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Abstract

Off-policy evaluation (OPE) in reinforcement learning allows one to evaluate novel decision
policies without needing to conduct exploration, which is often costly or otherwise infeasible.
We consider for the first time the semiparametric efficiency limits of OPE in Markov decision
processes (MDPs), where actions, rewards, and states are memoryless. We show existing
OPE estimators may fail to be efficient in this setting. We develop a new estimator based
on cross-fold estimation of g-functions and marginalized density ratios, which we term
double reinforcement learning (DRL). We show that DRL is efficient when both components
are estimated at fourth-root rates and is also doubly robust when only one component is
consistent. We investigate these properties empirically and demonstrate the performance
benefits due to harnessing memorylessness.

Keywords: Off-policy evaluation, Markov decision processes, Semiparametric efficiency,
Double machine learning

1. Introduction

Off-policy evaluation (OPE) is the problem of estimating mean rewards of a given policy
(target policy) for a sequential decision-making problem using data generated by the log
of another policy (behavior policy). OPE is a key problem in reinforcement learning (RL)
(Jiang and Li, 2016; Li et al., 2015; Liu et al., 2018; Mahmood et al., 2014; Munos et al.,
2016; Precup et al., 2000; Thomas and Brunskill, 2016) and it finds applications as varied
as healthcare (Murphy, 2003) and education (Mandel et al., 2014). Because data can be
scarce, it is crucial to use all available data efficiently, while at the same time using flexible,
nonparametric estimators that avoid misspecification error.

In this paper, our goal is to obtain an estimator for policy value with minimal asymptotic
mean squared error under nonparametric models for the sequential decision process and
behavior policy, that is, achieving the semiparametric efficiency bound (Bickel et al., 1998).
Toward that end, we explore the efficiency bound and efficient influence function of the
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Figure 1: M;: Non-Markov decision process (NMDP)

P A

S0 ag To S1 ay r1 52

Figure 2: My: Markov decision process (MDP)
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Figure 3: Relationship between the semiparametric efficiency bounds in each model, which
lower bound achievable mean-squared error. M1, My are, respectively, NMDP
and MDP with unknown behavior policy. My, My, are with known behavior
policy. M4, My, are with parametric assumptions on g-functions. Inequalities
are generically strict (Theorem 4), and the MDP bound is generally polynomial in
horizon length T while the NMDP bound is generally exponential (see Theorem 5).

target policy value under two models: non-Markov decision processes (NMDP) and Markov
decision processes (MDP). The two models are illustrated in Figs. 1 and 2 and defined
precisely in Section 1.1. While much work has studied efficient estimation under M; (Dudik
et al., 2014; Jiang and Li, 2016; Kallus and Uehara, 2019; Thomas and Brunskill, 2016),
work on My has been restricted to the parametric, finite-state-finite-action case (Jiang and
Li, 2016) and no globally efficient estimators have been proposed. The two models are
clearly nested and indeed we obtain that the efficiency bounds are generally strictly ordered
(see Fig. 3). In other words, if we correctly leverage the Markov property, we can obtain
OPE estimators that are more efficient than existing ones. This is quite important, given
the practical difficulty of evaluation in long horizons (see, e.g., Gottesman et al., 2019) and
given that many RL problems are Markovian. In particular, our results show the NMDP
efficiency bound is generally exponential in horizon length so that estimators that target
the NMDP model necessarily suffer from the curse of horizon, a phenomenon previously
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identified only for specific estimators. In contrast, the MDP efficiency bound, which we
achieve, is generally polynomial in horizon.

We propose the Double Reinforcement Learning (DRL) estimator, which is given by
by cross-fold estimation and plug-in of the ¢g- and density ratio functions into the efficient
influence function for each model, which we derive for the first time here. The name
DRL is inspired by the Double Machine Learning estimation procedure of Chernozhukov
et al. (2018), which we leverage, and by our simultaneous use of two learning procedures:
learning of ¢-functions and of density ratios. We show that DRL achieves the semiparametric
efficiency bound globally even when these nuisances are estimated at slow fourth-root rates
and without restricting to Donsker or bounded entropy classes, enabling the use of flexible
machine learning method for the nuisance estimation in the spirit of Chernozhukov et al.
(2018); Zheng and van der Laan (2011). Further, we show that DRL is consistent even if
only some of the nuisances are consistently estimated, known as double robustness. To the
best of our knowledge, this is the first proposed estimator shown to be globally efficient for
OPE in MDPs.

The organization of the paper is as follows. In Section 1.1, we define the OPE problem
and our models. In Section 1.2 we summarize semiparametric inference theory and in
Section 1.3 we review the literature on OPE. In Section 2, we calculate the efficient influence
functions and efficiency bounds in each of our models. In Section 3, we propose the DRL
estimator and prove its efficiency and robustness in each model, while also reviewing the
inefficiency of other estimators. In Section 4, we discuss how to estimate g-functions in
an off-policy manner to be used in DRL as well as the efficiency bound under parametric
assumptions on the g-function. In Section 5, we demonstrate the benefits of DRL empirically.

A preliminary version of this work appeared as Kallus and Uehara (2020).

1.1. Problem Setup

A (potentially) non-Markov decision process (NMDP) is given by a sequence of state and

action spaces S, Ay for t = 0,1,...,7, an initial state distribution Ps,(so), transition
probabilities P, (s¢ | Hq, o) for t = 1,...,T, and emission probabilities Py, (r: | Ha,)
for t = 0,...,T, where H,, = (S0, 0a0,--.,St a¢) is the state-action history up to a;. A

(non-anticipatory) policy is a sequence of action probabilities m(a¢ | Hs,), where Hs, =
(so, a0, - -.,a1—1,5t) is the state-action history up to s;. Together, an NMDP and a policy
define a joint distribution over trajectories H = (so, ag, 70, S1,01,71, ..., ST, a7, TT), given
by the product Ps,(so)mo(ao | Hsy)Pro(ro | Hao)Psy(s1 | Hao) -+ Prp(rr | Hap). The
dependence structure of such a distribution is illustrated in Fig. 1. We denote this distribution
by P, and expectations in this distribution by E, to highlight the dependence on .

A (time-varying) Markov decision process (MDP) is an NMDP where transitions and
emissions depend only on the recent state and action and the time index ¢, Ps,(s; | Hq, ;) =
P, (st | si—1,a1—1) and Py, (r¢ | Ha,) = Pr,(re | St,a¢), and where we restrict to policies
that depend only on the recent state, m (a; | Hs,) = m¢(at | s¢). MDPs have the important
property that they are memoryless: given s;, the trajectory starting at s; is independent of
the past trajectory, so that s; fully captures the current state of the system. This imposes
a stricter dependence structure, which is illustrated in Fig. 2. In particular, connections
between variables with different time indices occurs only via s;.
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Our ultimate goal is to estimate the average cumulative reward of a policy,

T
p" = Er [Z Tt] .
t=0

The quality and value functions (¢- and v-functions) are defined as the following conditional
averages of the cumulative reward to go, respectively:

T
Qt(Hat) =E; [Z Tk ‘ Haz] ) Ut(HSt) =Eq
k=t

T
Zrk ’ Hsz] =Er [Qt(Hat> ’ Hst] .
k=t

Note that the very last expectation is taken only over a; ~ mi(a; | Hs,). For MDPs, we
have ¢(Ha,) = q(st,ar) and ve(Hs,) = ve(st) = Ex [qt(st,at) | s¢), where again the last
expectation is taken only over a; ~ m(a; | s¢). For brevity, we define the random variables
qt = Qt(Hat)7 Vg = Ut(Hst)-

The off-policy evaluation (OPE) problem is to estimate the average cumulative reward
of a given (known) target evaluation policy, 7€, using n observations of trajectories D =
{’H(l), . ,’H(”)} independently generated by the distribution P, induced by using another
policy, 7, in the same decision process. This latter policy, °, is called the behavior policy
and it may be known or unknown.

A model for the data generating process P, of D is given by the set of products
Psy(50)m(ao | Hso)Pro (10 | Hag)Psy (51 | Hag) + -+ Prp (17 | Hay) over some possible values for
each probability distribution in the product We let M denote the nonparametric model
where each distribution is unknown and free. We let M7, denote the submodel of M1
where 7 is known and fixed. We let M4 denote any submodel of M; where the functions
q:(Hq,) are restricted parametrically for t = 0,...,7. We let Mg, Mgy, My, denote the
corresponding models where both the decision process and the behavior policy are restricted
to be Markovian. Since 7€ is given, the parameter of interest, p™ , is a function of just the
part that specifies the decision process (initial state, transition, and emission probabilities).

To streamline notation, when no subscript is denoted, all expectations E[-] and variances
var[-] are taken with respect to the behavior policy, 7®. At the same time, all v- and
g-functions are for the target policy, 7¢. The LP-norm is defined as ||g||, = E[|g|"]'/?. For
any function of trajectories, we define its empirical average as

En[f(H)] =nt Y0, f(HD).

We denote the density ratio at time t between the target and behavior policy by

We denote the cumulative density ratio up to time ¢ and the marginal density ratio at time
t by, respectively,

P (St, ar)
Pﬂg (St, at) ’

t
)‘t(Hat> = H nt(Hak), ,LLt(St,CLt) =
k=0
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where pr, (s¢, a¢) denotes the marginal distribution of s;, a; under P;. Note that under Mo,
ne(Ha,) = mi(ag, s¢). Again, for brevity we define the variables n; = m:(Ha,), Mt = Ae(Ha, ),
pt = pe(St, at)-

We will often assume the following:

Assumption 1 (Sequential overlap). The density ratios 1, p; satisfy 0 <n, < C,0 < py <
C'forallt=0,...,T.

Assumption 2 (Bounded rewards). The reward r; satisfies 0 < 1, < Rpax for all ¢t =
0,...,T.

Assumption 1 requires that every action supported by the evaluation policy is also
supported by the behavior policy, else the evaluation policy may induce state-action combi-
nations that we cannot possibly ever see in the data. The assumption is standard in causal
inference. Assumption 2 focuses on bounded rewards, which are common in reinforcement
learning. Both assumptions can be relaxed to Lj,-norm bounds on the above variables instead
of boundedness (see Remark 9).

1.2. Summary of Semiparametric Inference

We briefly review semiparametric inference theory as it pertains to the relevance of our
results. We provide a more complete review in Appendix B.1, while providing an accessible
casual introduction here sufficient for the reader to understand the nature of our efficiency
results. For a complete textbook presentation, we refer the reader to Bickel et al. (1998);
Kosorok (2008); Tsiatis (2006); van der Laan and Robins (2003); van der Vaart (1998).

Suppose we have a model M for the generating process of the iid data H®, ... H™),
that is, a (potentially nonparametric) set of possible distributions for H® that also contains
the true distribution F' € M that generated the data. Consider a (scalar) parameter of
interest R : M — R. Given an estimator R (or rather a sequence of estimators), its limiting
law is the distribution limit of /n(R — R(F)), and the asymptotic mean-squared error
(AMSE) is the second moment of the limiting law, which in turn lower bounds the scaled
limit of the mean-squared error (MSE), lim nE[(R — R(F))?], by the portmanteau lemma.

Every gradient of R(-) at F' € M (for paths in the model M) is an F-measurable (scalar)
random variable, that is, ¢(#H) with H ~ F' for some function ¢(-). Each such function is
called an influence function, and the influence function ¢eg(-) with the smallest L? norm is
is called the efficient influence function because

EffBA(M) = Enor [¢2(H)]

bounds below the AMSE of any estimator that is regular with respect to the model
M.' Regular estimators are roughly those that have risk that is invariant to vanishing
perturbations to the data generating process F' (that remain inside the model M), which
is a desirable property else the estimator may be unreasonably sensitive to undetectable

1. Note that EffBd(M) depends on the estimand R(-), the model M, and the instance F' in that model.
We emphasize foremost the dependence on the model to highlight the differences when we change the
model from NMDP to MDP, while our estimand is always the target policy value.
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changes.? Essentially, regular estimators with respect to M are those that would work for
estimating R(F') for any instance F' € M. Thus, this lower bound applies per-instance for
any estimator that, in a sense, works in the model M. Note we have EfBd(M’) < EffBd(M)
whenever F' € M’ C M, and that these may be different even though F' € M’, as the set
of estimators that work in M’ is potentially larger. For example, the lower bound in the
NMDP model is still larger than (or equal to) the bound in MDP model, even if considered
at a specific instance that happens to be an MDP.

There are several further interpretations of this lower bound. By the portmanteau lemma,
the lower bound on limiting law also means that EffBd(M) lower bounds the limit of the
MSE for any regular R, namely

lim inf nE[(R — R(F))?] > EABd(M).

n—oo
Moreover, standard results (e.g., van der Vaart, 1998, Thm. 25.21) establish that the lower
bound also applies to all estimators (not just regular ones) in a local minimax fashion: for
any estimator, n times the worst-case MSE in a 1/4/n-sized M-neighborhood around F' has
a limit infimum of at least EffBd(M). Here the ambient model M is relevant in determining
the bound as the local worst-case neighborhoods are restricted to remain inside the model.
When M is a fully parametric model the semiparametric efficiency bound is actually the same
as the Cramér-Rao bound. In fact, the semiparametric efficiency bound corresponds to the
supremum of the Cramér-Rao bounds over all regular parametric submodels F' € Mpara C M.
Thus, it also describes the best-achievable behavior by nonparametric estimators that work
in every parametric submodel.

In these senses, EffBd(M), known as the semiparametric efficiency bound, lower bounds
the achievable MSE in estimating R on the model M. If we can find an estimator whose
limiting law has zero mean and variance EffBd(M) then it must have the smallest-possible
(asymptotic) MSE, and such estimators are known as (asymptotically) efficient. Moreover,
all efficient regular estimators must satisfy

Vil = R(P) = <=3 (1) +0,(1),

that is, they are asymptotically linear with efficient influence function ¢eg. This suggests an
estimation strategy: try to approximate ¢(H) & deg(H)+R(F) and use R = IS, Y(HD).
Done appropriately, this can provide an efficient estimate. Therefore, deriving the efficient
influence function is important both for computing the semiparametric efficiency bound and
for coming up with good estimators.

Note that the efficiency notion of optimality is different from (non-local, non-asymptotic)
minimax optimality (e.g., as used by Wang et al., 2017 for non-sequential OPE with H = 0),
which considers the worst-case behavior against a large, fixed class of instances rather than
considering behavior locally at F'. While efficiency provides a much finer analysis of the
precise behavior at the particular instance generating the data, it is also only asymptotic.
Nonetheless, we will also establish finite-sample guarantees for our efficient estimators, where
the leading terms will be controlled by EffBd(M).

2. See Appendix B.1 and van der Vaart, 1998, Ch. 25 for precise definitions of path derivatives and regular
estimators.
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1.3. Summary of Literature on OPE

OPE is a central problem in both RL and in closely related problems such as dynamic
treatment regimes (DTR; Murphy et al., 2001). While the NMDP model M; is commonly
the one assumed in the causal inference literature in the context of marginal structural
model estimation (Robins, 2000; Robins et al., 2000) and DTRs (Chakraborty and Moodie,
2013; Murphy et al., 2001; Zhang et al., 2013),® in RL one often assumes that the MDP
model M holds. Nonetheless, with some exceptions that we review below, OPE methods
in RL have largely not leveraged the additional independence structure of My to improve
estimation, and in particular, the effect of this structure on efficiency has not previously
been studied and no efficient evaluation method has been proposed.

Methods for OPE can be roughly categorized into three types. The first approach is
the direct method (DM), wherein we directly estimate the g-function and use it to directly
estimate the value of the target evaluation policy. For example, one can use model-based
estimates (Mannor et al., 2007) or estimate the g-function directly using fitted LSTDQ or
more general g-iteration (Antos et al., 2008; Lagoudakis and Parr, 2004; Le et al., 2019) (we
further review estimation of g-functions in Section 4. Once we have an estimate gy of the
first g-function, the DM estimate is simply pT\; = Ey, [Exe [§o(s0,a0) | S0]], where the inner
expectation is simply over ag ~ 7¢(- | s9) and is thus computable as a sum or integral over a
known measure and the outer expectation is simply an average over the n observations of
so. Recall we define all g-functions to be with respect to 7. For DM, we can leverage the
structure of My by simply restricting g-functions to be Markovian. However, DM can fail
to be efficient even under M; unless g-functions are parametric (and correctly specified) or
extremely smooth (as shown by Hahn, 1998 but only in the 7' = 0 case). DM is also not
robust in that, if ¢-functions are inconsistently estimated, the estimate will be inconsistent.

The second approach is importance sampling (IS), which averages the data weighted by
the density ratio of the evaluation and behavior policies. Given estimates ¢ of the cumulative
density ratios (or, letting M\t = ) if the behavior policy is known), the IS estimate is simply
ﬁ?se =E, [Zf:o Xtrt} (An alternative but higher-variance IS estimator is E,, P\T Zf:o rt} )
When behavior policy is known, IS is unbiased and consistent, but its variance tends to
be large due to extreme weights. In particular, under My, IS with At = )¢ is known to
be inefficient (Hirano et al., 2003), which implies it must be inefficient under My as well.
T En [Xgrt]
t=0 En [j\t]
Joachims, 2015), which trades off some bias for variance but does not make IS efficient.

The third approach is the doubly robust (DR) method, which combines DM and IS
and is given by adding the estimated g-function as a control variate (Dudik et al., 2014;
Jiang and Li, 2016; Scharfstein et al., 1999). The DR estimate has the form ﬁ%} =

T (3 . { .
E, [Zt:o <)\t(7’t —Gt) + M—1Ere [Qtfst])}
DR is colloquially known to be efficient under M; but no precise result is available.
When state and action spaces are finite, the model M is necessarily parametric, and,

A common variant of IS is the self-normalized estimate 3 (Swaminathan and

3. OPE is equivalent to estimating the total treatment effect of a DTR in a causal inference setting. Although
we do not explicitly use counterfactual notation (either potential outcomes or do-calculus), if we assume
the usual sequential ignorability conditions (Ertefaie and Strawderman, 2018; Luckett et al., 2018; Murphy
et al., 2001), the estimands we consider are the same and our results immediately apply.
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under this parametric model, Jiang and Li (2016) study the Cramér-Rao lower bound and
observe that an infeasible DR estimator that uses oracle nuisance values instead of estimates,
g+ = q+ and A = A, would achieve the bound. For completeness, we derive precisely the
more general semiparametric efficiency bound under M; (Theorem 1) and show that two
(feasible) variants of the standard DR estimate are semiparametrically efficient, either using
sample splitting with a rate condition (Theorem 6) or without sample splitting with a
Donsker condition (Theorem 9). Jiang and Li (2016) also study parametric Cramér-Rao
lower bounds under finite action and state space in the MDP model Ms, but no efficient
estimator, whether parametric or nonparametric, has been proposed. See also Remarks 2
and 5. There is a significant gap to deriving the semiparametric bound, which generalizes
these results to more general action and state spaces and nonparametric models. More
importantly, our derivation yields the efficient influence function, which provides a way to
construct an efficient estimator under Ms.

Many variations of DR have been proposed. Thomas and Brunskill (2016) propose both
a self-normalized variant of DR and a variant blending DR with DM when density ratios
are extreme. Farajtabar et al. (2018) propose to optimize the choice of ¢ to minimize a
variance estimate for DR rather than use a plug-in value. Kallus and Uehara (2019) propose
a DR estimator that achieves local efficiency, has certain stability properties enjoyed by
self-normalized IS, and at the same time is guaranteed to have asymptotic MSE that is never
worse than both DR, IS, and self-normalized IS.

However, all of the aforementioned IS and DR estimators do not exploit MDP structure
and, in particular, will fail to be efficient under Ms. Recently, in the finite-state-space
setting Xie et al. (2019) studied an IS-type estimator that exploits MDP structure by
replacing density ratios with marginalized density ratios, estimated by a recursive formula.
However, this estimator is also not efficient, even in the finite tabular setting. Remark 4 of
Xie et al. (2019) points out the inefficiency of the estimator proposed therein.

2. Semiparametric Inference for Off-Policy Evaluation

In this section, we derive the efficiency bounds and efficient influence functions for p™ under
the models My, My, Mo, and Myy,. Recall that the former two models are NMDP and
the latter two are MDP and that the second and fourth assume a known behavior policy.

2.1. Semiparametric Efficiency in Non-Markov Decision Processes

First, we consider the NMDP models M; and M;j,. We do this mostly for the sake of
completeness since, while the influence function we derive below for the NMDP model
appears as a central object in the structure of various previously proposed doubly-robust
OPE estimators for RL (e.g., among others, Dudik et al., 2014; Farajtabar et al., 2018; Jiang
and Li, 2016; Kallus and Uehara, 2019; Thomas and Brunskill, 2016), these do not establish
it as the efficient influence function in the NMDP model or derive the semiparametric
efficiency bound, with the exception of the concurrent Bibaut et al. (2019). We note that in
contrast, the influence function we derive for the MDP model in the next section appears to
be novel and leads to new, more efficient estimators.
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Theorem 1 (Efficiency bound under My). The efficient influence function of p™ under
My is

T

¢é\f/fll(7'[) =—p" + Z (At (re = qe) + Ade—1vt) - (1)
t=0

The semiparametric efficiency bound under My is

T
EffBd(M1) = var(vg) + > B [Afvar (ry + v1 | Ha,)] , (2)
t=0

where vpyq = 0.
Under My, the efficient influence function and bound are the same.

Note that we do not assume Assumptions 1 and 2 in the above. The quantity EffBd(M)
may or may not be finite. An infinite efficiency bound would imply the impossibility of
consistent \/n estimation. Below in Theorem 5 we show how to bound EffBd(M;) under
Assumptions 1 and 2.

Remark 1. The efficient influence function and bound are both the same whether we know
the behavior policy or not. Intuitively, this happens because the estimand p™ does not in
fact depend on behavior policy part of the data generating distribution, P, but only on the
decision process parts (initial state, transition, and emission probabilities). This phenomenon
mirrors the situation with knowledge of the propensity score in average treatment effect
estimation in causal inference noted by Hahn (1998).

Remark 2. When the action and state spaces are discrete, M is necessarily a parametric
model. In this discrete-space parametric model and with r, = 0 for t < T — 1, Theorem 2 of
Jiang and Li (2016) derives the Cramér-Rao lower bound for estimating p™ . Because the
semiparametric efficiency bound is the same as the Cramér-Rao lower bound for parametric
models, the bound coincides with ours in this special discrete setting. Theorem 1 and the
related result in Bibaut et al. (2019) are more general, establishing the limit on estimation
in non-discrete, nonparametric settings and, moreover, establishes that the efficient influence
function coincides with the structure of many doubly-robust OPE estimators used in RL
(see references above).

Remark 3. The efficient influence function ¢Qf/fll has the oft-noted doubly robust structure.
Specifically,

T T
P +E |:¢é\f/f(1(H):| =E D M| +E D (g + )\t—lvt)]

=0 =0

:p‘”e =0

T
=Efvo] +E | ) Aelre —a + Ut+1)] :
: =0
_p7r

=0
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The first term in each line corresponds to a sequential IS estimator and direct method (DM),
respectively. The second term in each line is a control variate, which remain mean zero even
if we plug in different (i.e., wrong) ¢- and v-functions or density ratios, respectively. In this
sense, it is sufficient to estimate only one part of these for consistent OPE. We will leverage
this in Theorem 10 to achieve double robustness for DRL.

Remark 4 (Dependence on Rewards and the Completely Unrestricted Model). Our
definition of NMDP does not allow for transitions, rewards, and policies to depend on
past rewards, as is indeed standard in RL. Nonetheless, we can easily also consider the
alternative (and larger) model where we do allow these dependences, M;j,. Defining
Ja; = (50,00,70, -+ ,Tj-1, 8§, a;), and similarly 7, and Jj;, the joint distribution over tra-
jectories H = (sg, ..., rr) in this model is given by the product Ps,(so)mo(ao | Jso)Pry(T0 |
Jao) Psy (51 | Trg)mi(ao | Ts,) -+ Pry(r7 | Jay ), where each density is free and unrestricted.
This in fact means that the model includes any joint density on the trajectory H and is
completely unrestricted because such a sequential factorization can always be generically
done to any density, that is, the model M, is the model containing all joint densities over

the trajectory H. Redefining ¢- and v-functions in this model as ¢(7,,) = E[Z};t 75 | JTas)
and v (Js,) = E[Z;“-F:t r; | Js,), respectively, we can compute the efficient influence function
and efficiency bound in this model in a similar way to Theorem 1.

Theorem 2 (Efficiency bounder under My,.). The efficient influence function of p™ wunder
My, is
T

—p" + Z (Ae(re — qe) + Ne—1ve) -
=0

The semiparametric efficiency bound under My, is

T

var(vg) + Z E[\var(ry + vi1]Ja, ).
t=0

2.2. Semiparametric Efficiency in Markov Decision Processes

Next, we derive the efficiency bound and efficient influence function for p™ under the models
My and Moy, i.e., when restricting to MDP structure. To our knowledge, not only have
these never before been derived, the influence function we derive has also not appeared in
any existing OPE estimators in RL. We recall that under My, we have ¢; = ¢;(s¢, a;) and

Ve = Ut(st).
Theorem 3 (Efficiency bound under Ms). The efficient influence function of p™ under
Mo is

T

¢é\f/f12(/H) = —p" + Z (1t (1t — @) + pu—1v1) - (3)
=0

The semiparametric efficiency bound under Msy is

T

EffBd(M3) = var(vg) + Z E [,u?var (re + vegr | s ar)] (4)
t=0

10
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where vpyq = 0.
Under Moy, the efficient influence function and bound are the same.

Again, we do not assume Assumptions 1 and 2 in the above. Below in Theorem 5 we
show how to bound EffBd(M3) under Assumptions 1 and 2.

Remark 5. Again, when the action and state spaces are discrete, Ms is necessarily a
parametric model. In this discrete-space parametric model and with 7 =0 for t <T — 1,
Theorem 3 of Jiang and Li (2016) derives the Cramér-Rao lower bound, which must (and does)
coincide with ours in this setting. Again, our result is more general, covering nonparametric
models and estimators, and, importantly, derives the efficient influence function, which we
will use to construct the first globally efficient estimator for p™ under Ma.

Remark 6. The difference between the efficient influence functions in the NMDP and MDP
models, qzbe/\f/fll and gbé\f/fb, is that (a) the cumulative density ratio )\; is replaced with the
marginalized density ratio y; and (b) that ¢- and v-functions only depend on recent state
and action rather than full past trajectory. Note that the latter difference is slightly hidden
in our notation: in cbé\f/fll, q; refers to g (H,,), while in qﬁé\g?, q: refers to the much simpler
qi(st,at).

Although the efficient influence function in Theorem 3 is derived de-novo in the proof,
which is the most direct route to a rigorous derivation, we can also use the geometry of
influence functions to understand the result relative to Theorem 1. The efficient influence
function is always given by projecting the influence function of any regular asymptotic linear
estimator onto the tangent space (Tsiatis, 2006, Thm. 4.3). Under My, the function qzﬁé\f/fll (H)
from Theorem 1 can be shown to still be an influence function of some regular asymptotic
linear estimator in Ms. Projecting it onto the tangent space in Mo, where we have imposed
the independence of past and future trajectories given intermediate state, can be seen to
exactly correspond to the above marginalization over the past trajectory, explaining this
structure of ¢22(H).

Remark 7. The efficient influence function ¢é\él2 (H) also has a doubly robust structure.
Specifically,

T T
"+ E e )] = E [Z | +E |3 (—pua +ut_1vt>]
t=0 t=0
e >
T
=E[w|+E Te—q+ v .
[vo] [Z pe(re — qe t+1)]

e t=0

=0

The first term on the first line corresponds to the Marginalized Importance Sampling (MIS)
estimator (Xie et al., 2019). The first term on the second line corresponds to the DM
estimator. The second term on each line corresponds to control variate terms. We will
leverage this in Theorem 16 to achieve double robustness for DRL.
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By comparing the efficiency bounds of Theorem 1 and Theorem 3 and using Jensen’s
inequality, we can see that the Markov assumption reduces the efficiency bound, usually
strictly so.

Theorem 4. If P, € My (i.e., the underlying distribution is an MDP), then

EffBd(M2) < EffBd(M,).

Moreover, the inequality is strict if there exists t < T such that both \;_1 and rs_1 + v are
not constant given S¢_1, Q1.

Beyond being sorted, we can actually see that EffBA(MDP) is generally polynomial
in 7" while EffBA(NMDP) is generally exponential in 7. This shows that the curse of
horizon is inevitable in NMDP. While previously it was just shown to be a limitation
specifically of IS and DR estimators (Liu et al., 2018; Xie et al., 2019), this result shows
it must plague any estimator that targets the NMDP model and that it is insurmountable
without leveraging additional structure that further narrows the model. That EffBd(MDP)
is generally polynomial in T shows that we can potentially overcome this by efficiently
leveraging MDP structure, which is exactly what our novel DRL estimator will do.

Theorem 5. Under Assumptions 1 and 2,
EffBd(MDP) < C'R2,. (T + 1)?,
EffBd(NMDP) < CTHR2 (T +1)%
If Ere[log(n¢)] > Crmin and Exe [log(var(ry +vi1 | Ha,))] > log(V:2. ) then

min

EffBA(NMDP) > CTH Y2
Note that Ere[log(n:)] = Exe [KL(7§(- | s¢) || 7P( | s¢))] is the KL divergence between the
distributions over actions induced by ©° and 7P, averaged over the states visited by 7€, and
that Ere [log(var(ry + viy1 | Ha,))] = E [log(var(ry + ver1 | Ha,)))-

The lower bound on EffBA(NMDP) shows that the curse of horizon is inevitable. The
condition on 7; simply means that the evaluation and behavior policies are not becoming
arbitrarily similar as ¢ grows (on-policy evaluation does not suffer from curse of horizon).
The condition on 7 + v¢41 essentially ensures that rewards are not trivially constant. The

upper bound on EffBA(MDP) shows that, in contrast, variance that is polynomial in 7" is
possible in the MDP model.

Remark 8 (Consistency of EfBA(NMDP) and EffBd(NMDP)). NMDP models may be
trivially transformed into MDP models by letting the state variable be the whole history
Hs,. Then, the trajectory becomes {#s,, ao, 70, Hs,,a1,71,- -+ } and the efficiency bound
under this transformed MDP matches the efficiency bound under the original NMDP since

pﬂt St at

(Hsf, at) » E)(7_[5“ at

H 77k ak = /\t(HCLt)'
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3. Efficient Estimation Using Double Reinforcement Learning

In this section, we construct the DRL estimator and then study its properties in the various
models. In particular, we show that DRL is globally efficient under very mild assumptions.
In the NMDP model, these assumptions are generally weaker than needed for efficiency of
previous estimators. In the MDP model, this provides the first globally efficiency estimator
for OPE. We further show that DRL enjoys certain double robustness properties when some
nuisances are inconsistently estimated.

DRL is a meta-estimator; it takes in as input estimators for ¢-functions and density
ratios and combines them in a particular manner that ensures efficiency even when the
input estimators may not be well behaved. This is achieved by following the cross-fold
sample-splitting strategy developed by Chernozhukov et al. (2018); Klaassen (1987); Zheng
and van der Laan (2011). We proceed by presenting DRL and its properties in each setting
(NMDP and MDP). In the NMDP setting, DRL amounts to the cross-fold version of the RL
OPE doubly robust estimator, which was proposed in the experiments of Jiang and Li (2016,
Section 6.1) but not analyzed. In the MDP setting, DRL is the first semiparametrically
efficient and doubly robust estimator.

Throughout this section we assume that Assumptions 1 and 2 hold.

3.1. Double Reinforcement Learning for NMDPs

Given a learning algorithm to estimate the g-function ¢(#,,) and cumulative density ratio
function \i(Ha, ), DRL with K-fold sample splitting (K > 2) for NMDPs proceeds as follows:

1. Randomly permute the data indices and let D; = {[(j — 1)n/K]| +1,...,[jn/K]}
for j=1,..., K. Let j; be the fold containing observation ¢ so that i € D;, (namely,
ji =14 (i = 1)K/n]).

2. For j =1,..., K, construct estimators 5\? )(Hat) and qt(] ) (Hq,) based on the training

data given by all trajectories excluding those in Dj, that is, {1,...,n}\D;.
3. Let

n T
ADRL (M1) % Z Z( ( 2 Q§]i)(Hgi)))

i=1 t=0

SR [ a0 | 1))

t

Here (Hg), aj) represents the trajectory given by appending a; to Hg?; note this differs
from ngt) Note further that the integral becomes a simple sum when 7¢ has finite
support over actions (e.g., if 7° is deterministic or if there are finitely many actions).

In other words, we approximate the efficient influence function qbé\f/ftl(’H) + p™ from
Theorem 1 by replacing the unknown ¢- and density ratio functions with estimates thereof
and we take empirical averages of this approximation over the data, where for each data
point we use ¢- and density ratio function estimates based only on the half-sample that does
not contain the data point. While K = 2 is sufficient to achieve efficiency, larger K allows

13
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nuisances to be fit on more data and may prove practically successful. Note also that we
take only a single random K-fold split and that is enough to achieve our results below. In
practice, repeating the above process over several splits of the data and taking the average
of resulting DRL estimates can only reduce the variance without increasing bias.

This estimator has several desirable properties. To state them, we assume the following
conditions for the estimators, reflecting Assumptions 1 and 2:

Assumption 3 (Bounded estimators). lim sup,,_, ., HS\EJ)HOO < 00, limsup,, \|q§j)|yoo < 00
foreach0<t<T,1<j<K.

Assumption 3 provides that the estimators are eventually almost surely bounded. This
to be expected when their target estimands are bounded, and, in particular, will necessarily
be the case for many non-parametric estimators such as random forests and kernel regression.
And, per Assumptions 1 and 2, we have H>\§j)\|oo < O and ||q§j)\|OO < (T +1—t)Rmax-
Note, however, we need not assume the same bound applies to the estimates; any finite bound
(independent of n) suffices. For the rest of this subsection we will assume Assumption 3
hold.

We first prove that DRL achieves the semiparametric efficiency bound, even if each
nuisance estimator has a slow, nonparametric convergence rate (sub-y/n).

Theorem 6 (Efficiency of pprra,) under My). Suppose Hj\gj) - )\tH2||cj§j) — qll2 =
0p(n=1/2), [N = Mll2 = 0p(1), 1" — @ll2 = 0p(1) for 0 <+ < T.1 < j < K. Then,
the estimator ppry(m,) achieves the semiparametric efficiency bound under M;.

Remark 9. Assumptions 1 to 3 posited L bounds on density ratios, rewards, and their
estimates. These assumptions are standard in both reinforcement learning and causal
inference. It is possible to relax these to LP bounds at the cost of requiring stronger
convergence on nuisance estimates above, requiring L2/(=1/p) convergence instead of the L?
convergence above. Since L? convergence in estimation is usually the standard convergence
mode considered and standard results can be invoked to ensure such rates, and similarly
L™ bounds on density ratios and rewards are also standard, we focus our analysis on this
most common case of the assumptions in order to avoid a cumbersome presentation.

Remark 10. There are two important points to make about this result. First, we have not
assumed a Donsker condition (van der Vaart, 1998) on the class of estimators M and G;. This
is why this type of sample splitting estimator is called a double machine learning: the only
required condition is a convergence rate condition at a nonparametric rate, allowing the use
of complex machine learning estimators, for which one cannot verify the Donsker condition
(Chernozhukov et al., 2018). In fact, many adaptive or high-dimensional estimators fail
to satisfy Donsker conditions (Diaz, 2019). Eschewing such conditions allows us to use
such estimators as the highly adaptive LASSO (Benkeser and van der Laan, 2016), cadlag
function estimators in very high dimensions (Bibaut and van der Laan, 2019b), and random
forests (Wager and Walther, 2016) as long as their convergence rates are ensured under
certain conditions. Benkeser and van der Laan (2016); Bibaut and van der Laan (2019b) in
particular establish op(n_l/ 4) rates, which are compatible with our assumptions. Second,
relative to the efficient influence function, which is defined in terms of the true g-function and
cumulative density ratio, there is no inflation in DRL’s asymptotic variance due to plugging
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in estimated nuisance functions. This is due to the doubly robust structure of efficient
influence function so that the estimation errors multiply and drop out of the first-order
variance terms. This is in contrast to inefficient importance sampling estimators, as we will
see in Theorem 20.

In addition to efficiency, we can also establish finite-sample guarantees for DRL, where
the leading term is controlled by the efficient variance.

Theorem 7. Suppose that for some C1,Ca, for every n, with probability at least 1 — 4, we
simultaneously have that H>‘1(€]) — M2 < k1 = Cr(n21 +1og(2KT/6)/n), H(jtm — ]2 < ko =
Co(n=292 4+ log(2KT/8)/n) Vt < T,Vj < K. Suppose moreover that 0 < 5\57) <Cto<

cjéj) <(T+1—t)Runax for YVt <T. Then, for every n, with probability at least 1 — 76, we
have

ATle Te

PDRL(M;) — P

- \/2log(2 /6)Effbd(M,)

n

L0 \/10g(2/5)T2(TRmaXCT+1\ /K1Kko + /ilTZngnax + KQC2(T+1))
1
n

log(2/8)T Rypax CTH
2
n

+Q + Q3T \/K1ka,

where Q1,Q2, Q3 are constants not depending on 8,1, Rmax, C,n, Cy,Co.

Notice that, if ag > 0,9 > 0,1 + a2 > 1/2 as in Theorem 6, then the leading term
2log(2/6)Effbd(M1) (
n

in the above is exactly \/ with no additional constant factor), while the
other terms are of strictly smaller order in n.

The rate assumptions in Theorem 7 are standard finite-sample estimation guarantees.
For example, if estimators for nuisances are obtained by empirical risk minimization methods
based on L2-loss, then the results of Bartlett et al. (2005) apply. In this cases, the rates ai
and g would be determined by the local Rademacher complexity of the posited function
classes. The number 2K7T in log(2K7T'/§) comes from the fact that there are 2K7T nuisance
estimators. The boundedness assumptions on the estimates reflect the bounds on the
estimands, per Assumptions 1 and 2.

Often in RL, the behavior policy is known and need not be estimated. That is, we can
let XEJ ) = \. In this case, as an immediate corollary of Theorem 6, we have a much weaker
condition for semiparametric efficiency: just that we estimate the g-function consistently,
without a rate.

Corollary 8 (Efficiency of pprr,a,) under Myp). Suppose At =\ and ||cj§j) — qtll2 = 0p(1)
Jor 0 <t <T,1 <j < K. Then, the estimator ppry(m,) achieves the semiparametric
efficiency bound under Mayy.

Without sample splitting, we have to assume a Donsker condition for the class of
estimators in order to control a stochastic equicontinutiy term (see, e.g., van der Vaart, 1998,
Lemma 19.24). Although this is more restrictive, for completeness, we also include a theorem
establishing the semiparametric efficiency of the standard plug-in doubly robust estimator for
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NMDPs (Jiang and Li, 2016) when assuming the Donsker condition for in-sample-estimated
nuisance functions, since this result was never precisely established before. We do not
recommend this estimator due to its restrictive requirements on nuisance estimators.

Theorem 9 (Efficiency without sample splitting). Let S\t,cjt be estimators based on D
and let g = B [S1g (M (o = @) = M1 Be [ | Hal] )| Suppose 15 = Nllallde = aill2 =

op(n~1/2), At = Aell2 = op(1), |G — qell2 = op(1) for 0 <t < T and that g, M belong to a
Donsker class. Then, the estimator ﬁgeR achieves the semiparametric efficiency bound under

M;.

Thus, in M, in comparison to the standard doubly robust estimator, DRL enjoys
efficiency under milder conditions. To our knowledge, Theorems 6 and 9 are the first results
precisely showing semiparametric efficiency for any OPE estimator.

In addition to efficiency, DRL enjoys a double robustness guarantee (Rotnitzky and
Vansteelandt, 2014; Rotnitzky et al., 2019). Specifically, if at least just one model is correctly
specified, then the DRL is estimator is still y/n-consistent.

Theorem 10 (Double robustness (y/n-consistency)). Suppose ||5\§j ) )\IHQ =0p(n~*1) and
||(j§j) — q;rHQ =0,(n7*) for0 <t <T,1 <j< K. If, for each 0 <t <T, either )\I =N
and ag > 1/2, ag > 0 or qz =q and ag > 1/2, a1 > 0, then the estimator PDRL(M,) 18
V/n-consistent around p™ .

In particular, if the behavior policy is known so that 5\? ) = A, we can always ensure the
estimator is y/n-consistent (an example is the IS estimator, which has (jﬁj ) = qg =0).

For consistency without a rate, it is sufficient for one nuisance to be consistent without a
rate.

Corollary 11 (Double robustness (Consistency)). Suppose ||5\,E]) — )\IHQ = 0p(1) and chgj) -
qZHQ =o0p(1) for0 <t <T,1<j< K. If, for each 0 <t <T, either)\;r =N\ 07‘(];r = q,
then the estimator ppry(am,) s consistent around e

A remaining question is when can we get nonparametric estimators achieving the necessary
rates for the ¢- and density ratio functions. We discuss estimating ¢-functions in Section 4.
Regarding the density ratio, A, if the behavior policy is known then the density ratio is
known and if the behavior policy is unknown it must be estimated. Any estimator satisfying
the slow rate conditions would suffice. ' '

For example, we may let j\g ) = Hf:o Trte/fr?’m, where fr?’(J ) is some nonparametric
regression estimator. Then /A\g ) would enjoy the same rates as frf ),

b,(7)

Lemma 12. Suppose 7, and 71'115’ are uniformly bounded by some constant below and that
~b,(5 _ N _
i = tls = 0p(n™®). Then, A7 = Arllo = 0, (n~2).

Rates for #%() can be obtained from standard results for nonparametric regression, such
as for kernel and sieve estimators (Newey and Mcfadden, 1994; Stone, 1994) or nonparametric
estimators suited for high dimensions and non-smooth models (Bibaut and van der Laan,
2019a; Imaizumi and Fukumizu, 2018; Khosravi et al., 2019).
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Alternatively, parametric models can be used for ¢; and (if behavior policy is unknown)
A¢. Then, under standard regularity conditions, using MLE and other parametric regression
estimators for behavior policy would yield Hj\gj ) _ )\I |2 = O,(n~1/2), where )\I = )\ if the
model is well-specified. Similarly, in Section 4, we discuss how using parametric g-models
yields ||cjt(j ) qz 2 = Op(n~'/2). If both models are correctly specified then Theorem 6
immediately implies DRL achieves the efficiency bound. When using parametric models,
this is sometimes termed local efficiency (i.e., local to the specific parametric model). If only
one model is correctly specified then Theorem 10 ensures the estimator is still \/n-consistent.

3.2. Double Reinforcement Learning for MDPs

Leveraging our derivation of the efficient influence function for My in Theorem 3, we can
similarly construct our DRL estimator for MDPs. Given a learning algorithm to estimate
the g-function q;(s¢, a;) and marginal density ratio function gy (s, ay), DRL with K-fold
sample splitting (K > 2) for MDPs proceeds as follows:

1. Randomly permute the data indices and let D; = {[(j — 1)n/K]| +1,...,[jn/K]|}
for j =1,..., K. Let j; be the fold containing observation i so that i € D;, (namely,
ji=1+[(i = 1)K/n]).

2. For j =1,..., K, construct estimators ﬂgj )(st, at) and (jgj )(st, at) based on the training
data given by all trajectories excluding those in Dj, that is, {1,...,n}\D;.

3. Let

/\71'8

PDRL(M2)

), aa®) [ 80, )i e | 5
at

Again, note the difference between the dummy a; and the data ay), and that the

integral becomes a simple sum when 7€ has finite support over actions (e.g., if 7° is

deterministic or if there are finitely many actions).

Again, what we have done is approximate the efficient influence function qbé\gQ(H) +
from Theorem 3 and taken its empirical average over the data, where for each data point
we use ¢- and marginal density ratio function estimates based only on the half-sample that
does not contain the data point. Again, taking one split suffices for our results, but one can
repeat the above over many splits and take averages without deterioration.

Since both estimators are approximating their respective influence function as we derive
in Theorems 1 and 3, the differences between ,E)BeRL( M) and ﬁgeRL( My)» 8 noted in Remark 6,
is (a) A; is replaced with u; and (b) ¢- and v-functions only depend on recent state and
action rather than full past trajectory. Again notice that in ﬁgeRL (M) (jgj ) refers to (j,g] )(’Hat),
while in [’BgeRL( Ma)’ cjt(] ) refers to the much simpler (jt(] )(st, a).

Again, to establish the properties of DRL for MDPs, we assume the following conditions
reflecting Assumptions 1 and 2:
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Assumption 4 (Bounded estimators). limsup,,_, ., |],1§”HOO < 00, limsup,,_, o, H(jgj)Hoo < 00
foreach0<t<T,1<j<K.

Like Assumption 3, we expect Assumption 4 to hold under Assumptions 1 and 2 as the
latter provides that ||,u,§j) loo < C7, ||qt(j)|| < (T4 1 —t)Rmax. And, for many non-parametric
estimators, Assumption 4 will necessarily hold. Again, we need not have that the same
bounds hold for the estimators as hold for the estimands; any finite bound will do. For the
rest of this subsection we will assume Assumption 4 hold.

The following result establishes that DRL is the first efficient OPE estimator for MDPs.
In fact, it is efficient even if each nuisance estimator has a slow, nonparametric convergence
rate (sub-\/n). Moreover, as before, we make no restrictive Donsker assumption; the
only required condition is the convergence rate condition.. This result leverages our novel
derivation of the efficient influence function in Theorem 3 and the structure of the influence
function, which ensures no variance inflation due to estimating the nuisance functions.

Theorem 13 (Efficiency of ppryam,) under Ma). Suppose Hﬂgj) - ,utH2||cj§j) — qtll2 =

op(n /2 [l = pell2 = 0p(1), 137 — arll2 = 0p(1) Jor 0 <t < T1 < j < K. Then, the
estimator Pppri(m,) achieves the semiparametric efficiency bound under Ma.

Remark 11 (Example cases). We note a few specific cases of Theorem 13.

e Tabular case: Suppose the state and action spaces are finite: |S¢|,|A¢ < co. Then
both p; and ¢; are parametric functions with parameters given by their values at each
(s¢,a¢) pair. They can therefore be easily estimated at Op(nfl/ %) rates, ensuring the
above rate conditions are easily satisfied. For example, we can use simple frequency
estimators that simply take sample averages within each (s, a;) bin (Li and Racine,
2007, Chapter 3). Other examples and additional detail are given in Sections 3.3 and 4.

e Finite state space, known behavior policy: Suppose now only |S;| < oo while A; can
be continuous and that 7 is known. Then p;(sy, ar) = m(se, ap)we(se) and wy(sy) =
E[M\_1 | s is a parametric function easily estimated at O,(n~'/2) rates using a
frequency estimator or using a recursive estimator as in Xie et al. (2019) (more detail
in Section 3.3). It therefore suffices for g-function estimators to have errors that are
op(1), i.e., only consistency is needed without a rate. Since Zfit rt has finite variance
(it is bounded) and g, is its regression on (s, a;), Theorems 4.2, 5.1, 6.1, 10.3, and 16.1
of Gyorfi et al. (2006) establish that this can be done with any of histogram estimates,
kernel regression, k-nearest neighbor, sieve regression, or neural networks of growing
width, respectively. (These provide L? convergence of L? errors, which is stronger than
the in-probability convergence of L? errors we require.)

e Nonparametric case: In the fully nonparametric case, our nuisance estimators may
converge more slowly than Op(nfl/ 2). Our result nonetheless accommodates such
lower rates and, crucially, does not impose strong metric entropy conditions that would
exclude flexible machine learning estimators. We discuss in greater detail how one
might estimate the nuisance functions in Sections 3.3 and 4.

As before, we can also obtain a finite-sample guarantee for DRL in My with a leading
constant controlled by the asymptotic variance, which in this case is efficient. If we can say
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C1,C5 do not depend on CT+1, this gives a finite sample result with a sample complexity,
which depends only C’ not on CT*! noting Effbd(M>) is bounded by C’R2

max

Theorem 14. Suppose that for some Cy,Ca, for every n, with probability at least 1—4, we
szmultaneously have that ||M§J) pell3 < k1 = C1(n2* +10g(2KT/6)/n), ||qt M3 <

= Cy(n=2%2 + 10g(2KT/8)/n) Vt < T, 1 < j < K. Suppose moreover that 0 < ji; <
C’ 0<G <(T+1—1t)Rmax fort <T. Then, for every n, with probability at least 1 — 79,
we have

Te

- \/ 2log(2/8)Effbd(M,)

n

Lo \/1og(2/5)T2(TRmaXC/, /kiks + k1T2R2,, + ko{C'}2)
1

n

PDRL(Ms) — P

log(2/6)T RmaxC’
n

+ Q2 + Q3T \/K1ka,

where Q1, Q2, Q3 are constants not depending on 6, T, Ryax, C',n,Cy,Co, C.

As before, if a1 > 0,0 > 0, a1 + @2 > 1/2, then the leading term in n in the above bound

2log(2/ E)Sffbd(M2) (with no constant factor). Note that, while C; (embedded
inside k1) does not appear in the leading n term, ensuring the conditions of Theorem 14 may

is exactly \/

require C to depend on 7', depending on which estimate u(] ) for ¢ is used; see Remark 17.

The DRL estimator in My can also achieve efficiency without sample splitting (i.e.,
with adaptive in-sample estimation of nuisances) if we impose an Donsker condition on the
estimated nuisances.

Theorem 15 (Efficiency without sample splitting). Let fi;, G be estimators based on D and
A€ T A~ ~ A~ A~ A~ A~
let PDHRL(Mz), adaptive = Ln [tho (fue (re — Gt) — fu—1Eqre [ | Hst]):| - Suppose || fix — pue||2| G —

Gillz = 0p(n %), |1 — puell2 = 0p(1), [1Ge — aell2 = 0p(1) for 0 <t < T and that Gy, fur belong
to a Donsker class. Then, the estimator ﬁgel:{L(Mg) achieves the semiparametric
efficiency bound under Ma.

,adaptive

In addition to efficiency, DRL enjoys a double robustness guarantee in Mas.

Theorem 16 (Double robustness (y/n-consistency)). Suppose || ,&tj - utHg = (n“"l) and
||(jz$j) _q:tr”2 =0p(n™*) for0 <t <T,1<j< K. If, foreach0 <t <T, ezther,ut = [y
and a1 > 1/2, ag > 0 07“ qI =q and ag > 1/2, a1 > 0, then the estimator ppri(ms) 18
V/n-consistent around p*

Again, we obtain consistency without a rate even if just one nuisance is consistent without
a rate.

Corollary 17 (Double robustness (consistency)). Suppose || [ng ) MIHQ =o0p(1) and H(jfj )
qZHQ =o0p(1) for0 <t <T,1<j<K. If, foreach 0 <t <T, eitherui = 07"q;r = q,
then the estimator ppry(m,) s consistent around i
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Remark 12. When the behavior policy is known, the estimator pprraq,) is still Vn-
consistent under My even without smoothness conditions on u; because Ms is included
in My so that Theorem 10 applies. On the other hand, in the nonparametric setting, the
estimator pprr(m,) requires some smoothness conditions even if the behavior policy is
known because p; must still be estimated. In this sense, when the behavior policy is known,
PDRL(M,) 18 more robust than pprram,) under My but its asymptotic variance is bigger,
and generally strictly so.

A reaming question is how to estimate the nuisances at the necessary rates. We discuss
g-function estimation in Section 4. For estimating pup, one can leverage the following
relationship to reduce it to a regression problem:

we(Seyar) = me(se, ar)we(sy), where wy(sy) = E[A—1 | s¢]. (5)

Thus, for example, when the behavior policy is known, we need only estimate w;, which
amounts to regressing A\;—j on s;. So, in particular, if w(s;) belongs to a Holder class
with smoothness o and s; has dimension dg, estimating w; with a sieve-type estimator wy
based on the loss function (A—; — wy(s;))? and letting ,&Ej)(st, ag) = n(se, at)wt(j)(st) will
give a convergence rate ||[L§])(st,at) — (s, a1)|]2 = Op(n=/(@Fds)) (Chen, 2007). When
the behavior policy is unknown, it can be first estimated to construct M and we can repeat
the above replacing \; with S\t. In particular, there will be no deterioration in rate if 7rf
also belongs to a Holder class with smoothness o and if we further split each D;, estimate
7T1t) as in Theorem 12 on one half, and plug it in to estimate w; on the other half. Further
strategies for estimating yu; are discussed in Section 3.3 below.

In the special case where we use parametric models for u; and ¢, under some regularity
conditions, parametric estimators will generally satisfy ||f: — MI 2 = Op(n~/2) and || —
th |2 = Op(nfl/ 2), where q;r = q; and ,u;r = p if the models are well-specified. (See Section 4
regarding estimating the g-function). Thus, if both models are correctly specified, then
Theorem 13 yields local efficiency. If only one model is correctly specified, Theorem 16 yields

double robustness.

3.3. Estimating Marginalized Density Ratios and the Inefficiency of
Marginalized Importance Sampling

In this section we discuss strategies for estimating u; and also show that doing OPE
estimation using only marginalized density ratios, as recently proposed, leads to inefficient
evaluation in M.

Given an estimate fi; of ¢, the Marginalized Importance Sampling (MIS) is given by

T
Zﬂﬂ"t] ; (6)
=0

which resembles the IS estimator but where we replace A\t with fit. Note that py = E[A | s¢, ay],
i.e., the marginalization of A\; over H,, ,; hence the name MIS. Equation (6) can also be
seen as DRL without sample splitting when we let ¢; = 0.

MIS is a generic meta-estimator that depends on a particular estimate ji;. As we will
see in this section, the asymptotic variance of MIS depends on how we estimate fi;; this is

prrs = En
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unlike DRL, whose asymptotic variance is insensitive to this choice as long as it satisfied
lax rate conditions. To study MIS, we therefore study different instantiations of Eq. (6)
for different p; estimators. Xie et al. (2019) provides one possible estimate in the special
finite-state case. We will next study general-case estimators fi; based on regression. See
also Remark 17 regarding different pu; estimators. Note that since py = nwy, when behavior
policy is known we can estimate p; as ji; = nw;. We focus on two cases: when w0 is estimated
using a histogram by averaging A;_1 by state over a finite state space and a nonparametric
extension.

Theorem 18 (Asymptotic variance of pT;q with finite state space). Suppose |S;| < oo for
0<t<T. Let

Dt H[Sgi) = 5¢]Ai—1
S I = s

Then /371{/[618 is consistent and asymptotically normal (CAN) around p™ and its asymptotic
MSE is

(7)

wt(St) =

T

var Zﬂﬂ“t + (A1 —w)Ex [re | se] | - (8)
=0

For the proof of Theorem 18, we use an argument based on the theory of U-statistics
(van der Vaart, 1998, Ch. 12) in order to rephrase the MIS estimator with @ as in Eq. (7)
in an asymptotically linear form: pfq = En[ZZzo et + (Me—1 — wi)Ea, [1]5¢]] + 0p(n™1/2).

This influence function is different from the efficient influence function; therefore, ﬁ”MeIS
with histogram nuisance estimators is not efficient (the efficient influence function is unique).
In fact, we can confirm this fact by calculating and comparing the variances.

Theorem 19. If P, € My (i.e., the underlying distribution is an MDP), Eq. (8) is greater
than or equal to EffBA(M2). The difference is

T-1

var[vg] + Z E [(w; — Me—1)?var (v (se41)]se)] -
t=0

We now turn to the nonparametric case, where we first consider a sieve-type extension
of the w estimator.

Theorem 20 (Asymptotic variance of 1571{/1618 with nonparametric w; estimate). Suppose
E[(At — pt)9] < oo for some ¢ > 1. Let

wy(s;) = argmin Ep[(wy(st) — M—1)?], (9)
wt(st)GAgSt

where Afl‘St is the space of Hélder functions with smoothness o and the dimension ds,.

Assume wy € AaSt, a/(2a+ds,) > 1/4. Then the estimator pfyg is CAN around p™ and its
asymptotic MSE is equal to Eq. (8).
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Remark 13. The estimator Eq. (9) is over an infinite-dimensional function space. It can
be replaced with a finite-dimensional approximation A7 such that A7 — AJ . Following
Example 1(b) in Section 8 (Shen, 1997), it can be shown that this will lead to the same
asymptotic MSE as in Eq. (8) and not change the conclusion of Theorem 20.

Remark 14. When the action and sample space is continuous, the histogram estimator in
Eq. (7) can also easily be extended to a kernel estimator:

wt(St) = =1 h(st St)At ! y (10)

Z:‘L:l Kh(sl(fi) — 5¢)

where K}, is a kernel with a bandwidth h.

The smoothness condition in Theorem 20 ensures we can estimate w; at fourth-root
rates using Eq. (9). Following Newey and Mcfadden (1994) and utilizing a high-order kernel,
we can obtain similar fourth-root rates for Eq. (10) and a similar variance result for MIS.
Unlike Eq. (9), we cannot invoke a Donsker condition to prove a stochastic equicontinuity
condition. However, it is still possible to show this directly based on a V-statistics theory
(see Chapter 8 of Newey and Mcfadden, 1994).

Finally, we also consider estimating p; directly and nonparametrically using the relation

pe(se,ar) = E[N | 8¢, aql. (11)
A sieve-type regression estimator for u; is then constructed as

fie(se,ar) = argmin  Epn[(ue(se, ar) — Mo)?. (12)
pe(se,ar)EAY

dsy +day
Theorem 21 (Asymptotic variance of ﬁ’rMEIS with nonparametric p; estimate). Suppose
E[(At — ut)¥] < oo for some q > 1. Let [ii be as in Eq. (12). Assume p; € AG,, +da,

af/(2a+ds, +do,) > 1/4. Then the estimator E, |:Z;€T:0 /ltrt} is CAN around p™ and its
asymptotic MSE is equal to

T
var [Z pery + (A — ) Elre | s, at]] . (13)

t=0

Remark 15. While both estimators for p; in Theorems 20 and 21 achieve fourth-root rates
under the respective conditions, the resulting asymptotic variances in Eqs. (8) and (13) are
different and generally incomparable. Both are inefficient, but which is larger is problem-
dependent. Note that, in contrast, the asymptotic variance of DRL (Theorem 13) is the
same (and is efficient) regardless of which way is used to estimate p; as long as we have
the necessary rate. When the behavior policy is known, using Eq. (9) may be better than
Eq. (12) when estimating u; nonparametrically because the smoothness condition is weaker
and the convergence rate is faster (since ds, < dg, + ds,). However, when using parametric
models, the rates are the same (under correct specification) and sometimes it is easier to
model p(s¢, a;) rather than wy(s;), as we do in Section 5.1.
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Remark 16 (The Inefficiency of MIS). Theorems 18, 20 and 21 each study the MIS estimator
A¥s in Eq. (6) but with different estimator for the nuisance y; = mw;. As noted above,
unlike DRL, the variance of the MIS estimator actually depends on the way this nuisance is
estimated. And, in each case, the MIS estimator was inefficient. In the finite-state-space
setting with known behavior policy, Xie et al. (2019) propose another, different MIS estimator
based on estimating the MDP transition kernel; but per their Remark 4 it is also inefficient.
(In contrast, Remark 11 shows that DRL is efficient in the finite-state-space setting without
requiring any smoothness conditions.) This does not immediately imply the MIS estimator
is always inefficient, as it may depend on how p; is estimated, but semiparametric theory
strongly suggests there is reason to believe that MIS would in general be inefficient.

One natural question that sheds light on this is how would a hypothetical MIS estimator
perform with oracle values for ps. In fact, the variance of ZZ’:O w7 is in general incomparable
to EffBd(My), that is, it may be smaller or larger depending on the particular instance.
This may surprising but is not contradictory since one can in fact prove that no regular
estimator (let alone an efficient one) in either My or My, could ever have the form
En[Z?zo pere) + 0p(n1/2), that is, asymptotically linear with influence function Z?:o Tt
This is because E?:o et is not a gradient of p™ under either My or My, (see Theorem 24).
This is in stark contrast to IS: Ztho A1y is always a valid influence function under either
My or Mgy, since we know its empirical average always gives an unbiased linear estimator
(not just asymptotically). Indeed, we similarly have that the variance of ZtT:o wery is also
incomparable to ZtT:o A¢r¢. The function Z;‘F:o pery is an influence function (a gradient)
under the MDP model with known transition kernel, but that is a very restrictive and
unrealistic model.

One interesting specific case is the fully tabular setting (finite state and action spaces).
Since our paper was posted, the more recent Yin and Wang (2020) considered a “modified”
version of the estimator of Xie et al. (2019) in order to obtain efficiency under the tabular
case of Moy, By simple algebra, the estimator of Yin and Wang (2020), which is defined as

Ly ST we(s0) [P (relst ag)me (agl sy )d(re, a),

where wt(st) = m f pst(stlst—lﬂ at—l) HZ_:l(] (Wl?:(ak‘skﬂssk (Sk|sk*1ﬂ akfl)) d(%at71)7
Tt

and where 155“ 15”, ﬁﬂ}; are each an empirical frequency (histogram) estimator, can in fact
be rewritten simply as

T t
S [ rebtridsecan) TT (miorlsn) Po sulsios an)) Ao ).
t=0 k=0

This is essentially a model-based OPE estimator, where we first fit all MDP parameters
and then explicitly integrate with respect to the resulting estimated trajectory density
function in order to compute the expectation p™ . This is also often called the G-formula
in the causal inference literature (Hernan and Robins, 2019; Robins, 1986). In the tabular
setting, the efficiency of this estimator is immediate since it is exactly the (parametric)
MLE estimate for this setting, which is well known to achieve the Cramér-Rao lower bound,
and the Cramér-Rao lower bound is the efficiency bound in the tabular setting since the
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model is parametric. In the case of continuous state and/or action spaces, the simple
extension of replacing Psk 1 (Sky1lsk, a), ]5” (r¢|s¢, a;) with some nonparametric conditional
density estimators would have poor performance since the nonparametric density estimation
is unstable and would significantly inflate the variance. Alternatively, if we extend the
estimator by instead estimating u; or w; nonparametrically, the above already argues why
we expect this would generally be inefficient.

Similarly to the model-based approach, in the tabular case, our results in the next section
have shown that also simple DM estimates based on g-function estimation are also efficient,
since in the tabular case ¢-functions are parametric. Moreover, DRL was already shown to
be efficient in the the tabular MDP setting with any parametric p; estimator as they all
have O,(1/4/n) convergence in this setting, and the particular choice of estimator does not
affect this (see also Remark 11). Hence, DRL was the first efficient OPE estimator, both in
general and in the tabular MDP setting in particular.

Remark 17 (Other estimators for y;). Xie et al. (2019); Yin and Wang (2020) may in fact
both offer alternative estimators for w; and hences u; (in their respective settings) that may
be used in DRL and either will ensure efficiency for DRL (see Remark 11). In particular,
since A\; may have variance growing exponentially in 7', this may affect the variance of
estimates of u; based on the regression of it on s; or on ¢, at, as studied above. Although
this will not appear in the leading term of the variance of DRL and will not affect efficiency,
it may still be a concern. Developing and analyzing alternative estimators for w; and/or p
may be fruitful future work. For example, still other possible estimation approaches for w;
include a fitted w-iteration: start with wy = 1, regress wy_1m: on s; using any supervised
regression method to obtain w;, and repeat.

4. Estimating the ¢-function and Efficiency Under M,,, My,

In this section, we discuss the estimation of g-functions in an off-policy manner, parametrically
or nonparametrically, which can be plugged into our estimators, pprr(a,)s PDRL(M,)- On
the way, we also derive the semiparametric efficiency bound when we impose parametric
restrictions on g-functions, i.e., the models Mi,, Ma,.

To do this, we will leverage a recursive definition of the g-functions (Bertsekas, 2012).
Under M, the following recursion equation holds:

gt = E [re + Ere (g1 | Horir] | Hay] - (14)

Under Mg, we can further replace Hs,,, with s;11 and H,, with (s¢,at) in the above.
The recursion in Eq. (14) can equivalently be written as a set of conditional moment
equations satisfied by the g-functions:

mt(Hat;{ql,...,qT}) =0 VtST, (15)
where mt(Hat; {QL v 761%}) =E [Tt + Ere [q;.;.l(HatJrl) | H3t+1] - qg(,Hat) | Hat] .
This formulation of the g-function in terms of conditional moment equations, along with
the observation that p™ = E [Exe [go(s0, ag) | s0]] is determined by the g-function, allows us

both to estimate the ¢-function efficiently, either parametrically and nonparametrically, and
to characterize the efficiency bounds under My, and My,. We start with the latter.
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4.1. Efficiency Bounds Under M, My,

In this section we consider the models where we restrict g-functions parametrically:

Mg ={Pw € M1 :35f € Op,, ¢t(Ha,) = @t(Ha,: 57) VESTY,
Moy ={Pp € Mo :38; € Op,, qi(s¢,at) = qe(se, a4, 87) YVt < T},

where q¢(Ha,; Bt) or gi(st, ar; Bt) is some parametric model for the g-function at time ¢ that is
continuously differentiable with respect to the parameter 3;, ©g, is some compact parameter
space, and 3/ is the true parameter, which is assumed to lie in the interior of ©g,. For
brevity we define vi(Hs,; Bt) = Ere [q:(Ha,; Bt) | Hs,| and similarly vi(s¢; Br).

Under M4, Mgy, Eq. (14) can be rephrased as as a set of conditional moment restrictions
on the parameter  defined by 5 = (ﬂir e B; ). In particular, overloading notation and
letting m¢(Ha,; 8) = me(Hap; {q1(-,81),---,qr(-, Br)}), we have that § is defined by the
set of conditional moment equations m(Ha,; ) = 0 V¢t < T. This observation is key in
establishing the following result.

Theorem 22 (Efficiency bound under My,, May,). Define eqr = 1t + Vi1 — 1
Ay =C7 4+ G BiAa B/ G,
By =E [VﬁtQt(Hat;ﬂf Jvar(eq, | Hat)flvgm”tﬂ(”sm?5t*+1)] ,

Co = B | Vts (Hayi B )Var(eq | Har) ™V fye(Hari 57)]

AT =E [vﬂTQT(HaT; 5;)Var(€q7’f ‘ /HaT)_lngqT(/HaT;'B%)} ’
B_1 = E[no(so, ao)Vgoqo(So, ao; BS)]

Then
EffBd(M,,) = var (vo) + B_1AgB.;.

Moreover, the efficiency bound for estimating [; is As.
Finally, the corresponding efficiency bounds under Ma, are given by replacing Hs,
with siy1 and Hq, with (s¢,a) everywhere in the above.

Remark 18. When T' = 1, EffBd(M,) above is equal to

var[vg(so)] + B_140B'4,
where A = E[V,q0(s0, ao; By)var[ro | so,ao]_IVgCJo(SmCLO;55)]_17

The Matrix Cauchy-Schwarz Inequality (Tripathi, 1999) immediately shows that this is
upper bounded by EffBd(M,), as is also implied by M1, C M albeit less directly.

4.2. Parametric Estimation of g-functions

Next, we consider an estimation method for 8; and p™ . Given the above observations, a
natural way to estimate ( is by solving the following set of conditional moment equations
given by my(Hg,; 8) = 0 Vt < T. For example, one approach when the ¢g-model is a linear
model specified as 3, ¢1(Hq,) for some dy,-dimensional feature expansion ¢; is to choose B
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to minimize Z?:o Zjitl (En [(rt + Vi1 (Hspprs Brv1) — @t(Hay; ﬁt)) Qf)tz'(?-lat)] )2, which corre-
sponds exactly to backward-recursive ordinary least squares. That is, first r7 is regressed on
¢1(Hay) to obtain By, then qr(Hap; Br) is averaged over % (ar | Hs,p) to obtain o7, then
rr_1 + Or is regressed on ¢¢(Ha,_,) to obtain BT_l, and so on.

Although such an estimator can achieve the rate O,(n~'/2) under correct specification
and standard conditions for M-estimators, it might not yield an efficient estimator for
B or for p™ . When the g-model is linear as above, this can be easily solved by instead
applying any efficient variant of the generalized method of moments (GMM), such as two-
step GMM (Hansen, 1982; Hansen et al., 1996), to the set of moment equations given by
mi(Hay; B)dti(Ha,) = 0Vt < T, i < dy,. This is almost the same as the above backward-
recursive ordinary least squares but with an optimal weighting of the different moment
conditions in the sum above.

When the ¢-model may be nonlinear, we can obtain an efficient estimator by instead
applying the method of Hahn (1997) to our set of conditional moment equations. Specifically,
we can consider the set of T'm,, moment equations E [my(Ha,; 8)¢ri(Ha,)] = 0Vt < T, i < my,
where ¢y1(Ha,), p12(Ha, ), - - - is a basis expansion of the L2-space and m,, — oo as n — o0.
Then, applying any efficient variant of GMM to this set of moment conditions will yield an
efficient estimator B of 3.

In all of the above, replacing H,,., with s;41 and H,, with (s, a;), the same techniques

can be applied in My. In either case, once we have an efficient estimate 8 of 3, an efficient
estimate for p™, achieving the semiparametric efficiency bound in the appropriate model, is

given by ppy = Ey, [UO(SOQ BO)]

Remark 19 (Tabular setting). Consider a tabular case. Then, by treating q:(s:, a;) =

BT p(at, s¢), where ¢(a, s) = (I(a = aJ{,s = SD, o I(a = a|TAt|, s = S\TStl)) and aI and s;r are

the elements of the finite A; and S;, we can observe that Effbd(Ma,) = Effbd(M3) by some
algebra. This result is natural since Mg, = My in the tabular setting.

4.3. Nonparametric Estimation of ¢-functions

The above observation in Eq. (14) that g¢-functions satisfy a set of conditional moment
equations also lends itself to nonparametric estimation of the g-functions. In this section we
briefly review how one approach to this, following the application of the method of Ai and
Chen (2012) to this set of conditional moment equation, can obtain the necessary fourth-root
rates for use in DRL.

The estimator {q;}7_, is constructed as the following sieve minimum distance estimator:

T

{G}i—o € argmin ZEn [mt(Hat;Qt)St_lmt(Hat;Qt) ;
qe€As 0 VIST

where 11 (Ha,; ¢¢) is a nonparameric estimator for my;(Hq,; q:), 2 is a nonparametric estima-
tor for var (eq | Ha,), and Ay, is a sequence of approximation space whose union US| A,
is dense in some infinite dimensional space A;. Alternatively, in My, we replace H,, with
(s¢,at) in the above.
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Table 1: Experiment from Section 5.1: RMSE (and standard errors).

Setting  n 1S PDRL(M,) ADM pMIs PDRL(M>)
1500 42.4 (12.4) 36.1 (16.8) 0.70 (0.002) 40.8 (12.5) 0.70 (0.002)
(1) 3000 20.4(3.1) 7.8(0.8) 050 (0.001) 20.8 (2.8) 0.50 (0.001)
4500 20.2 (3.1) 6.6 (0.75) 0.43 (0.001) 21.5 (3.5) 0.43 (0.001)
1500 424 (124) 77.6 (29.1) 10.8 (0.002) 40.8 (12.5) 10.3 (3.5)
(2) 3000 20.4(2.5) 36.6(6.9) 10.8 (0.001) 20.8 (2.8) 6.0 (0.6)
4500 20.2 (3.1) 344 (9.6) 10.8 (0.001) 215 (3.5) 5.5 (2.0)
1500 42.4 (12.4) 36.1 (16.8) 0.70 (0.002) 87.7 (25.5) 0.73 (0.03)
(3) 3000 20.4 (3.1) 7.8 (0.8) 0.50 (0.001) 37.3 (3.2) 0.51 (0.002)
4500 202 (3.1) 6.6 (0.75)  0.43 (0.001) 53.5 (15.1) 0.44 (0.005)

Ai and Chen (2003) prove that applying the above with appropriate nonparametric
estimators, under some smoothness conditions, we can obtain ||G; — g¢|| .+ = 0,(n"1/4), where
| - |t is the Fisher metric, which in our setting of Eq. (15) is defined as

||9(Hat)H%,t = E[Var(eq,t ’ HGt)QQ + var(eq,t—1 | Hay_1)Ere [9(Ha,) | HSz]Q]‘

We omit the details and refer the interested reader to Ai and Chen (2003). We only prove
that this norm is in fact equivalent to the L?-norm under mild conditions.

Lemma 23. Suppose varleq: | Haq,] and varlegi—1 | Ha,_,] are bounded away from zero.
Then, || - ||rk and || - ||2 are equivalent norms.

This means that, under the appropriate conditions, the estimator ¢ obtains the rate
op(n*1/4) in terms of L?-norm, as necessary for Theorems 6, 10, 13 and 16.

5. Experiments

We now turn to an empirical study of OPE and DRL. First, we construct a simulation
to investigate the effect of using memorylessness on estimation variance as well as the
effect of double robustness on model specification sensitivity. Then, we study comparative
performance of different OPE estimators in two standard OpenAl Gym tasks.

Replication code for all experiments is available at http://github.com/CausalML/
DoubleReinforcementLearningMDP.

5.1. The Effects of Leveraging Memorylessness and of Double Robustness

In this section we consider an MDP with a horizon of T' = 30, binary actions, univariate
continuous state, initial state distribution p(sg) ~ N(0.5,0.2), transition probabilities
Py(si41 | st,a1) ~ N(s+0.3a — 0.15,0.2). The target and behavior policies we consider are,
respectively,

m¢(a | s) ~ Bernoulli(pe), pe = 0.2/(1 + exp(—0.1s)) + 0.2U, U ~ Uniform|0, 1]
7°(a | 5) ~ Bernoulli(py), pp = 0.9/(1 + exp(—0.1s)) + 0.1U, U ~ Uniform|0, 1].
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We assume the behavior policy is known. Note that this setting is an MDP and belongs to
Ma.

We compare five estimators: pis, Pprr(m;), PDM, AMIS, PDRL(M.) When nuisance
functions ¢ (s,a) and p(s) are estimated parametrically. We consider three settings:

(1) Both models correct: qi(s¢, ar) = Birse + Barsear + Bse, pe(St, ar) = Barse + Bsesear + Pe-
(2) Only p-model correct: gi(s¢,ar) = B1es? + Barsiar + Bst, pe(st,ar) = Barst + Bsesear + Bot-
(3) Only g-model correct: qi(s¢, ar) = Biese + Porsear + Bae, p(se, ar) = 64t5§ + 55:555% + Bet-

Note that in the above, the “correct” models are in fact not exactly correct because Ere[a; | s¢
is actually nonlinear in s;, but it is very nearly linear in the space of observed s; values (for
example, best linear fit for Ee[a; | s¢] has an L? distance 3 x 107> on [0, 1], which spans
+2.5 standard deviations for sp). We therefore treat them as correctly specified.

In all cases, to estimate g-models we use backward-recursive ordinary least squares as in
Section 4.2. To estimate p-models we use ordinary least squares regression on \; (which is
assumed known) as in Eq. (11).

For each n = 1500, 3000, 4500, we consider 50000 Monte Carlo replications. In each
replication, we estimate the ¢- and pu-models as above and compute, for each setting, each of
PI1S; PDRL(M,)s PDM; PMIS, PDRL(M,)- We report the RMSE of each estimator in each setting
(and the standard error) in Table 1.

Our first immediate observation is that pprr(am,) nearly dominates all other estimators,
achieving similar or better performance in every setting and sample size. In particular,
in settings (1) and (3), where the g-model is correct, it has performance similar to ppum.
Note that in settings (1) and (3), ppwm is efficient for My, per Section 4.2 (or almost so;
it would be efficient if we used efficient GMM instead of one-step GMM). In setting (1),
PDRL(M,) is locally efficient, while in setting (3), it is only doubly robust and performs
almost imperceptibly worse than the efficient ppy.

In setting (2), where the g-model is incorrect, ppy is inconsistent and PDRL(M,) handily
outperforms it. In the same setting (2), the consistent prg and pyig also outperform the
inconsistent ppm but not by as much as pprr(am,)- While pprra,) is doubly robust in
setting (2) guaranteeing consistency, unlike the case of pprp,(at,), the combination of large
(unmarginalized) cumulative density ratios and a misspecified g-model leads to still worse
performance in the sample sizes tested.

Generally, p1s, pmis, and pprr(a,) all have high RMSE due to the significant mismatch
between the behavior and target policies so that cumulative density ratios are very large
and only marginalizing them without also using a g-model helps only a little. In settings (1)
and (2), where the p-model is correct, pyrs improves on prg only slightly, while in setting
(3), where p-model is incorrect, it performs significantly worse. This highlights the potential
danger of misspecifying p-models compared to the robustness of importance sampling with
known behavior policy (see also Remark 12).

While both prg and pprr,aq,) remain consistent throughout all settings, they are out-
performed by the also-consistent ppry,(am,), Which leverages the MDP structure of Mj and
exhibits local efficiency in setting (1) and doubly robustness in settings (2) and (3).

28



DOUBLE REINFORCEMENT LEARNING IN MARKOV DECISION PROCESSES

Table 2: Cliff Walking: RMSE (and standard errors)

Size p1S PDRL(M,) DM pMmIS PDRL(M>)
500 18.8 (7.67)  3.78(1.14) 2.63 (0.01)  12.8 (4.96) 1.4 (0.29)

( (
1000 7.99 (0.89)  0.28 (0.026)  1.27 (0.002) 5.92 (0.78)  0.22 (0.34)
1500 7.64 (1.63)  0.098 (0.013)  1.01 (0.001) 5.55 (1.10)  0.075 (0.008)

Table 3: Mountain Car: RMSE (and standard errors)

n p1s PDRL(M;) PDM PMIS PDRL(Ms)
500 6.85 (0.13) 3.72 (0.08) 4.30 (0.05)  6.82 (0.12)  3.53 (0.12)

( (
1000 4.73 (0.07)  2.12 (0.04)  3.40 (0.008)  4.83 (0.06)  2.07 (0.04)
1500  3.41 (0.04) 1.82 (0.02) 3.30 (0.008)  3.40 (0.05) 1.69 (0.03)

5.2. Investigating Performance in RL Tasks: CIliff Walking and Mountain Car

We next compare the same OPE estimators using nonparametric nuisance estimation in two
standard RL settings included in OpenAl Gym (Brockman et al., 2016): Cliff Walking and
Mountain Car. For further detail on each setting, see Appendix C.

First, we used ¢-learning to learn an optimal policy for the MDP and define it as =

Then we generate the dataset from the behavior policy 7° = (1 — a)7?% 4 ar® where 7 is a
uniform random policy and a = 0.8. We define the target policy similarly but with o = 0.9.
Again, we assume the behavior policy is known. Note that this 74 is fixed in each setting.

We estimate all p-functions by first estimating w-functions and using Eq. (5). For Cliff
Walking, we use a histogram estimator for w as in Eq. (7). For Mountain Car, we use
a kernel estimator for w as in Eq. (10). We use the Epanechnikov kernel and choose an
optimal bandwidth based on an L?-risk criterion for t = 1; we then use this bandwidth
for all other ¢ values as well for simplicity. For g-functions, we use backward-recursive
regression as in Section 4.2. For Cliff-Walking, we use a histogram model, ¢(s,a;5) =
Zs]-,akeS,A Bjkl[s; = s,ar = a]. For Mountain-Car, we use the mode ¢(s, a; 8) = BT (s,a)
where ¢(s,a) is a 400-dimensional feature vector based on a radial basis function, generated
using the RBFSampler method of scikit-learn based on Rahimi and Recht (2008).

We again compare f1s, ApRL(M,;)» PDM, PMIS, PDRL(M.)- 10 each setting we consider
varying evaluation dataset sizes and for each consider 1000 replications. We report the
RMSE of each estimator in each setting (and the standard error) in Tables 2 and 3.

We again find that the performance of ppry(am,) is superior to all other estimators
in either setting. This is especially true in Cliff Walking. The estimator pprrm,) also
improves upon prg and ppy but not as much as pprr,(am,)- The estimator pyig offers a slight
improvement over prg, but is still outperformed by pprr(a,)s PDRL(M,)> and ppm. That
the improvement of pyiig over prg and the overall improvements of ppgry,a,) is starker in
Cliff Walking than in Mountain Car may be attributable to the difficulty of learning w;
nonparametrically in a continuous state space.
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6. Conclusions

We established the semiparametric efficiency bounds and efficient influence functions for OPE
under either NMDP or MDP model, which quantify how fast one could hope to estimate
policy value. While in the NMDP case, the influence function we derived has appeared
frequently in OPE estimators, in the MDP case, the influence function is novel and has not
appeared in existing estimators. Our results also suggested how one could construct efficient
estimators. We used this to develop DRL, which used our newly derived efficient influence
function, with nuisances estimated in a cross-fold manner. This ensured efficiency under very
weak and mostly agnostic conditions on the nuisance estimation method used. Notably, DRL
is the first efficient OPE estimator for MDPs. In addition, DRL enjoyed double robustness
properties. This efficiency and robustness translated to better performance in experiments.
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Appendix A. Notation

We first summarize the notation we use in Table 4 and the abbreviations we use in Table 5.
Notice in particular that, following empirical process theory literature, in the proofs we also
use P to denote expectations (interchangeably with E).

Vi

T't, St, Qt,

jrta jStv jat

Hs,, Ha,
mi(ar|Hs, ), me(aese)
g, Ty

pﬂ'

UVt = Ut<Hst)7 Ut(St)
a4 = qt(Hay), (st az)
At

Ht

Nt
A

M
M1, My, My

Mo, Map, Moy

C) Rmax
[1(A]B)
D

I

!%

EW[']7PW
E[],P
E.[], Py,

nj

B, Py,

G,

Asmsel-|, var[-]
N(a,b)
Unila, b]

A, =op(an)
A, = Op(an)
Ag

Table 4: Notation

Differentiation with respect to 3

Reward, state, action at ¢

History up to time 7y, s¢, a¢, including reward variables
History up to time sy, a;, excluding reward variables
Policy in NMDP and MDP case, respectively

Target and behavior policies at ¢, respectively

Policy value, E [ZtT:o 74

Value function at ¢, in My, My respectively
g-function at ¢, in M, Ms respectively

Cumulative density ratio [[f_, 7¢ /77

Marginal density ratio E[X\; | s¢, a¢]

Instantaneous density ratio 7§ /77

Tangent space

A model for the data generating distribution

NMDP model with unknown behavior policy,

known behavior policy, and parametric g-function, respectively
MDP model with unknown behavior policy,

known behavior policy, and parametric g-function, respectively
Upper bound of density ratio and reward, respectively
Projection of A onto B

Direct sum

LP-norm E[f?]'/»

Inequality up to constant

Expectation with respect to a sample from a policy 7
Same as above for m = 7?

Empirical expectation (based on sample from a behavior policy)
The size of D;

Empirical expectation on D;

Empirical process /n(P, — P)

Asymptotic variance, variance

Normal distribution with mean a and variance b
Uniform distribution on [a, b]

The term A,,/a, converges to zero in probability

The term A, /a,, is bounded in probability

Holder space with smoothness a with a dimension d
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Table 5: Abbreviations

NMDP | Non-Markov Decision Process

MDP Markov Decision Process

RL Reinforcement Learning

CB Contextual Bandit

OPE Off policy Evaluation

MLE Maximum Likelihood Estimation

RAL Regular and Asymptotic Linear

CAN Consistent and Asymptotically Normal
MSE Mean Squared Error

Appendix B. Proofs

Before going into details of the proof, we summarize definitions and proofs to derive a
semiparametric lower bound. As we mentioned in Section 1.2, for a complete and rigorous
treatment, refer to Bickel et al. (1998); van der Laan and Robins (2003); van der Vaart
(2002). Additional accessible treatments are also given in (Bibaut and van der Laan, 2019a;
Tsiatis, 2006; Vermeulen, 2010)

B.1. Semiparametric theory

We overload notation on Section 1.2. We denote the all of the history {”H(i) » ., as H", the
estimand as R(F') : M — R and the estimator as R : H" — R. First, we introduce some
definitions.

Definition 1 (One-dimensional submodel and its score function). A one-dimensional sub-
model of M that passes through F' at 0 is a subset of M of the form {F; : € € [—a,a]} for
some small @ > 0 s.t. F.—g = F. The score of the submodel F, at § = 0 is defined as

_ log(dFe/dpu)(H)
- d ‘610 .
€
Definition 2 (Tangent space). The tangent space of a model M at F' denoted by Th((F) is

the linear closure of the set of score functions of the all one-dimensional submodels regarding
M that pass through F'.

s(H)

Definition 3 (Influence function of estimators). An estimator R(H") is asymptotically
linear with influence function (IF) ¢(H) if

Ji(R(H™) = R(F)) = \/15 S w(HD) + 0 (1/v)

Definition 4 (Pathwise differentiability). A functional R(F') is pathwise differentiable at
F w.r.t the model M (or w.r.t the tangent space Ta(F')) if there exists a function Dp(H)
such that for all submodels {F; : €} in M satisfying F.—o = F' and

dR(F)
de

le=0=E[Dr(H)s(H)],
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where s(H) is a corresponding score function for F,. The function Dp(H) is called a gradient
of R(F') at F w.r.t the model M. The efficient IF (EIF) of R(F) w.r.t the model M is
called a canonical gradient Dy (), which is the unique gradient of R(F) at F w.r.t the
model M that belongs to the tangent space Ty (F).

Next, we define regular estimators. Regular estimators means estimators whose limiting
distribution is insensitive to local changes to the data generating process. It excludes a
well-known Hodge estimator. Here, we denote a submodel with some score function ¢ in a
given tangent space Ta(F') as {Fiq;t € [—a,al}.

Definition 5 (Regular estimators). An estimator sequence T, is called regular at F' for
R(F) w.r.t the model M (or w.r.t the tangent space Ty (F)), if there exists a probability
measure L such that

d(F1y /m,g)
V{T, — R(Fy, 7 )} Y™ L forevery g € Tm(F).
The following three theorems imply that influence functions of the estimators R(F) for
R(F) and gradients of R(F') correspond to each other, and how to construct an efficient
estimator. These theorems are based on Theorem 3.1 (van der Vaart, 1991).

Theorem 24 (Influence functions are gradients). Under certain regularity conditions, for
P e M, suppose R(’H") is a reqular estimator of R(F) w.r.t the model M, and that it is
asymptotically linear with influence function Dp(H). Then, R(F') is pathwise differentiable
at F w.r.t M and Dp(H) is a gradient of R(F') at F w.r.t M.

Theorem 25 (Gradients are influence functions). Under certain regularity conditions, if a
Dp(H) is a gradient of R(F') at F w.r.t the model M, there exists an asymptotically linear
estimator of R(F) with influence function Dp(H), which is reqular w.r.t the model M.

Corollary 26 (Characterization of efficient influence functions). The efficient influence
function is the projection of any gradient onto the tangent space Ty (F).

Note that gradients w.r.t the model M are not unique if the model M is not a fully
nonparametric model. If the underlying model is fully nonparametric model, the gradient is
unique.

Strategy to calculate the EIF With the abovementioned definitions and theorems in
mind, our general strategy to compute efficient influence functions is as follows.

1. Calculate some gradient Dp(H) (a candidate of EIF) of the target functional R(F)
w.r.t M

2. Calculate the the tangent space Ty((F) at F

3. Show that some candidate of EIF is orthogonal to the orthogonal tangent space, i.e.,
the candidate of EIF lies in the tangent space. Then, this implies that a candidate of
EIF is actually the EIF.

The other common strategy is calculating some gradient and projection it onto Ty (F).
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Optimalites The efficiency bound has the following interpretations. First, the efficiency
bound is the lower bound in a local asymptotic minimax sense (van der Vaart, 1998,
Thm. 25.20).

Theorem 27 (Local Asymptotic Minimax theorem). Let R(F) be pathwise diffentiable at F
w.r.t the model M with EIF Dp(H). If Tpm(F) is a convex cone, for any estimator sequence

R(H"™), and subconvez loss function | : R — [0, 00),

sup lim sup B, [VA{R(H) = R(Fys )1 2 [ 1N (0, vare [ De(0)]) w),

I n—oo gGI
where the first supremum is taken over all finite subsets I of the tangent set.

Corollary 28. Under the same assumptions of Theorem 27,

inf liminf  sup  Bo[l[Va{R(H") — R(Q)}]] > / 1(w)dN (0, varp[Dp(H)]) (w),

0>0 N0 Q- Fllr<6
where || - |7 is a total variation distance.

Other different type of optimality is seen in the following theorem. The following theorem
state that an asymptotic variance of~ every regular estimator sequence R(H™) with limiting
distribution L is bounded below E[D%(#)] (van der Vaart, 1998, Thm. 25.21).

Theorem 29 (Convolution theorem). Let R(F) be pathwise differentiable at F w.r.t the
model M with EIF Dp(H). Let R(H") be a reqular estimator sequence at F' w.r.t the tangent
space T (F) with limiting distribution L. Then, if the tangent space Ty (F) is a cone, then,
the term

/ u?dL(u) — E[D%(H))
18 mon-negative.

B.2. Proof
Proof of Theorem 1.

Efficient influence function under M;. The entire regular (regular model as defined
in Chapter 7 van der Vaart, 1998) parametric submodel under M is

{pa(s0)po(aolso)pe(rolHae)Po(s1|Hao)Po (a1 s, )o(r1|Hay) - - - po(rr|Har)

where it matches with a true pdf at 6 = 0.
The score function of the model M is decomposed as

T T T
9(Ter) =Y _ Viogps(seHa, ) + > Viogpy(ar|Hs,) + Y Viogpo(re[Ha,)
k=0 k=0 k=0

T T T
= ZQSkW%_l + Zgak\%k - Zgrkmak'
k=0 k=0 k=0
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We first calculate a derivative for the target functional w.r.t the model M. Note that
this derivative is not unique. We have

tZOT T
=V [/ > {H po(sk|Hry_,)Pre (ak|Hsk)p9(rk|Hak)} d#(jsT)]
t=0 k=0
T
= Z{Eﬂe [{Exe(relso) — Exe(re)}gso] + Ene[{re — Exe (TC|Hac)}g'f’c|Hac]
= T T
+ Ewe <Eﬂ—€ [ Z Tt|Hsc+1 - E7r€ Z rt|,Hac]> gsc+1|HaC]}
t=c+1 t=c+1
T
= Z{Eﬂe[{Ewe (relso) = Exe (1e)}9(Tsr i1 )] + Ene[{re — Ene(re[Ha.)}9(Tsr)]
- T T
+ Eﬂ'e <E7'rE Z Tt|HSc+1] - Eﬂ'e Z Tt|Hac]> g(jST)]}
t=c+1 t=c+1

T

T T
"+ {Acrc XY Er (ri[Ha.) + A1 Y En, (’f’t!%sc)}] g(jsT)) :
c=0

t=c t=c

:E<

This concludes that the following function is a derivative:

T

T T
pé\f/fll — _I07re + Z {)\crc — )‘CZEﬂe(Tt|Hac) — )\c—l ZEﬂe(Tt|%5c)} . (16)
c=0 t=c

t=c

Next, we show that this derivative is the efficient influence function. In order to show
this, we calculate the tangent space of model M;. The tangent space of the model M; is
the product space:

At — {Q(Sta %at—l); E[q(St,%at_lﬂHat_l] — Oa q S L2}7
Bt = {q(atv}[st);E[q(ahHSt)’HSt] == 07 q S L2}7
Cr = {q(re,Ha,); Elg(re, Ha, ) Ha,] = 0, ¢ € L?}.

The orthogonal space of the tangent space is the product of

D W DBD) (17)

0<t<T

40



DOUBLE REINFORCEMENT LEARNING IN MARKOV DECISION PROCESSES

such that

AP A= AL AL = {a(Te): Ela(Te)| T ] = 0, q € L2,
B{@ B: = B/, B} = {4(Ju,); Ela(Ja,)| T, = 0, q € L?},
i Ci =l O = {a(T, )i Ela(Tn)|Ta) = 0, g € L},

More specifically, we have the following lemma.
Lemma 30. The orthogonal tangent space is represented as
Ag = {Q(Jst) - E[Q(jst)’/HSt];E[Q(tﬁtﬂjﬁ—l] =0,q¢ LQ} )

B£ = {Q<jat) - E[Q(jat)‘Hat];E[Q<\7at)‘\75t] =0,¢q¢ Lz} )
Clg = {q(jTt) - E[Q(jrt)’Htlwrt];E[Q(j'l’t)’jat] =0,q¢ L2} .

Proof. We give a proof for Aj. Regarding the other cases, it is proved similarly. First, from
the definition of the conditional expectation, A} and A; are orthogonal. Thus, what we have
to prove is E[q(Js,)|Hs,] is included in A;. This is proved as follows:

E[E[q(Ts)Hs )Mo, 1] = Ela(Ts)Ha, 1] = E[E[g(Ts)|Tr, 1 ][Ha, 1] = 0. B

If we can prove that the influence function Eq. (16) is orthogonal to the orthogonal
tangent space Eq. (17), we can see that the above derivative is actually the efficient influence
function under the model M. This fact is shown as follows.

Lemma 31. The derivative Eq. (16) is orthogonal to { Ay, {B/Y,, {CI}E,

Proof. The influence function is orthogonal to A} : for t(Js,) € A}

T T T
E {_Pﬂe + Z Ac(Ha)re — {)\C(Hac) Z Ere[re|Ha.] — Aem1(Ha, 1) Z Ere[r[Hs.] } } (T )]
. c=0 . t=c t=c
=E {Z )\C(Hac)rc — k-1 Z Ere [Tt’HSk]} t(jsk)]
c=k t=k
=0.

The influence function is orthogonal to By: for ¢(J,,) € By;
T T T
{—pﬂ + ) Aere — {Ac > Erelre[Ma] = Aeo1 Y EnelriHs,] } } t(Jak)]
c=0 t=c t=c
T T T
{Z AcTe — {/\C ZEWE [rt|Hae] — Ae1 ZEWE [re|Hs.] } } t(jak)]
c=k t=c

t=c

{ {Z )\crc} - {)\k > Ere[ri|Ha,] } } t(jak)]
c=k t=k
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=K

T T
{{)‘k ZEWE [Tt|Hak]} - {)‘k ZEWC [Tt|Hak]}}t(‘7@k)] =0.

t=k t=k

The influence function is orthogonal to C}: for ¢(J,,) € C};

T T T
E {_pﬂe + Z )\C(HGC)TC - {/\C(Hac) Z EWE [Tt|Hac] - )\C_]-(Hac—l) ZEWE [Tt‘/Hsc] } } t(jrk)]
i . c=0 t=c t=c
= {Z c(%ac)rc} t(jrk)]
- c=k . .
=E {{Ak_l > Ere [rtmk]}} t(Tn)| =E [{Ak_l > Ere [nlﬂak,m]} t(m]
L t=k t=k
B T
=E {{)\k—l Z Ere[re|Hay, 7] }} Elt(Jr.) | Hay, Tk]] =0. O
L t=k

This concludes the proof for M;.

Efficient influence function under M;y,. Next, we show that the efficiency bound is
still the same even if we know the target policy. To show that, we derive an orthogonal
space of the tangent space of the regular parametric submodel:

{po(s0)p(ao|so)pe(ro|Hao)re(s1|Hre)p(a1|Hs, )po (11| Hay ) - - - Po(r7|Har )},

where p(as|Hs,) is fixed at 72. This is equal to
D DB Do (18)
0<t<T

This space Eq. (18) is orthogonal to the obtained efficient influence function under M;.
Therefore, the efficient influence function under My is the same as the one under M.

Efficiency bound. We use a law of total variance (Bowsher and Swain, 2012) to compute
the variance of the efficient influence function.

T
var [Z (Mere — (Mg — )\t—lvt))]

t=0

T+1 T r T :
=) E|var (E Mcarr+ Y wre — gk — Ar-1ve}) [ Ta \Jatl>]
=0 L

L k=0 i

T+1 i r T 7
=Y E|var (E Mcarer+ Y wre — gk — A-1ve}) [ Ta ‘jat1>]
=0

L =t ]
T+1 T - T 1
= Z E |var (E At—1Tt—1 + (Z Ak%) — { @ — M—10eH T, ‘jat1]>
=0 L L =t |
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T+1
= Z E [x\?,lvar (re—1 + ve(Hs,) | Ha,_y)] -
t=0
Here, we used E[Zg:t ATk Tar] = NeQr- M
Proof of Theorem 2. The proof is analogous to the proof of Theorem 1. O

Proof of Theorem 3.
Efficient influence function under Ms. The entire regular parametric submodel is
{pe(s0)pa(aolso)pe(rolso, ao)pe(silso, ao)pe(ailsi)pe(rilsi, ar) - pe(rr|sr,ar)}.

The score function of the parametric submodel is

T

9(Jer) = Vologpa(si | sk-1,ar-1) + Vologpg(ari1 | sk) + Vologpa(re | sk, ax)
k=0

T T T
= E :gsk|5k—17ak—1 + E :gak+1|5k + E :grklskvak'
k=0 k=0 k=0

We first calculate a derivative of the target functional w.r.t the model M. Note that
this derivative is not only derivative. We have

T
VQEWe Z 7"t
t=0

T
:VG/ZTt{Hpe Skl@k—1, Sk— 1)pwk(ak|3k)p9(rk’ak7Sk)}dﬂ(jsT)
=0

t=0
T
= Z{EWE [(Ere[relso] = Ere[re])gso] + Ene[(re — Ere[re|se, ac})grc\sc,ac]
c=0
T T
+ Eire (Eﬂe[ Z rt|se1] — Ene| Z Tt|507ac]> gSchlSc,[lc]}
c=t+1 c=t+1

T Pre(Se, ac)
S (E((Elrelso] — Exelrel)g] + E [ 20, Bl ac]m]

g Db SC7aC)
Pre(Se, ac) d -

+ B | BBl [ S psen] B[ Y welse ad)g |}
Do (SC? CLC) t=c+1 t=c+l1

T T
e e elS ,CL elS y
[ p7r + E {i”b © C Te _ Pr (SC ac E Er. Ttlscaac} + p7r el e 1 E Er. Tt‘sc }] (\73T)]
- cy c t=c

pw( pﬂ—b(sc 1y Qc— 1

43



KALLUS AND UEHARA

Therefore, the following function is a derivative:

T
e p7f6<387ac> p7r8 pwe Sc—1, Ac— 1
—pT _|_§ e O . E Ex [re|sc, ac] — g Er [rt]se] ¢ -
C
t=c

pwb Sc—1, Qc— 1
(19)

We will show this derivative is the efficient influence function.
In order to show this, we calculate the tangent space of model Ms. The tangent space
of the model M is the product space;

D DB D,
0<t<T
Ay = {q(st,8t-1,a4-1); E[q(s¢, s¢-1,a0-1)|s¢-1,a0-1] = 0, q € LQ};
By = {q(as, 51); Ela(as, s1)|s:) = 0, ¢ € L?},
Cy = {q(rs, 5¢,a¢); E[q(ry, s¢, a0) |56, a] = 0, g € L?}.

The orthogonal space of the tangent space is the product of

D DB Do (20)

0<t<T

such that

AP A= AL AL = {a(T): Ela(Te)| Ty ] = 0, q € L2,
B/@P B: = B, B/ = {q(Ja,); Ela(Ja,)|Te,] = 0, g € L*},
Cip =y, & ={a(F); Ela(F)|Ta) = 0, g € L},

More specifically, the orthogonal tangent space is represented as

= {Q(‘jst) - E[Q(jSt)‘Stva’t—lvSt—l];E[Q(jSt)‘jﬁ—J = 07 qc LZ} ,
= {q(jat) - E[q(tjm)‘stvat];E[Q<~7@z)‘~75t] =0,q¢€ L2} )
= {Q(jh) - E[Q(\Z’t)’rt’ St?at];E[q(jTt”jat] =0,q¢ LQ} :

If we can prove that the derivative Eq. (19) is orthogonal to the orthogonal tangent space
Eq. (20), we can see that the above derivative is actually the efficient influence function
under the model M. This fact is shown as follows.

Lemma 32. The derivative Eq. (19) is orthogonal to { ALY ABIYE,, {CIYE,.

Proof. First, the influence function Eq. (19) is orthogonal to Aj; for t(Js,) € A}

T
{Uo + Z pa(se; ap) (e + vp1 — Qt)} t(jsk)]

t=0

E
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|

(h—1(Sk—1,ak—1)(Tk—1 + V& — @e—1)t(Ts, )]
[h—1(Sk—1, ap—1)vrt(Ts,)]
(-1 (Sk—1, ax—1)VEE[t(Ts, ) |Sks ak—1, Sk—1]] = 0

I
e

T
{ Z (st ae) (1 + vegpr — Qt)} t(‘jsk)]

=k—1

I
Bl s Bl o)

Second, the influence function Eq. (19) is orthogonal to By; for t(Ja,) € By,

T
E {Uo + Zﬂt(st, ap)(re + vep — Qt)} t(jak)]
Tt_O
=E [{Z (st ag)(re + vegr — Qt)} t(jak)] =0.
—k

Third, the influence function Eq. (19) is orthogonal to C}; for ¢(J,,) € C},

E

T
{Uo + Zut(st, ay)(re + vip1 — Qt)} t(Try,)

t=0

T
=EB [{Z pe(Ses ap)(re + vegpr — Qt)} t(jrk)]

t=k

E [{ (s, ar) (k. + vk 1 — ax) (T,
E {1 (s, ar) (Elrg + Elvk11|Tr k] — ar) } H(Tr,)]
E {1 (s, ar) (i + Elvitlsk] — ax) } E[E(Tr) sk, ak, Ti]] = 0.

D WP Po.

0<t<T

var

T
vo + Z pot (e, a) (1 4+ Ve — Qt)]
=0

T+1
= Z E lvar [E
0

T
vo+ Y (ks an) (T + Vpgr — Qk)|\7at] \jaH”

t=0

t
T+1 T
=) E !Vﬁr !E [ D k(s ar)(ry + vipr — qk)’jat] |s7at_1”
K

t=0 =t—1
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Efficient influence function under My,. In Theorem 32, we check that the qbé\f/fm is
orthogonal to B”;. This concludes the proof noting that the orthogonal tangent space of

Mgb is

Efficiency bound. To show an efficiency bound, we use a law of total variance (Bowsher
and Swain, 2012). Recall that we can also easily derive this variance form using another
equivalent form of efficient influence function.
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T+1
= Z E [var [E [p—1(st—1, a—1) (re—1 + ve — @—1)|Tar) | Tar_1 ] |
t=0
T+1
= Z E [var [pe—1(si—1,ai-1)(r—1 + vt — @t—1)|Ta, 1 |
=0

T+1

= Z E [,u?_l(stq, a—1)var [(thl + Ut(st))|~7at71ﬂ :

t=0

O
Proof of Theorem 4. From Jensen’s inequality,
T+1 T+1
Z E [Af_lvar {re + ve(st)|s¢—-1, at_l}] = Z E [E(A?_ﬂst_l, ag—1)var {ry + ve(se)|si—1, at_l}]
t=0 t=0
T41 T+1
> BB\ alsi-1,ai-1)*var {ry + v(si)|s—1,a0-1}]) = > B [ gvar {re + ve(sy)[si-1, ae-1}] -
t=0 t=0

When A?_; is not constant given s;_1, a;—1 and var {ry + v¢(s¢)|st—1, ar—1} # 0, the inequality
is strict. O]

Proof of Theorem 5. By changing the limits of summation and letting r_; =0, A\g = 1, we
can write the efficiency bound under NMDP as

T+1 T+1
Z E [)x,?_lvar {rt,1 + v (Hs,) | Hat—l}] < T+t Z E [)\t,lvar {’f’t—l + Ut(Hst”Hat,lH
=0 =0

T+1

=T+l Z Ere [Varne {"”t—l + (M) Ha, s }]
t=0
T+1
_ T+ Z E e [var {T't—l + v (Hsy ) [ Haes }]
t=0
T+1
- CT+1var[Z 1]
t=0
< CT—i-l(T + 1)232

max*
The last equality follows by the law of total variance.
Similarly, the efficiency bound under MDP is

T+1 T+1
Z E [M?AV?H {reo1 +ve(se) | se-1, at—l}] < Z E [p—1var {r¢—1 +ve(s¢) | se-1, ai-1}]
t=0 =0
T+1
= Z Ere [var {ry_1 + vi(se) | S¢—1,a1-1}]
t=0
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T+1

=’ Z Ere [varge {ri—1 + vi(s¢) | se—1, ar—1}]
=0
T+1

= Clvar[z Ti—1]

t=0
< C'(T +1)*R?

max*

The last equality again follows by the law of total variance.
Finally, for the NMDP lower bound we have by Jensen’s inequality

741 741
Z E [\ yvar {ri_1 +ve(Hs,) | Har s }] = Z Ere [M—1var {ri—1 + vi(Hs,) | Ha,_, }]

t=0 t=0
T+1

> Z exp Ere [log(A—1var {ry—1 + v¢(Hs,) | Hae_r })]
t=0
T+1

> Z exp(Ege [log(At—1)] + Ere [var {ri—1 + ve(Hs,) | Ha,_1 })])
o

> Z exp(t log Cinin + log V.2,
t=0

> V2 CT+1

min~'min *
OJ

Proof of Theorem 6. Without loss of generality, we consider the case K = 2. Define
o({ e} {dx}) as:

T
> Ak — e — Meo1Bre Gk (Hay ) [ Ha ]}
k=0

The estimator ﬁgARlL( M) is given by

S oA G D) + e ()6,

where P, is an empirical approximation based on a set of samples such that i € Dy, Py, is
an empirical approximation based on a set of samples such that ¢ € Ds. Then, we have

VP, s((AMY {61 = ™) = VG, [0} {60 — s({ ), {ax})] (21)
+ /G [0} {0 1) (22)
+VREBIN YA DI Gy - ™). (23)

We analyze each term. To do that, we use the following relation:

d({Ae} {@}) — 60}, {@x}) = D1+ Do+ D3, where
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T

D1 =Y (A = M) (= + ar) + (Ak—1 — Ao—1) (D — vp),
k=0

T
= M=k + ar) + M1 (0 — vi),
k=0

T
Dy = (Ak = M) (rk — @ + ves1)-
k=0

First, we show the term Eq. (21) is op(1).
Lemma 33. The term Eq. (21) is o,(1).

Proof. If we can show that for any € > 0,

Tim /PP, [0} (a1 — 60, {ax})] (24)
Els({AM (7)) — st {ar DAY {)] > Do) = 0,

Then, by bounded convergence theorem, we would have

Tim PP oA} 6D — o({) {ad)]
Elo(tA 1 Ad D — ek Aa DA Y 46 > e = 0,

yielding the statement.
To show Eq. (24), we show that the conditional mean is 0 and conditional variance is
op(1). The conditional mean is

BB 6O} (60 — o). fae )AL, [0
~Plo({ANY, {67} — ({0}, {ax )] Da] = 0.

Here, we leveraged the sample splitting construction, that is, /\é ) and q( ) only depend on
D5. The conditional variance is

var[y/miPn, [6({AG ) {6 D) — o({A ), {an]ID2)
— B[E[D? + D} + D2 + 2Dy Dy + 2D5Ds + 2D, D3[{d\"}, {A}]D,)
= op(1).

Here, we used the convergence rate assumption and the relation ||17,(€1) — g2 < chlil) — qk|2
arising from the fact that the former is the marginalization of the latter over 77. Then, from
Chebyshev’s inequality:

VPR oY Aa ) — e} aeh)] — Ble(A Y 4aD)
— (b Ao DI {d ) > €Dy
< Sy, [ () - 60 @ )IIDa] = 0,1, .
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Lemma 34. The term Eq. (23) is op(1).

Proof.
ViE[ <{X“>} (6" = Els({nd AaDIAM Y 4Dy
= \FE[Z( A a0 (= + ae) + AL = neo ) (=o + o AP (6

k=0

+ VnE| ZAk qk)+Qk)+)\k 1(0 ()—Uk)|{;\1(cl)}7{‘jl(cl)}]

k=0

T
+ VB[S D = ) e — i + ok ) O {0
k=0

~

T
= VAED A = (=Y + an) + AL = Ms) (=i + o) ALY (7))
k=0

T T
= v > OUIAY = Aellallaf” = anllz) = v Y- 0, (n7%) = 0, (1). =
k=0 k=0
Finally, we get
Vi@ o(IA, (a1 = V/n/miG [0}, {ar})] + 0p(1).
Therefore,
\/ﬁ(ﬁBeRL(Ml) - Pwe)

— 1 /(A1 {6MY) = p™) + na /v (B, 6 (AP, {671 — p™)
= \/nl/nGm MA@ D]+ Vn2/nGoy [o({ Ak}, {ar})] + op(1)
Guld({Ae}, {ar})] + 0p(1),

concluding the proof by showing the influence function of ﬁgeRL( M) is the efficient one. [J

Proof of Theorem 7. Here, a $ b means there exists constant () not depending on 7', Riax, C, n, C1, Co
such that a < Qb.

Define ¢({A\}, {dx}) as
T

Z Ak — { e — o1 B [Gr (Hay )| Hs, ] }-
k=0

The estimator pAg/tRlL( M) is given by

P oA A D + e ()6,

where P, is an empirical approximation based on a set of samples such that ¢ € Dy, Py, is
an empirical approximation based on a set of samples such that i € Ds.
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Then, we have

P s (AT AGY) = ™) = VI Gy [0 {0 — o) {a )] (25)

+ V 1/anfnl [(ﬁ({/\k}v {Qk})] (26)
+ BN DALY A - ™). (27)

We analyze each term. To do that, we use the following relation:

@b({j‘k}, {@x}) — 6({ e} {ax}) = D1+ D2+ D3, where
T

Dy =Y (A = M) (—dr + ar) + (A1 — Ap—1) (0 — vp),

k=0
T
Dy = Z e (=G + qr) + Ae—1 (0 — i),
k=0
T A
D3 = Z()\k — M) (T — Qi+ Vig1)-
k=0

Lemma 35. With probability 1 — 26, the absolute value of the term Eq. (25) is bounded by

9
n n

\/10g(2/5)T2(TRmaXCT+1‘/ng + k1 T2R2, + ko C2(TH1)) N 10g(2/8)T Rypax CT 1
up to some constant independent of n,C, Ryax, T .
Proof. From Bernstein inequality, with probability 1 — 9,
PlB () d")) = 600 {ai))]
—Blo(IA 4D — ek A DID1]| > €IDy]

“gexp (_ 0.5n€2 > |
B E{o(IAM Y (A1) — o), {ae))2IDa] + Q1 T Ry CT+ e

noting the conditional mean is 0;

B[P, [0({A ), {6 — o({Ak ), {an))IDy]
—Plo({ANY, {6 — (), {ax )] Da] = 0.

Here, ()1 is some constant independent of n, C, Ryax, T, 0.
With probability 1 — 4, the conditional variance is

E{o({AM1, {0 1) — ({0, {a}) 2]
= E[D? 4 D3 + D3 + 2D Dy + 2Dy D3 + 2D D3| Do

S T(T Rnax O™ /ariz + 51 (T Rina)? + 5202 THD),
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Therefore, with probability 1 — 26,

PP [6((} {3 — o({ud {axh)
— B3N M) — o} {aeD)IDi)] > €]|Dy]

0.5m €
<2 — .
= 2o ( Q2T2 (TRmaXCTJrl\/ K1K2 + K1T2R,2nax + K202(T+1)) + QlTRmaxCT+16>

Here, Q2 is some constant independent of n,C, Ryax,T,d. Then, by the law of total
probability and some algebra, the statement is concluded. O

Lemma 36. With probability 1 — 9§, the absolute value of the term Eq. (27) is bounded by

T\/Iill-ig.
up to some constant independent of n,C, Ryax, T, 6.

Proof. Here, we have

T
Elo({AV} a1 — Elo(nd DAY L1 < 37 2140 = Ml llas — alle.
k=0

Then, with probability 1 — 4, this is bounded by T'\/k1k2. O

Combining all results so far, with probability 1 — 65, we have

n N A n 3 - Te
S o AGD + S2 o () 7)) — o

log(2/8)T%(T RuaxCT 1\ /k1k2 + k1 T2 R2,, + ko C2(T+1)) N Q110g(2/8)T Rypax CTH1

< Q3T+/Kika + Qz\/
+ Py [o({A} {ae D] + Poy[0({ e}, {a})] — o™

Here, ()3 is some constant independent of n, C, Ryax, T. Noting |P,[o({ e}, {qx})] — p™| is
bounded by

n n

\/210g(2/5)Effbd(/\/l1) L@ 10g(2/0)T Ryax CT 1

n n

with probability 1 — J, the statement is concluded. ]

Proof of Theorem 9. We define ¢({\},{q}) as:
T ~ ~
> Ak — Meo1{ikdr — Bre [ (Hay, )M, ]}
k=0

The estimator p&g is given by Pn,é({\}, {dr}). Then, we have
VaPag({Mk} {dr}) = p7) = Gulo({Mn} {dr}) — o} {ar})] (28)
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+ Gulo({ e} {ar )] (29)
+ VBN L@ DA {ar}] — ™). (30)

If we can prove that the term Eq. (28) is 0,(1), the statement is concluded as in the proof of
Theorem 6. We proceqd to prove this.
First, we show ¢({\r}, {@}) — &({ ¢}, {q:}) belongs to a Donsker class. The transforma-
tion
T

{dAae}) = D Mk — {wak — Mo 1B g (Mo, ) [ Ha |}
k=0

is a Lipschitz function. Therefore, by Example 19.20 in van der Vaart (1998), <Z>({5\k}, {d})—
d({ A}, {qr}) is an also Donsker class. In addition, we can also show that

lo({Ne}, {dn}) — ({Aw}, {arD)ll2 = op(1),

as in Lemma 33. Therefore, from Lemma 19.24 in van der Vaart (1998), the term Eq. (28)
is 0p(1), concluding the proof. O

Proof of Theorem 10. Without loss of generality, we consider the case K = 2.
We use the following doubly robust structure

T
E [Z Akt = { k@i — Ak—1Enre (Qk|Hsk)}]
k=0

= E{Ezr<(qols0)} + E

T
Z MNelTk — qr + Ene (QkI”HSkH)}] =p".
k=0

Then, as in the proof of Theorem 6,

Vi(Pa, o({(AU Y {0 - o)
— VG AL} AGY) — (AL Tl D] + Vi fmiGan [6(ALY, (a1

+v/n/m BB G DALY G — Bl (gl D) + VaEls({AL) {afh] - »™)
= /011G, [S(AL} {af D]+ VAEIS(ALY, {af )] — 0™) + 0p(1).

Here, we used

€

VTG (D), (60} — s} {al1)] = 0p(1)

from Theorem 33 and

Vi E(AD Y L DALY AN — Elo(A g D) = 0,(1),
which we prove below as in Theorem 34.

Lemma 37.
Vi m Bl @ NIAMY, (6 - Elo(IALY, {af 1)) = o,(1).
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Proof. First, consider the case where A\, = )\L.

VnE[p [¢ ({)\ }{A(l)}) Elo({\}, {qk})”{)‘ }{A(l)}]
T
= VAES O = 0=+ ab) + O = M) o+ oD ALY (a1

k=0

T
+ \/EE[Z (@ = ab) + Mo (0 — DAL (6]

T
+ VB (ALY = M) — af + ol DAY )]

k=0
T
= VB[ () = A (=4 + ) + ALY, = Moo o+ DI gl
k=0
T
+VEQ () = M) (re = af + ol )AL (6]
k=0

T
= v 3" O(IAY = Aell2llat” — abllz + 1A — Axll2)

k=0

T
= V3 {0570, 1)+ Oyl )} = Oyl1)
Next, consider the case where ¢, = q,i:

VRE[G(LAWMY, {87 = Elo(AL) {aeDIHAY Y, (6]

T

_fE[Z( )\T)( (1)+(1k)+(5‘1(:_)1—)\2_1)(—@k+vk)!{)\ 1 {A(l)}]
k=0
T

+ VRE(Y AL - a) + Ay — o) A (@)
k=0

T
= VY O = Alllald” = anllz + 116" — aul2)
k=0

_IZ{O n=)0,(n"2) + 0p(n*2)} = Op(1).

Using the above result, we prove the statement for each case below.

A-model is well-specified. First, consider the case when )\}; = A\g:
T
Elo({Ae}, {af )] = ED_erk — kgl (Ha,) = A1 Ene gl (o, )lst]]
k=0
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T
= E[Z o] = p
k=0

Then,
V(B d({AD T AGT) — 07 = Vi /m G, [6({), {af 1] + 0,(1).
Therefore,
VB aL oy — P ) = V1 /G, [0({k} {al D] + V2 /G [0({Ak} {al})] + Op(1)

Gnlo({Ae} {af 1] + 0p(1) = 0,(1),

which shows ﬁgERL( M) is y/n-consistent around p™ when the model for the behavior policy

is well-specified.
g-model is well-specified. Next, consider the case where q}; = Q.

T

E[d)({AL}? {Qk})] =E Eﬂ'e [QO(HCLONSO] + Z )\L{Tk - Qk(Hak) + ET(e [Qk(Hak)|Sk+1]}
k=0

=E[Eq [QO(%ao”SO]] = pﬂe'

Then,

VP o((A} ) = V/n/miGu, [H({AL} {a D] + Op(1).

Therefore,

ﬁ(ﬁghwn—pﬂe —\/m/nGm DL Aa D] + Vo /nG[6(IAL} {ah)] + 0,p(1)
Calo({AL} {anh)] + 0p(1) = 0, (1).

which shows ﬁBeRL( M) is \/n-consistent around p™ when the model for the g-function is
well-specified. O

Proof of Theorem 11. Without loss of generality, we consider the case K = 2.
Then, as in the proof of Theorem 6,

Pa,d({A} {011 -

—Jl/Tle S({X} }{q,i“}) SUNIAGD] + V11 G, [6({AL} {a] 1)
/n (Blo({A 1 AG DAY (a7 = Ble({AL) {af DD + @lo(AL gl D] - »™)

= Jl/Tle (AL} (gl D] + Blo(AL {af D] = p™) + 0p(1)

= (Pn, — P)[o({AL}, {af D] + 0p(1).

Here, under the assumption, we use the following equations:
VMG [0} 43 — 6L Aal D] = 0p(1)
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ElR(AMY (DAY (Y] = Elg(ALY {ab D)) = 0p(1)
(EBlo({AL} {gf D] - ™) =0.

These equations are proved as in the proof of Theorem 10. Then,
(PhrLwy) =) = Bay = P)BUN Y {alD] + (Buy = B)SUNY, {f )] + 0p(1)
= (IP’n —P)[p({A ) {alh] + Op(l)‘

From the law of large numbers, the statement is concluded.

O]

Proof of Theorem 12. Let any ¥ be given. Due to boundedness away from zero, we have

; k 1 k
ﬁi m zﬁHﬁ
7t 0 7o L b

t=0 "t t=; "'t t=0 "t t=i

k

Hlt_

0=t

2

k
<> o,I11/a — 1/lll)
=0

Proof of Theorem 13. Without loss of generality, we consider the case K = 2.
Define ¢({/ix},{dx}) as:

T

> indre = Gk} — fth—1Ene G (Ha, ) [ Hs, 1}

k=0
The estimator pprr,(am,) is given by
n A X
P o({i }Aa ) + 2P} a7 ))-

Then, we have

Vi@ o({a" () = 07) = Vi/m G [0, 160D — 6 e} (31)
+ /)11 Gony [0({iai}, {ar )] (32)
+VaEREA A A - ™). (33)

We analyze each term. To do that, we use the following relation;
o({ig ¥ {d") = omn} {a}) = D1+ Do+ D, where
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T
Dy =Y (i — m) (=" + ak) + (A — ) (B — i),
k=0
T
D= mn(—a" + a) + po1 (0 — w),
k=0
d 1
Dy =" (" — ) (i — @i + vis1)-
k=0

First, we show the term Eq. (31) is o,(1).
Lemma 38. The term Eq. (31) is o,(1).

Proof. 1f we can show that for any ¢ > 0,

Jim PR [ 1 a0 — o(ug ) (g D) (34)
~ Bl ) — o). (@A), 160)] > Do) = .

Then, by bounded convergence theorem, we have

Tim PPy 6} 0 Y) — o({me} {and)]
—Elp({a"}.{a") — o), {a DY, {71 > d = o,

yielding the statement.
To show Eq. (34), we show that the conditional mean is 0 and conditional variance is
op(1). The conditional mean is

E[P, [o({a"}. {371 — oL} {an DALY, (a7 ) -
Plo({ag"} 4" — o({m}, {ar})][D2] = 0.
Here, we used a sample splitting construction, that is, ,LAL](;) and qA,(Cl) only depend on Ds. The
conditional variance is

var[y/mi P, [o({a 1 {6 )) — oL}, {a )] D)
E[E[D} + D3 + D2 + 2D Dy + 2D2 D + 2D D3 [{d\"}, {us"}]| D)
= op(1).

Here, we used the convergence rate assumption and the relation Hﬁ,(:) — vkl < H(j,(:) — g2
Then, from Chebyshev’s inequality;

VPP, [0 (a7 )) — o). {an))] — Elo(al ), (@ )~
o({u}s {a DAY {1V} > ¢ Do)
< varl P (A}, (7)) — o({ud, {ae))]IDa] = 0p(1). .
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Lemma 39. The term Eq. (33) is op(1).

Proof.
ViE[¢ <{uk }, {qm}) Elp (s {an DI} {a"Y)

— VnE| — ) (=0 + ) + () — ) (0 — o) A, (60
k

+ VnE| (w}i” + i) + 1 (8 — o) {3, ()]

+ VB (1Y = ) (ke — g+ oe ) {01, {6

imﬂfgw

T
= VB[ (i = ) (=d + a) + (02 ) — w0 (=03 + o)l (g} {0
k=0
T . . T
= vy Ol = mellzlld” — aill2) = Vi Y 0p(n1/2) = 0,(1). O
k=0 t=0

Finally, we get

V(B o({a}, {3} = /G, [6({ 1}, {ax})] + 0p(1).
Therefore,
\/ﬁ(ﬁgm(m) - PFE)
= ny/nvnd({a) 1 {6 D) — ) + na/nv/a(Pay,d ({20} {6} — 0™)

= \/m/nGm e} {ae ] + Vn2/nGo, [d({px}, {ax})] + 0p(1)
Gulo({pr}, {ax )] + 0p(1),

concluding the proof by showing the influence function of ﬁ’ISERL( Ms) is the efficient one. [

Proof of Theorem 14. Almost same as the proof of Theorem 7. The differences are replacing
¢ with gy, and CTH! with ¢’ O

Proof of Theorem 15. We define ¢({fux}, {dx}) as
T
Z :&k{rk - (jk} - /lk*lE7re [qu(Hak)’HSk]}
k=0

The estimator pgRL(Mg),adaptive is given by Pro({fix},{qx}). Then, we have

VaPud({in}, (@) — p™) = Gulo({ i}, {dr}) — ¢({un}, {ar})] (35)
Gnlo({p}: {ax})] (36)
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+VnElp({uw}, {a )i}, {a}] — ™). (37)

If we can prove that the term Eq. (35) is 0,(1), the statement is concluded as in the proof of
Theorem 13. We proceed to prove this.

First, we show ¢({fix}, {G:}) — ¢({pt}, {q:}) belongs to a Donsker class. The transforma-
tion

T

e} Aa}) = D pre — {iwar — pr—1Bre [qe(Hay ) Ho )}
k=0

is a Lipschitz function. Therefore, by Example 19.20 in van der Vaart (1998), ¢({fx}, {dr}) —
o({pr}, {gr}) is an also Donsker class. In addition, we can also show that

lo({in}s {dr}) — o{pnts {ar})ll2 = op(1),

as in Lemma 33. Therefore, from Lemma 19.24 in van der Vaart (1998), the term Eq. (35)
is 0,(1), concluding the proof. O

Proof of Theorem 16. Without loss of generality, we consider the case K = 2.
We use the following doubly robust structure

T

B> ik — {unae — pr-1Ere (gl )}
k=0

= E[Er<(qo|s0)]] + E

T
> mndre —a+ Ewe(qk\skﬂ)}] =p".
k=0

Then, as in the proof of Theorem 6,

Vi, o({ag (a1 - o)
= Vn/mGn [o({i} (a1 )) — o({ul}, {q,t}>]+WGm[qs({uL},{qz})J
+v/n/m (Bl g s g} {6
Elo({u}}, {af D) + vaElo({ut}, {gh] — o)
= V/n/miG, [6({p}}, {af ] + Vn(Bg <{:U’k}’{Qk})]_pﬂe)+Op(1)'
We proceed by considering each case.

u-model is well-specified. First, consider the case when /‘L = Up:

T
Elo({u}, {al})] = Z st — {1k} (Sky i) — foe—1Ene [q} (51, ax)|s]]
. k=0
=ED_mri] = o™
k=0
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Then,
Vn(P n1¢({ﬂk } {qk = V/n/m Gy, [p({ 11}, {qk})] + Op(1).
Therefore,
VI (BTRL ) — 07 ) = V1 /nGo [6({mk}, {aL 1] + /2 /mGy [é({m}, {af 1] + 0p(1)

Gnlo({ue}, {af 1] + 0p(1) = 0p(1),

which shows ﬁgRL( Ms) is \/n-consistent around p™ when the model for the u-function is
well-specified.

g-model is well-specified. Next, consider the case where q}; = qi:

T
E[qﬁ({ﬂl}, {ar})] = E |Exelq(sk, ar)|s0] + Z ,U«L{Tk — qr(sk, ar) + Exe[qu(Sk, ar)|sk+1] }
k=0

e

= E [Ex<[q0(s0, ao)|s0]] = p™ .

We have
V(B 6 G — 07) = Vi /miGo, [o({ud } {ak )] + Op(1).
Therefore,
V(BB rL oy — P ) = V/mG [({uh ) L D] + v/n/naGay [o({u) ), {ax})] + Op(1)

Gulo({uf}, {ax )] + 0p(1) = 0p(1),

which shows ﬁgeRL( Mb) is /n-consistent around p™ when the model for the g-function is
well-specified. O

Proof of Theorem 17. Almost the same as the proof of Theorem 11 O

Proof of Theorem 18. We first prove

P [ ()] = Pulwe(se)nere] + Pul(A—1 — wi(se))Er, [re]se]] + 0p(n™/2).  (38)

Noting
:L;]I [sgi) = Sti| At—1 — Pre(5t) . = op(n_1/4),
LS s — o] —py(on)| = oplu ),
n =1 o)
a/b=b""1—b""(b—b)}{(a—a)—a/blb—1b)},
we have

wi(se) — we(se) + op(n~ ')
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’E
:!
—
——
SRS
T 3

I [ = st} A1 —pwte(st)} — wy(st) {; '” I [sl(f) - 5t:| _pwi’(st)}] .

i=1

P [t (st)nert] Zw g+

no @) @) [.n n
1 N Ty OEENOIING! (i) G) _ ()
—l-ﬁz @ Z]I[st =5 })\t_l—wt(st )Z]I{st =3 }
=1 p7r (st ) j=1 le
2 —1/2
=Ty 2 2 ) + o)

where

t Ty

Or1[s) = 5

al-j =
From U-statistics theory, by defining b;; (H¥, H9)) = 0.5(a;; + aj;), we have

1) 246 2 — ; ; ; _
n_l 2 by (MO = 05 Elbi (WO, HOHO) + 0p(n™'7%).

z<j

In addition,

Elai //HD] = n0r® fw, (s) — wy(s)} = 0,

(1), [ 0) — (@)
, nery L [St =5 }
Blaji 1) = . Ay = ws)) O
pﬂg(sij)) ( )

= A\, — wMERY s

Therefore, we have shown Eq. (38). Summing over ¢ yields

T T
Z (st ntrt] =P, [Z {we(se)mre + M—1En, [1e]se] — weBnr, [re]se]}| + op(n~/2),
t=0 t=0
which concludes the proof by establishing the influence function for pyps. O

Proof of Theorem 19. The difference of the influence functions belongs to the orthogonal
tangent space. Therefore, the difference of variances is the variance of the difference of the
influence functions. This is equal to

T

vo + Z —peqe + paverr — {1 — wi(s) }Er, [Tt|5t]]
t=0

var
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THL T T
= var[vg] + Y | E |var (E > =tk + prviir — { k-1 — wi(sk) Er, [kask”j&] \‘7&_1)]
=1

Lk=0

T+1 T r T
= var[vg] + Z E |var (E M1V + Z — gk — {Ak—1 — wi(sx) } Enr, [rk|sk]]jst] ]jst1>]
t=1

L L k=t
T+1 [ r T
= var[vg] + Z E |var (E 1V — Z Me—1Er, [rk]sk]\jst] \$t1>]
=1 L L k=t
T+1
= var[vg] + Z E [Var (E [pe—1vr — Ae—10(8¢)| T, ) |\73t71)]
t=1
T+1
= var[vg] + Z E [var ({pe—1 — Me—1}ve(se)|Ts,_y) |
t=1

T
= var[vg] + Z E [{wi—1 — \—1}?var (ni—1ve(se)[se-1)] -
=1

Proof of Theorem 20. We have

Vn{P|

wcnc(sw ac)rc] - pﬂe}

- 109+

T T
7j’cncrc - Z wcncrc] + Gy, [Z wcncrc]
c=0 c=0

T
+ \/ﬁ E{Z wcncrc’{ﬂc}} - pﬂ-e}
c=0

= Gy

I
o

C

T T
= Gn[z wenere] +v/n {E{Z Wenere[{fic}} — Pwe} +0p(1)
c=0

c=0

T T
=op(1) + Gn{z Wenere} + Gn[z{)\cfl — we(Se) tEr, [re[sc]]-
c=0 c=0

From the second line to the third line, we used a fact that the stochastic equicontinuity
term is 0,(1) as in the proof of Theorem 9 because {w.n.r.} belongs to a Donsker class and
the convergence rate condition holds. This fact is confirmed by the fact that a Holder class
with o > dy, /2 is a Donsker class (Example 19.9 in van der Vaart, 1998).

From the third line to the fourth line, we have used a result of Example 1(a) in Section 8
of Shen (1997). More specifically, the functional derivative of the loss function with respect
to W, is

g(Sc) — {wc(sc) - )\071}9(50)7

and the induced metric from the loss function is L2-metric with respect to p.s(s.). The
functional derivative of the target function with respect to ji. is

9(50) - E[g(sc)ncrc] = E[g(SC)ET(e [TC‘SCH,
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and Riesz representation of the Hilbert space with the induced L?-metric with respect to
Dab(Sc) is Ex [rc|sc]. Therefore, from Theorem 1 in Shen (1997),

T

T
E[Z Wenere| {fic] — pﬂe = (P, - P) Z()‘Cfl — we(8¢)) B, [relse] + Op(n_1/2). ]
c=0 c=0

Proof of Theorem 21. The proof is done as in the proof of Theorem 20. We study the
following drift term:

E

T
S| ﬂc] |
c=0
Here, the functional derivative of the loss function with respect to fic(sc,a.) is

9(scsac) = Elg(se, ac) (e — Ac)l-

and Riesz representation of the Hilbert space with the induced L?-metric with respect to
Py, (Se, ac) is E[re|se, ac]. On the other hand, the functional derivative of the target function
with respect to fi is

9(507 ac) — E[g(sa ac)rc] = E[g(sa ac)E[rc‘Sw QC]L
From Theorem 1 in Shen (1997),

T
Zﬂcrc | fle
c=0

Proof of Theorem 22. We use the general framework developed in Chamberlain (1992) for
establishing the efficiency bounds. For the current problem, noting that the orthogonal
moment condition

T

Z()‘c — pe)Elrelse, ac] | + Op(n_1/2)- [
c=0

E =P,

E[€q7k+ieq,k] = E[E[6q7k+i|%ak+i]e%k“ =0, 0<k<k+i<T)
holds, the efficiency bound for 3 is represented as

T -1
{ZVﬁmkmak;5*)2;1(Hak)vgmk<mk;ﬁ*>} :

k=0

where ¥ (H,,) = var(eg|Hq,]. The statement of the theorem for the efficiency bound
for 3 is arrived at by algebraic simplification of the above. The efficiency bound of p™" is
calculated similarly. O

Proof of Theorem 23. Note var(eq ;|Ha,| and var[eg x—1|Ha, ,] are upper and lower bounded
by some constants by assumption. From Jensen’s inequality, we also know

E[¢®] = E[E[¢*[Hs,] > E[E[g|H,]?].
This conludes that there exists some constant C7, Cs such that

Cillglle < llgllzx < Callglle- =
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Appendix C. Additional Details from Section 5.2

CIliff Walking. This RL task is detailed in Example 6.6 in Sutton (2018). We consider a
board of size 4 x 12. The horizon was set to T' = 400. Each time step incurs —1 reward
until the goal is reached, at which point it is 0, and stepping off the cliff incurs —100 reward
and a reset to the start.

Mountain Car. The RL task is as follows: a car is between two hills in the interval
[—0.7,0.5] and the agent must move back and forth to gain enough power to reach the top
of the right hill. The state space comprises position and velocity. There are three discrete
actions: (1) forward, (2) backward, and (3) stay-still. The horizon was set to 7" = 200. The
reward for each step is —1 until the position 0.5 is reached, at which point it is 0. The state
space was continuous; thus, we obtained a 400-dimensional feature expansion using a radial
basis function kernel as mentioned.

The Policy m4. We construct the policy 74 using standard g-learning (Sutton, 2018). For
Cliff Walking, we use a g-learning in a tabular manner. Regarding a Mountain Car, we use
g-learning based on the same feature expansion as above. We use 4000 sample to learn an
optimal policy.
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