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Abstract. Incorporating side observations in decision making can reduce uncertainty and
boost performance, but it also requires that we tackle a potentially complex predictive rela-
tionship. Although onemay use off-the-shelf machine learning methods to separately learn
a predictive model and plug it in, a variety of recent methods instead integrate estimation
and optimization by fitting the model to directly optimize downstream decision perform-
ance. Surprisingly, in the case of contextual linear optimization, we show that the naïve
plug-in approach actually achieves regret convergence rates that are significantly faster
than methods that directly optimize downstream decision performance. We show this by
leveraging the fact that specific problem instances do not have arbitrarily bad near-dual-
degeneracy. Although there are other pros and cons to consider as we discuss and illustrate
numerically, our results highlight a nuanced landscape for the enterprise to integrate esti-
mation and optimization. Our results are overall positive for practice: predictive models
are easy and fast to train using existing tools; simple to interpret; and, as we show, lead to
decisions that perform verywell.
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1. Introduction
A central tenet of machine learning is the use of rich
feature data to reduce uncertainty in an unknown var-
iable of interest, whether it is the content of an image,
medical outcomes, or future stock price. Recent work
in data-driven optimization has highlighted the
potential for rich features to similarly reduce uncer-
tainty in decision-making problems with uncertain
objectives and thus improve resulting decisions’ per-
formance (Donti et al. 2017, El Balghiti et al. 2019,
Estes and Richard 2019, Ho and Hanasusanto 2019,
Vahn and Rudin 2019, Bertsimas and Kallus 2020,
Diao and Sen 2020, Ho-Nguyen and Kilinç-Karzan
2020, Kallus and Mao 2020, Loke et al. 2020, Chen et al.
2021, Elmachtoub and Grigas 2021, Notz and Pibernik
2021). For decision-making problems modeled by lin-
ear optimization with uncertain coefficients, this is
captured by the contextual linear optimization (CLO)
problem, defined as follows:

π∗(x) ∈ Z∗(x) � arg min
z∈Z

f ∗(x)�z, f ∗(x) � E[Y | X � x],

Z � {z ∈ R
d : Az ≤ b}: (1)

Here, X ∈ R
p represents the contextual features, z ∈

Z ⊆ R
d linearly constrained decisions, and Y ∈ R

d the

random coefficients. Examples of CLO are vehicle
routing with uncertain travel times, portfolio optimi-
zation with uncertain security returns, and supply
chain management with uncertain shipment costs. In
each case, X represents anything that we can observe
before making a decision z that can help reduce uncer-
tainty in the random coefficients Y, such as recent
traffic or market trends. The decision policy π∗(x) opti-
mizes the conditional expected costs, given the obser-
vation X � x. (We reserve X, Y for random variables
and x, y for their values.) We assume throughout that
Z is a polytope (supz∈Z‖z‖ ≤ B) and Y is bounded
(without loss of generality, Y ∈ Y � {y : ‖y‖ ≤ 1}), and
we let Z/ denote the set of extreme points of Z.

Nominally, we only do better by taking features X
into consideration when making decisions:

min
z∈Z E[Y�z] ≥ E[min

z∈Z E[Y�z |X]] � E[ f ∗(X)�π∗(X)],
and the more Y-uncertainty explained by X the larger
the gap. That is, at least if we knew the true condi-
tional expectation function f ∗. In practice, we do not;
we only have data D � {(X1,Y1), : : : , (Xn,Yn)}, which
we assume consist of n independent draws of (X, Y).
The task is then to use these data to come up with a
well-performing data-driven policy π̂(x) for the
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decision we will make when observing X � x, namely,
one having low average regret:

Regret(π̂) � EDEX[ f ∗(X)�(π̂(X) −π∗(X))], (2)

where we marginalize both over new features X and
over the sampling of the data D (i.e., over π̂).

One approach is the naïve plug-in method, also
known as estimate and then optimize (ETO). Since f ∗
is the regression of Y on X, we can estimate it using a
variety of off-the-shelf methods, whether parametric
regression such as ordinary least squares or general-
ized linear models, nonparametric regression such as
k-nearest neighbors or local polynomial regression, or
machine learning methods such as random forests or
neural networks. Given an estimate f̂ of f ∗, we can
construct the induced policy πf̂ , where for any generic
f : Rp → R

d we define the plug-f-in policy

πf (x) ∈ arg min
z∈Z

f (x)�z: (3)

Notice that given f, πf need not be unique; we restrict
to choices πf (x) ∈ Z/ that break ties arbitrarily but
consistently (i.e., by some ordering over Z/). Notice
also that πf ∗ (x) ∈ Z∗(x). Given a hypothesis class F ⊆
[Rp → Y] for f ∗, we can for example choose f̂ by least-
squares regression:

f̂F ∈ arg min
f∈F

1
n

∑n
i�1

‖Yi − f (Xi)‖2: (4)

We let π̂ETO
F � πf̂F

be the ETO policy corresponding to
least-squares regression over F . ETO has appealing
practical benefits. It is easily implemented using tried-
and-true, off-the-shelf, potentially flexible prediction
methods. More crucially, it easily adapts to decision
support, which is often the reality for quantitative
decision-making tools: rather than a black box pre-
scription, it provides decision makers with a predic-
tion that they may judge and eventually use as they
see fit.

Nonetheless, a criticism of this approach is that
Equation (4) uses the wrong loss function as it does not
consider the impact of f̂ on the downstream perform-
ance of the policy πf̂ and in a sense ignores the
decision-making problem. The alternative empirical
risk minimization (ERM) method directly minimizes an
empirical estimate of the average costs of a policy:
given a policy classΠ ⊆ [Rp → Z],

π̂ERM
Π ∈ arg min

π∈Π
1
n

∑n
i�1

Y�
i π(Xi): (5)

In particular, a hypothesis class F induces the plug-in
policy class ΠF � {πf : f ∈ F}, and ERM over ΠF cor-
responds to optimizing the empirical risk of πf over
choices f ∈ F , yielding a different criterion from Equa-
tion (4) for choosing f ∈ F . We call this the induced

ERM (IERM) method, which thus integrates the estima-
tion and optimization aspects of the problem into one,
sometimes referred to as end-to-end estimation. We let
π̂IERM

F � π̂ERM
ΠF

denote the IERM policy induced by F .
Although the latter IERM approach appears to

much more correctly and directly deal with the
decision-making problem of interest, in this paper we
demonstrate a surprising fact:

Estimate-and-then-optimize approaches can have much
faster regret-convergence rates.

To theoretically characterize this phenomenon, we
develop regret bounds for ETO and IERM when
f ∗ ∈ F . Without further assumptions beyond such
well-specification (which is necessary for any hope of
vanishing regret), we show that the regret conver-
gence rate 1=

��
n

√
reigns. However, appropriately limit-

ing how degenerate an instance can be uncovers faster
rates and a divergence between ETO and IERM that
favors ETO. This can be attributed to ETO leveraging
structure in F compared with IERM using only what
is implied about ΠF . Numerical examples corroborate
our theory’s predictions and demonstrate the conclu-
sions extend to flexible/nonparametric specifications
while highlighting the benefits of IERM for simple/
interpretable models that are bound to be misspeci-
fied. We provide a detailed discussion on how this fits
into the larger practical considerations of choosing
between ETO and end-to-end methods such as IERM
for developing decision-making and decision-support
systems.

1.1. Background and Relevant Literature
1.1.1. Contextual Linear and Stochastic Optimization.
The IERM problem is generally nonconvex in f ∈ F .
For this reason, Elmachtoub and Grigas (2021)
develop a convex surrogate loss they call SPO+,
which they show is Fisher consistent under certain
regularity conditions in that if f ∗ ∈ F , then the solution
to the convex surrogate problem solves the nonconvex
IERM problem. El Balghiti et al. (2019) prove an
O(log(|Z/|n)= ��

n
√ ) regret bound for IERM when F is

linear functions. Both El Balghiti et al. (2019) and
Elmachtoub and Grigas (2021) advocate for the inte-
grated IERM approach to CLO, referring to it as smart
in comparison with the naïve ETO method.

CLO is a special case of the more general contextual
stochastic optimization (CSO) problem, π∗(x) ∈ arg
minz∈ZE[c(z;Y) | X � x]. Bertsimas and Kallus (2020)
study ETO approaches to CSO where the distribution
of Y | X � x is estimated by a reweighted empirical dis-
tribution of Yi, for which they establish asymptotic
optimality. Diao and Sen (2020) study stochastic gra-
dient descent (SGD) approaches to solving the result-
ing problems. Ho and Hanasusanto (2019) propose to
add variance regularization to this ETO rule to account
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for errors in this estimate. Bertsimas and Kallus (2020)
additionally study ERM approaches to CSO and pro-
vide generic regret bounds (see their appendix EC.1).
Notz and Pibernik (2021) apply these bounds to repro-
ducing kernel Hilbert spaces (RKHS) in a capacity plan-
ning application. Vahn and Rudin (2019) study ERM
with a sparse linear model for the newsvendor prob-
lem. Kallus and Mao (2020) construct forest policies for
CSO by using optimization perturbation analysis to
approximate the generally intractable problem of ERM
for CSO over trees; they also prove asymptotic optimal-
ity. Many other works that study CSO generally advo-
cate for end-to-end solutions that integrate or harmonize
estimation and optimization (Donti et al. 2017, Estes
and Richard 2019, Ho-Nguyen and Kilinç-Karzan 2020,
Loke et al. 2020).

1.1.2. Classification. Classification is a specific case of
CLO with Y ∈ {−1, 1} and Z � [−1, 1]. Then 1

2Regret(π̂)� P(Y≠ π̂(X)) −P(Y ≠ π∗(X)) is the excess error rate.
Vapnik and Chervonenkis (1974), Tsybakov (2004),
Bartlett et al. (2005), Koltchinskii et al. (2006), and
Massart and Nédélec (2006), among others, study regret
and generalization bounds for ERM approaches, convex-
ifications, and related approaches. Our work is partly
inspired by Audibert and Tsybakov (2007), who com-
pare such ERM classification approaches to methods
that estimate P(Y � 1 | X) and then classify by threshold-
ing at 1/2 and show that these can enjoy fast regret con-
vergence rates under a noise condition (also known as
margin) that quantifies the concentration of P(Y � 1|X)
near 1/2. In contrast to Audibert and Tsybakov (2007),
we study fast rates for the more general CLO problem
as our aim is to shed light on data-driven optimization;
we use complexity notions that allow direct comparison
of ETO and IERM (rather than ERM) using the same
hypothesis class (whereas entropy conditions for ERM
and plug-in used by Audibert and Tsybakov 2007 are
incomparable); and we provide lower bounds that rigor-
ously show the gap between IERM and ETO for any
given polytope (the lower bounds of Audibert and Tsy-
bakov 2007 only apply to Hölder-smooth functions and
classification and they show the optimality of plug-in
methods rather than the suboptimality of ERM). Similar
noise or margin conditions have also been used in con-
textual bandits (Rigollet and Zeevi 2010, Goldenshluger
and Zeevi 2013, Perchet and Rigollet 2013, Bastani and
Bayati 2020, Hu et al. 2020). Our condition is similar to
these but adapted to CLO.

1.2. A Simple Example
We start with a simple illustrative example. Consider
univariate decisions, Z � [−1, 1], univariate features,
X ~Unif[−1, 1], and a simple linear relationship,
f ∗(X) � X, with noise Y− f ∗(X) � (U− 1)σ, where U ~
Exp(1) and σ ≥ 0. Let us default to z � – 1 under ties.

Then, given a hypothesis set F � {fθ(x) � x−θ : θ ∈
[−1, 1]}, we have πfθ(x) � 2I[x ≤ θ] − 1. Let us default
to smaller θ under ties. We can compute EX[ f ∗(X)�
(πfθ(X) −π∗(X))] � 1

2θ
2. We can also see that π̂ETO

F (x)
� 2I[x ≤ θ̂OLS] − 1, where θ̂OLS � 1

n
∑n

i�1(Xi −Yi), which
has second moment σ2

n . Hence, Regret(π̂ETO
F ) � σ2

2n.
Unfortunately, π̂IERM

F and its regret is harder to com-
pute. We can instead study it empirically. Figure 1(a)
displays results for 500 replications for each of n �
32, 38, 45, : : : , 2,048 with σ � 1. The plot is shown on a
log-log scale with linear trend fits. The slope for ETO is
–1.05 and for IERM is –0.665. (We also plot “IERM-
mid” where we choose the midpoint of the argmin set
for θ rather than left endpoint to show that this changes
little; and we plot SPO+, whose regret does not con-
verge to zero as it is only a surrogate for IERM. In the
special case of σ � 0, we can actually analytically derive
Regret(π̂IERM

F ) �Θ(1=n2), infinitely slower than Regret
(π̂ETO

F ) � 0; see Online Appendix E.1.)
The first thing to note is that both slopes are steeper

than the usual 1=
��
n

√
convergence rate (i.e., –0.5 slope),

such as El Balghiti et al. (2019) gives for IERM. This
suggests the usual theory does not correctly predict
the behavior in practice. The second thing to note is
that the slope for ETO is steeper than for IERM, with
an apparent rate of convergence of n−1 as compared
with n−2=3. Although ETO is leveraging all the infor-
mation about F , IERM is only leveraging what is
implied about ΠF , so it cannot, for example, distin-
guish between θ values lying between two consecu-
tive observations of X (see Figure 1(b)). Our fast
(noise-dependent) rates will exactly predict this diver-
gent regret behavior. Note this very simple example is
only aimed to illustrate this convergence phenomenon
and need not be representative of real problems,
which we explore further in Sections 4 and 5.

2. Slow (Noise-Independent) Rates
Our aim is to obtain regret bounds in terms of primi-
tive quantities that are common to both the ETO and
IERM approaches. To compare them, we will con-
sider implications of our general results for the case
of a correctly specified hypothesis class F with
bounded complexity. One standard notion of the com-
plexity for scalar-valued functions F ⊆ [Rp → R]
is the VC (Vapnik-Chervonenkis)-subgraph dimen-
sion (Dudley 1987). No commonly accepted notions
appear to exist for vector-valued classes of functions.
Here we define and use an apparently new, natural
extension of VC-subgraph dimension.

Definition 1. The VC-linear-subgraph dimension of a
class of functions F ⊆ [Rp → R

d] is the VC dimension
of the sets F ◦ � {{(x,β, t) : β�f (x) ≤ t} : f ∈ F} in R

p+d+1,
that is, the largest integer ν for which there exist
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x1, : : : ,xν ∈ R
p, β1, : : : , βν ∈ R

d, t1 ∈ R, : : : , tν ∈ R such
that

{(I[β�1 f (x1) ≤ t1], : : : , I[β�ν f (xν) ≤ tν]) : f ∈ F} � {0, 1}ν:
Our standing assumption will be that f ∗ ∈ F where F
has bounded VC-linear-subgraph dimension. (In Online
Appendices C.4 and D we study other functions classes,
including RKHS and Hölder functions.)

Assumption 1 (Hypothesis Class). The VC-linear-
subgraph dimension of F is at most ν, where f ∗ ∈ F .

Example 1 (Vector-Valued Linear Functions). Suppose
F ⊆ {Wx :W ∈ R

d×p}. (Note we can always pretrans-
form x.) Because β�f (x) � vec(W)�vec(βx�), the VC-
linear-subgraph dimension of F is at most the usual
VC-subgraph dimension of {v 
→ w�v : w ∈ R

dp}, which
is dp.

Example 2 (Trees). Suppose F consists of all binary
trees of depth at most D, where each internal node
queries “w�x ≤ θ?” for a choice of w ∈ R

p, β0 ∈ R for
each internal node, splitting left if true and right oth-
erwise, and each leaf node assigns the output v to x
that reach it, for any choice of v ∈ R

d for each leaf
node. (In particular, this is a superset of restricting w
to be a vector of all zeros except for a single one so
that the splits are axis aligned.) Then, F ◦ is contained
in the disjunction over leaf nodes of the classes of sets
representable by a leaf, which is the conjunction over
internal nodes’ half-spaces on the path to the leaf and
over the final query of β�v ≤ t. Because there are at
most 2D leaf nodes and at most D internal nodes on
the path to each, applying (Van Der Vaart andWellner

2009, theorem 1.1) twice, the VC dimension of F ◦ is at
most 22(D2p+Dd) 2Dlog(8D).

2.1. Slow Rates for ERM and IERM
We first establish a generalization result for generic
ERM for CLO and then apply it to IERM.

Definition 2. The Natarajan dimension of a class of
functions G ⊆ [Rp → S] with codomain S is the largest
integer η for which there exist x1, : : : ,xη ∈ R

p, s1 ≠
s′1, : : : , sη ≠ s′η ∈ S such that

{(I[g(x1) � s1], : : : , I[g(xη) � sη]) : g ∈ G, g(x1)
∈ {s1, s′1}, : : : , g(xη) ∈ {sη, s′η}} � {0,1}η:

Theorem 1. Suppose Π ⊆ [Rp → Z/] has Natarajan
dimension at most η. Then, for a universal constant C, with
probability at least 1− δ,

sup
π∈Π | 1n∑ni�1 Y�

i π(Xi) −EX[ f ∗(X)�π(X)]|
≤ CB

������������������������������
ηlog(|Z/| + 1)log(5=δ)

n

√
: (6)

Equation (6) immediately implies that the excess loss
to the best-in-class policy (which need not be π∗ in the
absence well specification), that is, infπ∈ΠEX[ f ∗(X)�
(π̂ERM

Π (X) −π(X))], is bounded by twice the right-hand
side of Equation (6) with probability at least 1− δ.
Note El Balghiti et al. (2019) prove a similar result to
Theorem 1 but with an additional suboptimal depend-
ence on

���������
log (n)√

.

Figure 1. (Color online) A Simple Example Illustrating the Fast Rates for IERM and Even Faster Rates for ETO

Notes. (a) Regret convergence rates. Shown is average regret by n plus/minus one standard deviation. Solid lines are log-log linear fits. (b) A
draw of n � 10 data points (σ � 1) and the corresponding loss surfaces for IERM and for ETO (least squares).
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To study IERM, we next relate VC-linear-subgraph
dimension to Natarajan dimension.

Theorem 2. The VC-linear-subgraph dimension of F
bounds the Natarajan dimension ofΠF .

Corollary 1. Suppose Assumption 1 holds. Then, for a uni-
versal constant C,

Regret(π̂IERM
F ) ≤ CB

�������������������
νlog(|Z/| + 1)

n

√
:

We can in fact show that the rate in Theorem 1 is opti-
mal in n and η by showing any algorithm must suffer
at least this rate on some example. When Z � [−1, 1],
our result reduces to that of Devroye and Lugosi
(1995) for binary classification; but we tackle CLO
with any polytope Z.

Theorem 3. Fix any polytope Z. Fix any Π ⊆ [Rp → Z/]
with Natarajan dimension at least η. Fix any algorithm
mapping D 
→ π̂ ∈Π. Then there exists a distribution P

on (X,Y) ∈ R
p × Y satisfying π∗ ∈Π such that for any

n ≥ 4η, when D ~ P
n, we have

Regret(π̂) ≥ ρ(Z)
2e4

��
η

n

√
,

where ρ(Z) � infz∈Z/,z′∈conv(Z/\{z})‖z− z′‖ (which is posi-
tive by definition).

In general, Theorem 3 also shows that the rate in
Corollary 1 is optimal in n when we only assume
π∗ ∈ΠF , but not necessarily in ν, because Theorem 2
is only an upper bound. In many cases, however, it
can be very tight. In Example 1, we upper bounded
the VC-linear-subgraph dimension of F by dp,
whereas corollary 29.8 of Shalev-Shwartz and Ben-
David (2014) shows the Natarajan dimension of ΠF is
at least (d− 1)(p− 1) when Z is the simplex, so the gap
is very small.

2.2. Slow Rates for ETO
We next establish comparable rates for ETO. The fol-
lowing is immediate from Cauchy-Schwartz.

Theorem 4. Let f̂ be given. Then,

Regret(πf̂ ) ≤ 2BEDEX|| f ∗(X) − f̂ (X)||:
To study ETO under Assumption 1, we next establish
a convergence rate for f̂F to plug in above.

Theorem 5. Suppose Assumption 1 holds and that F is
star shaped at f ∗ (meaning (1−λ)f +λf ∗ ∈ F for any
f ∈ F ,λ ∈ [0, 1]). Then, there exist positive universal con-
stants C0,C1,C2 > 0 such that, for any δ ≤ (nd+ 1)−C0 ,
with probability at least 1−C1δ

ν,

EX|| f̂F (X) − f ∗(X)|| ≤ C2

�������������
νlog(1=δ)

n

√
:

In Online Appendix C, we prove a novel finite-sample
guarantee for least squares with vector-valued
response over a general function class F , which is of
independent interest (relying on existing results for
scalar-valued response leads to suboptimal depend-
ence on d). Theorem 5 is its application to the VC-lin-
ear-subgraph case. The star shape assumption is
purely technical but, although it holds for Example 1,
it does not for Example 2. We can avoid it by replac-
ing F with F̄ � {(1−λ)f +λf ′ : f , f ′ ∈ F ,λ ∈ [0, 1]} in
Equation (4) (for Example 2, we even have
F̄ � F +F ), which does not affect the result, only the
universal constants. We omit this because least
squares over F̄ is not so standard.

Corollary 2. Suppose the assumptions of Theorem 5 hold.
Then, for a universal constant C,

Regret π̂ETO
F

( )
≤ CB

�����������������
νlog(nd + 1)

n

√
:

We can remove the term log(nd+ 1) in the specific
case of Example 1 (see Corollary EC.1 in Online
Appendix C.4). Because log(|Z/| + 1) is generally of
order d (Barvinok 2013, Henk et al. 2018), the d-
dependence above may be better than in Theorem 1
even for general VC-linear-subgraph classes.

Note Corollaries 1 and 2 uniquely enable us to com-
pare ETO and IERM using the same primitive complex-
ity measure. In contrast, complexity measures like
bounded metric entropy or Rademacher complexity on
F may not provide similar control on the complexity of
ΠF . The slow rates for IERM and ETO are nonetheless
the same (up to polylogs), suggesting no differentiation
between the two. Studying finer instance characteristics
beyond specification reveals the differentiation.

3. Fast (Noise-Dependent) Rates
We next show that much faster rates actually occur in
any one instance. To establish this, we characterize the
noise in an instance as the level of near-dual-degener-
acy (multiplicity of solutions).

Assumption 2 (Noise Condition). Let Δ(x) � infz∈Z/\Z∗(x)
f ∗(x)�z− infz∈Zf ∗(x)�z if Z∗(x)≠ Z and otherwise Δ(x) � 0.
Assume for some α,γ ≥ 0,

PX(0 < Δ(X) ≤ δ) ≤ (γδ=B)α ∀ δ > 0: (7)

Assumption 2 controls the mass of Δ(X) near (but not
at) zero. It always holds for α � 0 (with γ � 1). If Δ(X) ≥
B=γ is bounded away from zero (akin to strict separation
assumptions in Massart and Nédélec 2006 and Foster
et al. 2020), then Assumption 2 holds for α→∞. Generi-
cally, for any one instance, Assumption 2 holds for some
α ∈ (0,∞). For example, if X has a bounded density and
f ∗(x) has a Jacobian that is uniformly nonsingular (or if
f ∗(x) is linear), then Assumption 2 holds with α � 1. In
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particular, the example in Section 1.2 has Δ(X) � |X| ~
Unif[0, 1] and hence α � 1.

3.1. Fast Rates for ERM and IERM
Under Assumption 2, we can obtain a faster rate both
for generic ERM and specifically for IERM.

Theorem 6. Suppose Assumption 2 holds, P(|Z∗(X)| > 1)
� 0, Π ⊆ [Rp → Z/] has Natarajan dimension at most η,
and π∗ ∈Π. Then, for a constant C(α,γ) depending only on
α,γ,

Regret π̂ERM
Π

( )
≤ C(α,γ)B ηlog(|Z/| + 1)log(n+ 1)

n

( )1+α
2+α
:

Whenever α > 0, this is faster than the noise-
independent rate (Theorem 1). Assuming P(|Z∗(X)| >
1) � 0 requires that, in addition to nice near-dual-
degeneracy,we almost never have exact dual degeneracy.

Corollary 3. Suppose Assumptions 1 and 2 hold and
P(|Z∗(X)| > 1) � 0. Then,

Regret π̂IERM
F

( )
≤ C(α,γ)B νlog(|Z/| + 1)log(n+ 1)

n

( )1+α
2+α
:

Notice that with α � 1, this exactly recovers the rate
behavior observed empirically in Section 1.2. We next
show that the rate in n in Theorem 6 and Corollary 3
(and in η in the former) is in fact optimal (up to poly-
logs) under Assumption 2 when we only rely on well
specification of the policy.

Theorem 7. Fix any α ≥ 0. Fix any polytope Z. Fix any
Π ⊆ [Rp → Z/] with Natarajan dimension at least η. Fix
any algorithm mapping D 
→ π̂ ∈Π. Then there exists a
distribution P on (X,Y) ∈ R

p × Y satisfying π∗ ∈Π and
Assumption 2 with the given α and γ � B=ρ(Z) such that
for any n ≥ 22+α(η− 1), when D ~ P

n, we have

Regret(π̂) ≥ ρ(Z)
2e4

η− 1
n

( )1+α
2+α
:

3.2. Fast Rates for ETO
We next show the noise-level-specific rate for ETO is
even faster, sometimes much faster. Although Theo-
rems 6 and 7 are tight if we only leverage information
about the policy class, leveraging the information on
F itself, as ETO does, can break that barrier and lead
to better performance.

Theorem 8. Suppose Assumption 2 holds and, for univer-
sal constants C1, C2, and a sequence an, f̂ satisfies that, for
any δ > 0 and almost all x, P(|| f̂ (x) − f ∗(x)|| ≥ δ)
≤ C1exp(−C2anδ2). Then, for a constant C(α,γ) depending
only on α,γ,

Regret(πf̂ ) ≤ C(α,γ)B a−
1+α
2

n :

Although Theorem 4 requires f̂ to have good average
error, Theorem 8 requires f̂ to have a point-wise tail
bound on error with rate an. This is generally stronger
but holds for a variety of estimators. For example, if f̂
is given by, for example, a generalized linear model
then we can obtain an � n (McCullagh and Nelder
1989), which together with Theorem 8 leads to an even
better regret rate of n−1+α

2 .
Although such point-wise rates generally hold when

f̂ is parametric, VC-linear-subgraph dimension only
characterizes average error so a comparison based on it
requires we also make a recoverability assumption to
study pointwise error (see also Hanneke 2011, Foster
et al. 2020). In Online Appendix B, we show Assump-
tion 3 generally holds for Examples 1 and 2 (Proposi-
tions EC.1 and EC.2).

Assumption 3 (Recovery). There exists κ such that for all
f ∈ F and almost all x,

|| f (x) − f ∗(x)||2 ≤ κE[|| f (X) − f ∗(X)||2]:

Corollary 4. Suppose Assumptions 1–3 hold and F is star
shaped at f ∗. Then,

Regret π̂ETO
F

( )
≤ C(α,γ)Bκ1+α νlog(nd+ 1)

n

( )1+α
2

:

With α � 1, this exactly recovers the rate behavior
observed in Section 1.2. We can also remove the
log(nd+ 1) term in the case of Example 1 (see Corol-
lary EC.1 in Online Appendix C.4). Compared with
Theorem 3, we see the regret rate’s exponent in n is
faster by a factor of 1+ α

2. This can be attributed to
using all the information on F rather than just what is
implied aboutΠF .

3.3. Fast Rates for Nonparametric ETO
Assumption 1 is akin to a parametric restriction, but
ETO can easily be applied using any flexible nonpara-
metric or machine learning regression. For some such
methods, we can also establish theoretical results
(with correct d-dependence, compared with relying
on existing results for regression). If, instead of
Assumption 1, we assume that f ∗ is β-smooth (roughly
meaning it has β derivatives), then we show in Online
Appendix D how to construct an estimator f̂ satisfy-
ing the point-wise condition in Theorem 4 with an �
n

2β
2β+p=d and without a recovery assumption. This leads

to a regret rate of n−
β(1+α)
2β+p for ETO. Although slower

than the rate in Theorem 4, the restriction on f ∗ is non-
parametric; the rate can still be arbitrarily fast as either
α or β grow. In Online Appendix C.4, we also analyze
estimates f̂ based on kernel ridge regression, which
we also deploy in experiments in Section 5.
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4. Considerations for Choosing
Separated vs. Integrated Approaches

We next provide some perspective on our results and
on their implications. We frame this discussion as a
comparison between IERM and ETO approaches to
CLO along several aspects.

4.1. Regret Rates
Section 2 shows that the noise-level-agnostic regret
rates for IERM and ETO have the same n−1=2-rate
(albeit, the ETO rate may also have better d-depend-
ence). But this hides the fact that specific problem
instances do not actually have arbitrarily bad near-
degeneracy, that is, they satisfy Assumption 2 for some
α > 0. When we restrict how bad the near-degeneracy
can be, we obtained fast rates in Section 3. In this
regime, we showed that ETO can actually have much
better regret rates than IERM. It is important to
emphasize that, although specific instances do satisfy
Assumption 2, this regime truly captures how these
methods actually behave in practice in specific prob-
lems. Therefore, in terms of regret rates, this shows a
clear preference for ETO approaches.

4.2. Specification
Our theory focused on the well-specified setting, that
is, f ∗ ∈ F . When this fails, convergence of the regret of
π̂ to π∗ to zero is essentially hopeless for any method
that focuses only on F . ERM, nonetheless, can still
provide best-in-class guarantees: regret to the best
policy in Π still converges to zero. For induced poli-
cies, πf, this means IERM gets best-in-class guarantees
over ΠF , whereas ETO may not. Given the fragility of
correct specification if F is too simple, the ability to
achieve best-in-class performance is important and
may be the primary reason one might prefer (I)ERM
to ETO. Nonetheless, if F is not well specified, it begs
the question why use IERM rather than ERM directly
over some policy class Π. The benefit of using ΠF

may be that it provides an easy way to construct a rea-
sonable policy class that respects the decision con-
straints, Z.

4.3. BYOB: Bring Your Own Blackbox
Although IERM, as defined, is given by optimizing
over F and is therefore specified by F , ETO accom-
modates any regression method as a black box, not
just least squares. This is perhaps most important in
view of specification: many flexible regression meth-
ods, including local polynomial or gradient boosting
regression, do not take the form of minimization over
F . (See Section 3.3 regarding guarantees for the for-
mer.) At the same time, there do also exist end-to-end
methods that target empirical policy risk, though they
are not exactly of the form of Equation (5), such as

Elmachtoub et al. (2020) and Kallus and Mao (2020);
the number of such tailored methods may grow as
more attention is given to this area. Any benefits of
these, nonetheless, may be greatest in nonlinear prob-
lems, as discussed below.

4.4. Interpretability
ETO has the benefit of an interpretable output: rather
than just having a black box spitting out a decision
with no explanation, our output has a clear interpreta-
tion as a prediction of Y. We can therefore probe this
prediction and understand more broadly what other
implications it has, such as what happens if we
changed our constraints Z and other counterfactuals.
This is absolutely crucial in decision-support applica-
tions, which are the most common in practice.

If we care about model —understanding how inputs
lead to outputs—it may be preferable to focus on sim-
ple models like shallow trees. For these, which are
likely not well specified, IERM has the benefit of at
least ensuring best-in-class performance (Elmachtoub
et al. 2020).

4.5. Computational Tractability
Another important consideration is tractability. For
ETO, this reduces to learning f̂ , and both classic and
modern prediction methods are often tractable and
built to scale. On the other hand, IERM is nonconvex
and may be hard to optimize. This is exactly the moti-
vation of Elmachtoub and Grigas (2021), which
develop a convex relaxation. However, it is only con-
sistent if F is well specified, in which case we expect
ETO has better performance.

4.6. Contextual Stochastic Optimization
While we focused on CLO, a question is what do our
results suggest for CSO generally. CSO with a finite
feasible set (or set of possibly optimal solutions),
Z � {z(1), : : : ,z(K)}, is immediately reducible to CLO
by replacing Z with the K-simplex and Y with
(c(z(1);Y), : : : , c(z(K);Y)). Then, our results still apply.
Continuous CSO may require a different analysis to
account for a nondiscrete notion of a noise condition.
In either the continuous or finite setting, however,
ETO would entail learning a high-dimensional object,
being the conditional distribution of Y|X � x (or,
rather, the conditional expectations E[c(z;Y)|X � x] for
every z ∈ Z, whether infinite or finite and big).
Although certainly methods for this exist, if Z has rea-
sonable dimensions, a purely policy-based approach,
such as ERM or IERM, might be more practical. For
example, Kallus and Mao (2020) show that directly
targeting the downstream optimization problem
when training random forests significantly improves
forest-based approaches to CSO. This is in contrast to
the CLO case, where both the decision policy and
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relevant prediction function have the same dimension,
both being functions Rp → R

d.

5. Experiments
We next demonstrate these considerations in an
experiment, the replication code for which is available
at https://github.com/CausalML/ContextualLPCode.
We consider the stochastic shortest path problem
shown in Figure 2(a). We aim to go from s to t on a 5
× 5 grid, and the cost of traveling on edge j is Yj. There
are d � 40 edges; Z is given by standard flow preser-
vations constraints, with a source of +1 at s and a sink
of –1 at t. We consider covariates with p � 5 dimen-
sions and f ∗(x) being a degree-5 polynomial in x, as
we detail in Online Appendix E.2.

Ideally, we would like to compare ETO to IERM.
However, IERM involves a difficult optimization
problem that cannot feasibly be solved in practice. We
therefore employ the SPO+ loss proposed by Elmach-
toub and Grigas (2021), which is a convex surrogate
for IERM’s objective function. Like IERM, this is still
an end-to-end method that integrates estimation and
optimization, standing in stark contrast to ETO, which
completely separates the two steps. We consider three
different hypothesis classes F for each of ETO (using
least-squares regression, f̂F ) and SPO+:

• Correct linear: The class F is as in Example 1 with
φ(x) a 31-dimensional basis of monomials spanning f ∗.

This represents the unrealistic ideal where we have a
perfectly specified parametric model.

• Wrong linear: The class F is as in Example 1 with
φ(x) � x ∈ R

5. This represents the realistic setting where
parametric models are misspecified.

• Kernel: The class F is the RKHSwith Gaussian ker-
nel, K(x,x′) � exp(−ρ‖x− x′‖2). This represents the real-
istic setting of using flexible, nonparametric models.

We employ a ridge penalty in each of the above and
choose ρ and this penalty by validation. We use Gur-
obi to solve the SPO+ optimization problem, except
for the RKHS case where because of the heavy compu-
tational burden of this, we must instead use SGD for n
larger than 500. See details in Online Appendix E.2.
By averaging over 50 replications of D, we estimate
relative regret, EDEX[f ∗(X)�(π̂(X) −π∗(X))]=EDEX[f ∗(X)π∗(X)],
for each method and each n � 50,100, : : : , 1, 000, shown
in Figure 2(b) with shaded bands for plus/minus one
standard error.

Although the theoretical results in Sections 2 and 3 do
not directly apply to SPO+, our experimental results
support our overall insights. With correctly specified
models, the ETOmethod can achieve better performance
than end-to-end methods that integrate estimation with
optimization (see circle markers for “Correct linear”).
However, from a practical lens, perfectly specified linear
models are not realistic. For misspecified linear models,
our experiments illustrate how end-to-end methods can

Figure 2. (Color online) Comparing ETO and SPO+withWell-Specified, Misspecified, and Nonparametric Hypotheses

Notes. (a) The CLO instance is a stochastic shortest path problem. We need to go from s to t. The random cost of an edge j is Yj ∈ R. Whether we
choose to proceed along an edge j is zj ∈ {0, 1}. (b) The regret of different methods, relative to average minimal cost. Shaded regions represent
95% confidence intervals.
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account for misspecification to obtain best-in-class per-
formance, beating the corresponding misspecified ETO
method (see square markers for “Wrong linear”). At the
same time, we see that such best-in-class performance
may sometimes still be bad in an absolute sense. Using
more flexible models can sometimes close this gap. The
kernel model (triangle markers) is still misspecified in
the sense that the RKHS does not contain the true regres-
sion function and can only approximate it using func-
tions of growing RKHS norm. When using such a flexi-
ble model, we observe that ETO achieves regret
converging to zero with performance just slightly worse
than the correctly specified case, whereas end-to-end
methods have higher regret. Therefore, even though
end-to-end methods handle decision-making problems
more directly, our experiments demonstrate that the
more straightforward ETO approach can be better even
in decision-problem performance.

6. Concluding Remarks
In this paper, we studied the regret convergence rates
for two approaches to CLO: the naïve, optimization-
ignorant ETO and the end-to-end, optimization-aware
IERM. We arrived at a surprising fact: the convergence
rate for ETO is orders faster than for IERM, despite its
ignoring the downstream effects of estimation. We
reviewed various reasons for preferring either approach.
This highlights a nuanced landscape for the enterprise to
integrate estimation and optimization. The practical
implications, nonetheless, are positive: relying on
regression as a plug-in is easy and fast to run using
existing tools and simple to interpret as predictions of
uncertain variables; and as our results show, it pro-
vides downstream decisions with very good perform-
ance. Beyond providing new insights with practical
implications, we hope our work inspires closer inves-
tigation of the statistical behavior of data-driven and
end-to-end optimization in other settings. Section 4
points out nonlinear CSO as one interesting setting;
other settings requiring attention include partial feed-
back (observe Y�Z, not Y, for historical Z), sequential/
dynamic optimization problems, and online learning.
The unique structure of constrained optimization prob-
lems brings up new algorithmic and statistical ques-
tions; the right approach is not always immediately
clear, as we showed here for CLO.
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