
are multiple closest points to x, we choose g(x) to
be the one closest to (0, 0, ⋯ , 0). All points that share
the same closest grid point g(x) belong to a hypercube
with length δ and center g(x). We denote this
hypercube as Cube(x) � {x′ ∈ X : g(x′) � g(x)} and the
collection of all such hypercubes overlapping with
the covariate support as

C � {Cube(x) : x ∈ G}, where

G � {x ∈ G′ : P(Cube(x) ∩ X) > 0}:
Note that the union of all cubes in C,

⋃
S∈CS must

cover the covariate support X ⊆ [0,1]d.
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3.2.3. Epoch Structure. Our algorithm then proceeds
in an epoch structure, in which the estimates and ac-
tions assigned to each hypercube are fixed for the du-
ration of that epoch. For each epoch, we target a
CATE-estimation error tolerance of εk � 2−k. With this
target in mind, we set the length of the kth epoch as
follows:

nk �
⌈
4
p

log(Tδ−d)
C0ε2k

( )2β+d2β

+ 2
p2

logT

⌉
, (10)

where p,C0 are positive constants given in Lemmas 1
and 7, respectively. We further denote the time index
set associated with the kth epoch as T k � {t :∑k−1

i�1 ni−1+ 1 ≤ t ≤min{∑k
i�1ni,T}}.

In our algorithm, we continually maintain a grow-
ing region, comprising hypercubes, in which we are
near-certain which of the arms is optimal. In these re-
gions, we always pull the seemingly optimal arm. In
contrast, we randomize whenever we are not sure (de-
noted by the region Rk for epoch k). The first epoch,
T1, is a cold-start phase in which, lacking any informa-
tion, we simply pull each arm uniformly at random in
every hypercube (R1 � X ). After that point, once we
have some data, for each subsequent epoch, k ≥ 2, we
add the hypercubes Ea,k ⊆Rk−1 to the set of hyper-
cubes in which we just learned that arm a is proba-
bly optimal, never removing any hypercube that
was before added. This means that, in epoch k, we
are collecting data on arm a exclusively in the region⋃k

j�1Ea,j
⋃
Rk. We describe in detail how we determine

which hypercubes, Ea,k, to add to the exploitation re-
gion of each arm in each epoch in Sections 3.2.5 and
3.2.6.

The total number of epochs K is the minimum inte-
ger such that

∑K
k�1nk ≥ T. The following lemma shows

that K grows at most logarithimically with T under
the epoch schedule in Equation (10).

Lemma 2.When T ≥ eC0�1,

K ≤
⌈

β

(2β+ d)log2 log (T)
⌉
:

3.2.4. Estimating CATE. Next, we describe how we
estimate the expected rewards, η61(x), and CATE,
τ(x) � η1(x) − η−1(x), which we use to determine the
action we take in each hypercube in each epoch. In
particular, at the start of each kth epoch, k ≥ 2, we esti-
mate each arm’s expected reward ηa(x) using the data
for each arm from the last epoch, which we denote by
Sa,k−1 as in Algorithm 1. Our proposed estimate is the
following piecewise constant modification of the local
polynomial regression estimate:

η̂a,k−1(x) � η̂LP(g(x);Sa,k−1,Ha,k−1,b(β)), where (11)

Ha,k−1 �N−1=(2β+d)
a,k−1 , Na,k−1 � |Sa,k−1|:

Note that, by construction, η̂a,k−1(x) � η̂a,k−1(x′) when-
ever x and x′ belong to the same hypercube g(x) �
g(x′). Then, our CATE estimate, τ̂k−1(x), is simply the
difference of these for a �61. Because we only evaluate
τ̂k−1(·) at hypercube centers x ∈ G in our Algorithm 1,

Figure 4. (Color online) Updating the Decision Regions

Notes. The black dots represent hypercube centers given in G. The dashed curve is the true decision boundary. (a) The decision regions at the
end of the k− 1th epoch: each hypercube is assigned with one action, either always pull arm 1, always pull arm –1, or pull one of the arms at ran-
dom equiprobably. (b) In epoch k, we cannot sufficiently accurately estimate ηa in Da,k−1 for lack of sufficient samples from arm a in the local
neighborhoods (black dashed circle). (c) The decision regions at the end of kth epoch: previous exploration regions are moved to exploitation ei-
ther because of large estimated CATEwhen estimable or because of inestimability.
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we simply use g(x) as the argument to the local polyno-
mial estimates in Equation (7). In particular, we only
need to compute two local polynomial regression esti-
mates at a subset of the (finitely many) grid points.
Note that some grid points may not even belong to X
because their hypercubes may not be fully contained in
X ; nevertheless, we can use these centers as representa-
tive as their H61,k−1 neighborhood still contains
sufficient data (Lemma 3). Note also that the associated
sample sizes, N61,k−1, are random variables because
they depend on how many samples in the (k− 1)th ep-
och fall in different decision regions and on the random
decision regions themselves.

Similar to the nondifferentiable bandit of Rigollet
and Zeevi (2010), our estimators, Equation (11), are
hypercube-wise constant. That the estimate at the cen-
ter of each hypercube is a good estimate for the whole
hypercube is justified by the smoothness of η61, and
the error is controlled by the size of the hypercubes
(see Lemma EC.10 for details).

However, differently from Rigollet and Zeevi (2010),
our estimate at the center of each hypercube uses data
from both inside and outside the hypercube instead
of only inside. This is established by the next lemma.
(Recall that our Assumption 1 requires β ≥ 1.)

Lemma 3. There exists a positive constant c1 such that

H61,k��
d

√
δ

≥ c1Tβ−1log(T)(2β−1)(2β+d)2β :

When β ≥ 1, there exists T0 > 0 such that, for T > T0,
H61,k ≥

��
d

√
δ for 1 ≤ k ≤ K.

Lemma 3 shows that the bandwidth we use, that is,
the neighborhood of data used to construct the esti-
mate, is much larger than the hypercube size, with
which the estimate is used. Note that although the
variable H61,k is random, the statement in Lemma 3 is
always true. According to the nonparametric estima-
tion literature (Stone 1980, 1982), the proposed hyper-
cube size and bandwidths (up to logarithmic factors)
are crucial for achieving optimal nonparametric esti-
mation accuracy for smooth functions. This means we
indeed need to leverage the more global information
in order to leverage the smoothness of expected re-
ward functions. This also means that separating the
problems into isolated MABs within each hypercube,
as would be optimal for unsmooth rewards, is infeasi-
ble: we must use data across hypercubes to be efficient,
and so decisions in different hypercubes are interde-
pendent. In particular, our actions in one hypercube
affect how many samples we collect to learn rewards
in other hypercubes.

3.2.5. Screening Out Inestimable Regions and Accuracy
Guarantees. Although using data across multiple hy-
percubes enables us to improve the estimation

accuracy for smooth expected reward functions, it
also introduces complicated dependence between
data collection in one hypercube and algorithm deci-
sions in other hypercubes. More concretely, the
number of samples available to estimate ηa in each
hypercube and, correspondingly, the accuracy of this
estimate depends on the arms we pull in other,
neighboring hypercubes. Because, in each epoch in
each hypercube, we either always exploit or ran-
domly explore, this problem arises precisely when
there is a hypercube that is surrounded by hyper-
cubes in which we are sure about the optimal arm
(and, therefore, do not explore both arms) but in
which we are not yet sure about the optimal arm
(and, therefore, need to estimate both arm reward
functions). (See Figure 4, (b) and (c).) As a result, the
local polynomial regression for estimating ηa in this
hypercube can be ill-conditioned and fail to ensure
our accuracy target εk. Worse yet, this problem con-
tinues to persist at all future epochs because the
nearby hypercubes continue to exploit, and the accu-
racy target only becomes sharper.

Luckily, it turns out that, whenever such a problem
arises, we do not actually need to estimate ηa in these
hypercubes: the fact that the hypercube is surrounded
by neighboring hypercubes in which we are sure one
arm is optimal means that the same arm is also opti-
mal in this hypercube with high probability (see
Lemma 5). The only thing we need to do is to detect
this issue correctly. Specifically, we propose to use the
rule in Equation (6) in order to screen out the inesti-
mable regions. This screening rule is motivated by
Proposition 3 and Assumption 2, which imply that the
strong regularity property of the support of the sam-
ples Sa,k−1 (i.e., (⋃k−1

j�1 Ea,j
⋃
Rk−1) ∩ X ) is critical for the

conditioning of the local polynomial estimator. We
show in Lemma EC.9 that this screening procedure is
well-defined: any hypercube in C can be classified into
at most one of D1,k and D−1,k but not both. Moreover,
although we check only weak ( c

2d
,Ha,k−1)-regularity

with respect to only hypercube centers, Lemma EC.8
implies a far stronger consequence for the proposed
screening rule: (⋃k−1

j�1 Ea,j
⋃
Rk−1) ∩ X is not strongly (c0,

r0)-regular at any point in Da,k−1.
After removing these inestimable regions, we

can show (Theorem 1) that our uniform estimation
error anywhere in the remaining uncertain region
from each epoch (i.e., Rk ∩DC

1,k ∩DC
−1,k) is exponen-

tially shrinking:

sup
x∈Rk∩DC

1,k∩DC
−1,k

|τ̂k(x) − τ(x)| ≤ εk with probability 1−O(T−1):

(12)
3.2.6. Decision Regions. We start by randomizing ev-
erywhere, R1 � X , and in each subsequent epoch, we
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remove the hypercubes E−1,k,E1,k from the randomiza-
tion region Rk and assign them to join the growing
exploitation regions. The set Ea,k is the union of two
parts. The first, {x ∈Rk−1 ∩DC

1,k−1 ∩DC
−1,k−1 : aτ̂k−1(x) >

εk−1}, is determined by τ̂k−1 and consists of the points
at which, as long as the event in Equation (12) holds,
we are sure arm a is optimal. The second is D−a,k−1
and, in contrast to the first, we cannot rely on the
CATE estimator in order to determine that a is opti-
mal here. Nevertheless, we can show that D−a,k−1 ∩
X ⊆ {x ∈ X : aτ(x) > 0} under Assumption 2 and as
long as the event in Equation (12) holds (Lemma 5).
This means that we can conclude that the arm a is also
optimal on D−a,k−1 even though we cannot estimate
CATE accurately there.

The remaining randomization region in each epoch,
Rk, consists of the subset of the previous randomiza-
tion region in which we cannot determine that either
arm is optimal using either of these criteria. In particu-
lar, the CATE estimate is below the accuracy target in-
side Rk, |τ̂k−1(x)| ≤ εk−1, so even when the event in
Equation (12) holds, we cannot be sure which arm is
optimal. Thus, we may as well pull each arm uni-
formly at random to provide maximum exploration
for estimation in future epochs. Moreover, the explo-
ration cost is manageable because, as long as the event
in Equation (12) holds: (1) the regret incurred from
pulling suboptimal arms at the randomization region
shrinks exponentially because |τ(x)| ≤ |τ̂k−1(x)| + εk−1 ≤
2εk−1 for x ∈Rk, and (2) the randomization region
shrinks over the epochs as Assumption 4 implies that
P(X ∈Rk ∩ X , |τ(X)|≠ 0) ≤ μ({X : 0 < |τ(X)| ≤ 2εk−1}) ≤
γ(2εk−1)α.

In each epoch, we update the CATE estimates and
the decision rule only when it is needed. We estimate
CATE and design new decision regions (i.e., Rk and
E61,k) only within the region in which we failed to
learn the optimal arm with high confidence in previ-
ous epochs (i.e., Rk−1), and we follow previous deci-
sion rules on regions in which the optimal arm is
already learned with high confidence (i.e.,

⋃k−1
j�1 Ea,j).

In this way, we gradually refine the accuracy of the
CATE estimator in ambiguous regions while making
efficient use of the information learned in previous
epochs.

3.2.7. Comparison with (A)BSE When β 5 1. Whereas
our algorithm is most notable for tackling the case of
β > 1, it also handles the special case of β � 1, which is
exactly the intersection point with the previous litera-
ture that focuses on β ≤ 1 (Rigollet and Zeevi 2010,
Perchet and Rigollet 2013). Even when β � 1, our algo-
rithm is distinct from these. Notably, UCBograms in
Rigollet and Zeevi (2010) and binned successive elimi-
nation (BSE) in Perchet and Rigollet (2013), which
both run isolated MAB algorithms in each hypercube,

can achieve minimax optimal regret only when α ≤ 1
(and β ≤ 1). Because these algorithms learn expected
rewards using data only within each hypercube, they
require pulling each arm at least once in each hyper-
cube and, thus, necessarily incur regret of Ω(T d

2+d)
when β � 1, which is suboptimal when α > 1 because
the minimax regret rate in this case is Θ(T 1−α+d

2+d ). In-
deed, when α > 1, the expected rewards for two arms
are relatively separated, and we can tell apart the opti-
mal arms with relatively little data, so pulling each
arm at least once in every hypercube may be wasteful.
Addressing this is the central purpose of the ABSE al-
gorithm in Perchet and Rigollet (2013), which gradu-
ally refines the hypercubes (though, still, it can only
handle β ≤ 1).

Our algorithm provides another way around this is-
sue by using data across hypercubes even in the spe-
cial case of β � 1, in which our bandwidth is larger
than the hypercube size in all but the last epoch. Then,
whenever a particular hypercube has arms that are
well-separated (as many must be when α is large), we
can still detect this even if we did not pull both arms
in this hypercube. For example, in the kth epoch,
Lemma 3 ensures that the learning radius H61,k is
much larger than the hypercube size δ, so even if we
have not pulled one of the arms in some hypercubes
yet, we can still collect enough samples (with high
probability) for both arms in their neighborhood
within the learning radius so that we can construct the
CATE estimator τ̂k−1 that achieves the target precision
level εk−1 (see Theorem 1 for the formal statement). If
the expected rewards for the two arms on some of
these hypercubes are separated enough so that
|τ̂k−1(x)| > εk−1 on them, then we can confidently push
them into exploitation regions. As a result, we do not
“waste” arm pulls in these hypercubes. Importantly,
our algorithm can determine optimal arms on hyper-
cubes with well-separated expected rewards in early
epochs using relatively imprecise CATE estimators
based on small samples and do so on more difficult
hypercubes with less separated expected rewards
later on using more precise CATE estimators. In this
way, it carefully achieves the minimax optimal re-
gret rate even when α > 1 (see Theorem 2). For β � 1,
the behavior of our algorithm is similar but different
from ABSE in that both gradually refine the learning
radius, but in ABSE, the learning radius is set to be
the same as the hypercube size, whereas in our algo-
rithm, the learning radius is different from the hy-
percube size.

3.2.8. Finite Running Time. Finally, we remark that
Algorithm 1 can be run in finite time. First, we show
that all decision regions are unions of hypercubes in C
as shown in Figure 4.
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Lemma 4. For 1 ≤ k ≤ K, E61,k, D61,k and Rk are all
unions of hypercubes in C.

The number of hypercubes itself, |G|, is of course finite.
To determine in what hypercube an arriving context
falls, we need only divide each of its coordinates by δ.

The remaining question is to compute which hyper-
cubes belong to which decision region at the start of
each epoch. To compute D61,k, we need to compute
the volume in the intersection of X , a union of cubes,
and a ball and compare it to a given constant. We
need to do this at most once in each epoch for every
hypercube. If X has a simple shape, such as the unit
hypercube, this can be done analytically. Alterna-
tively, given a membership oracle for X , we can com-
pute this using rectangle quadrature integration. In
particular, we can easily allow for some slowly
vanishing approximation error in the quadrature inte-
gration without deteriorating the regret rate of our al-
gorithm. Then, to compute E61,k andRk, we need only
to compute η̂k,a(x) at most once in each epoch at each
lattice point x ∈ G. Computing this estimate requires
constructing an Mβ ×Mβ matrix given by averaging
over the data within the bandwidth neighborhood
and then pseudo-inverting this matrix.

4. Theoretical Guarantees: Upper and
Lower Bounds on Minimax Regret

We next provide two results that together characterize
the minimax regret rate (up to polylogs): an upper
bound on the regret of our algorithm, and a matching
lower bound on the regret of any other algorithm (in
the regime in which αβ ≤ d).

4.1. Regret Upper Bound
In this section, we derive an upper bound on the regret
of our algorithm. The performance of our algorithm, as
we show in this section, crucially depends on two
events: Mk, the event that sufficiently many samples for
each arm are available for CATE estimation at the end
of epoch k, and Gk, the event that our estimator τ̂k has
good accuracy.

Concretely,

Mk � N1,k �N−1,k ≥ log(Tδ−d)
C0ε2k

( )2β+d2β⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭,
Gk �

{
sup

x∈Rk∩DC
1,k∩DC

−1,k

|τ̂k(x) − τ(x)| ≤ εk

}
:

For convenience, we also define Gk � ∩1≤j≤k Gj and
Mk � ∩1≤j≤kMj, where an empty intersection (G0 or
M0) is the whole event space (always true).

4.1.1. Characterization of the Decision Regions. The
following lemma shows that these two events are

critical for the effectiveness of the proposed decision
rules in that, whenever they hold, we have the desired
behavior described in Sections 3.2.6 and 3.2.5.

Lemma 5. Fix any k ≥ 1. Suppose Assumption 2 holds and

that T ≥ T0 � exp 1� C0(2β+d)
4(2r0)2β(2β+d+βd)

( )( )
with T0 given in

Lemma 3 and C0 given in Lemma 7. Then, under the event
Gk−1 ∩Mk−1, we have for a �61:

i.Rk ∩ X ⊆ {x ∈ X : |τ(x)| ≤ 2εk−1}.
ii. (⋃k

j�1 Ea,j) ∩ X ⊆ {x ∈ X : aτ(x) > 0}.
iii.Qa ⊆ ((⋃k

j�1 Ea,j)⋃Rk) ∩ X .
iv.Da,k ∩ X ⊆ {x ∈ X : aτ(x) < 0}.
In Lemma 5, statement (i) means that we cannot

identify the optimal arm on the randomization re-
gion Rk. Statement (ii) says that pulling arm a on the
exploitation region

⋃k
j�1 Ea,j is optimal. Statement (iii)

shows that the support of the sample Sa,k (i.e.,
((⋃k

j�1 Ea,j)⋃Rk) ∩ X ) always contains the region in
which arm a is optimal, Qa. Statement (iv) says that
the optimal arm on Da,k is –a, which justifies why we
put Da,k into E−a,k in Equation (8). Recall that, on Da,k,
the support of the sample Sa,k is insufficiently regu-
lar, and thus, we cannot hope to obtain good esti-
mates there. Fortunately, statement (iv) guarantees
that accurate decision making is still possible on Da,k
even though accurate CATE estimation is impossible.

Statement (iii) in Lemma 5 is crucial. On the one
hand, it is critical in guaranteeing that sufficient sam-
ples can be collected for both arms for future epochs
(see also the discussion following Theorem 1). On the
other hand, it leads to statement (iv), which enables us
to make correct decisions in the inestimable regions.
The argument is roughly as follows. Given statement
(iii), if statement (iv) didn’t hold, that is, if there
were any x0 ∈Da,k ∩ X such that x0 ∈Qa � {x ∈ X :
aτ(x) ≥ 0}, then by the strong regularity ofQa imposed
by Assumption 2, ((⋃k

j�1 Ea,j)⋃Rk) ∩ X would be suffi-
ciently regular at g(x0), which violates the construc-
tion of Da,k in Equation (6).

4.1.2. A Preliminary Regret Analysis. Based on Lemma
5, we can decompose the regret according to Gk−1 ∩
Mk−1. Let π̂ denote our algorithm, Algorithm 1. Then,

RT(π̂) �
∑K
k�1

∑
t∈T k

E[Yt(π∗(Xt)) −Yt(At)]

≤ ∑K
k�1

∑
t∈T k

E[Yt(π∗(Xt)) −Yt(At)|Gk−1 ∩Mk−1]

+∑K
k�1

∑
t∈T k

P G
C
k−1

⋃
M

C
k−1

( )
:

We can further decompose the regret in the kth epoch given
Gk−1 ∩Mk−1 into the regret resulting from exploitation in
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⋃k
j�1 E1,j

⋃
E−1,j and the regret resulting from exploration

inRk: ∑
t∈T k

E[Yt(π∗(Xt)) −Yt(At)|Gk−1 ∩Mk−1]

≤ ∑
t∈T k

E

[
Yt(π∗(Xt)) −Yt(At)|Gk−1 ∩Mk−1,

Xt ∈
⋃k
j�1

E1,j
⋃

E−1,j

( )]
+∑
t∈T k

E[|τ(Xt) | |Gk−1 ∩Mk−1,Xt ∈Rk]

× P(Xt ∈Rk |Gk−1 ∩Mk−1):
Lemma 5 statement (ii) implies that the proposed al-
gorithm always pulls the optimal arm on the exploita-
tion region. Therefore, the first term on the right-hand
side, that is, the regret resulting from exploitation, is
equal to zero. Moreover,∑

t∈T k

E[|τ(Xt) ||Gk−1 ∩Mk−1,Xt ∈Rk]

× P(Xt ∈Rk |Gk−1 ∩Mk−1)
≤ ∑

t∈T k

2εk−1P(0 < |τ(Xt)| ≤ 2εk−1|Gk−1 ∩Mk−1)

≤ γ21+αε1+αk−1nk,

where the first inequality follows from Lemma 5,
statement (i), and the second inequality follows from
the margin condition of Assumption 4.

Therefore, the total regret is bounded as follows:

RT(π̂) ≤
∑K
k�1

γ21+αε1+αk−1nk +
∑K
k�1

nkP G
C
k−1

⋃
M

C
k−1

( )
≤ O T

β+d−αβ
2β+d log1+

d
2β(T) + log2(T)

( )
+ ∑K

k�1
nkP G

C
k−1

⋃
M

C
k−1

( )
,

(13)

where the O(·) term depends only on the parameters
of Assumptions 1–4 and not on the particular instance.
Thus, if we can prove that P(GC

k−1
⋃
M

C
k−1) is small

enough for all k, then we can (uniformly) bound the
cumulative regret RT(π̂) of our proposed algorithm.

4.1.3. Bounding P(GC
k21

⋃MC
k21). The analysis in Equa-

tion (13) shows that the cumulative regret of the pro-

posed algorithm depends on the probability of G
C
k−1

⋃
M

C
k−1, that is, that the CATE estimator may not be accu-

rate enough or that the total sample size for one arm is
not sufficient in any epoch prior to the kth epoch.

To bound this probability, we need to analyze the
distribution of the samples for each arm. The sample
distributions in each epoch can be distorted by deci-
sions in previous epochs. Because a well-behaved
density is crucial for nonparametric estimation, we
must make sure that such distortions do not under-
mine our CATE estimation.

Lemma 6. For any 1 ≤ k ≤ K and a �61, Sa,k � {(Xt,Yt) :
t ∈ T k,At � a} are conditionally i.i.d. samples, given
F k−1

⋃
Ak, where F k−1 � (Xt,At,Yt) : t ∈ ⋃k−1

k′�1 T k′
{ }

,
Ak � {At : t ∈ T k}.

Now suppose Assumptions 2 and 3 hold, let C0 be de-
fined as in Lemma 7 for any given β,L1, c0, r0,μmin and

suppose T ≥ T0 � exp 1� C0(2β+d)
4(2r0)2β(2β+d+βd)

( )( )
. Then, for a �

61 under the event Gk−1 ∩Mk−1, the (common) condi-
tional density of any of {Xt : At � a, t ∈ T k} with respect to
Lebesgue measure, given F k−1

⋃
Ak, which we denote by

μa,k, satisfies the following conditions:

1. 1
2μmin ≤ μa,k(x) ≤ 2μmax

p for any x ∈ ((⋃k
j�1 Ea,j)⋃

Rk) ∩ X .
2. μa,k(x) � 0 for any x ∈ (⋃k

j�1 E−a,j) ∩ X .

Lemma 6 shows that, in the kth epoch, samples for
each arm are i.i.d. given the history, and it satisfies a
strong density condition on the support of each sam-
ple, ((⋃k

j�1 Ea,j)⋃Rk) ∩ X . Furthermore, this distribu-
tion support set is sufficiently regular with respect to
points in Rk ∩DC

1,k ∩DC
−1,k, according to the screening

rule given in Equation (6). Together, this strong den-
sity condition and support set strong regularity condi-
tion guarantee that we can estimate CATE using local
polynomial estimators well on Rk in the (k+ 1)th ep-
och after we remove the inestimable regions.

In particular, the following lemma shows that the
local polynomial estimator is well-conditioned with
high probability, which echoes the classic result in the
off-line setting (Proposition 3).

Lemma 7. Suppose the conditions of Lemma 6 hold. Let
1 ≤ k ≤ K− 1,a �61,n61,k be given. Consider the Gram
matrices of the local polynomial regression estimators in
Equation (11), that is, Â(x;Sa,k,Ha,k,b(β)) as defined in
Equation (5). Then, given N61,k � n61,k and Mk−1 ∩Gk−1,
these satisfy the following with conditional probability at
least 1− 2M2

βexp{−C0(4(1+ L1
��
d

√ )2)n2β=(2β+d)a,k }:
λmin(Â(x;Sa,k,Ha,k,b(β))) ≥ λ0 > 0,

∀x ∈Rk ∩DC
1,k ∩DC

−1,k,
where

λ0 � 1
4
μmin inf

W ∈ R
d, S ⊂ R

d : ‖W‖ � 1
S ⊆ B(0, 1) is compact, Leb(S) � c0vd=2d

∫
S

( ∑
|s|≤b(β)

Wsus
)2
du,

C0 � 3pλ2
0

4(1+ L1
��
d

√ )2

×min

{
1

12M4
βμmaxvd + 2pλ0M2

β

,

1
108Mβvdμmax + 6

�����
Mβ

√
pλ0

,

1
108MβL2vdμmax + 6

�����
Mβ

√
L(2vdμmax + p)λ0

}
:
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In Lemma 7, λ0 is positive because the unit shell is
compact, and for fixed W, the infimum over S is con-
tinuous inW and positive as the integrand can be zero
only in a measure-zero set, whereas S has a positive
measure. The constant C0 dictates the epoch schedule
{T k}Kk�1 of our proposed algorithm (see Section 3).
Note that we can also use any positive constant no
larger than C0 in our algorithm without deteriorating
the regret rate.

In the following theorem, we show that P(GC
k−1

⋃
M

C
k−1) is indeed very small for large T, so its contribu-

tion to the cumulative regret bound in Equation (13) is
negligible.

Theorem 1. When T ≥ T0� exp(1� C0(2β+d)
4(2r0)2β(2β+d+βd)�

(
36MβL2v2dμ

2
maxC0(2β+d)

p2λ2
0(2β+d+βd) )), if we assume Assumptions 1–3, then

for any 1 ≤ k ≤ K− 1,

P(GC
k |Gk−1,Mk) ≤

8+ 4M2
β

T
,

P(MC
k |Gk−1,Mk−1) ≤ 2

T
,

P(GC
k

⋃
M

C
k ) ≤

(10+ 4M2
β)k

T
:

Here, the upper bound on P(GC
k |Gk−1,Mk) is derived

from the uniform convergence of local polynomial
regression estimators (Stone 1982) given well-conditioned
Grammatrices (which we ensure in Lemma 7) and suf-
ficiently many samples for each arm (ensured by Mk)
whose sample distribution satisfies strong density con-
dition (which we ensure in Lemma 6). The upper
bound on P(MC

k |Gk−1,Mk−1) arises from Lemmas 1
and 5, statement (iii), because they imply that P(X ∈
(⋃k

j�1 Ea,j)⋃Rk) ≥ P(X ∈Qa) ≥ p for a �61. As a re-
sult, at least a constant fraction of nk many samples
accumulates for each arm so that Mk holds with
high probability as the nk proposed in Equation (10)

is sufficiently large. The upper bound on P(GC
k⋃

M
C
k ) follows from the first two upper bounds by

induction.

4.1.4. Regret Upper Bound. Given Theorem 1 and
Equation (13), we are now prepared to derive the final
upper bound on our regret.

Theorem 2. Suppose Assumptions 1–4 hold. Then,

RT(π) � O T
β+d−αβ
2β+d log1+

d
2β(T) + log2(T)

( )
� Õ T

β+d−αβ
2β+d + 1

( )
,

where the O(·) and Õ(·) terms only depend on the parame-
ters of Assumptions 1–4. (An explicit form is given in the
proof.)

Proof sketch. Theorem 1 states that, for 2 ≤ k ≤ K,

nkP G
C
k−1

⋃
M

C
k−1

( )
≤ nk

(10+ 4M2
β)(k− 1)

T

≤ (10+ 4M2
β)(k− 1):

Furthermore, Lemma 2 implies that

K ≤
⌈

β

(2β+ d)log2 logT
⌉
:

Thus,∑K
k�1

nkP(GC
k−1

⋃
M

C
k−1)

≤ (5 + 2M2
β)K2

≤ (5 + 4M2
β)

β2log2T

(2β + d)2log22 � Õ(1):

The final conclusion follows from Equation (13).

A complete and detailed proof is given in the online
supplement. As noted at the start of Section 3.2,
whereas our Algorithm 1 takes T as an input, we can
obtain the same result as Theorem 2 for an algorithm
that does not know T by simply calling Algorithm 1
with doubling horizons. Notice also that, although Al-
gorithm 1 takes c0 as input, the rate in T of the regret
bound does not depend on it. Examining the explicit
form of the regret bound reveals a polynomial depen-
dence in the constant. Moreover, Assumption 2 with
some c0 > 0 always implies the same with any
c′0 ∈ (0, c0]. Therefore, if Assumption 2 holds so that
some positive but unknown c0 exists, then for T
large enough, we can always use 1=log(T) as input
to our algorithm and still obtain the same regret
rate up to polylogarithmic factors. If Assumption 2
does not hold, then Theorem 4 shows that the
minimax regret is of a different order of magnitude
altogether.

Because Algorithm 1 is an admissible policy, this
yields an upper bound on the minimax regret.

Corollary 1. Let any problem parameters be given. Then,
for the corresponding class of contextual bandit problems
P, the minimax regret satisfies

RT � Õ T
β+d−αβ
2β+d

( )
:

4.2. Regret Lower Bound
In this section, we prove a matching lower bound (up
to polylogarithmic factors) for the regret rate in Theo-
rem 2 in the regime in which αβ ≤ d. This means that
there does not exist any other algorithm that can
achieve a lower rate of regret for all smooth bandit in-
stances in a given smoothness class. Thus, our algo-
rithm achieves the minimax-optimal regret rate.
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Theorem 3 (Regret Lower Bound). Fix any positive pa-
rameters α,β,d,L,L1 satisfying αβ ≤ d. For any admissible
policy π and T, there exists a contextual bandit instance
satisfying Assumptions 1–4 with the provided parameters
such that

sup
P∈P

RT(π) �Ω T
β+d−αβ
2β+d

( )
, (14)

where the Ω(·) term only depends on the parameters of the

class P and not on π. Hence, we also haveRT �Ω(Tβ+d−αβ
2β+d ).

Proof sketch. Define the inferior sampling rate of a
given policy π as the expected number of times that π
disagrees with the oracle policy π∗ (for a given in-
stance P), that is,

IT(π) � E

[∑T
t�1

I

(
π∗(Xt)≠ πt(Xt)

)]
:

Lemma 3.1 in Rigollet and Zeevi (2010) relates RT(π)
to IT(π): under Assumption 4,

IT(π) �O(T 1
1+αRT(π) α

1+α): (15)
Note the implicit dependence of IT(π),RT(π) on the in-
stance P.

We then construct a finite class,H, of contextual ban-
dit instances with smooth expected rewards and show,
first, that H ⊆ P, that is, that our construction fits the
provided parameters (in particular, our construction is
fundamentally different from that in Rigollet and Zeevi
(2010) as their construction approach is only suitable
for nondifferentiable functions) and, second, that

sup
P∈P

IT(π) ≥ sup
P∈H

IT(π) ≥ 1
|H|

∑
P∈H

IT(π) �Ω(T1− αβ
2β+d): (16)

We arrive at the final conclusion by combining Equa-
tions (15) and (16). w

A complete and detailed proof is given in the online
supplement.

Note that, in Theorem 3, we allow α,β,d,L,L1 to be
given. The proof then constructs an example with ap-
propriate values for the rest of the parameters, c0, r0,
μmax,μmin,γ, for which the class of bandit problems P
satisfies the preceding lower bound. This shows that the
rate given in Theorem 2 is tight (for the regime αβ ≤ d).

We can, furthermore, show that our nonstandard
Assumption 2 is necessary for achieving the minimax

regret rate Θ̃(Tβ+d−αβ
2β+d + 1). In particular, we prove that

there exists a class of problem instances satisfying As-
sumptions 1, 3, and 4 but not necessarily Assumption 2
such that the corresponding regret lower bound is
higher in order.

Theorem 4 (Regret Lower Bound Without Assumption 2).

Fix any positive parameters α,β,d,L,L1. For any admissi-
ble policy π and T, and any constant Δ ∈ ( βd

αβ+d ,β�
d
α),

there exists a contextual bandit instance satisfying
Assumptions 1, 3, and 4 (but not necessarily Assumption 2)
with the provided parameters such that

RT(π)
T

β+d−αβ
2β+d

�Ω T
d(α+1)(β−Δ)
(2Δ+d)(2β+d)

( )
→∞ as T→∞: (17)

Proof sketch. Similar to the proof of Theorem 3, for
any Δ ∈ ( βd

αβ+d ,β�
d
α), we can construct another finite

class H′ of bandit problems that satisfy Assumptions
1, 3, and 4 but not Assumption 2 with the provided
parameters and show that

sup
P∈H′

IT(π) ≥ 1
|H′|

∑
P∈H′

IT(π) �Ω(T1− αΔ
2Δ+d): (18)

In conclusion, Equation (17) then follows from Equa-
tions (15) and (18).

We want to remark here that the constructed in-
stances in the proof of Theorem 4 are only some spe-
cial classes of irregular problems and need not be the
worst ones, so even when taking Δ→ βd

αβ+d approach-
ing the worst irregularity in Theorem 4, we do not
believe the obtained rate is the right minimax rate
under only Assumptions 1, 3, and 4. In fact, irregular
support can be arbitrarily complicated, and to the
best of our knowledge, there is no previous work
even in the off-line regression setting that studies the
minimax rates (estimation or regret) for a Hölder
function class without regularity (even showing that
it is strictly worse in the off-line regression setting
appears new, which our example in Theorem 4
shows). Characterizing the optimal minimax rates
without regularity for either off-line regression or on-
line decision making is beyond our scope and re-
mains a possible avenue of future investigation. The
main purpose of Theorem 4 is only to show the neces-
sity of Assumption 2 in Theorem 2 and to shed more
light on the complexity of these irregular problems.

5. Practical Implementation and
Numerical Investigation

Our primary focus is theoretically understanding the
learnability of decision making in nonparametric
settings by characterizing the minimax regret. Our
proposed algorithms (Algorithm 1 and Algorithm 2
in the Online Appendix) are, therefore, intended pri-
marily as an exhibited valid policy used to obtain a
theoretically rigorous upper bound on the minimax
regret for the smooth contextual bandit problem and
not as a practically viable bandit algorithm. In this
section, we use the primary insights from our algo-
rithms to propose a simple, practical algorithm, and
we use it for a simple numerical study.
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5.1. The Simplified Algorithm
In this section, we use our proposed algorithm as an
inspiration for a simplified algorithm. Several features
of our algorithm were designed purely with its analy-
sis in mind. Our algorithm is essentially an upper
confidence approach wherein we explore when condi-
tional mean arm rewards are indistinguishable from
sufficient confidence and otherwise exploit the appar-
ently better arm. The additional idiosyncrasies of our
algorithm are necessary to make the approach amena-
ble to analysis in our complex, nonparametric setting.
These can probably be simplified or removed in
practice, leaving only the primary upper confidence
structure. Of course, this breaks our analysis, so the mo-
tivations for these simplifications are purely heuristic.

One such possibly extraneous feature is the algo-
rithm’s epoch structure; rather than proceeding in
geometrically increasing epochs, in practice, one
might choose to simply continually update one’s esti-
mates and confidence intervals at every round. An-
other is our piecewise constant grid structure, which
was employed primarily to obtain uniform confidence
intervals on mean reward functions via the union
bound; in practice, one might simply produce local
polynomial estimates at any new context that arrives.
Related to this are our exact high-probability confi-
dence intervals based on the piecewise constant struc-
ture of our estimates and upon which we decide
whether to explore or exploit; likely any reasonable
confidence interval works even with only approxi-
mate validity as long as we set the confidence appro-
priately. Finally, we believe that, in practice, one can
probably safely abandon the screening of inestimable
regions.

What remains are the primary features of our algo-
rithm: when a new context arrives, use the data
available to estimate the conditional mean arm re-
wards as well as confidence intervals on these, pull
the seemingly better arm if the intervals do not inter-
sect, and otherwise explore. (Or, in the multiarm set-
ting, uniformly explore all arms that are not, thus,
confidently dominated, which may only leave one
arm; see Online Appendix A.) The insight from our
algorithms suggests that the estimation step can be
done using local polynomial regression of order b(β)
with bandwidth c1t−1=(2β+d) for some c1 > 0 and that
the confidence probabilities should be summable.
Practically, for concreteness, we suggest using the
standard two-sided confidence interval for ordinary
least squares (which is an approximate confidence in-
terval) fit on the polynomial features of the data
within the bandwidth, and we suggest a confidence
level of order c2=t (albeit not summable just barely;
one could additionally divide by logt). Specifically,
letting x denote the current context and φ(x) ∈ R

Mβ

its expansion into monomials of degree at most

b(β), Âa(x) denote the Gram matrices (see also Equa-
tion (5)) for estimating each arm, a �61, sa(x) denote
the observed averaged squared residuals, and ζ de-
note the 1− t=(2c2) quantile of the standard normal,
we uniformly explore each arm whenever the differ-
ence of conditional mean reward estimates is within

ζ

����������������������������������������������������
φ(x)�

(
s2+1(x)Â

−1
+1(x) + s2−1(x)Â

−1
−1(x)

)
φ(x)

√
of zero and

otherwise pull the better-seeming arm. To ensure
good confidence intervals, if there are fewer than
2Mβ data points from arm a within the bandwidth,
then we pull arm a in this round. An algorithmic list-
ing of the pseudocode for this procedure is provided
in Algorithm 3 in Online Appendix C. Additionally,
an implementation and replication code is available
at https://github.com/CausalML/SmoothBandit.

5.2. Numerical Study
In this section, we use our simplified algorithm to nu-
merically study the smooth bandit problem. We con-
sider covariates X drawn uniformly from the unit
cube, [0,1]d. And we consider random instances of the
smooth bandit with η+1,η−1 drawn independently
from the Gaussian process prior on the unit cube with
a Matérn covariance kernel with smoothness parame-
ter β0 and length-scale parameter 0.15 (the latter to en-
sure enough nonlinear behavior inside the unit cube).
These random functions are β0-smooth with probability
one. We then consider running our simplified algorithm
with c1 � 1, c2 � 1=2 and varying β.

In Figure 5, we present the regrets for every T ∈
[1, : : : , 20000] averaged over five sample paths, each
from a different random instance with d � 2,
β0 ∈ {1:5, 5:5}. For each sample path, we consider run-
ning our simplified algorithm with β ∈ {0:5, 1:5, : : : ,
10:5}. The regrets are shown on a log–log scale. In ad-
dition to the regrets, for each algorithm, we report the
slope ŝ of the regret curve fit by least squared on the
log–log data for T ∈ [10000, : : : , 20000] as well as the
theoretical asymptotic regret exponent s∗ � d=(2β+ d)
corresponding to the minimax regret rate exponent
for the smooth bandit problem if smoothness is ex-
actly β and the margin parameter is α � 1 because,
generically, we expect α � 1 as long as contexts are
continuous with a bounded density and ηa has an
almost-everywhere nonsingular Jacobian. For compar-
ison, we also include the slope ŝ computed only on
T ∈ [T0=2, : : : ,T0] for T0 � 2500, 5000, 10000.

There are several observations to highlight. For
β ≤ β0, when the algorithm’s smoothness parameter is
well-specified, we note that the estimated and theoreti-
cal slopes match closely. First, this means that our
minimax theory reliably predicts the regret behavior in
practice. Second, this means that our simplified algo-
rithm appears to achieve the correct regret rate. For β
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much bigger than β0, when the algorithm’s smooth-
ness parameter is very badly specified, we see that the
regret rate is worse than the theoretically predicted
rate if β were well-specified. The estimated rate, how-
ever, appears sublinear only because T is finite. As T
grows, the slope deteriorates toward one. This is also
made clear by considering the apparent slopes we
would have computed for shorter horizons: as we con-
sider longer horizons, the slopes in the misspecified
case get closer and closer to one. For β only slightly
bigger than β0, we surprisingly sometimes see a slope
that is slightly better than β � β0. This again, however,

is only an effect of finite T. Even for very large β, we
see an initially small slope that then inflects upward.
The same happens for β slightly bigger than β0 as we
increase T; we eventually hit an inflection point at
which the slope deteriorates toward one, and the in-
flection and deterioration would be slower for β very
close to but above β0. This, in fact, brings up an impor-
tant practical point: our theoretical characterization of
the minimax regret is only for T sufficiently large, in
which case using the maximal correct smoothness,
β � β0, is optimal, but for shorter horizons T, there
may be a benefit to slightly oversmooth β > β0.

Figure 5. (Color online) The Regret of Our Simplified AlgorithmUsing Different Smoothness Parameters β in Instances with
Different True Smoothness β0

Notes. Here, ŝ refers to the slope of the log–log plots fitted to T ∈ [10000, : : : , 20000] and s∗ � d=(2β+ d). (a) Regret of using different β under
β0 � 1:5. (b) Estimated and theoretical slopes; β0 � 1:5. (c) Regret of using different β under β0 � 5:5. (d) Estimated and theoretical slopes; β0 � 5:5.
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6. Conclusions
In this paper, we define and solve the smooth-response
contextual bandit problem. We propose a rate-optimal
algorithm that interpolates between using global and
local reward information according to the underlying
smoothness structure. Our results connect disparate re-
sults for contextual bandits and bridge the gap between
linear-response and nondifferentiable bandits and con-
tribute to revealing the whole landscape of contextual
bandit regret and its interplay with the inherent com-
plexity of the underlying learning problem.
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