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We study real-time routing policies in smart transit systems, where the platform has a combination of cars and
high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform
can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed
routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social
welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied
topic in the transportation literature, for which existing solutions are either heuristic (with no performance
guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end,
we developa 1 — % — ¢ approximation algorithm for the Real-Time Line Planning Problem, using ideas from
randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions:
(i) no inter-bus transfers and (ii) access to a pre-specified set of feasible bus lines. We moreover show that
these two assumptions are crucial by proving that, if either assumption is relaxed, the Real-Time Line Planning
Problem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our
algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a
fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.
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1 INTRODUCTION

In the past decade, the advent of ride-hailing platforms such as Lyft and Uber has revolutionized
urban mobility. While commuter transit needs in cities were traditionally satisfied by personal
vehicles or mass transit systems, ride-hailing platforms have grown immensely in popularity and
gained a seemingly permanent footing in the landscape of mobility solutions. However, despite
the increasingly important role played by Mobility-on-Demand (MoD) services in today’s society,
the intermingling of various modes of transportation has yet to make its way into the status quo:
by and large, if not for using their personal vehicles, commuters either choose to complete their
trips in a low-capacity ride-hailing vehicle, or opt for public mass transit options, each of these
options equipped with their respective benefits and disadvantages. On the one hand, ride-hailing
services have been lauded for their convenience, competitive pricing, and the creation of flexible,
gig economy jobs. On the other, these services have been associated with negative environmental
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impacts, chief of which are increased emissions due to higher volumes of traffic congestion and
vehicle-miles traveled. Moreover, despite the fact that these options are often less expensive than
taxi services, they remain out of reach for lower-income populations, for whom mass transit such as
bus and subway services remains the most accessible option. And, while these public transit systems
are more affordable and environmentally sustainable, they fail to adequately serve areas that are
not as densely populated. Further, due to their inability to dynamically adapt to passenger demand,
public transit vehicles are often overly packed during rush hour and significantly underfilled in
off-peak hours [20], an inefficiency from which ride-hailing options do not suffer.

In light of this, it should be clear that there exist potentially massive gains from integrating
the on-demand capabilities of ride-hailing services with mass transit options to create a smarter
transportation system. The benefits of such a synergy have been uncovered in both the academic
literature [39], as well as in the wild, with ride-hailing platforms such as Lyft experimenting
with mass transit-like options in recent years [24]. Indeed, the need for such integration has
become all the more stark throughout 2020, when cities have turned to microtransit as a means
of addressing reduced public transit services due to the coronavirus pandemic [25]. The value of
real-time, adaptive hybrid transportation options that retain both the convenience of ride-hailing
and the sustainability of mass transit, is perhaps best evidenced by New York City’s months-long
overnight, for-hire vehicle program for essential workers, discontinued in August 2020 due to high
costs [34]. The extremes of the mobility spectrum to which the Metropolitan Transit Authority
(MTA) turned as a stopgap in this relatively short period of time typifies the potential perils of
relying on an unintegrated system: the free, late-night for-hire vehicle program was a boon to
essential workers who had been deprived of a means to get to their shifts, but the city could not
sustain this as a long-term solution; mass transit solutions, though sustainable, were not flexible
enough to appropriately serve workers living in communities historically underserved by these
services [40]. As an alternative to these two extremes, the city recently turned to the creation of
overnight bus routes that mirror workers’ most popular trips [34]. In doing so, the MTA is faced
with a number of fundamental questions upon which the success of such a system hinges: given
these essential workers’ origins and destinations, which routes should the transit agency operate?
How frequently should it operate each route? How can short, for-hire vehicle trips help to connect
passengers to these routes? This paper aims to answer these questions in order to effectively operate
such an integrated system.

Just as cities have yet to successfully operate integrated mobility services, the operations research
and transportation communities have by and large studied ride-hailing and mass transit systems
separately. On the one hand, there exists an active line of work on approximate-optimal policies
for dispatching drivers to ride requests, and rebalancing empty vehicles [2, 3, 10, 27]. On the other,
the problem of designing the optimal bus routes to serve passenger demand dates back to the
mid-1970s [30]. And, though the question of integrating mass transit and single-occupancy vehicle
solutions has attracted increasing attention in recent years, operational questions have largely been
restricted to using ride-hailing services to connect to pre-existing transit networks [28, 29]. The
joint problem of adaptively designing bus routes in near real-time, and connecting passengers to
these routes via ride-hailing services has to our knowledge yet to be explored.

The key obstacle in designing real-time algorithms with provable guarantees for transit-network
design is the size of the decision space: the number of possible routes is exponential in the number
of nodes of the road network. As such, approaches have either been heuristic [9, 12, 35] (lacking
any guarantees), or exact [33] (requiring extensive computation time); the former may lead to
severe losses in efficiency, while the latter are more properly suited for designing long-term bus
routes, rather than routes that adapt to changing demand patterns.
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In this paper, we show that it is possible to design efficient algorithms for line planning that both
provide passengers with the experience of near-real-time booking and service and have theoretical
guarantees. However, this is only true up to a point: as the designer expands her solution space of
feasible transit options, one runs into fundamental limits in terms of how good an approximation
one can hope to achieve via efficient algorithms. Overall, our work provides theoretically sound and
practically meaningful algorithms for real-time line planning, and also exposes the computational
limits of line planning.

1.1 Summary of our contributions

We consider a model in which a Mobility-on-Demand provider (henceforth platform) has control of
a vehicle fleet comprising both single-occupancy and high-capacity vehicles (henceforth cars and
buses respectively). The platform is faced with a number of trip requests to fill during a window
of time (e.g., one hour), and has full knowledge of passenger demands (source and destination
locations, and constraints on start and end times) prior to the beginning of the time window. This
assumption is practically motivated by scheduling services now offered by ride-hailing apps like
Lyft and Uber, and/or the use of accurate demand forecasting models. The platform can service
these trip requests via different trip options: it can send a car to transport the passenger from her
source to her destination; it can use a car for the first and last legs of the passenger’s trip, and have
her travel by bus in between; or it can use more complicated trips comprising of multiple car and
bus legs.

Each passenger matched to a trip option leads to an associated value (or reward), which can
reflect both the passenger’s utility for the trip-time, comfort, transfers, etc., as well as platform
costs in terms of car-miles; in addition, the platform also incurs a cost for operating each bus route
at a given frequency. We define the combination of a route and a frequency to be a line. The goal of
the platform is to determine the optimal set of lines to operate (given a fixed budget B for opening
lines), as well as the assignment of passengers to trip options utilizing these lines, in order to
maximize the total reward. We refer to this problem as the Real-Time Line Planning Problem (RLpp).

As discussed earlier, though there exist exact methods for solving the Line Planning Problem
that can be adapted to the RLpP setting (e.g., by formulating and solving an associated integer linear
program), the extensive computation time required to obtain the optimal set of lines runs counter
to our goal of computing short-term lines that adapt to demand patterns throughout the day. This
motivates studying the task of finding good approximate solutions to Rrpp. In this context, we
make two contributions:

1. We first demonstrate the computational limits of RLpp by showing that no constant-factor
approximation is possible if we relax any one of two assumptions: (i) access to a pre-specified
set of feasible bus lines, and (ii) no inter-line (i.e., bus-to-bus) transfers.

2. Under both above assumptions, we design an efficient algorithm for RLpp that respects budget

constraints with high probability, while guaranteeing a welfare that is within a (1 - % - 5) -factor

of the optimal (where ¢ trades-off the quality of approximation and probability of exceeding the

budget).
While assumptions (i) and (ii) are commonly made both in practice and in the academic literature,
our work provides strong theoretical justifications for these assumptions in that if either fails to
hold, there is no hope of obtaining a constant-factor approximation. Assumption (i) forms the basis
of all exact ILP-based methods; it is also practically relevant due to both constraints imposed by
cities on bus routes, as well as expert knowledge of transit designers as to which routes are useful.
Assumption (ii) reflects a practical constraint that, given a passenger may already incur car-bus
transfers in the first/last legs of her trip, additional bus-bus transfers could be deemed excessive.

, Vol. 1, No. 1, Article . Publication date: March 2021.



4 Siddhartha Banerjee, Chamsi Hssaine, Noémie Périvier, and Samitha Samaranayake

Even when both hold, however, we show that the problem is still far from trivial: in particular, it
does not inherit the attractive combinatorial property of submodularity, and so one cannot employ
standard techniques to get the classical 1 — % approximation guarantee [43]. Moreover, we also
show that the natural linear programming (LP) relaxation has a worst-case integrality gap of at
least 1.

In spite of this, in our main technical contribution, we provide a (1 -2- s) -factor approximation

for Real-Time Line Planning Problem. More specifically, our algorithm uses a novel LP relaxation
followed by a randomized rounding procedure, that can be tuned to guarantee that the budget
constraint is met with any desired high-probability bound, while losing an e-factor in the welfare
guarantee. Our key technical insight is that the Real-Time Line Planning Problem can be relaxed
and re-formulated as an exponential-size configuration LP, and that this formulation then allows
us to use ideas from randomized rounding for the Separable Assignment Problem [21]. We then
leverage the additional structure in RLpp to show that the rounding step is the only source of loss
in our algorithm. Our results hold under an assumption which we term trip optimality (i.e., of all
the ways in which a passenger can join a given line via car, she must be assigned to the best such
option). However, we later show how this assumption can be relaxed, and, with slight modification
to our algorithm, we lose at most a constant factor.

Finally, we investigate the practical efficacy of our approach via numerical experiments on

real-world and synthetic datasets. We note that, although our algorithm does not guarantee a
solution that is always within budget, in practice it is easy to run multiple replications (which are
cheap, and can be run in parallel) and choose the best realization satisfying budget constraints.
Our numerical experiments simulate this procedure, and we observe that given a time budget
on computation (as would be necessary for real-time line planning), our algorithm outperforms
state-of-the-art ILP solvers for large problem instances, thereby demonstrating its practicality for
the problem of designing integrated and flexible transit networks at scale.
Structure of the paper. In Section 2, we survey relevant literature. We present our model and
define the Real-Time Line Planning Problem in Section 3. In Section 4, we characterize fundamental
computational limits of Rrpp, establishing the need for a candidate set of lines and precluding bus
transfers; we also show that standard techniques are inadequate for our setting. We present our
main algorithm and guarantees in Section 5, and back this up with numerical results in Section 6
and Appendix C. Extensions to our main results can be found in Appendix A.

2 RELATED WORK

Line planning in public transportation: Our work falls under the large umbrella of transporta-
tion network design; see Farahani et al. [19], Guihaire and Hao [23], Magnanti and Wong [30] for
excellent expositions. Much of this work has historically involved heuristics, including greedy
approaches based on simpler network primitives such as shortest-paths and minimum spanning
trees [16, 22], and metaheuristics [44, 45]. The largest-scale use of heuristic methods is, to our
knowledge, the work of Borndorfer et al. [9], who rely on column generation and greedy heuristics;
more importantly, the formulation requires allowing for arbitrarily many bus transfers. In practice,
it is desirable to enforce a maximum number of allowable transfers (something which we explicitly
model in our work); enforcing this however severely impacts computational performance. In a
followup work, Borndérfer and Karbstein [8] incorporate transfer penalties (a type of “soft” con-
straint), but the resulting algorithms require on the order of 10 hours of computation time, which
for our setting is infeasible. More recently, exact methods based on ILP formulations have gained
in popularity [4, 32, 33, 42], though these only scale to small networks.
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Ride-pooling: Our problem is also closely related to ride-pooling, where the goal is to combine
multiple trips to improve the efficiency of ride-sharing platforms. To model trade-offs between
passenger inconvenience and sharing rides, Santi et al. [36] introduced the abstraction of a share-
ability network, and showed via simulations that pairing up to two requests per vehicle could
lead to significant savings in cumulative driver miles. Their methods, however, accommodate at
most three passengers per vehicle (with heuristics). Alonso-Mora et al. [1] develop algorithms
which perform well (in simulations) for up to 10 passengers per vehicle. Their method is based
on clique decompositions of the shareablity network, which again scales poorly with increasing
vehicle capacity; it also imposes strict quality of service constraints leading to fewer feasible trip
configurations, which may greatly reduce efficiency in the setting we consider.

Multi-modal solutions to the first-mile/last-mile problem: From a practical perspective, the
transportation community has explored public-private partnerships to exploit both the high capacity
of public transit buses and the flexibility of MoD fleets [29, 39]. These works, however, focus not
on designing the transit network, but rather on dynamic vehicle dispatching and routing between
origin or destination and transit hubs.

Stochastic control for ride-sharing: A more recent line of work has developed stochastic models
for ride-sharing with trip requests arriving via a random process. This has enabled the use of
techniques from stochastic control for scheduling and routing [2, 3, 10, 27], as well as the study of
system-level questions such as the effect of competing platforms [37]. The algorithms developed in
these papers largely rely on assuming that under appropriate scaling (in particular, in the ‘large-
market’ scaling, where the number of cars scales with the demand), the system is well approximated
via a steady-state problem. This is practically meaningful in ride-sharing systems, which can
be thought of as being near-stationary over sufficiently small time-scales; such an assumption,
however, critically depends on the impact of a single car being “small” relative to the rest of the
system. In a setting with high-capacity vehicles, however, this ceases to be true, and it is unclear if
a stochastic model of our system would exhibit the rapid mixing property with which low-capacity
ride-sharing models are endowed, and which allows for these attractive guarantees.
Randomized rounding for resource allocation problems: Our methodological approach is
inspired by the use of configuration programs for improved approximations for a number of combi-
natorial optimization problems [21, 26, 41]. At a high level, the approximation algorithms proposed
in this line of work reformulate the resource allocation problem as an exponential-size integer
program that optimizes over all feasible sets of resources; the LP relaxation of this program can be
(approximately) solved in polynomial time, and used to produce approximately optimal solutions
to the original problem via rounding. Our main result relies on the randomized rounding scheme
proposed by Fleischer et al. [21] for the Separable Assignment Problem, which comprises a set
of bins and items, with a separate packing constraint on each bin, and rewards for each item-bin
pair. The objective is to pack items into bins such that the aggregate value of all packed items is
maximized. The analogy to the Real-Time Line Planning Problem is natural: items correspond to
passengers, bins correspond to lines, and the packing constraints correspond to capacity constraints
for each bus. The key difference between these two problems is that, in the case of Sap, bins are
provided in advance, with no associated cost for using a bin. In contrast, the main difficulty in Rrpp
is in determining which lines to open, given costs for opening each line, and a budget constraint
which further couples all lines (bins) together.
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direct travel by car

>d
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Fig. 1. Example transit network with a single bus route (marked in red) and a single passenger traveling
from source node s to destination node d (marked in green). The passenger has 2 trip options: she can travel
directly by car from s to d (blue arrow), or use a hybrid trip option comprising the dashed portion of the bus
route, completing the rest of the trip by car (solid black arrow).

3 PRELIMINARIES
3.1 System Model

We model the transit network as an undirected weighted graph G = (V, E), with |V| = n potential
origin/destination nodes, edges representing roads between these nodes, and edge weights (7. )ecE
representing the cost (for example, travel time) required to traverse an edge. We assume that
Te = Tmin fOr some constant 7, > 0.

The network is operated by a single Mobility-on-Demand provider (henceforth platform), which

employs a fleet comprising two types of vehicles: single-occupancy vehicles (cars), and high-capacity
vehicles (buses). The platform makes all scheduling and routing decisions in a centralized manner.
These decisions are made over a fixed time-window, wherein prior to the beginning of the window,
the platform receives a set of trip-requests (henceforth passengers), and then must decide on a set
of bus routes, and match passengers to these routes, using cars to cover ‘first-last mile’ travel. The
final trip option presented to each passenger must satisfy her travel needs, which we abstract via
the notion of feasible trip options for each passenger. The aim of the platform is to maximize some
appropriate notion of system welfare, which incorporates both utilities of passengers, and costs and
constraints of the platform.
Vehicle Fleet Model. As mentioned above, the platform controls both a fleet of cars (which can
serve a single passenger) and buses (which are high-capacity). Since in most ride-hailing systems,
the former fleet is much larger, and has a high density throughout the city, we primarily focus on
the routing/scheduling decisions for buses, incorporating the constraints and costs of the car fleet
in the value function of passengers.

Buses have a fixed capacity C € N, corresponding to the maximum number of passengers a bus
can simultaneously accommodate. We define a route r to be a fixed sequence of consecutive edges of
G, and let R denote the set of all routes of cost at most D € (0, T], where D is a constant determined
by the platform (for example, the duration of the longest bus ride such that the trip is completed
within the time window). Moreover, the platform is said to serve route r € R at frequency f € N if
f buses traverse r during the time window. A key abstraction in this paper is that of a line, which
we formally define below.

Definition 3.1 (Line). The platform is said to operate a line £ = (ry, f;) if it runs high-capacity
vehicles on route r;, at frequency f;.
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We use L = {(r, N1 f)eRx N} to denote the set of all feasible lines the platform can
operate, and let L = | L|. Note that a line can accommodate at most C X f; passengers for each
edge e € r,, and as such it is without loss of generality to assume that f, € {1,...,[N/C|}V¢t € L,
where N is the total number of trip requests during the time window.

The platform has a budget B € R, with which to open a set of lines. Let ¢, denote the cost of
operating line £. We assume that line costs are strictly increasing and subadditive in the frequencies.
That is, suppose lines ¢ and ¢ use the same route r and have frequencies f;, f2, respectively. Then:

(i) strictly increasing: fi < f, = ¢, <cy,

(ii) subadditive: ¢y + ¢, < cgy, Where &3 = (7, fi + f2).

Passenger Model. We use P to denote the set of all passengers requesting a trip during the time
window, and N = |P| the total number of all such passengers. Each passenger p € P is associated
with fixed source and destination nodes (sp, dp). To travel between these nodes, she can use a
combination of cars and buses: in particular, she can travel directly from s, to d;, exclusively by
car; alternatively, she can travel by bus for the ‘middle leg’ of her journey, and use cars for the first
and last legs (if source/destination is not on the bus route). Figure 1 illustrates these possibilities.

In principle, a more complex trip option could also involve multiple bus segments. In this work,
however, we restrict passengers to take one of the above two trip options.

Assumption 1 (No inter-bus transfers). A trip can only comprise of a single bus leg; i.e., the
platform cannot assign any passenger to multiple lines.

From a practical perspective, this is a reasonable assumption, given that a passenger may already
incur two transfers for the first and last miles of her trip. More importantly, in Section 4 we show
that if we relax this assumption by allowing the platform to use trip options involving even just
two inter-line transfers, then we can not hope to achieve any constant-factor approximation.

Given line ¢, let Q;, denote the set of all trip options matching passenger p to line ¢ that are
feasible, i.e., where the passenger completes her journey within the time window. Formally,

Qup = {(sp, i,j,dp)| i, j € re,ptravels s, — iand j — d, by car,and i — j by bus line t’}

Let Q) = {(w,f) : @ € Qgp, £ € L}. For each passenger p, there is an associated reward (or value)
function v, : Q, = R,, representing the quality (from either the platform or the passenger’s
perspective) of a trip option using line ¢ (including potential costs incurred by the platform for the
passenger’s short car trip). We assume that v, (+) is non-decreasing in the frequency of a line. Formally,
suppose lines ¢; and ¢, use the same route r and have frequencies f; and f;, respectively. Since # and
£, share the same route r, we have Q,, = Q,, forallp € P.Then, i < f, = v,(w, 1) < vp(w, &)
forall w € Qp,p.

The above formalism naturally covers trip options that do not involve a bus segment; in particular,
we use w = @ to denote the option which consists of a passenger traveling directly from source to
destination by car (the no-line option). With slight abuse of notation, we assume that v, (@) = 0 for
all p € . Hence, one can think of the value associated with assigning a passenger to a trip option
as being relative to the status quo ride-hailing service.

For any passenger p and line ¢, we define the value associated with matching the two as follows:

Definition 3.2 (Passenger-line value). We define w;, and v, to respectively be the optimal trip
option, and its corresponding value, over all feasible trip options matching passenger p to line ¢,
ie.,

Ugp = max {vp(a), |w e Q[p}, w¢p = arg max {vp(w, f)|w e Q(p}
If v, > 0, we say that line £ covers passenger p. Let ry, denote the sub-route of r, used by

passenger p for this option. If e € ry,, we say that the passenger uses edge e. Note that computing
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vgp can be done in polynomial time. This follows from the fact that, if r, consists of n, edges, there
are O(n?) possible trip options to consider for passenger p. Since the maximum cost (duration) of a
route D is constant, and 7, is lower bounded by a constant for all e € E, then n, is polynomial in n.
Using the above notation, we assume throughout that if passenger p is matched to line ¢, she
uses trip option wy,. This assumption is primarily for the sake of simplifying the presentation; in
Appendix A.1 we discuss how our algorithm can be modified to consider all possible trip options
for each line-passenger pair, and show that this only leads to an additional constant factor loss in
the approximation guarantee.
Platform Objective. The following example illustrates a natural value function for a platform
seeking to design such an integrated mobility service.

Example 3.3. We abuse notation and assume that, for this example, a trip option can be parametrized
by the total duration of the trip T and the duration of the portion of the trip completed by car,
denoted t“*". Consider the following piecewise linear function, representing the reduction in time
traveled by car as compared to a direct trip by car:

tx o gear ifT < (1+a)t*, , t9 < Bt*
UP(T, tcar) — spdp ( ) spdp ﬂ spdp
0

(1)

otherwise

where ts’; d, represents the time required to travel from s, to d,, directly by car, & € R, represents

passengers’ tolerance for the duration of a trip relative to the most direct route, and § € (0,1]
controls the gains in efficiency of a trip option.

For this value function, the trip optimality assumption implies that the passenger must be picked
up and dropped off at the bus stops that are closest to s, and d,, respectively.

Finally, in line with the motivating application of the platform receiving trip requests in advance
via a scheduling service, we assume that the platform sees batch demand, and that passengers are
willing to wait for the entirety of the time window. As such, we abstract away the notions of travel
and clock times. In Appendix A.2 we show that such an assumption is without loss of generality,
and that all results hold for a more realistic model in which there are travel times, passengers are
associated with the time at which they made the request, and as a result should only be matched to
lines whose schedule lines up with the time at which they are traveling.

3.2 The Real-Time Line Planning Problem (RLPP)
Let S C L denote a subset of lines to be created, and x € {0, 1}N XL denote an assignment of

passengers to the chosen subset of lines. We first define the system welfare induced by S and x.

Definition 3.4 (Welfare). Given S and x, the welfare W of the system is the sum of all passenger-line
values for the lines created under this assignment. Formally:

W= Z Z U[pX[p

pEP teS

We now define the Real-Time Line Planning Problem.

Definition 3.5 (Real-Time Line Planning Problem). The Real-Time Line Planning Problem is
defined by a graph G, a set of passengers P, costs {c;},c ¢ for opening lines, passenger valuations
{vep}ee £,pep for using each line, an overall budget B, and a bus capacity C. The goal is to find a
subset of lines to open and an assignment of passengers to lines that maximize the welfare of the
system, such that:

(i) the total cost of creating all lines in this subset does not exceed the platform’s budget;
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(ii) the number of passengers assigned to line £ and whose trip uses edge e € r, does not exceed
the capacity C X f; of the buses, for all e € ry;
(iii) a passenger is assigned to at most one line (which implies no inter-bus transfers).

We allow for a passenger to not be assigned to any line. In this case, we assume that the
passenger’s trip is completed exclusively by car, and yields a value of zero.
Formally, the platform’s optimization problem is given by:

(P) rr;z;x Z Z VepXep

peEP teLl

s.t. Z CelYy <B (2)

tel

lePSCﬁyg Vee Lieer (3)

pEP:
eErey

Dixp<1 Vpep (4)
tel
xp €{0,1} VpeP,tel

ye{01} VeeL

Let OPT denote the optimal value of this optimization problem. In this formulation, the decision
variables y € {0, 1}* represent the set of lines to be opened. Recall, x € {0, 1}*L' corresponds
to the assignment of passengers to lines. Constraints (2), (3), (4) respectively encode the budget,
capacity, and assignment to at most one line.

For any passenger p € ¥, in the worst case there are exponentially many routes between s, and
d,, and as a result (P) has exponentially many variables and constraints. For our main result, we
make the following assumption regarding the set of routes input to RLpp.

Assumption 2 (Candidate set of routes). The platform has access to a pre-specified set of
feasible routes that is polynomial in the size of the network.

We let L denote the size of the set of lines £ induced by the candidate set of routes and all
possible frequencies. Note that the candidate set of routes assumption implies that L is polynomial
in n.

The assumption of such a candidate set is practically rooted in the reality of transportation
systems, in which experts typically have knowledge of a priori “acceptable” bus routes and can
develop good heuristics. Moreover, such an assumption is in line with the approach adopted
in prior work on line planning, which typically generates the candidate set of routes via such
heuristics [12, 13, 18]. In Section 4, we show that one cannot hope to obtain a constant-factor
approximation to the Real-Time Line Planning Problem unless the platform has access to such a
candidate set.

We note that the above integer linear programming (ILP) formulation problem is the most
natural formulation of the platform’s optimization problem, as well as the formulation upon
which existing exact methods are based [4, 32, 33, 42]. In Section 5, we present an equivalent,
less-immediate formulation of the platform’s optimization problem upon which our algorithm
relies. We nonetheless present this natural formulation, as we will benchmark our algorithm’s
performance against it in Section 6. Table 1 summarizes the most frequently-used notation in the

paper.
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Symbol | Definition

G(V,E) | Transit network with |V| = n nodes

L Pre-specified set of lines, with L = | |

P Set of passengers, with N = |P|

Qqp Set of feasible trip options for passenger p traveling via line ¢
C Bus capacity

B Platform budget for opening lines

vp(w,t) | Value of trip option w € Q) for passenger p traveling via line ¢
Vgp Value of optimal trip option for passenger p on line ¢

cr Cost of opening line ¢

fr Frequency of line ¢

Table 1. List of frequently-used notations

4 FUNDAMENTAL LIMITS OF REAL-TIME ROUTING

The model in Section 3 is endowed with two assumptions: (i) the existence of a pre-specified
candidate set of feasible lines £ that is polynomial in the number of nodes n, and (ii) that trip
options can involve at most a single bus segment.

In this section, we show that these assumptions are not just practically relevant, but also have
strong theoretical justifications: if either assumption fails to hold, a constant-factor approximation
is out of reach. We moreover show that, even in the setting where these two assumptions hold,
standard approximation techniques that leverage naive LP relaxations and rely on submodularity are
inadequate, emphasizing the non-triviality of the task of designing provably good approximations
for fast, real-time routing.

In the remainder of this section, we provide the main ideas of our reductions, and defer proofs of
all auxiliary propositions to Appendix B.1.

4.1 Necessity of a candidate set of lines

Suppose first that the platform does not have access to a candidate set of lines, and thus, for
each passenger p € P, must consider all possible walks of bounded cost between source s, and
destination dj,. We show that this problem is hard to approximate even in a particularly simple
instance of RLpp with only a single allowed line, which we term the Single Line Problem (SLp).

Definition 4.1 (Single Line Problem). In the Single Line Problem, the feasible routes are the walks
in the graph of cost at most D. Suppose ¢; = cf; for all £ € L, for some constant ¢ > 0. Moreover,
suppose B = c¢. That is, only a single line of frequency f; = 1 can be opened. The goal is to find the
line that maximizes the social welfare of the system.

Using this, we get our first hardness result for Rrpp.

THEOREM 4.2. Unless NP has polynomial Las Vegas algorithms, the Single Line Problem is hard to
approximate to a ratio better than Q(log'™* n).
To establish this inapproximability result, we give a reduction from the Orienteering group TSP

problem (OGTSP), for which the approximation lower bound is Q (logl_f n) [14].

Definition 4.3 (Orienteering group TSP). Given an undirected graph G = (V, E), with edge costs
w : E — Ry, k sets (or groups) of vertices Si,...,Sx C V, aroot vertex r and a budget D > 0, the
goal is to find a walk of cost no more than D which spans the maximum number of groups.!

1We assume without loss of generality that the root does not belong to any of the groups.
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Fig. 2. Construction of graph G’ from an instance of OGTSP with two groups S; and Sy. The dashed lines
represent the edges of the original graph G.

Proor oF THEOREM 4.2. Consider an instance of OGTSP. Recall, we’ve assumed that there exists
a constant 7, > 0 such that 7, > 7,y Ve € E. Define ¢ € (0, Tyin]. We use diam(G) to denote the
diameter of the graph, and let ¢ € R be such that t > max{diam(G) + ¢, D + ¢}.

We construct an instance of Sip as follows. For each group S;, we add a node g; to G, an edge
(r,g;) of cost t and an edge (j, g;) of cost t — ¢ for each node j € S;. Let G’ = (V’, E’) denote this
augmented graph, and let D be the maximum cost of any feasible route on G’. For each i € [k],
create a passenger p; with s,, = r and dp,, = g;.

For line-passenger pair (¢, p;), suppose trip option w is such that passenger p; travels by car
from r to j;(w), and from j,(w) to g;, where j;(w), jo(w) € V. We use t°*(w) to denote the total
cost of the min-cost paths from r to j; (@) and from j,(w) to g;, and let t; denote the min-cost path
from r to g;. If p; travels directly from r to g; via edge (7, g;), then " (w) = t.

We define the value function as follows:

1 if pear < (1= %)t~
vpi(a),{’)z{ if 1 () < (1= £)15

0 otherwise.
Propositions 4.4 and 4.5 characterize the ways in which p; can feasibly travel from r to g;.
PrOPOSITION 4.4. For all  such that t“’(w) > t — €, vy, (w, ) = 0.

PROPOSITION 4.5. Passenger p; can travel fromr to g; in one of two ways:

(i) via edge (r, g;), in which case this must be by car.
(ii) by bus fromr to j € S;, and by car via edge (j, g;).

Let £* denote the optimal solution to Stp for this instance.
PROPOSITION 4.6. To collect strictly positive value from passenger p;, £* must traverse a node j € S;.

Finally, observe that £* necessarily only uses edges from E. This follows from the fact that all
edges in E’ \ E have cost greater than D by construction, and thus any route using at least one such
edge is infeasible.

Putting these facts together, if line £* collects value k” < k then this implies the existence of a
walk of G of cost at most D that has visited k" groups. Thus any a-approximation algorithm for
the Single Line Problem gives an a-approximation for the OGTSP, hence the Q(log'~*(n)) lower
bound for the Single Line Problem. O

, Vol. 1, No. 1, Article . Publication date: March 2021.



12 Siddhartha Banerjee, Chamsi Hssaine, Noémie Périvier, and Samitha Samaranayake

%)

Fig. 3. Assignment of a passenger to a pair of lines. The passenger travels by car from s to v;. Between v and
vy, she travels by bus via line 1. At vy she travels via line ¢ until being dropped off at v3. She completes her
trip by car between v3 and d.

4.2 Hardness of multiple transfers

Suppose now that the platform has access to a candidate set of lines, but allows itself to assign
passengers to at most two lines. More specifically, a passenger p can feasibly be assigned to the
following trip options:
(i) Travel directly from s, to d, by car;
(ii) Use a single bus line £ € L: for some v; € ry, v, € 1y, travel from sp to vy by car; join line £ at
01 and travel to v, by bus; travel from v, to dj, by car;

(iii) Use two intersecting bus lines (1, ;) € L X L: for some v1 € 1y, vz € 1y (74,03 € Iy, travel
from s, to v; by car; join line £ at v; and travel to v, by bus; join line # at v; and travel to v3
by bus; travel from 3 to d,, by car. Figure 3 illustrates such a trip. We use Q(y, 4, to denote
the set of all such trips.

Let v(4,,4,),p denote the maximum value passenger p has for all feasible trips using lines ¢; and £,

where r;, and ry, intersect. That is, v(g, ¢, = max vp(w). I 04 4),p > 0, we say that passenger
WER(0.0).p

p is covered by ¢; and ;.
We refer to the problem of matching passengers to at most two bus lines as the Two-Transfer
Problem (TTp), which we formally define below.

Definition 4.7 (Two-Transfer Problem). Given a budget B and costs {c, }, the goal is to find a subset
S € L of budget-respecting lines to open and a feasible assignment of passengers to S which
maximizes the social welfare of the system, given by:

Z Z VepXep + Z O(t.6).p X(01,82).p

peP \teS (1,62) €SXS

As before, x is an indicator variable representing the assignment of passengers to lines.

Our next hardness result shows that allowing even two inter-bus transfers banishes any hope of
obtaining a constant-factor approximation for Rrpp.

THEOREM 4.8. Under the exponential time hypothesis, the Two-Transfer Problem is hard to approxi-

mate to a ratio better than Q (nl/(l‘)gl"g("))c), where ¢ > 0 is a universal constant.

To prove the theorem, we give a reduction from the densest k-subgraph problem, which admits
an approximation lower bound of Q(n!/(°g1°€™) ynder the exponential time hypothesis [31].
Given a graph G = (V,E) and a subgraph G, = (V,, E;) of G, the density of any subgraph G; is
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the ratio of number of edges to the number of nodes in G; (i.e. llff: Il ). Now, the densest k-subgraph

problem is as follows:

Definition 4.9 (Densest k-subgraph). Given a graph G = (V,E) with n = |V| and k € [n], the
objective is to find a subgraph G; of G containing exactly k vertices with maximum density.

Note that, for fixed k, finding the subgraph of maximum density is equivalent to finding a
subgraph of size k with the maximum number of edges.

Proor oF THEOREM 4.8. Given an instance of densest k-subgraph, we build an instance of TTp
as follows. For each node i € V, construct a line ¢, with ¢;, = 1 and frequency f;, large enough to
cover all passengers. For every edge (i, j) € E, define a passenger p;;, and suppose that p;; can only
be covered by the pair of lines (£, £;), with v, ;) p,, = 1. That is, p;; has no value associated with a
single bus line. Finally, let B = k.

We first claim that, for any TTp feasible solution of value k” which opens k”” < k lines, one can
construct a feasible solution which opens exactly k lines and has value at least k’. This simply
follows from non-negativity of the value function and the fact that ¢, = 1 for all i. Thus, the
platform can always open k — k”” more lines until hitting its budget constraint and not decrease the
objective, and it is without loss of generality to only consider feasible solutions that open exactly k
lines.

We complete the proof by noting that a feasible solution of value k’ corresponds exactly to a
subgraph of G containing k’ edges (passengers) and k nodes (lines). Thus, if we had a constant-factor
approximation algorithm for TTp, then we would also be able to approximate densest k-subgraph
within a constant factor. O

Henceforth, we operate under the no inter-bus transfers and candidate set of lines assumptions.

4.3 Inefficacy of standard approximation techniques

Observe that the ILP formulation of the Real-Time Line Planning Problem bears a strong resemblance
to the Capacitated Facility Location Problem (Crrp), for which Wolsey [43] provides a 1 — %
approximation algorithm, a guarantee relying on the underlying submodular structure of Crrp.
Our problem crucially differs from this latter problem, however, in the way capacity is accounted
for. Whereas the number of clients assigned to a location cannot exceed its capacity in CFLP, in
the Real-Time Line Planning Problem the number of passengers assigned to a bus can exceed its
capacity, as passengers may require non-overlapping subpaths of a bus route. In this section, we
show that this simple fact fundamentally alters the structure of our problem, and as such precludes
the use of standard techniques for submodular function maximization.

Let w : {0,1}1 — R denote the social welfare induced by the optimal assignment of passengers
to lines, for a given subset of open lines, represented by y. Formally:

w(y) = max Z Z VepXep

peP tel

s.t. Zx[p§Cﬁyf Ve Liecr,

PEP:
eEry

ZX{pSl VPEP
tel

xep €{0,1} VpeP,te Ll

, Vol. 1, No. 1, Article . Publication date: March 2021.



14 Siddhartha Banerjee, Chamsi Hssaine, Noémie Périvier, and Samitha Samaranayake

Then, we have:

OPT = max w(y)
y

s.t. Z cyp < B

te Ll
yo€{0,1} VeeL

PROPOSITION 4.10. w is not submodular.

Another common approach is to develop an approximation algorithm based on an LP relaxation
of the ILP. Proposition 4.11 however shows that such an approach can give strictly worse bounds
than the 1 — 1 benchmark.

PROPOSITION 4.11. The worst-case integrality gap for (P) is no better than %

5 MAIN RESULT

In this section, we design an approximation algorithm for the Real-Time Line Planning Problem
that achieves at least 1 — % — ¢ fraction of the optimal solution in expectation, and produces a
solution whose cost is budget-respecting with high probability, as the platform’s budget grows
large.

Our high-level approach is as follows. We first formulate the Real-Time Line Planning Problem
as a configuration ILP, and solve a conservative LP relaxation of this latter program, in the sense
that it has a stricter budget than the platform’s true budget B. We then use a variant of the rounding
scheme developed by Fleischer et al. [21] to produce an approximately feasible integer solution.
The key difficulty in such an approach is approximating the exponential-size configuration LP
without incurring too much of a loss. Our main contribution in this respect is to show that the
structure of Rrpp allows us to solve it exactly in polynomial-time by leveraging the additional
structure of our problem in the dual space. Throughout the rest of the section, we defer the proofs
of auxiliary facts to Appendix B.2.

5.1 An exponential-size configuration ILP

Consider line ¢, and let 7, denote the family of all feasible assignments of passengers to £, where
a feasible assignment is such that, for all e € r, the total number of passengers using e does not
exceed the capacity of the line. We use S to denote any such assignment in ;. Xys is the indicator
variable representing whether or not the set of passengers S is chosen for line ¢. Formally, S € 7,

satisfies ), Xys < Cf; for all e € E. Example 5.1 illustrates this notation.
S:
Ll

Example 5.1. Consider lines #, £, and passengers py, p2, with p; and p, using the same edges of
each line. If C = 2, then 7, = {{pl}, {p2}, {pl,pg}} forie {1,2}.IfC =1, then I = {{pl}, {pz}}
fori € {1,2}.
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We can now represent RLPP as the following exponential-size integer program:

P:= gl(ix} Z Z Z vepXes

peP teLSel,:
peS

s.t. Z cr Z Xes| < B (5)

tel Sel,

ngsgl Vee L (6)

Sel,

ZZX““ VpeP (7)

te L Sel,:
peS

Xes € {0,1} Ve L,Sel,
Constraint (6) requires that only one set of passengers be chosen for each line, and Constraint (7)

ensures that each passenger is only assigned to one line. If a set of passengers is assigned to line £,
that is, if 3 gc 7, Xes > 0, then £ is opened and the platform incurs cost c;; else, £ is not created and

no cost is incurred. Let OPT denote the optimal value of P.

5.2 Approximating the exponential-size ILP
For a given constant ¢ € (0, %) Algorithm 1 makes use of the following auxiliary configuration LP,

which we denote P(©).

P = &ix} Z Z Z VepXes

peP teLSely:

pesS
sit. Z ¢ Z Xps | < B(1-e¢) (8)
tel Sel,
Z X;s <1 Vte L )
Sel,
ZZXZSSl VpeP (10)
teL Sely:
pEeS
Xys € [0,1] Vte L,Se I,

Let OPT® denote the optimal value of P© and {X [(Sg) } its optimal solution. Algorithm 1 presents

a high-level description of our algorithm.
Let ALG denote the expected value of the solution returned by Algorithm 1. Theorem 5.2
establishes our main result.

THEOREM 5.2. Algorithm 1 respects the budget in expectation, and is of cost no more than B with
probability at least 1 — 6_523/3%"", where cax = maxge r ¢p. Moreover,

1
ALG > (1 - = —5) OPT.
e
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Algorithm 1 Randomized rounding for RLpp

Input: G = (V,E),P, L {Lt},cr.€ € (0, %)
Output: set of lines to open, passenger assignment to each line
Compute vy forall £ € L, p € P.
Solve P(¢),
Rounding: For all £ € L, S € I, such that X ‘,(Sg) > 0, open ¢ and, independently for each line ¢,

assign S to £ with probability Xf(g).

Re-assignment: If passenger p is assigned to multiple lines, choose the line maximizing vg,.
Close all lines for which no passengers are any longer assigned.

Aggregation: If there exist open lines ¢, £, such that r, = r,, = r and f;, # f,, close £ and ¢,
and open ¢’ = (7, fp, + fz,). Assign all passengers formerly using ¢ or £, to £’.

Note that the choice of ¢ trades off between quality of approximation and feasibility of the
rounded solution: as ¢ increases, the solution is exponentially more likely to be budget-respecting;
on the other hand, we lose e-fraction of the optimum in terms of the approximation guarantee.

To prove Theorem 5.2, we establish the following facts, which characterize the loss incurred in
each step of the algorithm:

(i) OPT® > (1 - £)OPT (Proposition 5.3).

(ii) P® can be solved in polynomial time (Theorem 4.8);
(iii) the loss from rounding and re-assignment is at most % fraction of the optimal value of p©
(Proposition 5.6);
(iv) the aggregation step maintains a feasible assignment of passengers to lines, and neither
increases the cost of the solution nor decreases the objective (Proposition 5.7);
(v) the cost of the final solution respects the platform’s budget with high probability (Corol-
lary 5.9);

We first show that the loss incurred from solving the auxiliary LP is not too large.
PROPOSITION 5.3. Foralle € [0,1],
OPT® > (1 -¢)OPT.

PrROOF. Let {X{,(SO)} denote the optimal solution to P Observe that {(1-9)X ;g)} is feasible for
the problem P(®), and that the objective of P(*) evaluated at this feasible solution is:

1-93 Y 3 apxl = 1= 0P

peP teLSel,:

peS
Observe moreover that P(¥) corresponds to the LP relaxation of ﬁ, and thus OPT®© > OPT.
Chaining these two inequalities together we obtain the fact. O

We next observe that Algorithm 1 is underdetermined as defined. In particular, it is a priori
unclear how, if at all, one can efficiently solve P® in polynomial time, or if the best we can hope
for is an approximation. Our key contribution is showing that this can in fact efficiently be done,
and as a result the only losses potentially incurred by the algorithm come from the rounding,
re-assignment, and aggregation steps.

TuEOREM 5.4. P©) can be solved in polynomial time.
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ProoF. Since P() has an exponential number of variables but only a polynomial number of
constraints (in the number of passengers and lines, and hence in n), its dual has polynomially many
variables, and as such can be solved in polynomial time via the ellipsoid method, assuming access to
a polynomial-time separation oracle [6]. Given this, one can obtain an optimal primal solution by
solving the primal problem with only the variables corresponding to the dual constraints present
when the ellipsoid method has terminated (of which there are polynomially many, since the ellipsoid
method only makes a polynomial number of calls to the separation oracle) [11]. Thus, it suffices to
design a separation oracle which runs in polynomial time.

Let D© denote the dual of P(®), with a, {ge}, {4y} the dual variables corresponding to con-
straints (8), (9) and (10), respectively. The dual is given by:

D = min qu+ ZAP+B(1 —oa

lachtphe T L

s.t. qg+acg22(vgp—/1p) Vte L,Sel,
peS

G =20 VeelL, 1,20 VpeP, a=20
For all ¢ € L, let ¥; denote the polytope defined by the set of constraints:
qg+ac[22(vgp—lp) VSel,
peS

It suffices to show that we can design a polynomial time separation algorithm for the polytope 7.
That is, given g, @, and {)Lp}, the separation algorithm must be able to find a violated constraint
for ¥ or certify that all constraints in 7, are satisfied.

Algorithm 2 formally describes our separation oracle.

Algorithm 2 Separation Algorithm for the Ellipsoid Method

Input: g, o, {1,}, 7o
Output: violated constraint for 7, or a certification that all constraints in ¥, are satisfied
Solve the following LP:

max Z (vep — Ap)xp

{xp} peEP

s.t. Z xp < Cfy Yeer (11)
peP:
ecryp

0<x,<1 VpeP.

Let LP-SEP denote its optimal value, and {x}} an optimal solution to this problem.
If LP-SEP < q; + acy, then return that all constraints in F; are satisfied. Else, return $* = {p :
xX > 0}.

P

Our separation algorithm solves an LP with polynomially many variables and constraints,
and as such runs in polynomial time.? However, correctness of the algorithm is not immediate:

the LP is a relaxation of the set problem we are interested in, and as such }; » (U[p - Ap) x; >

maxsez, Xpes (ng - Ap). If this inequality was strict, the separation algorithm would incorrectly

2We note that, given a dual solution, one can efficiently find a primal solution, as observed by Carr and Vempala [11].
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return that a constraint has been violated, when in fact all have been satisfied. Observe that this
would only occur if {x;,‘} were fractional; the separation algorithm we propose, however, is a
capacitated variant of the assignment problem, for which the linear programming relaxation is
known to admit an integral solution [5]. Lemma 5.5 formalizes this high-level intuition, and thus
establishes that this inequality is in fact always tight.

This then concludes the proof of the fact that P s poly-time solvable.

LEmMA 5.5. {x}} is integral. Thus,

2lew =) = o= 20).

P peS
]

Proposition 5.6 establishes the loss incurred from the rounding step, and follows from [21]. For
the sake of completeness, we include the proof in Appendix B.2.

PROPOSITION 5.6. Let ALG denote the value of the solution immediately after the re-assignment
step. Then, ALG > (1 - 1)OPT®,

We next show that no additional loss is incurred in the aggregation step of our algorithm.

PROPOSITION 5.7. The aggregation step maintains a feasible assignment of passengers to lines.
Moreover, let ALG denote the value of the solution before the final aggregation step, and let {Y;} and
{Y;} respectively denote the indicator variables corresponding to whether or not a line was opened,
before and after the aggregation step; let ¢(Y) and c(Y) denote the costs of these respective solutions.
Then, ALG > ALG, and c(Y) < c(Y).

Proor. The fact that the objective weakly increases after the aggregation step follows from the
fact that £ and ¢ share the same route, and v, () is non-decreasing in the line frequency for all
p € P. Moreover, ¢(Y) < ¢(Y) follows from subadditivity of the cost function.

We now argue that a feasible assignment of passengers to lines is maintained after the aggregation
step, i.e., that the bus capacity constraint is not violated for line ¢’ = (r, f, + fz,). Let {X[P} and
{i{p} be the indicator variables respectively denoting the assignment of passengers to lines, after
and before the aggregation step. For all e € r, we have:

(@) > = @
D Xep D Kupt D Xy < CUfy + 1),
P

pieEry peere, peeryy
where (a) follows from the aggregation construction and (b) follows from the fact that the assign-
ment of passengers to lines before the aggregation step was feasible by construction, for both ¢
and . m]

To complete the proof of the theorem, we characterize the cost of the solution returned by
Algorithm 1. We defer the proof of Proposition 5.8 to Appendix B.2.

ProposITION 5.8. The solution returned by Algorithm 1 satisfies the budget constraint in expectation.
Moreover, for all § € (0, 1], the cost of the solution returned by Algorithm 1 is at most B(1 — €)(1 + )
with probability at least 1 — =5 (17€)B/3¢umax

£

The probabilistic budget guarantee follows from taking § = =

1-¢
COROLLARY 5.9. The cost of the solution returned by Algorithm 1 satisfies the budget constraint
with probability at least 1 — e~ B/3¢msx
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We complete the proof of Theorem 5.2 by putting together the facts established above.

Proor oF THEOREM 5.2. Corollary 5.9 establishes the cost characterization.
For the approximation guarantee, putting together Theorem 5.4 with Propositions 5.6, 5.7 and 5.3,
we obtain that

1 © 1 1
ALG > (1= ~|OPT® > [1-==|(1-¢)OPT > (1 - - —¢| OPT.
e e e

6 NUMERICAL EXPERIMENTS

Finally, we complement our theoretical results by demonstrating the practical efficacy of our algo-
rithm on: (i) the Manhattan network, with real passenger data from for-hire vehicle ride requests,
and (ii) on a synthetic dataset based on a random network, designed to minimize any structural
advantages. We present the former here, and defer our synthetic experiments to Appendix C.

We compare the solution returned by our algorithm to that of a state-of-the-art ILP solver, run
on problem (P) in Section 3.2. Note that the ILP solver cannot directly solve the configuration LP
l”: due to its exponential size, which is why instead feed it the natural formulation of the problem
(P). To emulate the real-time constraints on such a policy in practice, we run both our algorithm
and the ILP solver under a strict time budget.

6.1 Practical Implementation

Although the theoretical analysis of our algorithm relies on using the ellipsoid method for solving
the configuration LP, in practice, column generation is known to be more efficient (despite lacking
poly-time guarantees) [15]. Thus, in our experiments we opt for column generation, where the
generation of the new columns is done using our separation algorithm (Algorithm 2).

Given an instance I of RLpp, and parameters ¢ € (0, %), m € N, we proceed as follows:

(1) Solve the configuration LP P® in Algorithm 1 via column generation. Return the current LP
solution once the time budget has been exceeded.

(2) Simulate the rounding through re-aggregation steps of Algorithm 1 m times.

(3) Let Sp(I) denote the set of all budget-respecting solutions of the m realized solutions; return
the solution of maximum value in Sg(I).

We note that this procedure retains our polynomial-time guarantees. Moreover, it benefits from
the fact that Step 2 is easily parallelizable. In our experiments, we use ¢ = 0.05 and m = 10*.

6.2 Experimental setup and results

To test the performance of our algorithm in a realistic setting, we develop a new dataset for modeling
Mobility-on-Demand platforms, based on the Manhattan road network. We obtain the network
from the publicly available OpenStreetMap (OSM) geographical data [7].

Line inputs. We set the size of the candidate set of lines to be L = 1, 000, and generate the candidate
set based on the skeleton method proposed by Silman et al. [38], by iteratively choosing four nodes
in the graph, uniformly at random, and connecting them via shortest path. We also set ¢, to be
proportional to the total travel time between the start and end nodes of line £. We set the bus
capacity C = 30, and assume that all bus routes operate at frequency 1. Note that increasing the
frequency of a line is equivalent to duplicating a route of frequency 1 in our algorithm. In our
synthetic experiments (Appendix C) we observe that our algorithm’s performance improves relative
to the ILP solver as the size of the candidate set of lines increases. Thus, assuming frequency 1 lines
only serves as a lower bound on our algorithm’s performance on the real-world dataset.
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Fig. 4. An example of line plan generated by our algorithm for the Manhattan network. We consider here the
trip requests made on April 3, 2018 from 5pm to 6pm, with B =3-10% L = 10% and f = 3.

Passenger inputs. We use records of for-hire vehicle trips in Manhattan using the New York City
Open Data platform, considering an hour’s worth of trip requests between 5pm and 6pm on the
first Tuesday of February, March and April 2018. Our time windows have 9983, 13851, and 12301
trip requests respectively. We note that the more commonly-used taxicab and rideshare datasets are
unsuitable for our setting, as these datasets are heavily biased towards short trips (indeed, running
our algorithm on this data results in most trips using the car-only option). In contrast, the for-hire
trips are longer, and hence lead to significant savings from multi-modal trips.

For each trip, instead of exact pickup and drop-off coordinates, the dataset provides only origin
and destination ‘areas’ (the over 4,000 nodes in the Manhattan network are divided into 69 areas).
Given the area of an origin or destination, we sample a node in the area from the network uniformly
at random. For each passenger p € P and line ¢ € £, we define the passenger-line value to be the
difference between the time travelled by car when using ¢ and the duration of the direct car trip.
Thus, our objective function is proportional to the total reduction in miles travelled by car in the
system. We moreover impose the constraint that a passenger-line value is only positive if the travel
time induced for the passenger is no more than f times the time of a direct trip by car, and set this
detour factor f = 3.

We run the procedure for each of the three sets of requests, averaging the solutions returned by
the procedure over these three instances. Let ALG denote the corresponding empirical average.
We also report nyp and narg, the number of lines respectively opened in the solutions returned by
our algorithm and the ILP, and «, the fraction of the outputs of the rounding process which were
budget-respecting (out of the m = 10* solutions of the rounding process). Finally, we compute the
empirical average of the multiplicative gap between the solution returned by our procedure and
the value of the configuration LP P at the end of the allotted time. We use 1 to denote this gap
and note that, in cases where the configuration LP is not solved to optimality before rounding, 7
may exceed 1.

We report the results of our experiments in Table 2. Our findings illustrate the practicality of our
algorithm and relative inadequacy of the ILP for the task of real-time routing at scale.

7 CONCLUSION

The integration of ride-hailing platforms’ flexible demand-responsive services with the sustainability
of mass transit systems is the next frontier in urban mobility. As ride-hailing platforms such as
Uber and Lyft expand their range of services and look to adding high-capacity vehicles such as
buses and shuttles to their fleets, they are faced with the following operational question: Given a
set of dynamically changing trip requests and a fleet of high-capacity vehicles, what is the optimal set
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’ B ‘ ILP ALG nLp HNALG @ n

10 | 289,139 279,364 | 15 16 0.62 0.87
2-10* | 356,621 509,586 | 25 27 0.64 0.94

3. 10% — 704,800 | — 36 0.65 0.9
5.10% - 917,683 | — 60 0.68 0.89
10° - 1,140,700 | — 106 1  1.12

2-10° | 2,859,276 1,132,616 | 242 101 1 1.11
Table 2. Numerical results for different budget values: We set L = 103, f = 3. Bold values indicate the better
solution for the corresponding value of B. While the ILP outperforms our algorithm for the smallest and
largest budgets, our algorithm consistently outperforms the ILP solver for more realistic intermediary budgets,
where the ILP solver is often unable to return a solution within the allotted time.

The gap n between the solution produced by our procedure and the value of the configuration LP at the end
of the allotted time, is consistently above 87%, which is a significant improvement on the 0.95 - (1 — 1/e) (i.e.,
60%) theoretical guarantee. For larger budgets (i.e., between 10° and 2 - 10°), the performance of our algorithm
plateaus, as the column generation process requires more iterations to optimally solve the configuration LP.
For the largest budget of 2 - 10°, the ILP is again able to get a solution by opening 242 lines (approximately a
quarter of the candidate set). We conjecture that, with such a large budget, any set of lines is good enough,
while more refined search is necessary to find the optimal lines for a more restricted budget.

of bus routes and corresponding frequencies with which to operate them? In this work we provided
a partial characterization of the hardness landscape of the Real-Time Line Planning Problem by
proving that, unless the platform has access to an existing candidate set of lines and passengers can
only travel via one bus line (but are nevertheless allowed to transfer between bus and car services),
the problem is hard to approximate within a constant factor. Under these assumptions, however, we
developeda1— % — ¢ approximation algorithm. We moreover demonstrated its efficacy in numerical
experiments by showing that, when the platform is constrained to short computation times (which
is precisely the case if it wishes to be demand-responsive), then our algorithm outperforms exact
methods on state-of-the-art ILP solvers.

This paper lends itself to a number of natural directions for future work. From a theory perspective,
though we showed that our algorithm can be modified with at most a constant-factor loss when the
trip optimality assumption is relaxed, existing approximation bounds for the interval scheduling
problem are quite weak. An important area of investigation is whether we can leverage the additional
structure of the Real-Time Line Planning Problem to strengthen the bounds of existing interval
scheduling techniques.
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A EXTENSIONS

A.1 Relaxing trip optimality.

In this section, we describe how our algorithm and analysis can be modified if the trip-optimality
assumption (Assumption 2) is relaxed. Specifically, we no longer assume that passengers must use
the trip option which maximizes their value along that line; the platform must now consider all
possible ways in which a passenger can join each line. We refer to this variant of the problem as
the Generalized Real-Time Line Planning Problem (GRLpp).

Given line ¢ € L, we define a sub-route of r, to be any set of consecutive edges of r,. Let n,
(1)
tp
denote the value associated with passenger p traveling along sub-route r;’) of r,. Passenger p can
be assigned to any sub-route r;i) for which vg)) > 0.
We first define the notion of trip-optimality gap.

be the size of the set of all sub-routes of r,. We index sub-routes of r, as réi) fori € [n;]. Leto

Definition A.1 (Trip-optimality gap). The trip-optimality gap y characterizes the worst-case
multiplicative gap between the optimal values of RLpp and GRrpp. Formally, let 7 denote the set of
all instances for the Generalized Real-Time Line Planning Problem. For I € 7, OPT(I) and OPT 0))
respectively denote the value of the optimal solution to RLpp and GLpp.

y =

OPT(I)
= sup
Ie

7 OPT(I)’
PrRoOPOSITION A.2. The Real-Time Line Planning Problem has unbounded trip-optimality gap.

Proor. Consider the setting where |E| = |P| = n— 1, C = 1, and B is such that only one line ¢

at frequency 1 can be opened. Let r;") denote the sub-route which uses all n — 1 edges of G, and
suppose v;;) =1forallp € P.Let r}e) denote the sub-route of r, which uses a single edge e, and
(e) _
p
Line Planning Problem has optimal value 1 (since all passengers must be served on r;") but C = 1).
When this assumption is relaxed, however, the optimal value is at least %3, achieved by having

each passenger travel along a different edge. O

suppose v 1/2for all e € E, p € P. Then, under the trip optimality assumption, the Real-Time

An unbounded trip-optimality gap would lead one to think that the more general, relaxed
problem would require a fundamentally different approach from that of our algorithm. We however
demonstrate the flexibility of our approach by proving that our algorithm can easily be modified
for this setting, with at most a constant-factor loss.

We first introduce the following notation. Let S; denote a feasible assignment of passengers
to sub-route rtfi) of line ¢, for i € [n,]. Now, S = (Sy,...,S,,) denotes a feasible assignment of
passengers to line £. For S to be feasible, {S;} must be disjoint subsets of # (i.e., a passenger can
only be matched to one trip option), and the number of passengers using edge e of r, must not
exceed the capacity of the line. Let 7, denote the set of feasible assignments of passengers to ¢. For
ease of notation, we use p € S if there exists i € [n,] such that p € §;.

We can still define an exponential-size configuration ILP for the Generalized Real-Time Line
Planning Problem:
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o)
i

mac ) ), )X

teL Selyie[n,] pES;

s.t. Z cp Z Xes| < B (12)

tel Sel,
ngsg Vee L (13)
Sel,
ZZX““ Vpep (14)
te L Sely:

peS
Xes € {0,1} Ve L,Sel,

We can apply Algorithm 1 to this problem. As before, however, we require a subroutine which
(approximately) solves P®, the auxiliary configuration LP.

In Section 5 we showed that we can solve P(©) by applying the ellipsoid method to the dual
problem D®, assuming access to a polynomial-time separation oracle. To this end, we showed
that an exact polynomial-time separation algorithm was within reach due to additional structure
induced by trip optimality.

We adopt a similar approach for the Generalized Real-Time Line Planning Problem. Consider the
dual corresponding to P'©), which we denote as before D(®):

D® = min Zq[+ Z/IP+B(1—€)05
e Uple T A
st qracz Y Y (o) -4)  VeeLsed
i€[n,] peSi

g =20 Veel, 1,20 VpeP, a=0

Recall, for fixed ¢, given g, c;, {/11,}, a separation algorithm for D@ either certifies that qr+oace =
ic[n] Zpes; (ngl? - /11,) VS € I, or returns S such that this constraint is violated. This can be
done by solving the following combinatorial optimization problem:

@ _
max 2 35 (el 7).
i€[n,] peS;
The following lemma follows from Fleischer et al. [21].
LemMma A.3 ([21]). A S-approximate separation algorithm for D® implies a f-approximation for
B,
Thus, given a constant-factor approximation for the separation algorithm, a constant-factor

approximation for the Generalized Real-Time Line Planning Problem follows.

CoROLLARY A4. Let A be a f-approximate separation algorithm for D©. Then, using A as a
sub-routine to Algorithm 1 guarantees a (1 — %)ﬁ — ¢|-approximation for the Generalized Real-Time

_EZB/3Cmax

Line Planning Problem that is budget-respecting with probability at least 1 — e
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It suffices to show that such a constant-factor approximation exists. To see this, we show that
the problem of finding a separation algorithm for D©) reduces to an instance of the Weighted
Job Interval Selection problem (Wjis), for which a %-approximation exists [17]. Establishing this
analogy then completes the argument that we can use our algorithm to obtain a constant-factor
approximation for the Generalized Real-Time Line Planning Problem.

Definition A.5 (Weighted Job Interval Selection Problem). Consider a set of n jobs, m machines,
and a set of intervals 7 of the real line. Each job j is defined by a set of feasible intervals I; € 1 in
which it can be processed, as well as associated weights {w;;} iel;- The goal is to select a subset of
the intervals of maximum weight such that: (i) at most one interval is selected for each job, and
(ii) at any point on the real line, no more than m jobs can be scheduled.

The analogy between the Generalized Real-Time Line Planning Problem and the Weighted Job
Interval Selection Problem is as follows. Each line ¢ € £ corresponds to the real line, and sub-route
RO
023) — Ap corresponds to the weight of processing job j on interval i. The bus capacity C is the
number of machines. Thus, from any feasible solution to WjIs we can construct an assignment of

corresponds to an interval i of the real line. Each passenger p corresponds to a job j, and

passengers to sub-routes {r}” }ie[n,] such that each passenger is only assigned to one sub-route
and the capacity C of a bus on r; is nowhere exceeded. Such an assignment is thus feasible for line
¢, and any f-approximation for Wjis also gives us a f-approximate separation oracle for D,
We briefly note that n, is polynomial in n since we’ve assumed that the maximum duration
(weight) of a route is upper bounded by D, and the edge travel times are bounded below by a
constant 7y, > 0.Thus, since Algorithm 1 runs in polynomial time for the Real-Time Line Planning
Problem, it also runs in polynomial time for the Generalized Real-Time Line Planning Problem.

A.2 Travel times.

We now show that abstracting away notions of travel and clock times is indeed without loss of
generality, and that all results continue to hold for a more realistic, time-centric model.

Let T denote the length of the discrete time window during which the platform must serve the
trip requests. A passenger is now defined by her source and destination nodes s, and d,,, as well
as the time of her trip request t,. Let Pr denote the set of all passengers. Clearly, |Pr| = |P]. In
the same vein, a line is now defined by a route, a frequency, and a start time. Formally, the set of
all possible lines the platform can operate is L = {(r, i) (rf,t) e RxNxX [T]}. In this case,
we have | L7| = T|L|. Given the set of travel times {7;;}, the platform can pre-compute the bus
schedule induced by each line (e.g., if (i, j) € re, and the bus leaves node i at time ¢, then it reaches
node j at time ¢ + 7;;). With slight abuse of notation, let t;; denote the time at which line ¢ reaches
node i. Then, the only feasible trip options for passenger p via line £ are w = (sp, i, j,dp) such
that ¢, + T;;’i < ty;, where r;i is the car travel time from s, to i (i.e., the duration of the shortest
path between the two nodes). Given the bus schedule {t;;} and the passenger set r, the platform
can then pre-compute the passenger-line values {v,,}. The size of each input to Algorithm 1 has
increased at most by a constant factor T. Hence, our algorithm still runs in polynomial time under
this time-sensitive construction.

B OMITTED PROOFS
B.1 Limits of approximation for the Real-Time Line Planning Problem

B.1.1  Necessity of a candidate set of lines.
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PROOF OF PROPOSITION 4.4. Since there is an edge of cost t between r and g;, by definition of a
min-cost path, t;‘i < t. Thus, (1 - )t < (1 £)t =t — & This then implies that vy, (wg,p,) = 0 for
w¢p, such that t (wpp,) >t —¢. O

PRroOF OF PROPOSITION 4.5. Consider passenger p;. We first claim that it is without loss of gen-
erality to assume that direct travel by car is completed via edge (r, g;). This is due to the fact that
the cost of each edge of G is lower bounded by ¢ > 0, and the cost of (j,g;) ist — e for all j € S;.
Thus, traveling from r to g; via j € S; costs at least t, which is exactly the cost of the trip which
uses edge (1, g;).

The fact that a bus line cannot be routed via edge (7, g;) follows from the fact that the cost of
(r,g9i) is t > D, and as such is infeasible by bus since the maximum cost of a bus line is D.

The fact that a bus line cannot be routed via edge (J, g;) follows from the fact that the cost of
(j,gi) ist — e > D for all j € S;. Now, suppose that the passenger travels via line ¢, and let j_;
denote the vertex at which p; leaves the line and begins her journey by car. If j_; ¢ S;, then reaching
g; by car must incur a cost of at least ¢ (a cost of at least ¢ to reach a node j’ € S;, then a costt — ¢
to reach g; from j’). Thus, the value for this trip option is 0 by Proposition 4.4, and the passenger
would opt for a direct travel by car via edge (7, g;).

O

PRrROOF oF PROPOSITION 4.6. The proposition follows immediately from Proposition 4.5. The only
feasible options for passenger p; which use a bus line and collect strictly positive value are those
for which a node in S; can be reached by bus. O

B.1.2 Inefficacy of standard approximation techniques.

PROOF OF PROPOSITION 4.10. Let S denote the set of lines opened under y. With mild abuse of
notation, we use w(S) to denote the welfare induced by this set of lines.

Consider the setting with three passengers p1, p2, p3s, L = {t1, &, 5}, i =1V € Land C = 1.
The value functions associated with each passenger are as follows:

1 if¢=4¢ 1 ife=#6 1 if¢=#¢
U =431 ift =46, Upp =40 ift=4¢, U3 =40 ift =46
0 ift=1¢ 1 ift=1¢0 0 if £ =63

Passengers p; and p; use disjoint edges of r,,. Passenger ps, on the other hand, uses the same edges
of g, as py and p;. Thus, any feasible assignment of ps to £ requires ps to be its sole passenger.
Let S; = {f1}. Then, w(S;) = 2, achieved by assigning p; and p, to ;. Moreover, w(S; U {#3}) = 2,
by assigning p; and p, to #1, or p; to £; and p, to 3. Now, let S; = {£1, £,}. Again, by assigning p;
and p; to #1, we obtain w(S;) = 2. Moreover, w(S; U {#3}) = 3, obtained by assigning p; to £, p, to
#3 and ps to 4.
Since S; € Sy and w(S; U {#3}) — w(S1) < w(S2 U {6}) — w(S;), w is not submodular. )

ProoF oF ProPOSITION 4.11. Consider passengers py, p; and lines ¢, £, such that

Vopy = Vtppy = 1, Vtpr = Otipp = 0

with ry, and rg, non-overlapping. Suppose moreover that ¢, = ¢, = 1, and B = 2 — ¢, for some
e€(0,1).

Since the ILP can only open a single line, its optimal value is OPT = 1. An optimal solution to
the LP relaxation of the ILP, on the other hand, is such that yZ =1, y}‘z =1 — ¢, and thus its optimal

value is OPT = 2 —¢. Taking ¢ — 0 proves the claim. O
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B.2 Mainresult:al— % — ¢ approximation algorithm

PROOF OF LEMMA 5.5. Let A € RI"XI”I denote the constraint matrix corresponding to (11). A is
such that A, , = 1if passenger p uses edge e, and 0 otherwise. Since a passenger exclusively uses
consecutive edges of r,, the columns of A have the consecutive-ones property. Thus, A is totally
unimodular. Since C and f; are integral by assumption, these two facts together imply that LP-SEP
is integral. O

PROOF OF PROPOSITION 5.6 [21]. Let ALG(p) denote passenger p’s expected contribution to the
objective in the solution returned by our algorithm. To prove the approximation guarantee, it
suffices to show the following:

1 (e)
ALG(p) > (1 - E) DD Xy Vpep

teL Sel;peS

where {X{,(SE)} is the solution to P). Summing over all p and using Yp Yeer Lselipes vng;Sg) =

OPT®) completes the proof of the result.

For each passenger p € P, let Yoy = Yiser,pes X{,(SE). Sort the lines for which Y, > 0 in decreasing
order of v;,. Let {£1, 5, ..., 4} denote these lines, with vy, ;, > v, 5, > ... 04 p.

After rounding and re-assignment (R&R), passenger p is assigned to line # if any set containing
p is assigned to #. Thus, p is assigned to £ with probability Y, ,. If no set containing passenger p
is assigned to ¢, after R&R, then we look to £,. The probability that a set containing p is assigned to
£y after R&R is Yy, ». Thus, p is assigned to £, with probability (1 — Y, 5)Yp, . It follows that, for all
k" < k, passenger p is assigned to k’ with probability Hf;l (1-Yy,p)Yr. Hence, we have

k kK'-1
ALG(p) = ) g pYe | [ [(1=Yap) |-
k=1 i=1
Lemma B.1 relates ALG(p) to the contribution of passenger p before rounding and re-assignment,
21];’:1 Vterp Yo p-
LEmmA B.1 ([21]). Suppose Yg, > 0 forallt € L, Ypep Yop < 1, andvg p > vg,p > ... 2 05 p 2 0.

Then
k-1 k

k
1
Z U[k'ka, l—[(l N Yfi,P) 2 (1 - (1 - Z)L) Z Ufk’,PYfkr,P'
k'=1 i=1

k'=1

Using the fact that (1— (1 - %)L) >1- % for all L > 1 completes the proof of Proposition 5.6. O

PROOF OF PROPOSITION 5.8. Let Y, be the indicator variable denoting the event that line £ was
opened before the re-assignment step, and let Y, denote the final line status, after the aggregation
step. Let ¢(Y) and c(?) denote the total costs associated with Y and Y, respectively. Between the
re-assignment step and the aggregation step, the cost of the solution could only have decreased,
since lines were potentially closed. Similarly, by Proposition 5.7, the cost of the solution could only
have decreased after the aggregation step. Thus, we have ¢(Y) < ¢(Y), and

E[c(Y)] <E [c(?)] = > P [Z - 1] =3 | Y x| <B1-0),

tel tel Sel,
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where the second inequality is by feasibility of X {,(;). Thus, the budget constraint is satisfied in
expectation.
We now prove the second part of the claim:

P ZCngz(1+5)(1—£)B <P ch?}z(1+5)(1—g)3

tel tel
;= 1-¢)B
=P LT (1400208
[EL cmax Cmax
Se_52(1_5)3/3cmax (15)

where (15) follows from an application of the Chernoff bound to the independent random variables
{ = E} = and uses the fact that E [Ze Ci?g] < (10_—8)3 by feasibility of {X{,(;) } O
[E max max

Cmax

C ADDITIONAL NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

To complement our real-world data experiments, we consider a synthetic dataset and show how
the performance of our algorithm depends on the number of requests and the cardinality of the
candidate set of lines, using the ILP as a benchmark.

Observe that our algorithm relies on the underlying road network solely through the candidate
set of lines £, the line costs {c,}, and the passenger-line values {v,,}. Thus, it suffices to directly
generate these latter sets of inputs, rather than inheriting them from an underlying structured
network. We note that generating inputs in this manner, rather than running our algorithm on a
synthetic network (e.g., a grid network), further underscores the strength and generalizability of
our scheme, as its success is not tied to the geometry of any underlying graph.

Line inputs. We generate the candidate set of lines as follows. For each ¢ € L, we associate D,
edges, where D, ~ Unif{5,50}. Moreover, let ¢, = 1V ¢ € L. This implies that a platform with
budget B can open at most B lines. Let # denote the set of possible frequencies with which to
operate each bus route. In our first set of experiments, we let # = {1}. Doing so is without loss
of generality since, by definition, bus routes operated at different frequencies are considered to
be different lines. Thus, considering a larger set of frequencies is computationally equivalent to
increasing the size of candidate set of lines (e.g., considering 1,000 lines with 2 different frequencies
is equivalent to considering 2,000 lines with a single frequency). We set the bus capacity C = 30.
Passenger inputs. For each passenger p € ¥ and line £ € £, we let r;, be a random subset
of contiguous edges of r,. To model the fact that, in a realistic network, passengers would not
be covered by all lines, we define random variable Z;, ~ Ber(0.1) representing whether or not
passenger p is covered by line ¢. Given Z;,, we define the passenger-line value as follows:

Uniflo,1] if Zy =1
Upp = .
0 otherwise.

Performance metrics. We investigate the performance of this practical procedure along three
dimensions: (i) the number of passengers N, (ii) the size of the candidate set of lines L, and (iii)
the platform’s budget B. For both the ILP and our algorithm, we set a strict time limit of 20 minutes,
and compare the solutions returned by the two schemes at the end of the allotted time.

Given an instance of line and passenger inputs, we run the procedure described in Section 6.1
M = 500 times for each combination of parameters (L, N, B) (i.e., we find the maximum of the
m = 10* realized solutions M = 500 times).
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We run the procedure for 5 randomly-generated instances of line and passenger inputs. Let ALG
denote the empirical average of the solution returned by the procedure. As before, we compute n
the empirical average of the multiplicative gap between the solution returned by our procedure
and the value of the configuration LP P at the end of the allotted time.

We report the results of our experiments in Table 3.

Whereas in theory the ILP solver provides an upper bound on ALG, this does not necessarily hold
in our numerical results. This is due to the fact that, for large-scale problems and under reduced
time budgets (i.e., the real-time application we are interested in), the ILP solver cannot solve the
problem to optimality, and as such the objective it achieves is not necessarily an upper bound on
ALG in practice.

L N B|ILP ALG n | L N B|ILP ALG n |
1,000 5,000 20] 2363 2173 0.81 1,000 5,000 403671 2744 0.88
5000 5,000 20 |2098 2171 0.81 5000 5,000 40 | 3686 2743 0.88
7,000 5,000 20| 807 2173 0.80 7,000 5,000 40 | 2750 2754 0.88
10,000 5,000 20| — 2174 0.81 10,000 5,000 40| — 2748 0.88
5000 5000 202098 2171 0.81 5000 5000 403686 2743 0.88
5000 10,000 20| — 3498 0.84 5000 10,000 40 | — 4949 0.85
5000 15,000 20| — 4445 0.88 5,000 15,000 40| — 6691 0.82

Table 3. Numerical results for budgets B € {20,40}. Bolded values of ALG indicate that our procedure
outperforms the ILP benchmark for the corresponding L, N, B. While the ILP outperforms our algorithm on
smaller instances, for larger values of L and N, our algorithm consistently outperforms the ILP. As the budget
increases from 20 to 40, the ILP outperforms our algorithm for a larger set of values of L and N; however,
there still exists a threshold past which our algorithm outperforms the ILP. This difference is especially stark
when L and N are both very large (we note that it is reasonable to expect L and N to grow with B): for
these large-scale settings, the ILP is incapable of returning any feasible solution in the allotted time. Observe
moreover that 7, the gap between the solution produced by our procedure and the value of the configuration
LP, is consistently above 80%, which is a significant improvement upon the 0.95 - (1 — %) (i.e., 60%) theoretical
guarantee.
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