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Abstract. Off-policy evaluation (OPE) in reinforcement learning is notoriously difficult in
long- and infinite-horizon settings due to diminishing overlap between behavior and target
policies. In this paper, we study the role of Markovian and time-invariant structure in effi-
cient OPE. We first derive the efficiency bounds and efficient influence functions for OPE
when one assumes each of these structures. This precisely characterizes the curse of hori-
zon: in time-variant processes, OPE is only feasible in the near-on-policy setting, where
behavior and target policies are sufficiently similar. But, in time-invariant Markov decision
processes, our bounds show that truly off-policy evaluation is feasible, even with only just
one dependent trajectory, and provide the limits of how well we could hope to do. We
develop a new estimator based on double reinforcement learning (DRL) that leverages this
structure for OPE. Our DRL estimator simultaneously uses estimated stationary density ratios
and q-functions and remains efficient when both are estimated at slow, nonparametric rates
and remains consistent when either is estimated consistently. We investigate these properties
and the performance benefits of leveraging the problem structure for more efficient OPE.
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1. Introduction
Reinforcement learning (RL) in settings such as health-
care (Murphy 2003) and education (Mandel et al. 2014)
is often limited to the offline or off-policy setting, where
we only use existing observed data, due to the inability
to simulate and the costliness of exploration. One
important task in this setting is off-policy evaluation
(OPE), where we want to estimate the mean reward of
a candidate decision policy, known as the target policy
using observed data generated by the log of another
policy, known as the behavior policy (Precup et al.
2000, Mahmood et al. 2014, Li et al. 2015, Jiang and Li
2016, Munos et al. 2016, Thomas and Brunskill 2016, Liu
et al. 2018b, Xie et al. 2019).1 OPE, in particular, is a
building block toward policy optimization from obser-
vational data (Huang and Jiang 2020, Kallus and
Uehara 2020c). OPE, however, becomes increasingly
difficult for problems with long and infinitely long hori-
zons (Liu et al. 2018a). As the horizon grows, the over-
lap (i.e., density ratios) between trajectories generated
by the target and behavior policies diminishes exponen-
tially. This issue has, in particular, been noted as one of
the key limitations for the applicability of RL in medical
settings (Gottesman et al. 2019).

In this paper, we study the fundamental estimation
limits for OPE in infinite-horizon settings, and we
develop new estimators that leverage special problem
structure to achieve these limits and enable efficient and
effective OPE in these problem settings. Specifically, we
first derive what is the best-possible asymptotic mean-
squared error (MSE) that one can hope for in OPE in
this setting, that is, we derive the efficiency bounds (van
der Vaart 1998), which characterize the minimum limit
of the square-root-scaled MSE (as we define in Section
1.3). To study the effect of problem structure, we sepa-
rately consider three different models: non-Markov deci-
sion processes (NMDPs), time-varying Markov decision
processes (TMDPs), and time-invariant Markov decision
processes (MDPs). These models are illustrated in
Figure 1 and precisely defined Section 1.2. Specifi-
cally, we focus on discounted bounded rewards. The
differences between these bounds exactly character-
izes the effect of taking into consideration additional
problem structure on the feasibility of OPE.

Our bounds in the NMDP and TMDPmodels reveal
an important phase transition: if the target and behav-
ior policies are sufficiently similar (relative to the dis-
count factor), then consistent estimation is feasible.
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Otherwise, there exist examples where it is infeasible.
This can be understood as a phrase transition between
being sufficiently close to on-policy that OPE is feasi-
ble even in infinite horizons and being sufficiently off-
policy that it is hopeless. We show that adaptations of
the doubly robust (DR) estimator in NMDPs (Jiang
and Li 2016) and in MDPs (Kallus and Uehara 2020a)
to the infinite horizon case achieve these bounds, that
is, are efficient in the near-on-policy setting.

Our bounds in the MDP models, on the other hand,
give hope for OPE in the truly off-policy setting. They
show that by leveraging Markovian and time-invariant
structure in RL problems, we can overcome the curse of
horizon and indicate what it would mean to do so effi-
ciently, that is, using all the data available optimally.
The question is then how to achieve these bounds for
efficient OPE. We propose an approach based on dou-
ble reinforcement learning (Kallus and Uehara 2020a)
and on simultaneously learning average visitation distri-
butions and q-functions. And, we show that, unlike
importance-sampling-based estimators (Liu et al. 2018a),
our DRL estimator achieves the efficiency bound under
certain mixing conditions. Thus, by carefully leveraging
problem structure, we show how to efficiently break the
curse of horizon in RL OPE.

1.1. Organization
The organization of papers is as follows. In Section
1.2, we define the decision process models and set up
the OPE problem formally. In Section 1.3, we define
the efficiency bounds formally, briefly reviewing
semiparametric inference as it relates to our results. In
Section 1.4, we review the relevant literature on OPE.

In Section 2, we derive the efficiency bounds under
each of the models under consideration, NMDP,
TMDP, and MDP. In Section 3, we analyze the asymp-
totic properties when we extend standard DR and DRL
OPE estimators to infinite horizons and provide condi-
tions for their efficiency in the NMDP and TMDP
models. We note, however, that they are not efficient
under theMDPmodel and have the wrongMSE scaling.

In Section 4, we propose the first efficient estimator
for OPE under the MDP model and analyze its as-
ymptotic properties as T→∞, including when our
observations consist of a single trajectory, n � 1.
This estimator is based on simultaneously learning
q-functions and the ratio of average visitation distribu-
tions. In Section 6, we therefore discuss how to estimate
the density ratio of average visitation distributions in an
off-policy manner from a single (finite) trajectory. And, in
Section 7, we discuss how to estimate q-functions in an
off-policy manner from a single (finite) trajectory. In
Section 8, we provide a numerical experiment to study
the effects of leveraging problem structure efficiently.
Finally, we conclude in Section 9.

1.2. Problem Setup and Notation
We consider a state space S, action space A, and
reward space R ⊂ [0,Rmax], each a measurable space
that may be continuous, discrete, or mixed.2 We fix a
base measure for each, λS ,λA,λR (e.g., Lebesgue,
counting, or other), focus on distributions on these
spaces that are absolutely continuous with respect to
(wrt) these, and identify them with their densities
(Radon-Nikodym derivative wrt the base measure). A
(time-invariant) Markov decision process (MDP) on
(S,A,R) is given by a reward distribution p(r | s, a) for

Figure 1. (Color online) Bayes Net Representation of the Independence Structure of the Truncated Trajectory Ending with s2,
J s2 , Under the Three Models: NMDP, TMDP, andMDP

(a)

(b)

(c)

Notes. Conditional on its parents, a node is independent of all other nodes. The congruency sign || indicates that the conditional probability func-
tion given parent nodes is equal.
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the immediate reward after taking action a in state s
and a transition distribution p(s′ | s,a) for the new state
after taking action a in state s. A policy is a distribu-
tion π(a | s) for the action to take in state s. We also
associate with π an initial state distribution, p(0)π (s0).3
Recall we identify distributions with densities so p(r |
s,a),p(s′ | s,a),π(a | s),p(0)π (s0) are densities with respect
to λR,λS ,λA,λS , respectively. Together, an MDP and
a policy define a joint distribution over trajectories
J � (s0, a0, r0, s1,a1, r1, : : : ). Namely, letting J sT+1 � (s0,
a0, r0, : : : , sT,aT, rT, sT+1) be the length-(T+ 1) trajectory
up to sT+1, we have that for any T, J sT+1 has
density p(0)π (s0)π(a0 | s0)p(r0 | s0,a0)p(s1 | s0,a0)π(a1 | s1)
p(r1 | s1,a1) : : : p(sT+1 | sT,aT). We also define HsT+1 �(s0,a0, : : : , sT, aT, sT+1) as the same length-(T + 1) trajec-
tory but excluding reward variables, which has density
p(0)π (s0)π(a0 | s0)p(s1 | s0, a0) : : : p(sT+1 | sT,aT), and we
similarly denote by HaT the trajectory up to and includ-
ing the variable aT, excluding rewards. (We formally
define MDP as a statistical model for the data-
generating process in Definition 3.) We denote by
p(t)π (st) or p(t)π (st,at, rt, st+1) the marginal distribution of st
or of (st,at, rt, st+1) (etc.) under pπ. We further define the
γ-discounted average visitation frequency as

p(∞)
π,γ (s) � lim

T→∞
1∑T

t�0 γt

∑T
t�0

γtp(t)π (s):

Our ultimate goal is to estimate the average cumula-
tive reward of the known target evaluation policy
(and known initial state distribution), πe, for a given
discount factor γ ∈ [0, 1):

ρπe � lim
T→∞ ρπe

T , where

ρπ
T � cT(γ) Epπ

∑T
t�0

γtrt

[ ]
, cT(γ) �

∑T
t�0

γt

( )−1
:

In particular, we wish to estimate ρπe based on data
generated by a different policy, πb, known as the
behavior policy and which may be known or
unknown. (For brevity, we often use the subscript e or
b to mean the subscript πe or πb, respectively.)

We will consider two data-generation settings.
Transition-Sampling Setting. In the transition-

sampling setting, the data consists of n independent
and identically distributed (iid) draws of state-action-
reward-state quadruplets, D � {(s(i), a(i), r(i), s′(i))}ni�1,
each drawn from pπb(J s1). Note we do not assume
stationarity in this setting, that is, the marginal den-
sities of pπb(J s1) wrt s and wrt s′ can be different.

Trajectory-Sampling Setting. In the trajectory-
sampling setting, the data consists of N observations of
length-(T + 1) trajectories, D � {(J (i)

sT+1}Ni�1, each drawn
from pπb(J sT+1 ). Here, we set n � NT as we have n tran-

sitions, and also identify D � {(s( j)t , a( j)t , r( j)t , s′t+1
( j) )}N,T

j�1,t�0.
Crucially, in this setting the transitionsmay be dependent.

Unlike the transition-sampling setting, here we assume
that the data are stationary: p(t)πb

� p(t′)πb
for any t, t′. That is,

p(0)πb
(s) is an invariant distribution under the state-transition

kernel induced by the MDP and πb. This appears strong
but can be easily relaxed if we assume certain ergodicity
so that the initial distribution does not in fact matter and
we can allow any p(0)πb

(s); we discuss this in Remark 8.
The quality and value functions (q- and v-functions)

are defined as the following conditional averages of
the cumulative reward to go (under πe), respectively:

q(s0,a0) � Epπe

∑∞
k�0

γkrk | s0,a0
[ ]

,

v(s0) � Epπe

∑∞
k�0

γkrk | s0
[ ]

� Epπe q(a, s) | s0
[ ]

:

Note that the very last expectation is taken only over
a0 ~ πe(a0 | s0). We define the policy, cumulative, mar-
ginal, and stationary density ratios, respectively, as

η(s,a) � πe(a | s)
πb(a | s) , νt(Hat) �

∏t

k�0
ηk(sk,ak),

μt(st, at) �
p(t)πe

(st, at)
p(t)πb(st,at)

, w(s) � p(∞)
πe,γ(s)
p(0)πb (s)

:

In particular, in the latter, notice that we divide a
γ-discounted average visitation frequency by an un-
discounted marginal one. (In Remark 8, we discuss
assuming ergodicity instead of stationarity in the
trajectory-sampling setting, in which case we replace
the denominator of w(s) with the undiscounted station-
ary state distribution under pπb (J ).)
We can generalize the MDP setting in two ways. In

TMDP, the reward, transition, and policy distributions
can all depend on t, whereas the Markov assumption
is still retained. Adding a t subscript to denote this,
under TMDP, pπ is given by p(0)π (s0)π0(a0 | s0)p0(r0 | s0,
a0)p1(s1 | s0,a0): : : . In NMDP, the reward, transition,
and policy distributions can additionally all depend
on the history of states and actions so that pπ is given
by p(0)π (s0)π0(a0 | s0)p0(r0 | s0,a0)p1(s1 | s0,a0) π1(a1 | J s1)
p1(r1 | J a1): : : . In TMDP, q- and v-functions depend on
t and are defined as the conditional expectations of∑∞

k�0γ
krk+t given st, at, and st, respectively, under pπe . In

NMDP, we condition instead on J at and J st , respec-
tively. In both TMDP and NMDP, η is also t-dependent
since the policies are. We only consider the trajectory-
sampling setting under either TMDP and NMDP since,
due to the time dependence, just observing length-1 tra-
jectories would not be enough. (We formally define
TMDP and NMDP as a statistical model for the data-
generating process in Definitions 1 and 2.)

To streamline notation, when no subscript is
denoted, all expectations E[·] and variances var[·] are
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taken wrt the behavior policy πb, that is, pπb . At the
same time, recall that v- and q-functions are for the
target policy, πe. For a function f of (parts of) a trajec-
tory we often write f to mean the random variable
f (J ). The Lp norm is defined as || f ||p � E[| f | p]1=p. For
example, we write νt � νt(J at), μt � μt(st,at), etc. In
the transition-sampling setting, for any function of
s,a, r, s′, we define its empirical average as

Pn f � Pn[ f (s, a, r, s′)] � n−1
∑n
i�1

f (s(i), a(i), r(i), s′(i)):
When f also depends on the index I, we write Pn f (s,a,
r, s′, i) � n−1∑n

i�1 f (s(i),a(i), r(i), s′(i), i). In the trajectory-
sampling setting, we define the time average as

PT f � PT[ f (s,a, r, s′)] � (T + 1)−1∑T
t�0

f (st, at, rt, st+1),
and for any function of a trajectory, we define the
empirical average as

PN f � PN[ f (J )] �N−1∑N
i�1

f (J (i)):
Thus, for a function of (s, a, r, s′), we have:

PNPT f �N−1(T+ 1)−1∑T
t�0

∑N
j�1

f (s( j)t , a( j)t , r( j)t , s( j)t+1),

which we also denote by Pn � PNPT and also allow
functions that depend on the index i � ( j, t). Table
EC.1 in the online appendix summarizes our notation.

1.3. Efficiency Bounds
In this section, we define formally what we mean by the
best-possible asymptotic MSE. We focus on computing
efficiency bounds in settings where the data are iid and
its distribution fully identifying of the estimand (transi-
tion sampling for MDP and infinitely long trajectory
sampling for TMDP and NMDP) so that we can apply
standard semiparametric theory (Bickel et al. 1998,
Tsiatis 2006, Kosorok 2008). After establishing these
bounds, we will actually show they can be achieved by
estimators both in these ideal settings and even in more
complex sampling settings, such as a single growing tra-
jectory. Here, we give a general overview of semipara-
metric theory as it pertains to our results and provide
more technical detail and precise definitions in online
Appendix B.2.

Suppose our data consists of n iid observations,
each drawn from a distribution p, O1, : : : ,On ~ p. Let
us fix p0 as the true, unknown distribution. Whereas
we do not know p0, we assume it belongs to a model
M, that is, a set of possible data-generating processes.
Given a parameter of interest R :M→ R, we want to
estimate R(p0) using some estimator R̂(O1, : : : ,On). For
example, in the transition-sampling setting under MDP,
we will letM be all distributions pπb(J 1) for any choice
of MDP and behavior policy, subject to certain minimal

regularity and identifiability conditions that ensure the
policy value is in fact a function of pπb(J 1).

The limiting law of R̂ is the distributional limit of��
n

√ (R̂ −R(p0)) and the asymptotic mean-squared error
(AMSE) is the second moment of the limiting law,
which in turn lower bounds the scaled limit infimum of
the mean-squared error (MSE), liminfnE[(R̂ −R(p0))2],
by the portmanteau lemma. Roughly, we say R̂ is regu-
lar wrt

��
n

√
if its limiting law is invariant to vanishing

perturbations to p0 that remain insideM (see Definition
EC.7 in the online appendix for precise definition). This
type of regularity is common and is often considered
desirable, as otherwise the estimator may behave
erratically under completely undetectable changes (see
van der Vaart 1998, section 8.1). If

��
n

√ (R̂ −R(p0)) �
1��
n

√ ∑n
i�1φ(Oi) + op(1= ��

n
√ ) with Eφ(O) � 0 then R̂ is said

to be asymptotically linear (AL) with influence function
φ, and it follows its limiting law isN (0, Eφ2(O)) at p0.

Every gradient of R wrt M at p � p0 is a Gâteaux
derivative for all paths through p0 that remain in M,
which is a p0-measurable random variable φ(O). See
Definition EC.6 in the online appendix for precise
definition. The influence function of any regular AL
(RAL) estimator is such a gradient (Theorem EC.1 in
the online appendix). The gradient φeff with least
second moment (if such exists) is called the efficient
influence function (EIF). This motivated by the fact
(Theorem EC.2) that

EffBd(M) � Ep0φ
2
eff,

which we call the efficiency bound, lower bounds the
AMSE of any estimator that is regular wrt M. An effi-
cient estimator (at p0) is a regular estimator (at p0)
with AMSE equal to EffBd(M).

If we have EffBd(M) <∞ (i.e., the estimand is dif-
ferentiable) and an estimator is shown to be AL with
the EIF as its influence function, then, in addition, it is
also regular and hence RAL and efficient, and con-
versely every efficient estimator is RAL (van der Vaart
1998, lemma 25.23). This also suggests an estimation
strategy: try to approximate ψ̂(O) ≈ φeff(O) +R(p) and
use R̂ � 1

n
∑n

i�1ψ̂(Oi). Done appropriately, this can pro-
vide an efficient estimate. Therefore, deriving the
efficient influence function is important both for com-
puting the semiparametric efficiency bound and for
coming up with good estimators.

Notice the efficiency bound depends on both p0 and
M. We use EffBd(M) to highlight the latter dependence.
Indeed, if p0 ∈M ⊆M′, then EffBd(M) ≤ EffBd(M′)
since estimators that are regular in M′ are also regular
in M, even though p0 is the same. Standard results (e.g.,
van der Vaart 1998, theorem 25.21) further establish that
the efficiency lower bound also applies to all estimators
(not just regular ones) in a local minimax fashion, where
the local worst-case neighborhoods of p0 are restricted to
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remain in M. The efficiency bound is infinite when the
estimand is not pathwise differentiable wrt M, in which
case no regular estimators exist (Newey 1990).

1.4. Summary of Literature on OPE
OPE is a central problem in both RL and in the closely
related dynamic treatment regimes (DTRs; Murphy
et al. 2001). OPE is also equivalent to estimating the
total treatment effect of some dynamic policy in a
causal inference setting. Although we do not explicitly
use counterfactual notation (potential outcomes or do-
calculus), if we assume the usual sequential ignorabil-
ity conditions (Ertefaie 2014), the estimands are the
same and our results immediately apply.

In RL, one usually assumes that the (time-invariant)
MDPmodelM3 holds. Nonetheless, with some excep-
tions that we review next, OPE methods in RL have
largely not leveraged the additional independence
and time-invariance structure of M3 to improve esti-
mation, and in particular, the effect of this structure
on efficiency has not previously been studied and no
efficient evaluation method has been proposed.

Methods for OPE can be roughly categorized into
three types. The first approach is the direct method
(DM), wherein we directly estimate the q-function and
use it to directly estimate the value of the target evalua-
tion policy. One can estimate the q-function by a value iter-
ation in a finite-state-and-action-space setting utilizing an
approximated MDP based on the empirical distribution
(Bertsekas 2012). More generally, modeling the transition
and reward probabilities and using the MDP approxi-
mated by the estimates is called the model-based
approach (Sutton and Barto 2018). When the sample
space and action space are continuous, we can apply
some functional approximation to q-function modeling
and use the temporal difference method (Lagoudakis and
Parr 2004) or fitted Q–iteration (Antos et al. 2008). Once
we have an estimate q̂, the DM estimate is simply

ρ̂DM � (1− γ)PN Eπe q̂0 | s0
[ ][ ]

,

where the inner expectation is simply over a0 ~ πe(·| s0)
and is thus computable as a sum or integral over a
known measure and the outer expectation is simply an
average over the N observations of s0. For DM, we can
leverage the structure ofM3 by simply restricting the q-
function we learn to be the same for all t and solving
the fixed point of the Bellman equation. However, DM
can fail to be efficient and is also not robust in that, if q-
functions are inconsistently estimated, the estimate will
be inconsistent.

The second approach is importance sampling (IS),
which averages the data weighted by the density ratio
of the evaluation and behavior policies. Given esti-
mates ν̂t of νt (or, ν̂t � νt if the behavior policy is

known), the IS estimate is simply

ρ̂IS � cT(γ)PN
∑T
t�0

γtν̂trt

[ ]
:

A common variant is the self-normalized IS (SNIS),
where we divide the tth summand by PN γtν̂t

[ ]
. Recall

that T here denotes the finite length of the N trajecto-
ries in our data. In finite-horizon problems (i.e., when
the estimand is ρπe

T ), when the behavior policy is
known, IS is unbiased and consistent but its variance
tends to be large and it is inefficient (Hirano et al.
2003). In infinite-horizon problems, we need T to
grow for consistent estimation. But even if T �∞ (i.e.,
our data consists of full trajectories), IS can have infi-
nite variance because of diminishing overlap, known
as the curse of horizon (Liu et al. 2018a). Our results
(Table 1) inM1, M2 characterize more precisely when
this curse applies or not.

The third approach is the doubly robust (DR)
method, which combines DM and IS and is given by
adding the estimated q-function as a control variate
(Scharfstein et al. 1999, Dudik et al. 2014, Jiang and Li
2016). UnderM1, the DR estimate has the form

ρ̂DR � cT(γ)PN
∑T
t�0

γt ν̂t(rt − q̂t) + ν̂t−1Eπe q̂t | st
[ ]( )[ ]

:

In finite-horizon problems, DR is known to be efficient
under M1 (Kallus and Uehara 2020a). In infinite hori-
zons, we derive the additional conditions needed for
efficiency inM1 in Section 3.

Many variations of DR have been proposed. Thomas
and Brunskill (2016) propose both a self-normalized
variant of DR and a variant blending DR with DM
when density ratios are extreme. Farajtabar et al. (2018)
propose to optimize the choice of q̂(s,a) to minimize
variance rather than use a plug-in. Kallus and Uehara
(2019) propose a variant that is similarly locally efficient
but further ensures asymptotic MSE no worse than DR,
IS, and SNIS under misspecification and stability prop-
erties similar to self-normalized IS.

However, all of the aforementioned IS and DR esti-
mators do not leverage Markov structure and fail to
be efficient under M2. Recently, in finite horizons,
Kallus and Uehara (2020a) derived the efficiency
bound of ρπe

T under M2 and provided an efficient
estimator termed double reinforcement learning (DRL),
taking the form

ρ̂DRL(M2) �cT(γ)PN
∑T
t�0

γt μ̂(i)
t (rt− q̂(i)t )+μ̂(i)

t−1Eπe

[
q̂(i)t |st])],([

where μ̂(i), q̂(i) can either be estimated in-sample
(q̂(i)t � q̂t and assuming a Donsker condition) or cross-
fitting (the sample is split and q̂(i)t is fit on the fold that
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excludes i). DRL’s efficiency depends only on the rates
of convergence of these estimates, which can be as
slow as N−1=4, thus enabling the use of black box
machine learning methods. In infinite horizons, we
derive the additional conditions needed for efficiency
inM2 in Section 3.

However, again, all of the aforementioned IS, DR,
and DRL estimators do not leverage time-invariance
and fail to be efficient under M3. Our results extend
the notion of the curse of dimension and demonstrate
that even estimators in M2, such as the efficient
ρ̂DRL(M2), can fail to be consistent as μt can also
explode just like νt. In contrast, in M3, regardless of
the rate of growth of μt, νt, consistent evaluation is
possible from even just a single trajectory and knowl-
edge of the initial distribution.

Recently, Liu et al. (2018a) proposed a variant of the
IS estimator for M3 that uses the ratio of the stationary
distributions in hopes of overcoming the curse of hori-
zon. We describe this estimator in detail in Section 6.1.
Its asymptotic MSE was not previously studied. We
provide some results in the parametric setting. The
properties in the nonparametric setting are not known.
In particular, as we discuss in Section 6.1, its lack of
doubly robust structure and its not being an empirical
average of martingale differences make analysis partic-
ularly challenging. At the same time, these issues also
suggest that the estimator is inefficient.

2. Efficiency Bounds in Infinite Horizons
The efficiency bounds for ρπe

T in finite horizons under
NMDP and TMDP are derived in Kallus and Uehara
(2020a). First, we extend these results to infinite hori-
zons, focusing in particular on when the bounds are
infinite. Then—and more importantly—we study the
efficiency bound in MDP.

2.1. Efficiency Bounds in Non-Markov and
Time-Variant Markov Decision Processes

First, we formally define NMDP and TMDP as statisti-
cal models for our data-generating process. As data,
we consider observing N (infinitely long) trajectories

J from the behavior-policy-induced distribution
pπb (J ). The model is the set of possibilities for pπb(J ).
The NMDP model is given by (almost) all arbitrary
distributions on the sequence J .

Definition 1 (NMDP Models M1,M1,b). The NMDP
model M1 is defined by all distributions pπb (J ) such
that the conditional distribution of each variable in J
given the past is absolutely continuous wrt the respec-
tive base measure (so it has a density) and the condi-
tional distribution of action given history, πb,t, is such
that the (known and fixed) evaluation policy, πe,t, is
absolutely continuous wrt it. We also define the model
M1,b where we assume the behavior policy is known;
that is, πb,t and p(0)πb

are fixed at their known value and
not allowed to vary.

The last restriction in the definition of M1 is known
as weak overlap and it is equivalent to saying νt exists.
It is necessary so to ensure that ρπe is a function of
pπb (J ), that is, is identifiable from the data (Khan and
Tamer 2010). Observing infinitely long trajectories
is also necessary for identifiability, but when con-
structing estimators we will show it suffices to
observe trajectories of modestly growing length.
Then, ρπe is a function of pπb(J ) given by
(1− γ)E ∑T

t�0γ
tνtrt

[ ]
, that is, it is a well-defined map

M1 → R.
The TMDP model is obtained by restricting the

NMDP model to satisfy the Markovian condition.

Definition 2 (TMDP Models M2,M2,b). The TMDP
model M2 is defined by restricting the model M1 so
that st+1 is conditionally independent of J rt−1 given st,
at, and rt is conditionally independent of J rt−1 given
st, at, and at is conditionally independent of J rt−1 given
st. Similarly, we define M2,b by fixing πb,t and p(0)πb

at
their known value.

All of our models are nonparametric in the sense
that we do not further restrict these distributions in
any way beyond requiring densities and overlap.

We now proceed to compute the efficiency bounds
for ρπe in these models. By slightly modifying the
results of Kallus and Uehara (2020a), we obtain the
following theorems.

Table 1. Asymptotic Order of the Best-Achievable MSE in Each Model When Observing N Length-(T+ 1) Trajectories
Model Characteristics MSE scaling Required conditions

NMDP Non-Markov, time variant O(1=N) N→∞, T � ω(logN),
|| νt||∞ �O(γ−t)

TMDP Markov, time variant O(1=N) N→∞, T � ω(logN),
|| μt||∞ �O(γ−t)

MDP Markov, time invariant O(1=(NT)) T→∞, N ≥ 1,
mixing, ||w||∞ �O(1)

Note. The variables ηt,νt, μt, w are the instantaneous, cumulative, marginal, and stationary density ratios, respectively (see Section 1.2 for
definitions).
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Theorem 1 (EB Under NMDP).

EB(M1) � EB(M1,b)

� (1 − γ)2 ∑∞
k�1

E[γ2(k−1)ν2k−1(J ak−1 )var rk−1(
+ vk(J sk) | J ak−1)]: (1)

Theorem 2 (EB Under TMDP).

EB(M2) � EB(M2,b)

� (1 − γ)2 ∑∞
k�1

E[γ2(k−1)μ2
k−1(sk−1, ak−1)

var rk−1 + vk(ak, sk) | ak−1, sk−1( )]: (2)

Remark 1. Equations (1) and (2) are almost the same
as the limit as T→∞ of c2T(γ) times the finite-horizon
efficiency bounds derived by Kallus and Uehara
(2020a). They are the same if we replace the lower
summation limit with k � 0 instead of k � 1 in Equa-
tions (1) and (2). This is because we here assume p(0)πe

is
known whereas in Kallus and Uehara (2020a) the
assumption is that p(0)πb

� p(0)πe
are unknown, the uncer-

tainty due to which increases the efficiency bound.

Remark 2. Notice the crucial role of the model in the
notion of efficiency, even though pπb is a given single
distribution. The efficiency bounds in Theorems 1 and 2
are local: given a single pπb , the bounds correspond to the
best MSE we can achieve if we are regular under small
perturbations of pπb that remain inside the model. In par-
ticular, even if pπb ∈M2 happens to be TMDP, the effi-
ciency bound is different whether we allow perturbations
that remain TMDP or just NMDP. That is, if our estimator
“works” for NMDPs (i.e., is regular in M1), it will suffer
the larger bound (Equation (1)) even if the particular
instance encountered happens to be a TMDP.

Theorems 1 and 2 show that, when Equations (1)
and (2) are finite, the best-achievable leading term in
the MSE of any regular estimator in NMDP or TMDP is
EB(M1)=N or EB(M2)=N, respectively. It also shows
that the knowledge of πb,p(0)πb

does not improve the
bound. The intuitive reason for this is that ρπe is only a
function of the transition- and reward-distribution parts
of pπb (J ) so that πb,p(0)πb

are ancillary. When the effi-
ciency bound takes an infinite value, the estimand is
not pathwise differentiable wrt the model and no regu-
lar

��
n

√
-consistent estimator exists (Newey 1990).

Corollary 1 (Sufficient Conditions for Existence of
Efficiency Bounds). If ||νk ||∞ � o(γ−k), then EB(M1) < ∞.
If ||μk ||∞ � o(γ−k), then EB(M2) <∞. Moreover, if pπb ∈
M2 and EB(M1) <∞, then EB(M2) <∞.

Remark 3 (The Curse of Horizon in M1, Extended). To
demonstrate the curse of horizon, Liu et al. (2018a)
gave an example where the IS estimator has a

diverging variance as horizon grows. But it is not
clear if—and without assuming MDP structure—there
might be another estimator that would not suffer
from this. Our results show that in fact there is not. If
we take any example where var rk−1 + vk | J ak−1

( )
are

uniformly lower bounded (i.e., state transitions and
reward emissions are nondegenerate), then as long as
E[log (ηk)] ≥ −log (γ) for all k, we will necessarily have
that EB(M1) � ∞. (Notice that E[log (ηk)] is exactly the
expected Kullback-Leibler divergence.) In this case, as
long as we are not restricting the model beyond M1,
we simply cannot break the curse of horizon and it
affects all (regular) estimators, not just IS.

Remark 4 (The Curse of Horizon in M2, a Milder Version
of the Original). Our results further extend the curse of
horizon to M2, providing another refinement of the
notion. The curse is milder in M2 than in M1, since the
EBs are necessarily ordered. It is, in fact, much milder.
In particular, rather than involve the growth of the
cumulative density ratios, whether EB(M2) converges
or diverges depends on the growth of the marginal den-
sity ratios. These, of course, can also grow and EB(M2)
can diverge. However, whereas we can easily make
EB(M1) � ∞ even with a simple MDP example, to
make EB(M2) diverge we need a more pathological
example. It can be verified that if pπb is actually station-
ary (or, nonstationary but ergodic) and the stationary
distributions overlap, then we will necessarily have
||μk ||∞ �O(1).
This means that, for an MDP, we can overcome the

curse of horizon that affects estimators such as ρ̂DR
and ρ̂IS by using estimators that are efficient under
M2, the first of which was proposed by Kallus and
Uehara (2020a), that is, ρ̂DRL(M2). However, this is still
not efficient in an MDP case. In fact, this is not just a
matter of constants: this will not even yield the right
scaling of the MSE.

2.2. Efficiency Bounds in Time-Invariant Markov
Decision Processes

Next, we consider the MDP model. For the efficiency
bound computation, we focus on the transition-
sampling setting, where we observe n draws from
pπb (J s1). We next formally define an MDP as a statisti-
cal model for our data.

Definition 3 (MDP Models M3,M3,b). TheMDPmodel,
M3, is given by all distributions pπb(J s1) on (s, a, r, s′)
such that the distribution of s′ is independent of r
given s, a, the conditional distribution of each variable
given the past is absolutely continuous wrt the respec-
tive base measure (so it has a density), and further the
base measure is absolutely continuous wrt the distri-
bution of s. As before, we define M3,b by fixing p(0)πb

and πb at their known value.
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The last restriction ensures w(s) exists without put-
ting additional restrictions on the MDP itself. The
existence of w(s) is the analogue of overlap for the
MDP setting and is necessary for identifiability. Then,
ρπe is a functional of pπb(J s1) given by E[w(s)η(s,a)r],
that is, it is a well-defined mapM3 → R.

Theorem 3 (EB Under MDP). The EIF in either M3 or
M3,b is

φeff(s,a, r, s′) � w(s)η(s,a)(r+ γv(s′) − q(s,a)):
The efficiency bound in either model is therefore

EB(M3) � E w2(s)η2(a, s) r + γv(s′) − q(s, a)( )2[ ]
: (3)

Theorem 3 shows that the lower bound of the first
order asymptotic MSE is EB(M3)=n. It also shows that
the knowledge of πb,p(0)πb

does not improve the bound.
This suggests that in MDP, the MSE should scale
inversely with the number of transitions (n) we observe,
not the number of trajectories (T). Whereas standard
efficiency analysis does not apply to the trajectory-
sampling setting in MDP since the transitions are
dependent, we will show in Section 4 that we can none-
theless achieve the same efficiency bound with a scaling
of n �N(T + 1) under certain mixing assumptions.
Thus, the achievable MSE under MDP is a factor of T
faster than under NMDP and TMDP. In this sense, effi-
ciency in M3 corresponds to improvement in the rate,
not just the constant, relative to efficiency inM1 orM2.
This is in contrast to the comparison between M1 and
M2, which have efficiency bounds that are on the same
scale and only differ in the leading coefficient.

Remark 5 (Unknown pð0Þ�e
). In our setup, we assumed

p(0)πe
is known, but our results can be extended to the

case where p(0)πe
is unknown but we see samples from

it. In particular, suppose p(0)πe
is allowed to vary arbi-

trarily in the model (but remains a density wrt the
state base measure) and our data consists of n iid
draws of (s0, s, a, r, s′) from p(0)πe

(s0)pπb(J 1). Then, a
modification of Theorem 3 shows that the EB (whether
we know the behavior policy or not) is

varp(0)πe
[v(s0)] +E w2(s)η2(a, s) r+ γv(s′) − q(s, a)( )2[ ]

:

Compared with Equation (3), we have an additional
term corresponding to the variance wrt p(0)πe

.
When γ � 0, this reduces to the bound in the

no-horizon bandit OPE setting (Robins et al. 1994):

varp(0)πe
[v(s)] + E η2(a, s) r − q(s, a)( )2[ ]

,

where here q(s,a) � E[r | s, a] becomes simply the out-
come regression function.

3. Efficient Estimators for Infinite
Horizons Under NMDP and TMDP

Before turning to developing an efficient estimator
under the MDP model, we briefly review how we can
extend the efficient finite-horizon DRL estimators of
Kallus and Uehara (2020a) to be efficient in the
infinite-horizon NMDP and TMDP settings.

DRL is a meta-estimator: it takes in as input estima-
tors for q-functions and density ratios and combines
them in a particular manner that ensures efficiency
even when the input estimators may not be well
behaved. For example, metric entropy or Donsker
assumptions can be avoided by using a cross-fitting
strategy (Klaassen 1987, Zheng and van Der Laan
2011, Chernozhukov et al. 2018). We proceed by
presenting the infinite-horizon extensions of the DRL
estimators of Kallus and Uehara (2020a) and their
properties. Again, the two DRL estimators present
here are not efficient underM3.

3.1. Non-Markov Decision Process
The infinite-horizon extension of the DRL estimator
under M1 is as follows. We consider the trajectory-
sampling setting where we observe N trajectories.
Fix some horizon truncation ωN. Let qωN

t � Eπe

∑ωN
k�t

[
γt−krt | J at], vωN

t � Eπe

∑ωN
k�tγ

t−krt | J st
[ ]

. Then the esti-
mator is given by

ρ̂DRL(M1) � cwN (γ) 1
N

∑N
i�1

∑ωN

t�0
γt ν̂(i)t (H(i)

at ) r(i)t − q̂(i)t (H(i)
at )

( )(
+ ν̂(i)t−1(H(i)

at−1)v̂(i)t (H(i)
st )),

where ν̂(i)t , q̂(i)t are some plug-in estimates of νt, qωN
t to be

used for the ith observation and v̂(i)t (Hst) � Eat~πe(·|J st )
[q̂(i)t (Hat) | J st] is the corresponding v-estimate. Notice

that v̂(i)t is computable as it is an integral wrt the known
measure πe(· | J st) (e.g., it is a simple sum ifA is finite).

We can consider two cases. In the adaptive version,
we construct functional estimators ν̂t, q̂t based on the
whole data and then set ν̂(i)t � ν̂t, q̂(i)t � q̂t. The adaptive
version of ρ̂DRL(M1) is exactly the DR estimator, ρ̂DR.

In the cross-fitting version, the sample is evenly split
into two folds and ν̂(i)t , q̂(i)t , v̂(i)t are computed on esti-
mates fit on the opposite fold so that they are independent
of data point i. Namely, the cross-fitting procedure is:

• Split the data set into two disjoint data sets,D0 and
D1. Let j(i) be such that J (i) ∈Dj(i).

•Using only the trajectories inD0, construct the func-
tional estimators ν̂[0]t , q̂[0]t for t ≤ ωN. And, using only
the trajectories in D1, construct the functional estima-
tors ν̂[1]t , q̂[1]t for t ≤ ωN.

• Set ν̂(i)t � ν̂
[ j(i)]
t , q̂(i)t � q̂[ j(i)]t .
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Kallus and Uehara (2020a, section 6) discusses the esti-
mation of νt,qωN

t , that is, q-functions for finite-horizon
problems. In particular, if the behavior policy is known,
we can simply let ν̂(i)t � νt. As we make formal later, our
q-estimates need only estimate qωN

t and not qt, which
depends on all future rewards ad infinitum. This can be
done using only the truncated trajectory J (i)

rωN
(e.g., using

regression), and given q-estimates, the estimator similarly
only depends on J (i)

rωN
. Therefore, whereas we can con-

sider it as an estimator in the M1 model where we
observe the infinitely long J (i), it is in fact implementable
even if we just see finite trajectories of length at least ωN.

We can now state a straightforward infinite-horizon
extension of the efficiency result of (Kallus and Uehara
2020a, theorems 4 and 6) under M1 in finite horizons.
Essentially, we just need to be careful about choosing
ωN. We focus on the analysis of the cross-fitting
version.

Theorem 4 (Asymptotic Property of ρ̂DRL(M1)). Define

κν
N, κ

q
N such that ||ν̂[ j]t − νt ||2 ≤ κν

N, ||q̂[ j]t − qωN
t ||2 ≤ κ

q
N for

0 ≤ t ≤ ωN, j � 0, 1. Assume (4a) νt ≤ Ct and γC < 1 for

some C > 0, (4b) 0 ≤ q̂[ j]t ≤ (1− γ)−1Rmax and 0 ≤ ν̂
[ j]
t ≤ Ct

for the aforementioned C and 0 ≤ t ≤ ωN, j � 0, 1, (4c)
(κν

N � κ
q
N)ωN � op(1), (4d) ωN � ω(logN), (4e) κν

Nκ
q
NωN

� op(N−1=2). Then, ρ̂DRL(M1) is RAL and efficient; in par-

ticular,
���
N

√ (ρ̂DRL(M1) − ρπe) →d N (0,EB(M1)).
Each assumption has the following interpretation.

Condition (4a) is sufficient to guarantee that the EB is
finite (see Corollary 1). Conditions (4b), (4c) are required
to control a term related to a stochastic equicontinutiy
condition. In particular, even if we observe infinitely
long trajectories (T �∞) we cannot setωN �∞. Notably,
with cross-fitting, we make no assumptions about our
nuisance estimates except for rates, meaning we can use
black box machine learning methods that may not sat-
isfy strong metric entropy conditions. Without cross-
fitting, the same theorem would hold if we additionally
impose a Donsker condition on ν̂t, q̂t but such would be
restrictive on the types of estimators allowed (see Defini-
tion EC.1 in the online appendix for a definition of
Donsker). Condition (4d) is needed so that ρπe

ωN
� ρπe+

o(1= ���
N

√ ). Condition (4e) is needed to show the inflation
in variance due to using plug-in estimates is op(N−1=2),
that is, the asymptotic variance is not changed because
of the plug-in. Because of the mixed bias property
(Rotnitzky et al. 2021) of the influence function, the rate
is multiplicative in the two estimators’ convergence rate.
Finally, note that if we know the behavior policy we can
take κν

N � 0 so the conditions on κ
q
N are very lax. If

the behavior policy is not known, we can still allow very
slow rates; for example, if ωN � log 1+εN, κν

N �N−ζν , κq
N�N−ζq , then we only need the rates to satisfy ζν + ζq

> 1
2 , ζν�ζq > 0, ε > 0.

3.2. Time-Variant Markov Decision Process
In finite horizons, Kallus and Uehara (2020a) pro-
posed the first efficient OPE estimator under TMDP.
We now repeat the process in the previous section
and show the results can be easily extended to the
infinite-horizon case. Fix some horizon truncation ωN.
Let qωN

t � Eπe

∑ωN
k�tγ

t−krt | st,at[ ]
, vωN

t � Eπe

∑ωN
k�tγ

t−krt | st[ ]
.

The estimator is given by

ρ̂DRL(M2) � cwN (γ) 1
N

∑N
i�1

∑ωN

t�0
γt(μ̂(i)

t (s(i)t ,a(i)t )(r(i)t − q̂(i)t (s(i)t ,a(i)t ))
+ μ̂(i)

t−1(s(i)t−1,a(i)t−1)v̂(i)(s(i)t )),
where μ̂(i)

t , q̂(i)t are some plug-in estimates of μt, q
ωN
t

to be used for the ith observation and v̂(i)t (st) �
Eat~πe(·|st) q̂t(st, at) | st

[ ]
, which is an integral over a ~ πe

(· | s(i)t ), which is known. Again, μ(i)
t , q(i)t can be esti-

mated adaptively or using cross-fitting as in Section
3.1. Kallus and Uehara (2020a, section 6) discuss strat-
egies for estimating μt, q

ωN
t , that is, q-functions for

finite-horizon problems.
We can again state a straightforward infinite-horizon

extension of the efficiency result of Kallus and Uehara
(2020a, theorem 9) under M2 in finite horizons. We
focus on the analysis of the cross-fitting version.

Theorem 5 (Asymptotic Property of ρ̂DRL(M2)). Define
κ
μ
N, κ

q
N such that ||μ̂[ j]

t −μt ||2 ≤ κ
μ
N, ||q̂[ j]t − qωN

t ||2 ≤ κ
q
N for

0 ≤ t ≤ ωN, j � 0, 1. Assume (5a) μt ≤ C′t and γC′ < 1 for

some C′ > 0, (5b) 0 ≤ q̂[ j]t ≤ (1− γ)−1Rmax and 0 ≤ μ̂
[ j]
t ≤

C′t for the aforementioned C′ and 0 ≤ t ≤ ωN, j � 0, 1.
(5c) (κμ

N � κ
q
N)ωN � op(1), (5d) ωN � ω(logN), (5e)

κ
μ
Nκ

q
NωN � op(N−1=2). Then, ρ̂DRL(M2) is RAL and efficient;

in particular,
���
N

√ (ρ̂DRL(M2) − ρπe) →d N (0, EB(M2)).
Again, the estimate is feasible as long as we observe

trajectories of length ω(logN), and the cross-fitted ver-
sion makes no assumption on nuisance estimates
except rates. And, again, we can allow very slow rates:
if ωN � log 1+εN, κμ

N �N−ζμ , κq
N �N−ζq , then we only

need the rates to satisfy ζμ + ζq >
1
2 , ζμ � ζq > 0, ε > 0.

3.3. Inefficiency Under MDP
The methods in this section could be applied to an
MDP. In fact, many papers using DR-type methods
such as ρ̂DR (equal to the adaptive version of ρ̂DRL(M1))
assume that the underlying distribution is MDP when
estimating q-functions: that is, they fit q-functions that
depend only on st, at and that are time invariant. How-
ever, using this additional structure in order to pro-
duce better q-function estimates does not improve the
asymptotic variance. Indeed, even if we used the ora-
cle q-functions and oracle density ratios, we still only
obtain the efficiency bounds in Theorems 4 and 5.
Thus, even though we might use a total of O(NT)
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transition observations to get better q-function esti-
mates, if we use standard DR-type methods, this will
get washed out, at least asymptotically, and our vari-
ance will only vanish as O(1=N).

4. Efficient Estimator for Markov
Decision Process

In this section, we propose an estimator that is efficient
under the MDP model by leveraging the EIF obtained in
Theorem 3. To our knowledge it is the first such estimator.
We consider both the transition-sampling and trajectory-
sampling settings and show that, under appropriate con-
ditions in each setting, we achieve the same efficiency
bound derived in Theorem 3 asymptotically. Specifically,
the conditions in the trajectory-sampling setting include
certain sufficient mixing so that dependent-data observa-
tions that sufficiently far apart appear near independent.
We nonetheless need to develop a special sample-splitting
procedure to handle the dependent data in this setting.

For brevity, we focus here on the case where the
behavior policy is known, which is more relevant in
RL. That is, we have that η(s, a) is known. Our results
can easily be extended to the unknown behavior pol-
icy case as well (see Remark 6).

4.1. Efficient Estimation Under
Transition Sampling

The key to our estimator is the following estimating
function, defined for a given w- and q-function:

ψ(s, a, r, s′;w′, q′) � (1 − γ)Ep(0)πe
[v′(s0)]

+ w′(s)η(s, a) r + γv′(s′) − q′(s, a)( )
,

where we use w′, q′ to denote dummy such functions
and use the shorthand that, given any q′, we let
v′(s) � Eπe[q′(s,a) | s] �

∫
a
q′(s,a)πe(a | s)dλA(a), which is

computable as an integral of q′ wrt the known πe (a
sum if A is finite). Similarly, given q′, the term
(Ep(0)πe

[v′(s0)]) in the equation is also computable as both

p(0)πe
and πe are known. Notice this term is also constant

wrt (s,a, r, s′). This estimating function is derived from
the EIF in Theorem 3: when q′ � q, w′ � w, we have
ψ(s,a, r, s′;w,q) � ρπe +φeff(s, a, r, s′).

Based on this estimating function, our estimator is

ρ̂DRL(M3) � Pn[ψ(s, a, r, s′; ŵ(i), q̂(i))]
� 1
n

∑n
i�1

(1 − γ)Es0~p
(0)
πe
[v̂(i)(s0)]

+ 1
n

∑n
i�1

ŵ(i)(s(i))η(a(i), s(i))(r(i) + γv̂(i)(s′( i) )
− q̂(i)(s(i), a(i))), (4)

where ŵ(i), q̂(i) are some plug-in estimates of w, q to be
used for the ith observation. Recall v̂(i) is defined in terms
of q̂(i) by taking expectations over a ~ πe(· | s). Again, we

consider two cases. First, we consider an adaptive version,
where we let ŵ(i) � ŵ, q̂(i) � q̂ be shared among all data
points and be estimated on the whole data set of n obser-
vations of (s, a, r, s′). Second, we consider a cross-fitting
estimator, where we split the n observations into two
even folds and ŵ(i), q̂(i) are shared by all points i in the
same fold and are estimated on data only on the opposite
fold. The specific steps of the cross-fitting procedure are
as in Section 3.1. Namely, we have four estimators:
ŵ[0], q̂[0], ŵ[1], q̂[1]. The first two are fit on one half of the
data and the latter two on the other, and ŵ(i), q̂(i) are set to
those fit on the half not containing i. Unless otherwise
specified, we always refer to the cross-fitting version.

The key to showing efficiency of ρ̂DRL(M3) is establish-
ing the doubly robust (or, mixed bias) structure of ψ(s, a, r,
s′;w′,q′), namely, that its expectation remains ρπe whether
justw′ � w or just q′ � q. Suppose that q′ � q. Then,

E[Pn[ψ(s,a, r, s′;w′,q)]]
� (1− γ)Ep(0)πe

v(s0)[ ]
+ Epπb

[w′(s)η(s,a){r− q(s, a) + γv(s′)}]
� (1− γ)Ep(0)πe

v(s0)[ ] � ρπe : (5)

Heuristically, this suggests that if q̂(i) → q and ŵ(i) →
w′, where generally w′ ≠ w, then we expect that
ρ̂DRL(M3) → ρπe . This viewpoint paints the estimator
ρ̂DRL(M3) as given by taking the direct method and
adding a control variate term.

On the other hand, if w′ � w, then we have that
E[Pn[ψ(s,a, r, s′;w,q′)]]

� Epπb
w(s)η(s,a)r[ ]

+ Epπb
[w(s){− η(s, a)q′(s,a) + γη(s, a)v′(s′)}]

+ (1− γ)Ep(0)πe
v′(s0)[ ] (6)

� Epπb
w(s)η(s, a)r[ ]

+ Epπb
[w(s){−η(s, a)q′(s,a) + v′(s)}] (7)

� Epπb
w(s)η(s,a)r[ ] � ρπe : (8)

Note that from Equation (6) to Equation (7), we have
used that for any fw(s) (see Lemma 1):

Epπb
[γw(s)η(s,a) fw(s′)−w(s) fw(s)]+(1−γ)Ep(0)πe

[ fw(s)]�0:

Heuristically, this suggests that if ŵ(i) → w and q̂(i) → q′,
where generally q′ ≠ q, then we expect that ρ̂DRL(M3) →
ρπe . Together, Equations (5) and (8) show that Pn[ψ(s,a,
r, s′;w′,q′)] has zero Gâteaux derivative in w′,q′ in any
direction at w′ � w,q′ � q, a property known as Neyman
orthogonality (Chernozhukov et al. 2018).

We now proceed to prove formally the efficiency
and double robustness of our estimator.

Theorem 6 (Efficiency of ρ̂DRL(M3) Under Transition Sam-
pling: Cross-Fitting). Define κw

n ,κ
q
n such that ||ŵ[ j] −w||2 ≤

κw
n and ||q̂[ j] − q||2 ≤ κ

q
n for j � 0, 1. Assume (6a) there exist

constants Cw,CS′ > 0 such that w ≤ Cw and pb,S′ (·)=
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pb,S(·) ≤ CS′ , where pb,S′ (·) and pb,S(·) are marginal densities
of pπb (s, a, r, s′) wrt s′ and s, (6b) 0 ≤ q̂[ j] ≤ (1− γ)−1Rmax

and 0 ≤ ŵ[ j] ≤ Cw for j � 0, 1, (6c) κw
n�κ

q
n � op(1), and (6d)

κw
nκ

q
n � op(n−1=2). Then, ρ̂DRL(M3) is RAL and efficient; in

particular,
��
n

√ (ρ̂DRL(M3) − ρπe) →d N (0,EB(M3)).
The result essentially follows by showing that

|ρ̂DRL(M3) −Pn[ψ(s,a, r, s′;w,q)]| �Op(κw
nκ

q
n) + op(n−1=2).

Under the previous rate assumptions, the right-hand
side is op(n−1=2) and the result is immediately con-
cluded from the central limit theorem (CLT). Here,
using cross-fitting, we are able to completely avoid
any restriction on our plug-in estimators, except for
requiring a slow rate. In particular, the rate can be
subparametric, that is, slower than square root. Cru-
cially, this allows us to potentially use any nonpara-
metric black box machine learning method, whether
we can ensure good metric entropy conditions or not.

The adaptive version requires additional metric
entropy conditions on the estimators. Let N (τ,F , ||·||∞)
be the τ-covering number of F wrt L∞ norm.

Theorem 7 (Efficiency of ρ̂DRL(M3) Under Transition
Sampling: Adaptive). Define κw

n ,κ
q
n such that ||ŵ −w||2 ≤

κw
n and ||q̂ − q||2 ≤ κ

q
n. Suppose the conditions of Theorem 6

hold and that in addition ŵ ∈ Fw, q̂ ∈ F q such that logN
(τ,Fw, ||·||∞) �O(1=τ2), logN (τ,F q, ||·||∞) �O(1=τ2). Then,
ρ̂DRL(M3) is RAL and efficient; in particular,

��
n

√ (ρ̂DRL(M3)−
ρπe) →d N (0,EB(M3)).

Next, we formalize the notion of double robustness,
which ensures our estimate is consistent even if we
inconsistently estimate one of the components.

Theorem 8 (Double Robustness of ρ̂DRL(M3)). Assume
only conditions (6a)–(6b) of Theorem 6 hold. Assume fur-
ther that ||ŵ[ j] −w† ||2 � op(1) and ||q̂[ j] − q† ||2 � op(1) for
some w†,q†. Then, as long as either w† � w or q† � q, then
we have that plimn→∞ρ̂DRL(M3) � ρπe . The same holds for
the adaptive version, if we further assume the metric
entropy condition in Theorem 7.

Theorem 8 does not provide a rate or an asymptotic
distribution. We next strengthen the result (and, corre-
spondingly, the conditions) to ensure a rate. This kind
of double robustness is sometimes called model dou-
ble robustness because the rates needed essentially
correspond to parametric estimation and therefore the
conditions essentially refer to whether these paramet-
ric models are well specified (Smucler et al. 2019).

Theorem 9 (Model Double Robustness of ρ̂DRL(M3)).
Assume only conditions (6a)–(6b) of Theorem 6 hold.
If either ||q̂[ j] − q† ||2 � op(1), ||ŵ[ j] −w||2 �Op(n−1=2) or

||q̂[ j] − q||2 � Op(n−1=2), ||ŵ[ j] −w† ||2 � op(1) holds for
j�0,1, then ρ̂DRL(M3) � ρπe +Op(n−1=2). The same holds
for the adaptive version, if we further assume the metric
entropy condition in Theorem 7.

Remark 6 (Unknown Behavior Policy). All of results
are easily extended to the case where the behavior
policy is unknown by replacing ŵ(s)η(s,a) with ŵ(s)
η̂(s, a), where η̂(s, a) is some estimator for η(s,a), for
example, πe(a | s)=π̂b(a | s), where π̂b(a | s) is some estima-
tor for the behavior policy. All of the results stay the same
where conditions on ||ŵ −w||2 are simply replaced
with the same conditions on ||ŵη̂ −wη||2 �O(||ŵ −w||2+
||η̂ − η||2) instead.
Remark 7. After the first posted version of this paper,
Tang et al. (2020) proposed a doubly robust-style estima-
tor for the infinite-horizonMDP setting, which is given by
taking a sample average of ψ̃(s, a, r, s′; ŵ, v̂), where

ψ̃(s, a, r, s′;w′,v′) � (1− γ)Ep(0)πe
[v′(s0)]

+w′(s)η(s,a) r+ γv′(s′) − v′(s)( )
,

and ŵ, v̂ are adaptively estimated. The asymptotic
behavior was not fully characterized, but following
our work, (Kallus and Uehara 2020b, theorem 19)
proved that if we impose Donsker conditions or if we
use cross-fold estimates and under appropriate esti-
mation rates (or, even if we plug-in oracle w, v), we
can obtain that it is asymptotically normal with vari-
ance var[ψ̃(s,a, r, s′;w,v)]. This, however, is larger
than EB(M3) by E[w2(s)var[η(s, a){r+ γv(s′)} | s]] (see
Kallus and Uehara 2020b, section 6.3). That is, this
estimator is not efficient, even in ideal oracle-nuisance
settings. Moreover, it is only partially doubly robust
in that it requires that πb be well specified. In compari-
son, our estimator is in fact efficient and fully doubly
robust.

4.2. Efficient Estimation Under
Trajectory Sampling

We next study the trajectory-sampling setting and
show that we can achieve the very same efficiency
bound even though the transition data are dependent.
All of our results apply to the asymptotic regime
T→∞, where N ≥ 1 is arbitrary, bounded, or grow-
ing. In particular, we can consider just a single, long
trajectory (N � 1). Since the data are dependent, the
standard notions of regular estimation do not apply;
therefore, our efficiency statements are phrased solely
in terms of showing that we can achieve the same
asymptotic distribution of centered normal with vari-
ance equal to the efficiency bound corresponding to iid
observations from the same stationary distribution.

Kallus and Uehara: Efficiently Breaking the Curse of Horizon
Operations Research, Articles in Advance, pp. 1–21, © 2022 INFORMS 11



Indexing the data as {(s( j)t , a( j)t , r( j)t , s′t+1
( j) )}N,T

j�1,t�0 and identi-
fying each (j, t) with a corresponding i � 1, : : : ,n, where
n�N(T+1), we define our estimator ρ̂DRL(M3) � PNPT

[ψ(s,a, r, s′; ŵ(i), q̂(i))]. That is, the same as in Equation
(4), taking an average of ψ over transitions with esti-
mated w- and q-functions, but the transitions now are
actually dependent observations. Because of this, we
restrict our attention to the case where there is nonethe-
less sufficient mixing. We also need to be more careful
when constructing cross-fitting estimates.

Letting x( j)t � (s( j)t ,a( j)t , r( j)t , s( j+1)t ), recall that we

assume that x( j)0 ,x( j)1 , : : : forms a stationary process for
each j � 1, : : : ,N, that is, whereas these are dependent,
the marginal distribution of each has an identical dis-
tribution. In the results that follow, we further assume
that far-apart observations are less dependent, that is,
the effect of earlier states gets washed away the far-
ther ahead we look. To measure the level of such
dependence we use the standard mixing coefficients
αm,βm,φm,ρm, each of which measures the depen-

dence between x( j)0 , : : : ,x( j)t and x( j)t+m,x
( j)
t+m+1, : : : using

different metrics of dependence (taking worst-case
over t). For example, αm is the total variation distance
between the joint distribution of the two subsequences
and the product of their marginals. Since these are
standard we relegate their definitions to online
Appendix B.1. The coefficients are related via 2αm ≤
βm ≤ φm, 4αm ≤ ρm ≤ 2φ1=2

m , so αm is weakest and φm is
(almost) strongest (Bradley 2005).

Before we proceed to discuss feasible estimators,
we show that despite dependent data, our estimating
function retains its efficiency structure under suffi-
cient mixing.

Theorem 10 (Efficiency Structure Under Mixing).
Suppose ∑∞

m�1αm <∞ and w ≤ Cw for some Cw > 0.

Then we have
�����
NT

√
PNPT[ψ(s,a, r, s′;w,q)] − ρπe
( )→d

N (0,EB(M3)).
The α-mixing condition in Theorem 10 is used in

order to invoke a stationary-process CLT (Ibragimov
and Linnik 1971, theorem 18.5.4). However, such a
CLT still involves covariances across time, which
would inflate the asymptotic variance. The key struc-
tural aspect of PNPT[ψ(s,a, r, s′;w,q)] that enables the
result is that when we use the oracle q-function, the
variables being time-averaged in the second term in
Equation (4) form a martingale difference sequence,
which ensures zero covariances across time. This
occurs by virtue of the fact that the conditional expec-
tation of the term inside the parentheses is zero by the
definition of q. This essentially yields the result after
some algebra. In terms of showing efficiency of a fea-
sible (rather than oracle) estimator, what remains is to

show that our estimator is equal to the oracle average
up in Theorem 10 to errors that are op((NT)−1=2).
Remark 8 (Relaxing Stationarity by Ergodicity).Assum-
ing that p(0)πb

is invariant so that x( j)0 ,x( j)1 , : : : is stationary
is purely technical. It can easily be replaced by assum-
ing ergodicity instead, so that the initial state distribu-
tion is irrelevant and we only approach stationarity.

Namely, note x( j)0 ,x( j)1 , : : : forms a Markov chain. If it is
a positive Harris chain (for definition, see Meyn and
Tweedie 2009), then proposition 17.1.6 in Meyn and
Tweedie (2009) guarantees that any CLT that holds
when the initial state distribution is invariant also holds
for any initial state distribution. This is simply because
ergodicity means the initial state distribution gets
washed away, asymptotically. All our results in this sec-
tion proceed by showing ρ̂DRL(M3) � PNPT [ψ(s, a, r, s′;
w,q)] + op((NT)−1=2) and then applying a mixing-
process CLT on the dependent but stationary process
in the first term. Each time, per that proposition, we
can assume a positive Harris chain instead of statio-
narity, let the denominator of w be the invariant dis-
tribution, and define all mixing coefficients wrt the
chain starting from the invariant distribution, and
then this CLT will still hold and our characterizations
of the asymptotic distribution of the estimator will
still hold (see also Jones 2004, remark 6). Since this
can always be done, we focus our analysis on station-
ary processes for generality.

We next analyze such feasible estimators, consider-
ing three cases: adaptive, cross-fitted with N > 1, and
cross-fitted with N � 1. The difficulty with the latter
case is that the data consists of a single, long trajec-
tory, so any way we split the data, we will still have
some dependence between the folds, undermining the
standard cross-fitting technique. For each cross-fitting
estimator, we define a segmentation of our n observa-
tions into folds and estimate w- and q-functions sepa-
rately in each fold. If N ≥ 2, we can split our data into
folds across trajectories. Let D0, D1 be a random even
partition of {1, : : : ,N} and fit ŵ[ j], q̂[ j] in each fold sep-
arately (see Figure 2(a)). We then set ŵ(i), q̂(i) to the esti-
mates ŵ[1−j], q̂[1−j] fit only on D1−j where j is such that
Dj contains the trajectory for observation i. We refer to
this case as cross-trajectory-fitting. The benefit of this
approach is that we have perfect independence across
the folds because trajectories are independent. Recall
that we used a similar strategy in the transition-
sampling setting. Unfortunately, this is not possible
when n � 1. In this case, we propose the following alter-
native. Let T 0, T 1, T 2, T 3 be a random even partition
of {0, : : : ,T} and fit ŵ[ j], q̂[ j] in each fold separately (see
Figure 2(b)). We then set ŵ(i), q̂(i) to the estimates
ŵ[( j+2)mod 4], q̂[( j+2)mod 4]

fit only on T ( j+2)mod 4 where j is
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such that t ∈ T j. Thus, we always use nuisances esti-
mated on a fold that is not adjacent to the tth data point.
We refer to this case as cross-time-fitting. Although we do
not have perfect independence between folds, under suf-
ficient mixing, nonadjacent folds will be sufficiently near
independent, asymptotically.

First, we analyze the case of the cross-trajectory-fit-
ting version, where we can avoid complex metric
entropy assumptions by virtue of the unique structure
of our estimator.

Theorem 11 (Efficiency of ρ̂DRL(M3) with Cross-

Trajectory-Fitting). Define κw
n ,κ

q
n such that ||ŵ[ j] −w||2 ≤

κw
n and || q̂[ j] − q||2 ≤ κ

q
n for j � 0, 1. Assume (11a) ∑∞

k�1 ρk

<∞, (11b) w ≤ Cw for some Cw > 0, (11c) 0 ≤ q̂[ j] ≤ (1−
γ)−1Rmax and 0 ≤ ŵ[ j] ≤ Cw, (11d) κw

n�κ
q
n � op(1), and

(11e) κw
nκ

q
n � op(n−1=2). Then,

�����
NT

√ (ρ̂DRL(M3) − ρπe) →d N

(0,EB(M3)).
Notice that condition (11a) is slightly stronger than

the mixing condition in Theorem 10. The other condi-
tions match Theorem 6.

Cross-trajectory-fitting is only feasible for N ≥ 2
(although N need not grow). If N � 1, we instead pro-
posed cross-time-fitting, which we analyze next.

Theorem 12 (Efficiency of ρ̂DRL(M3) with Cross-Time-

Fitting). Define κw
n ,κ

q
n such that ||ŵ[ j] −w||2 ≤ κw

n and

||q̂[ j] − q||2 ≤ κ
q
n for j � 0, 1, 2, 3. Assume (12a) φ

1=2
t �

O(1=t2+ε) for some ε > 0, (12b) w ≤ Cw for some Cw > 0,
(12c) 0 ≤ q̂[ j] ≤ (1− γ)−1Rmax and 0 ≤ ŵ[ j] ≤ Cw, (12d)
κw
n�κ

q
n � op(1), and (12e) κw

nκ
q
n � op(n−1=2). Then,�����

NT
√ (ρ̂DRL(M3) − ρπe) →d N (0,EB(M3)).

In both Theorems 11 and 12, we are able to avoid
strong conditions on the plug-in estimators we use
aside from requiring a slow, subparametric conver-
gence rate. We only require slightly stronger mixing
conditions than the oracle case in Theorem 10.

Finally, for the adaptive version of our estimator, we
need to control the metric entropy of our plug-in estima-
tors. In particular, we suppose that we are given some
class Fψ that almost surely contains ψ(·, · , · , ·; ŵ, q̂). We
let J[](∞,Fψ,Lp) be the bracketing integral wrt the Lp
norm (for definition, see Kosorok 2008).

Theorem 13 (Efficiency of ρ̂DRL(M3) with In-Sample

Fitting). Define κw
n ,κ

q
n such that ||ŵ −w||2 � κw

n and
||q̂ − q||2 � κ

q
n and fix some p > 2. Assume (13a) ∑∞

m�1
m2=(p−2)βm <∞, (13b) w ≤ Cw for some Cw > 0, (13c) 0 ≤
q̂ ≤ (1− γ)−1Rmax and 0 ≤ ŵ ≤ Cw, (13d) κw

n � κ
q
n � op(1),

(13e) κw
nκ

q
n � op(n−1=2), and (13f) J[](∞,Fψ,Lp(p∞πb

)) <∞.

Then,
�����
NT

√ (ρ̂DRL(M3) − ρπe) →d N (0,EB(M3)).
To prove this, we invoke a uniform central limit

theorem for β-mixing sequences (Kosorok 2008, theo-
rem 11.24). Because of in-sample fitting, we require
condition (13f) in order to control a term correspond-
ing to a stochastic equicontinuity condition.

Remark 9 (When Stationarity Fails). In this section, we
assumed the data are stationary, or at least eventually
stationary as in Remark 8. But such may not apply to
problems with absorbing states, as we study in
Section 8.2. But even without stationarity, we can still
view the data as transitions (s(i), a(i), r(i), s′( i) ), i � 1, : : : ,
NT, drawn (nonindependently) from:`

1
T

∑T
t�1

p(t)b (s, a)
( )

p(r| s,a)p(s′ |s, a):

If the effective state-action distribution 1
T
∑T

t�1p
(t)
b (s, a)

has good coverage and N→∞, we should still expect
convergence, and our DRL estimator is still using the
best estimating function in the sense that it is still the
least-norm gradient of the estimand, as a function of
the T-long trajectories. Nonetheless, due to the depen-
dence of transitions in the same trajectory and without

Figure 2. Arrangement of Folds for Cross-Fitting ofNuisances for DRL inM3

(a) (b)

Note. (a) Two folds overN ≥ 2 trajectories; (b) four folds over a single trajectory.
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stationarity and mixing, it is difficult to theoretically
characterize the rate of the MSE in T.

The remaining question is how to consistently esti-
mate q and w, especially from a single trajectory. We
discuss how to estimate w in Section 6 and how to
estimate q in Section 7. We first discuss how our
results in this section lend themselves directly to con-
structing confidence intervals.

5. Asymptotically Valid
Confidence Intervals

We are often interested in confidence intervals in addi-
tion to point estimates. Our asymptotic normality
results lend themselves directly to the construction of
such. Namely, all we have to do is consistently estimate
the asymptotic variance. If an estimator ρ̂n satisfies��
n

√ (ρ̂n − ρπe) →N (0,V) and we have a consistent vari-
ance estimator V̂n → V, then we will always have that

P

(
|ρ̂n − ρπe | ≤ Φ−1(1−α=2)

������
V̂=n

√ )
→ 1− α, where Φ−1

is the inverse cumulative distribution function of the
standard normal (e.g., for α � 0:05, Φ−1(1−α=2) ≈
1:96). This means that the confidence interval

[
ρ̂n −

Φ−1(1−α=2)
������
V̂=n

√
, ρ̂n +Φ−1(1− α=2)

������
V̂=n

√ ]
has asym-

ptotic coverage exactly 1− α. By Theorems 4, 5, 6, 11,
12, and 13, it then suffices to estimate EB(M1), EB(M2),
EB(M3) to construct asymptotically valid confidence
intervals.

Focusing on EB(M3) and the transition-sampling
setting, we propose the following estimator:

ÊB(M3) � Pn[(ψ(s, a, r, s′; ŵ(i)
, q̂(i)) − ρ̂DRL(M3))2],

that is, the sample variance of ψ(s(i), a(i), r(i), s′( i) ; ŵ(i),
q̂(i)). This estimate is consistent under the same condi-
tions as in Theorem 6.

Theorem 14.Under the conditions of Theorem 6,
ÊB(M3) →p EB(M3):

A similar result holds in M1 and M2. In each case, our
estimators, ρ̂DRL(M1) and ρ̂DRL(M2), were constructed as
sample averages of cross-fitted estimates of the corre-
sponding EIF plus the estimand. Taking the sample var-
iance corresponding to this sample average, we again
obtain a consistent variance estimator that we can use
to construct asymptotically valid confidence intervals.

Note that since our estimators are efficient, one cannot
improve on these confidence intervals, asymptotically.
More formally, a test based on an efficient estimator is
automatically locally uniformly powerful in the sense
that the power function defined in a neighborhood of
the true data-generating process attains the upper
bound (see van der Vaart 1998, lemma 25.45).

6. Modeling the Ratio of Average
Visitation Distributions

Our DRL estimator in M3 relied on having an estima-
tor for the ratio of average visitation distributions,
w(s). In this section, we discuss its estimation from
semiparametric inference perspective. These estimates
can then be plugged into ρ̂DRL(M3).

6.1. Importance Sampling Using Stationary
Density Ratios

Before discussing how to estimate w(s), we consider
an IS-type estimator for MDPs using w(s). We can
transform our DRL estimator to an IS-type estimator
by simply choosing q̂(i) � 0. This leads to the marginal-
ized importance sampling (MIS) estimator

ρ̂MIS � Pn η(s,a)ŵ(s)r[ ]
, ŵ(s) ≈ w(s): (9)

where “≈”means “estimating.”
Note that this is different from the IS estimator pro-

posed by Liu et al. (2018a), which is defined as an
empirical approximation of

Ep(∞)
πb ,γ

η(s, a) ˆ̃w(s)r[ ]
, ˆ̃w(s) ≈ w̃(s) � p(∞)

πe,γ(s)
p(∞)
πb,γ(s)

: (10)

The difference between the two methods is that we
use p(0)πb

(s) instead of p(∞)
πb,γ(s) in the denominator of the

density ratio. In the transition-sampling setting, p(0)πb
(s)

in Equation (9) can be anything. In the trajectory-
sampling setting, the denominator is an invariant distri-
bution, or is the stationary distribution p(∞)

πb
(s) if we

consider the ergodic case (see Remark 8), which is still
different from p(∞)

πb,γ(s). There are a few benefits to this.

Intuitively, since we see samples from p(∞)
πb

, using Equa-
tion (9) can be more efficient because, to get a sample
from the distribution p(∞)

πb,γ, we would essentially have
to throw away (1− γ) fraction of our samples. Indeed,
the performance of Equation (10) behaves badly when
γ < 1 (Liu et al. 2018a, figure 3(d)).
Nonetheless, unlike ρ̂DRL(M3) as in Section 4.2, the esti-

mator ρ̂MIS does not have a martingale difference struc-
ture. This means that the covariance terms across the time
in the CLT do not drop out, potentially inflating the vari-
ance of the PT average in the trajectory-sampling setting.
Moreover, because it lacks a doubly robust structure, there
is an inflation term due to the plug-in of an estimate, ŵ, of
w, unlike ρ̂DRL(M3). This occurs even if the estimate has a

parametric rate, ||ŵ −w||2 �Op(n−1=2), because there is no
mixed bias structure to cancel it out. These two reasons
make it difficult to analyze the asymptotic MSE of ρ̂MIS.
They also suggest the estimator is not efficient.
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6.2. Efficient Semiparametric Estimation
The remaining question is how to estimate w(s) �
p(∞)
πe,γ(s)=p(0)πb

(s). Here, we take a semiparametric approach.
First, we consider a characterization of w(s) by modifying
theorem 4 in Liu et al. (2018a). We obtain the following
lemma.

Lemma 1 (Characterization of w(s)). Define

L(w′, fw) � E[γw′(s)η(s, a)fw(s′) − w′(s)fw(s)]
+ (1 − γ)Ep(0)πe

[ fw(s)]: (11)

Then, for w′ � w, we have L(w′, fw) � 0 for any fw. Con-
versely, if L(w′, fw) � 0 for all λS-square-integrable func-
tions fw and there is a unique solution g to the integral equation

0 � γ

∫
p(s′ | s)g(s)dλS(s) − g(s′) + (1− γ)p(0)πe

(s′),
then w′(s) � w(s).

Again, this holds for any p(0)πb
(s). This is the difference

from (Liu et al. 2018a, theorem 4), which only holds for
p(0)πb

(s) � p(∞)
πb ,γ(s). When p(0)πb

(s) is an invariant distribution,
as in the trajectory-sampling setting, L(w′, fw) is equal to
E[γw′(s)η(s,a)fw(s′) −w′(s′)fw(s′)] + (1− γ)Ep(0)πe

[ fw(s)]:
(12)

Thus, in this case, the condition that L(w′, fw) � 0 for all
fw is equivalent to the conditional moment equation:

E w(s)η(s,a) −w(s′) + (1− γ)p
(0)
πe
(s′)

p(0)πb (s′)

∣∣∣∣∣s′
[ ]

� 0: (13)

Note this is not a standard moment equation since it
still depends on the unknown quantity p(0)πb

(s). This is
closely related to a similar key relation of μk(sk) used in
Section 3.2, namely, E[νk−1 | sk] � μk(sk), which implies

E[μk−1(sk−1)η(ak−1, sk−1) −μk(sk) | sk] � 0: (14)

For derivation, refer to (Kallus and Uehara 2020a,
section 3). Heuristically, taking a limit as k→∞, replac-
ing limk→∞μk(s) with w(s), and setting γ � 1, we get
Equation (13). Notice that in Equation (14), we obtain μk

from μk−1, whereas in Equation (13) we obtain w from
itself, that is, it solves a fixed-point equation. This change
is analogous to the change in q-equations between the
time-variant finite-horizon problem and the time-
invariant infinite-horizon problem.

Suppose first that we assume a parametric model
w(s) � w(s;β∗). Then, β∗ can be estimated as a solution
to an empirical approximation of Equation (11), that is,

Pn[γw(s;β)η(s,a)fw(s′) −w(s;β)fw(s)] + (1− γ)Ep(0)πe
[ fw(s)] � 0,

(15)

for some vector-valued function fw. We denote the

estimator as β̂fw . Note Ep(0)πe
[ fw(s)] can be exactly calcu-

lated because p(0)πe
is known.

Example 1 (Linear Regression Approach). Consider a
case when our model is linear in some features of s,
that is, w(s;β) � β�ψ(s). Then, as in linear regression, a
natural choice for fw(s) is ψ(s). The estimator of β̂ψ is
constructed as the solution to

1
n

∑n
i�1

ψ(s(i))(γη(s(i),a(i))ψ�(s(i)) −ψ�(s(i)))
β+ (1− γ)Ep(0)πe

[ψ(s)] � 0:

In the finite-state-space setting, we can use ψ(s) �
(I(s∗1 � s),: : : ,I(s∗d � s))�, where S � {s∗1, : : : , s∗d}.

More generally, for a linear or nonlinear model,
under the correct specification assumption, that is,
there exists β∗ such that w(s) � w(s;β∗), we have the
following efficient estimation result. We focus on the
transition-sampling setting.

Theorem 15 (Efficient Estimation of w(s;β∗) Under Tran-
sition Sampling). Define

Δfw(s, a, s′;β) � w(s;β){γη(s, a)fw(s′) − fw(s)}:
Suppose Esupβ∈Θβ

||Δfw(s, a, s′;β)|| <∞, where Θβ is a

parameter space for β. Assume w(s) � w(s;β∗) for some β∗ ∈
Θβ and that a vector-valued fw is given such that
L(w(s;β), fw) � 0⇐⇒ β � β∗. Further assume standard reg-
ularity conditions: Θβ is compact, β∗ is in its interior,
w(s;β) is a C2-function with respect to β with first and sec-
ond derivatives uniformly bounded, and for any α with
||α||� 1, we have E[|α�Δfw(s, a, s′;β)|2+ε]|β�β∗ <∞ for some

ε > 0. Then, the asymptotic variance of β̂fw
is

E[∇β�Δfw(s, a, s′ : β)]−1var[Δfw(s,a, s′ : β)]
{E[∇β�Δfw(s, a, s′ : β)]�}−1|β�β∗ :

Importantly, regardless of the choice of fw, the rate of
||w(s; β̂fw

) −w(s)||2 will be Op(n−1=2). Compared with the
usual conditional moment equation setting (Chen 2007),
the efficient choice of fw to minimize the asymptotic var-
iance here is unclear because p(0)b (s) is unknown.

Because of the doubly robust structure of ρ̂DRL(M3),
it did not matter how we estimated w as long as we
had a (subparametric) rate. This is not true for ρ̂MIS.
We can, however, derive its asymptotics for the partic-
ular estimation approach given in Equation (15).

Theorem 16 (Asymptotic Property of ρ̂MIS). Suppose the
conditions of Theorem 15 hold and that Gn[rη(s, a)w(s;
β̂fw

)] −Gn[rη(s,a)w(s;β∗)] � op(1),where Gn � ��
n

√ (Pn− E)
is the empirical process. Then,

��
n

√ (ρ̂MIS − ρπe) →d N (0,VMIS)
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where

VMIS � var[w(s;β)η(s,a)r
+E[∇β�w(s;β)η(s,a)r]E[∇β�Δfw(s, a, s′;β)]−1
Δfw(s,a, s′;β)]|β�β∗ : (16)

Note the technical condition Gn[rη(s,a)w(s; β̂fw)] −Gn

[rη(s, a)w(s;β∗)] � op(1) can potentially be verified as in
the proofs of Theorems 11 and 13.

7. Modeling the q-Function
In this section, we discuss from a semiparametric
inference perspective how to estimate the q-function
in an off-policy manner, potentially from only one tra-
jectory. Our approach can be seen as a generalization
of LSTDQ (Lagoudakis and Parr 2004). The estimated
q-function we obtain can be used in our estimator,
ρ̂DRL(M3).

By definition, the q-function is characterized as a
solution to

q(s, a) � E[r | s, a] + γE[Ea′~πe[q(s′, a′) | s′] | s, a]:
Assume a parametric model for the q-function, q(s, a) �
q(s,a;β). Then, the parameter β can be estimated using
the following recursive estimating equation:

E eq(s, a, r, s′;β) | s,a[ ] � 0,

where eq(s, a, r, s′;β) � r+ γEa′~πe q(s′,a′;β) | s′
[ ]

− q(s,a;β):
This implies that for any function fq(s, a),

E[ fq(s,a)eq(s,a, r, s′;β)] � 0: (17)

More specifically, given a vector-valued fq(s,a), we
can define an estimator β̂fq as the solution to

Pn[ fq(s, a)eq(s, a, r, s′;β)] � 0: (18)

Example 2 (LSTDQ). When q(s, a;β) � β�ψ(s,a) and
fq(s,a) � ψ(s, a), this leads to the LSTDQ method
(Lagoudakis and Parr 2004):

∑n
i�1

ψ(s(i), a(i))[ψ�(s(i) , a(i)) − γEa~πe{ψ�(s′( i) , a) | s(i)}]
( )−1

∑n
i�1

r(i)ψ(s(i),a(i))
{ }

� 0:

More generally, for a linear or nonlinear model,
under the correct specification assumption, that is,
that there exists some β∗ such that q(s,a) � q(s,a;β∗),
we have the following result. We again focus on the
transition-sampling setting.

Theorem 17 (Efficient Estimation of q(s,a;β) Under
Transition Sampling). Suppose Esupβ∈Θβ

||eq(s, a, r, s′;β)

fq(s,a)|| <∞, where Θβ is a parameter space for β. Assume
q(s, a) � q(s,a;β) for some β ∈Θβ and that a vector-valued
fq is given such that (Equation (17) holds)⇐⇒ β � β∗. Fur-
ther, assume standard regularity conditions: Θβ is compact,
β∗ is in its interior, q(s,a;β) is C2-function with respect to β
with first and second derivatives uniformly bounded, and
for any α with ||α|| � 1, we have E[| eq(s,a, r, s′;β)
α�fq(s, a)|2+ε]|β�β∗ > 0 for some ε > 0. The lower bound for
the asymptotic MSE for estimating β∗ scaled by n is

Vβ � E[∇βmq(s, a;β)v−1q (s, a;β)∇β�mq(s, a;β)]−1|β�β∗ ,
where mq(s,a;β) � E[eq(s, a, r, s′;β) | s, a], vq(s,a) � var[eq
(s,a, r, s′;β) | s,a].

This bound is achieved when

fq(s, a) � ∇βmq(s, a; β)v−1q (s, a; β)|β�β∗ : (19)

Importantly, regardless of the choice of fq, the rate
||q(·, ·; β̂fq ) − q||2 is Op(n−1=2). Nonetheless, efficient esti-

mation is preferred. Practically, we do not know the
efficient fq in Equation (19). One way is parametrically
estimating it and another way is a sieve generalized
method of moments (GMM) estimator, using a basis
expansion for fq (Hahn 1997).

We can also extend the approach to achieve non-
parametric estimation of q. This most easily done by
extending the LSTDQ approach in Example 2. We
simply let q(s, a;βn) � ∑dn

j�1βjψj(s,a), where ψ1,ψ2, : : : is
a basis expansion of L2 and dn →∞ as we collect more
data. Given regularity conditions and smoothness con-
ditions on q, we can obtain rates on ||q(·, ·; β̂n) − q||2 with-
out assuming correct parametric specification (Chen and
Shen 1998). This provides a means to estimate q for
ρ̂DRL(M3), either parametrically or nonparametrically.

If we use q estimated parametrically as in Equation
(18), we can also establish the asymptotic behavior of
ρ̂DM. Again, as in the case of ρ̂MIS, because ρ̂DM lacks
the doubly robust structure, we must have parametric
rates on q-estimation in order to achieve 1=n MSE
scaling in Theorem 18, unlike the case of ρ̂DRL(M3)
where q-estimation can have slow nonparametric rates.

Theorem 18 (Asymptotic Property of ρ̂DM). Let ρ̂DM �
(1− γ)Ep(0)πe

[Eπe{q(s, a; β̂fq ) | s}]. Suppose the assumptions

of Theorem 17 hold. Then,
��
n

√ (ρ̂DM − ρπe) →d N (0,VDM)
where

VDM � (1− γ)2Ep(0)πe
[Eπe[∇β�q(s, a;β) | s]]

VβEp(0)πe
[Eπe[∇βq(s, a;β) | s]]|β�β∗ :

Interestingly, this is smaller than or equal to the effi-
ciency bound in M3. This is not a contradiction since
ρ̂DM as in Theorem 18 is not regular wrt M3 as it
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assumes the well-specification of the parametric model
q(s,a;β), which leads to the smaller model thanM3.

Lemma 2.VDM≤EB(M3).
This result is well-known in the bandit setting

when we use a binary deterministic policy (Tan 2007).
Our result can be seen as its generalization to the
more complex MDP setting.

Remark 10. Ueno et al. (2011) and Luckett et al. (2020)
considered related semiparametric estimation tech-
niques for the v-function. Compared with that, our
focus is a q-function estimation rather than a value
function estimation. Note many traditional TD-type
methods (Sutton and Barto 2018), including LSTD(λ)
(Boyan 1999, Nedić and Bertsekas 2003), gradient tem-
poral difference (GTD) learning (Sutton et al. 2009a),
temporal difference learning with gradient correction
(TDC) (Sutton et al. 2009b), and off-policy LSTD (Yu
2012) are also defined as the solution to estimating
equations as in Equation (17). For details, refer to
Ueno et al. (2011) and Yu et al. (2018). The asymptotic
MSEs of these methods can be calculated as in
Theorem 17.

8. Experimental Results
In this section, we conduct experiments to compare
our method with existing off-policy evaluation meth-
ods. We consider a simpler setting that perfectly fits
the theory and a more challenging setting that
requires some function approximation.

8.1. Taxi Environment
First we consider the taxi environment and focus on
simple w- and q-estimators in order to illustrate the
doubly robust property of our method. For detail on
this environment, see Liu et al. (2018a).

We set our target evaluation policy to be the final policy
πe � π∗ after running q-learning for 1,000 iterations. We

set another policy π+ as the result after 150 iterations. The
behavior policy is then defined as πb � απ∗ + (1−α)π+,
where we range α to vary the overlap. We show results
for α � 0:2, 0:6 here and provide additional results for
α � 0:4, 0:8 in online Appendix D. We consider the case
with the behavior policy known and set γ � 0:98. Note
that this π∗, π+ are fixed in each setting.

We estimate all w-functions following Example 1.
For q-functions, we use a value iteration for the
approximated MDP based on the empirical distribu-
tion. Then, we compare ρ̂IS, ρ̂DRL(M1), ρ̂MIS, ρ̂DM, and
ρ̂DRL(M3). We consider observing a single trajectory
(n � 1) of increasing length T, T ∈ [50,000,1, 00, 000,
2, 00,000,4, 00, 000]. For each, we consider 200 replica-
tions. Note that we use adaptive (in-sample) fitting
and not cross-fitting because n � 1. In addition, we do
not compare with a marginalized importance sampling
estimator or to ρ̂DRL(M2) because μt cannot be estimated
with n� 1 (e.g., the empirical estimated marginal
importance μ̂t is just νt).

To study the effect of double robust property, we
consider three settings:

1. Both w-model and q-model are correct.
2. Only w-model is correct: we add noise N (1:0, 1:0)

to q̂(s,a).
3. Only q-model is correct: we add noise N (1:0, 1:0)

to ŵ(s).
8.1.1. Results and Discussion. We report the result-
ing MSE over the replications for each estimator in
each setting in Figures 3–8.

First, we note that the estimator ρ̂DRL(M3) handily
outperforms the standard IS and DR estimators,
ρ̂IS, ρ̂DR, in every setting. This is owed to the fact that
these do not leverage the MDP structure. The compet-
itive comparison is of course to DM and MIS.

We find that, in the large-sample regime, ρ̂DRL(M3)
dominates all other estimators across all settings. First,

Figure 3. (Color online) Setting (1) with α � 0:2 Figure 4. (Color online) Setting (1) with α � 0:6
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for T � 4,00,000, it has the lowest MSE among all esti-
mators for each setting. Second, whereas in some set-
tings it has MSE similar to another method, it beats it
handily in another setting. Compared with DM, the
MSE is similar when the q-function is well specified
but ρ̂DRL(M3) does much better when q is ill-specified.
Compared with MIS, the MSE is similar when both
the w-function is well specified and there is good
overlap but ρ̂DRL(M3) performs much better when
either specification or overlap fails. This is of course
owed to the doubly robust structure and the efficiency
of ρ̂DRL(M3).

In the small-to-medium sample regime, ρ̂DRL(M3) per-
forms the best among all estimators except when over-
lap is good (α � 0:6) and w is well specified (settings (2)
and (3)). In these cases, for the small-to-medium sample
regime, MIS performs better. However, as in the large-
sample regime, it performs much worse in small-to-
medium samples too when overlap is bad or when
w is misspecified. In particular, in setting (2) with
α � 0:2, ρ̂DRL(M3) has performance much better than all
other estimators across the sample-size regimes.

Because having either parametric misspecification
or nonparametric rates for ŵ and q̂ is unavoidable in
practice (for continuous state-action spaces), the esti-
mator ρ̂DRL(M3) is superior. This is doubly true when
overlap can be weak.

8.2. CartPole Environment
We next conduct an experiment in the CartPole envi-
ronment based on the implementation of OpenAI gym
(Brockman et al. 2016). In the CartPole environment,
the state space is continuous and four-dimensional and
the action space is binary. Thus, we require flexible
models for w and q and may not be able to guarantee
their precise convergence. Moreover, the environment
has an absorbing state and therefore our trajectories are
highly nonstationary, yet we show our method still
works in practice as suggested by Remark 9.

We set the target and behavior policy in the following
way. First, we run deep Q-network (DQN) in an online
interaction with the environment to learn q∗, following
OpenAI’s default implementation.4 Then, based on q∗,
we define a range of softmax policies given by a

Figure 6. (Color online) Setting (2) with α � 0:6Figure 5. (Color online) Setting (2) with α � 0:2

Figure 7. (Color online) Setting (3) with α � 0:2 Figure 8. (Color online) Setting (3) with α � 0:6
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temperature parameter τ: π(a | s : τ) ∝ exp (Q(s,a)=τ). We
then set the behavior policy as πb(a | s) � π(a | s : 1:0),
and we consider a variety of evaluation policies πe(a |
s) � π(a | s : τ) for τ ∈ [0:7, 0:9, 1:1, 1:3]. The training data
set is generated by executing the behavior policy with a
fixed horizon length T � 1,000. Specifically, if the agent
visits the terminal absorbing states before 1,000 steps, the
rest of the trajectory will consist of repeating the last state.
We consider observing N ∈ [50, 100, 200, 400] trajectories,
that is, n ∈ [50, 100, 200, 400] × 1, 000 transitions.

We estimate w using a minimax approach leveraging
Equation (11). Namely, we consider a model w(s;β) given
a neural network with 32 units in each, ReLU activations
for hidden layers, and a softplus activation for the output
to ensure nonnegative output. Then, we fit the weights β
by minimizing the maximum of the left-hand side of
Equation (15) over all fw in the unit ball of the reproducing
kernel Hilbert space (RKHS) with the Gaussian kernel
k(xi,xj) � exp (−||xi − xj ||2=(2σ2)). We similarly estimate q
leveraging Equation (18). We again use the same neural
network architecture for q(s, a;β) except that the input has
one more dimension and we do not apply an activation to
the output. We again consider fq in the same RKHS unit
ball (but with one more input dimension). For both w-
and q-estimation, we normalize all data to have mean
zero and unit variance and set the length-scale
parameter σ to the median of pairwise distances in
the data. We use Adam to optimize the neural net-
works and set the leaning rate to 0.005.

We compare MIS (ρ̂MIS), DM (ρ̂DM) and DRL3 (ρ̂M3
)

using thesew- and q-estimators. We also compare these to
DualDICE (Nachum et al. 2019), which is a variant of the
MIS estimator. In DualDICE, the w estimator is based on
a different minimax objective function using two neural
networks. We choose hyperparameters to be the same as
in the implementation of Uehara et al. (2020).

8.2.1. Results and Discussion. We run 40 replications
of the experiment for each τ and N and consider the

MSE of each algorithm relative to (ρπe − ρπb )2. To esti-
mate the latter normalizer, we estimate each of ρπe ,ρπb

as a simple sample average using 1,000 on-policy tra-
jectories. This normalization enhances interpretability
as we vary τ.

In Figure 9, we report the results for varying N and
fixing τ � 1:3 and in Figure 10 for varying τ and fixing
N�200. We show the relative MSEs on a logarithmic
scale with 90% confidence intervals. We observe
that DRL clearly outperforms the other estimators.
This can be attributed to the fact that both w- and
q-estimators are flexible, and hence have high vari-
ance, which influences the variance of both MIS and
DM, respectively, whereas DRL is largely insensi-
tive to the particular w- and q-estimators. One
exception is τ � 0:7,N � 200, where we see DM per-
forms better than DR. On the other hand, MIS
always performs worse than DR. This would sug-
gest that w-estimation is more difficult than q-esti-
mation in this environment, possibly because of the
nonstationarity of the data. Finally, we note Dual-
DICE performs consistently badly across the set-
tings, which can be attributed to the instability of
the minimax optimization of two neural networks
involved in its w-estimation.

9. Conclusions
We established the efficiency bound for OPE in a
time-invariant Markov decision process in the regime
where N is (potentially) finite and T→∞. This novel
lower bound quantifies how fast one could hope to
estimate policy value in a model usually assumed in
RL. According to our results, many IS and DR OPE
estimators used in RL are in fact not leveraging this
structure to the fullest and are inefficient. This leads to
MSE that is suboptimal in rate, not just in leading
coefficient. We instead proposed the first efficient esti-
mator achieving the efficiency bound, and enjoy a
double robustness property at the same time. We

Figure 9. (Color online) CartPole: τ � 1:3 andNVarying Figure 10. (Color online) CartPole: n � 200 and τ Varying
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hope our work inspires others to further develop esti-
mators that build on ours by leveraging MDP struc-
ture as we have here and perhaps combining this with
ideas such as balancing (Kallus 2018), stability (Kallus
and Uehara 2019), or blending (Thomas and Brunskill
2016) that can improve the finite-sample performance
in addition to our asymptotic efficiency.

Endnotes
1 OPE can also sometimes refer to estimating the whole value or
quality function of a policy; here we focus on estimating the mean
reward.
2 Whereas in control settings one often needs to restrict to standard
Borel measurable spaces due to measurability issues when optimiz-
ing (Hernández-Lerma and Lasserre 2012), since we are only con-
sidering evaluation, we do not require such a restriction.
3 In greatest generality, MDPs need not restrict the conditional next-
state s′ distributions to be absolutely continuous with respect to the
same base measure for all state-action pairs s, a. The same is true for
reward and policy distributions. We make this restriction here to be
able to easily consider perturbations to the MDP distributions in a
semiparametric framework.
4 See https://github.com/openai/baselines.
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