

	

Figaro: A Tabletop Authoring Environment for Human-Robot
Interaction

David Porfrio Laura Stegner Maya Cakmak
dporfrio@wisc.edu stegner@wisc.edu mcakmak@cs.washington.edu

University of Wisconsin–Madison University of Wisconsin–Madison University of Washington
Madison, Wisconsin Madison, Wisconsin Seattle, Washington

Allison Sauppé Aws Albarghouthi Bilge Mutlu
asauppe@uwlax.edu aws@cs.wisc.edu bilge@cs.wisc.edu

University of Wisconsin–La Crosse University of Wisconsin–Madison University of Wisconsin–Madison
La Crosse, Wisconsin Madison, Wisconsin Madison, Wisconsin

�������������������� ���

start

idle

human:
leave

greet

idle

human:
leave

fare-
well

end

human: approach
human: on-le�

human: approach
human: on-right

robot:
self

robot:
self

Figure 1: Figaro enables users to program robots through demonstrations via scenes (left) and constructs an interaction pro-
gram from user demonstrations (center), which can be deployed on a robot (right).

ABSTRACT
Human-robot interaction designers and developers navigate a com-
plex design space, which creates a need for tools that support in-
tuitive design processes and harness the programming capacity of
state-of-the-art authoring environments. We introduce Figaro, an ex-
pressive tabletop authoring environment for mobile robots, inspired
by shadow puppetry, that provides designers with a natural, situated
representation of human-robot interactions while exploiting the
intuitiveness of tabletop and tangible programming interfaces. On
the tabletop, Figaro projects a representation of an environment.
Users demonstrate sequences of behaviors, or scenes, of an inter-
action by manipulating instrumented fgurines that represent the
robot and the human. During a scene, Figaro records the movement

5th author’s name in native alphabet: ú�Gñ«Q�. Ë @ �ð@.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.

of fgurines on the tabletop and narrations uttered by users. Subse-
quently, Figaro employs real-time program synthesis to assemble
a complete robot program from all scenes provided. Through a
user study, we demonstrate the ability of Figaro to support design
exploration and development for human-robot interaction.

CCS CONCEPTS
• Human-centered computing → Systems and tools for inter-
action design; • Computer systems organization → Robotics.

KEYWORDS
Authoring environments; tabletop interfaces; shadow puppetry;
program synthesis; human-robot interaction

ACM Reference Format:
David Porfrio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albargh-
outhi, and Bilge Mutlu. 2021. Figaro: A Tabletop Authoring Environment for
Human-Robot Interaction. In CHI Conference on Human Factors in Comput-
ing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3411764.3446864

1 INTRODUCTION
CHI ’21, May 8–13, 2021, Yokohama, Japan Designing human-robot interactions (HRIs) for social applications
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. entails carefully crafting both the overall fow of the interaction and ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3446864 the individual behaviors for the robot to perform. Furthermore, the

https://doi.org/10.1145/3411764.3446864
https://doi.org/10.1145/3411764.3446864
mailto:permissions@acm.org

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

interaction design process must consider the context of the interac-
tion, including the potential attitudes, preferences, and behavioral
diferences of humans interacting with the robot, in addition to the
limitations of the physical environment within which the robot
will be deployed. However, most existing programming approaches
for social robotics require designers to work with highly abstract
representations that are far removed from the context of the target
interaction. On one extreme, traditional programming tools require
designers to immerse themselves in low-level syntax and seman-
tics, such as through traditional text-based programming interfaces
(e.g., [6, 48]). In another extreme, interfaces that employ graphical
representations of the interaction, such as fnite automata, require
designers to memorize symbolic representations of interaction logic
(e.g., [21]). In both cases, designers must independently maintain
mental models of how their abstract representations of the inter-
action map to situated interactions in real life. Although recent
work has aimed to close this gap between the designer’s vision and
system behavior, e.g., by mapping designer demonstrations to robot
behaviors [45], designers still lack representations of the situated
resources, requirements, and constraints of the interaction. With-
out a clear mapping between abstract programming functionality
used at design time and how the robot will behave in the target
social environment at execution time, designers must rely heavily
on simulation, extensive testing, and their own imaginations to
predict how their designs will play out after deployment.

To address the gap introduced by programming abstractions be-
tween design and execution times, we have developed Figaro (Figure
1), a tabletop authoring environment for designing human-robot
interaction fows that situates the interaction design process within
a miniature representation of the target user environment in order
to enable designers and developers of robot applications to focus ex-
clusively on specifying system behavior. Figaro’s design is inspired
by “shadow puppetry,” where a puppeteer can perform highly ex-
pressive scenes using a few static props and puppets with limited
articulation through the use of motion and narration. The props
and the stage provide the performer with just the right amount of
context for situated play-acting, and simple motions of the pup-
pets and the narration provide sufcient expressivity to convey
social behavior and afect. As in shadow puppetry, using Figaro,
designers who we refer to as demonstrators play out high-level
sequences of robot and human behaviors by manipulating fgurines
representing human and robot agents on the tabletop and narrating
verbal commands to specify speech for each fgurine. We refer to a
sequence of behaviors as a scene. A drawing of the target deploy-
ment environment is projected from underneath the tabletop onto a
translucent surface, giving demonstrators a clear representation of
the space where humans will interact with the robot. Demonstrator
narration is combined with actions performed on the fgurines and
their position and movement within the deployment environment
to create a complete model of each scene. Figaro automatically re-
solves the program semantics of each scene, freeing demonstrators
from these low-level details. Given a collection of scenes, Figaro
employs real-time program synthesis to construct a full interaction
automata that can be deployed on a robot.

Despite detaching the demonstrator from direct control over
the semantics of interactions, Figaro still maintains expressivity
over critical aspects of the design process. First, demonstrators

control the physical layout of the environment that is projected
onto the tabletop, which specifes the physical space where the
interaction is to take place. Prior to creating scenes, demonstrators
specify the various objects that the robot can recognize and regions
over which the robot can navigate. Second, Figaro enables detailed
control over the robot’s behaviors in the interaction through (1)
tracking the relative position of the robot to the human and each
object in the scene, (2) tracking the orientation of the robot with
respect to these same components, (3) instrumenting the fgurines
so that the demonstrator may tangibly select behaviors that the
robot should perform and (4) allowing the demonstrator to verbally
specify speech utterances that the robot can emit or understand
from a human.

In addition to providing an open-source software implementa-
tion of Figaro, the research contributions of our work include:

• A novel tabletop programming interface through which users
can manipulate fgurines to demonstrate the fow of human-
robot interaction programs;

• A versatile synthesis approach that combines streams of user
input into expressive HRI programs;

• An exploratory user study of Figaro that demonstrates its
ability to support design exploration and programming.

2 RELATED WORK
Below we discuss prior work with regards to design considerations
and methods for creating human-robot interactions, programming
interfaces that enable this design to occur, and how these programs
can be represented and automatically synthesized.

2.1 Designing Human-Robot Interactions
There are many aspects of human-robot interactions for designers
to consider, many of which Figaro broadly intersects such as verbal
and nonverbal communication [25, 54]. Locomotion in particular,
which is a large focus of Figaro, requires designers to reason about
the robot’s physical proximity to its interaction partners [7] and
situate the robot in a physical space [29, 53, 57]. Other navigation
complexities to consider include humans and robots walking side-
by-side [36] and ensuring that the trajectory taken by the robot
reduces stress on the human [35].

The multi-faceted nature of human-robot interactions is easy for
designers to use themselves in situ or recognize when incorrect, but
is difcult for designers to articulate for ad hoc purposes. To help
mitigate this issue, Wada et al. [64] implemented a system where
the designer would frst ideate, then tele-operate a robot to test their
design, refning as needed. This immersive, hands-on experience
gave the designers a better feel for the actual interactions they may
encounter and how they might progress, however such a design
methodology is not always practical. A more hands-of approach by
Liu et al. [33] sought to use high-precision sensors to gather a large
collection of human-human interactions in a public environment
in order to automatically generate a human-robot interaction.

Figaro uses immersive design methods to help demonstrators
in recognizing and articulating the needs of multiple interaction
possibilities. For example, in scenario-based design, designers focus
on envisioned use scenarios that guide the development of the
system, which includes both the actual scenario fow as well as

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

personal motivations and histories for each actor in the scenario
[50]. Drawing from this work, Figaro prompts demonstrators to
create scenes of an interaction by thinking about the various ways
that a robot might, or should be used, but does not prompt them
to think about the background or motivations of the actors. Figaro
also takes inspiration from design methods such as speed dating
[18], bodystorming [41], and more traditional user enactments [40],
all of which immerse designers in the context of an interaction
through the use of role-playing and environmental similarity.

2.2 Programming Interfaces in Human-Robot
Interaction

Prior work on robotic programming tools spans expert text-based
frameworks (e.g., [6, 48]) to more user-friendly interfaces (e.g.,
[21, 26]). Some of these tools target general use (e.g., [48]), while
others focus specifcally on social robotics (e.g., [46, 47]). Previous
work in user-friendly HRI authoring tools includes an extensive set
of visual programming interfaces (VPE’s) such as Interaction Com-
poser, which similar to Figaro represents interaction programs as a
collection of states and transitions [21]. However, Interaction Com-
poser, in addition to other robot programming VPE’s (e.g., [3, 46]),
assumes that the designer possesses some programming knowl-
edge. The authoring tool Code3 addresses diferences in designers’
skills by providing diferent authoring layers suitable for diferent
levels of expertise [26]. The assistance provided to designers takes
many forms, from abstracting away low-level design details [54] to
assisting designers by using methods such as formal verifcation
[46]. Other VPE’s have shown the efcacy of birds-eye-view maps
where the user specifes movement paths and other logic elements
[13, 16, 30, 32].

Given the challenges of programming robots with traditional
text-based frameworks and VPEs, particularly for novice program-
mers, recent robot programming interfaces involve less traditional
means of capturing user intent, such as through natural language
[66], demonstration through tangible programming [56] and table-
top interfaces [20], or role-playing scenes of an interaction with a
partner [45]. These interfaces seek to capture the results of a more
immersive design process and automatically synthesize it into a
program, addressing many of the issues novices face in traditional
programming.

Creating a natural mapping between interface control and func-
tionality is a key challenge in interface design [39]. This challenge
is exacerbated for interfaces with functionality that does not neces-
sarily map to a physical domain [19]. Prior work on bodystorming
HRIs, which leverages the embodied nature of both the bodystorm-
ing design method and the interaction itself, shows that designers
feel that the interaction can seem artifcial, making it difcult to cap-
ture the actual nuances of an interaction [45]. To avoid the artifcial
nature of bodystorming, Figaro borrows from shadow puppetry to
use a “stage,” a set of fgurines, and projected props to prototype an
interaction in a situated, tangible way. Prior work has argued that
shadow puppetry ofers an appropriate framework for designing
interactive media [42]. Building on the puppetry metaphor, Young
et al. developed Puppet Master–a system for designing reactive vir-
tual agents through demonstrations that express style, personality
and emotions [67, 69]. The idea of the use of fgurines for design

expression is supported by concepts from experience prototyping
[10] and sketching [12], which both suggest that using physical
artifacts in the design process allows the designer to more intensely
experience and understand the design scenario.

Tangible user interfaces (TUIs) leverage small objects as program-
ming manipulatives to close the gap between how we conceptualize
goals for programs and then communicate those goals to our pro-
gram [27]. Given the physical nature of robots, robot programming
is a natural application of TUIs. Prior work exploring children’s use
of TUIs shows that they ofer several key advantages, namely low-
ering the barrier of entry for non-programmers [51]. Sapounidis et
al. [52], found that compared with using a graphical user interface
(GUI), children using a TUI to program robots were able to complete
tasks more quickly and with fewer errors. Tools for programming
robot manipulators have also used TUIs [20], signifcantly reducing
training time compared to traditional programming interfaces.

Tabletop TUIs have been used in numerous applications: urban
planning [63], theater stage planning [23], fight-clearing of naval
aircrafts from a ship [15], augmenting physical objects to create tan-
gible displays [17], and robot navigational tasks [31]. Across these
diferent interfaces, a few common benefts emerge: it is easier to
collaborate in the tabletop interface, and for spatially-focused tasks,
the visualization ofered a much more intuitive experience. Figaro
expands the use of these tabletop TUIs in robotics programming
by applying it to the novel domain of HRI.

Various HRI programming interfaces, tangible and non-tangible
alike, ofer similar interaction paradigms to Figaro, but unlike Fi-
garo, are not intended for the demonstration and generalization of
high-level interaction fows. Reactile, for instance, ofers a tabletop
interface but excels in programming the fne-grained coordination
of swarm robots [60]. The “style by demonstration” approach co-
incides with Figaro’s design of dyadic interactions but is used to
craft physical reactions to stimuli [67–70]. At the level of specifying
interaction logic, users of Picode demonstrate individual behaviors
but must program fow textually [28]. At an even higher level, Magic
Cards reasons about tasks in a physical environment but abstracts
steps necessary to perform them [71]. Figaro’s interface also bears
striking similarity to educational interfaces such as Cellulo, where
children interact with small robots in a simulated layout but do not
program the robots themselves [43].

2.3 Synthesizing and Representing Programs
In facilitating the collection of scenes to serve as input to pro-
gram synthesis, Figaro draws from keyframe demonstrations to
program interactions, in which signifcant events in the interaction
are demonstrated but the precise trajectory taken by the robot is
left to the synthesizer [1]. Prior work has also explored program
refnement after one or more demonstrations have been provided,
such as by interacting with a visualization of the program [2] or
by ofering critiques after an initial program has been created from
demonstration [5].

In our particular approach, Figaro uses inductive synthesis—
learning a program from a small set of examples [22]—to construct
HRI programs from designer input. An example of inductive syn-
thesis is TRANSIT, which synthesizes protocols from execution
traces [62]. Other prior work has generalized sets of execution

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

Draw Layout Demonstrate Scenes Test/Deploy

Figure 2: The design process that Figaro facilitates, from
drawing a physical layout (left), leading to demonstrating
scenes (center), and ending with testing/deployment (right).

traces into automata [38, 45]. In an inductive synthesis approach,
counterexamples from the synthesized program can subsequently
be used as input to further iterations of synthesis [58]. The goal

Robot

Computer

Figurines

Projector

Microphone
Translucent Surface

Infrared
Camera

Mirror

of Figaro is similar to that of automata learning: constructing an
automaton by querying whether or not traces are accepted by a
target system [4, 49, 59]. In classical automata learning, the target
system is already specifed and the algorithm seeks to build a model
of that system, but for Figaro, the target system is not yet specifed,
so the synthesis must both create and model the target system.

While Figaro creates interaction programs that solely dictate the
robot’s behavior based on sensory input, prior work has developed
representations that include both human and robot actions in the
execution of a human-robot collaboration plan [37]. Other prior
work in programatically representing interactions reasons about
timing between the robot’s behaviors in order to create fuent in-
teractions [14, 61], while Figaro reasons only about the ordering of
discrete events.

3 FIGARO: DESIGN AND IMPLEMENTATION
In this section, we describe the technical details and implementation
of Figaro,1 beginning with the design pipeline that Figaro facilitates.
We then introduce a running example of a potential design scenario,
and subsequently describe each component of Figaro in detail using
the running example for illustration.

3.1 Design Pipeline
Figure 2 depicts the design pipeline facilitated by Figaro. In general,
demonstrators will draw the physical layout of the environment in
which the robot will function and then iteratively demonstrate dif-
ferent scenes of how the robot should interact with people, objects,
and regions within its environment. Between iterative demonstra-
tions of scenes, Figaro will synthesize the full interaction program in
the background and query demonstrators about ambiguities within
their designs. At any point, demonstrators can compile these inter-
action programs onto a robot for testing/deployment.

The components of Figaro, shown in Figure 3, facilitate the design
pipeline described above. The Figaro system includes (1) a tablet
control interface through which demonstrators can enter various
design modes; (2) two wooden peg doll fgurines that represent the
human and the robot; (3) a projected tabletop design interface used

1An open-source implementation of Figaro is available at https://github.com/Wisc-
HCI/Figaro.

Figure 3: The Figaro system includes the tabletop interface
connected to a computer, a tablet control interface, and a ro-
bot for deploying designs.

by demonstrators to manipulate fgurines to demonstrate scenes; (4)
an audio component that listens to and interprets demonstrators as
they narrate human and robot speech; and (5) a program synthesizer
for interpreting and building programs from collections of scenes.

3.2 Design Scenario
Consider the following toy example: A demonstrator wishes to
program a household robot that can host video calls on a tablet,
which we refer to as the Call robot. Upon request, the robot should
approach a human. If the human is standing, the robot may need to
adjust its screen to suit the height of the human. The human is then
free to initiate a call by interacting with the tablet. Until a video
call is requested, the robot will move around the house looking for
people to interact with. Given these capabilities, the details of how
the robot will complete these tasks are left to the demonstrator. In
the following sections, we describe how each component of Figaro
facilitates the design of this scenario.

3.3 Control Interface
The tablet interface provides access to various modes (Figure 4)
as demonstrators progress through the design process, while also
ensuring that demonstrators are not confned to the tabletop at all
times. The primary modes of Figaro are (1) draw a physical layout,
(2) create scenes, and (3) resolve ambiguities. From the home screen,
a demonstrator can enter draw mode or create mode, and resolve
mode is automatically triggered whenever a design ambiguity needs
resolution. The tablet displays the current mode as well as options
within that mode. We briefy introduce the modes below.

Draw a Physical Layout—Through the tablet, Figaro allows
demonstrators to draw a coarse physical environment within which
the robot will be placed (Figure 4, top-right). A drawn environment
has two components: regions and objects. The physical layout is
split into a grid that can be used to specify regions, which represent
specifc areas of the space recognizable to the robot, such as a room
or a certain area within a room. Shapes can be drawn on top of the

https://github.com/Wisc-HCI/Figaro
https://github.com/Wisc-HCI/Figaro

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

physical layout grid to specify physical items in the regions. The
demonstrator can also specify the names of regions and objects.
Due to the low-fdelity nature of drawn environments, Figaro is
best suited for cases in which only discrete locations need to be
incorporated into the fnal programs, rather than the exact physical
characteristics of objects and regions.

Create Scenes—Creating scenes encompasses the main part of
the design process. Within the create mode (Figure 4, bottom-left),
the demonstrator can start and stop scenes, remove existing scenes,
and view details of previously created scenes.

Resolve Ambiguities—The resolve mode allows Figaro to query
demonstrators for additional information or to reconcile conficting
information. As a demonstrator narrates a scene, they may verbally
specify a behavior that Figaro cannot recognize, e.g., failed speech
recognition or categorization. After the scene is complete, the tablet
will prompt demonstrators to clarify their intent (Figure 4, bottom-
right). Ambiguities are further discussed in Audio Interface.

Illustrating Design Flow with the Control Interface. The demonstra-
tor for the Call robot must frst specify the household’s physical
layout. They click Draw Physical Layout on the tablet home screen
to enter draw mode. The robot should begin at its charging station,
so the demonstrator specifes a charge region. The demonstrator
draws other areas recognizable by the robot, such as the kitchen and
a bedroom. When the demonstrator is satisfed with the drawn lay-
out, they return to the home screen via the Done button. Then, the
demonstrator presses the Create button to enter create mode. When
the demonstrator wants to begin a scene, they press Begin a scene.
Once the scene is complete, the demonstrator presses Done and the
tablet returns to the create mode. From there, the demonstrator can
choose to create additional scenes using the same process.

3.4 Demonstrating Scenes
When demonstrators initiate a scene, Figaro passes control from the
tablet to the tabletop. We describe the three main components of

Figure 4: The tablet interface and its various modes, includ-
ing the home screen (top-left), the draw mode screen (top-
right), the create mode screen (bottom-left), and the resolve
mode screen (bottom-right).

Figurine
Detection

Touch
Detection

Figure 5: Figaro tracks the position and orientation of fg-
urines using an infrared camera and performing blob and
pattern detection.

the tabletop that facilitate scene demonstration: the tabletop design
interface, the audio interface for natural language commands, and
the instrumented fgurines.

Tabletop Design Interface. Within a scene, the demonstrator ma-
nipulates the positions and orientations of the fgurines on the
tabletop to demonstrate the behaviors of a robot or a human in
the environment. As the demonstrator manipulates the fgurines,
Figaro (1) projects the drawn physical layout onto the tabletop
from underneath its surface, (2) tracks the positions of fgurines,
(3) detects when a demonstrator touches the tabletop surface, and
(4) ofers visual feedback to demonstrators.

Hardware—The tabletop design interface, measuring approxi-
mately 0.94 m × 0.92 m × 0.61 m, is comprised of a rear projection
setup similar to the Wipe-Of interface [44]. A projector from un-
derneath the table shines an image of the physical layout to tracing
paper attached to the underside of a clear sheet of acrylic, while
an 850 nm infrared camera with a built-in infrared lamp tracks
the position and orientation of fgurines from under the table. We
use OpenCV to detect the position of fgurines by placing simple
geometric shapes under each fgure – a half-circle for the robot
and a circle for the human – and using blob detection to isolate the
shapes and pattern detection to assign them identities [8]. Further-
more, the orientation of the half-circle under the robot fgurine is
used to calculate its orientation. As Figaro tracks the movement of
fgurines across the board, it displays a trail of movement onto the
projected display interface to provide the demonstrator with visual
feedback that the fgure is being tracked correctly. Figure 5 (top)
depicts our approach to fgurine detection.

Lastly, two 850 nm infrared LED light strips span the length of
the perimeter of the acrylic to enable fngertip touch detection via
frustrated total internal refection. When demonstrators touch the
board, Figaro highlights the area that was touched in a circle to
provide visual feedback that the touch has been registered. While
demonstrating scenes, basic touch capability allows the demonstra-
tor to focus solely on the tabletop without needing to shift their
focus to the tablet. Instances of the touch input capabilities include
pausing/playing the scene creation or interacting with dialog boxes
that Figaro displays (further discussed in Audio Interface). Figure 5
(bottom) depicts our approach to touch detection.

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

1

2

3 �e robot arrives at
the kitchen.

4 �e human asks
the robot to move
its head back.

2

3
On my
way!

Robot, I
need to make

a call.

1

Can you
tilt your head

back? 4

Charge
Station

Kitchen �e human issues a
CallRequest.

�e robot responds
and moves to the
kitchen.

Figure 6: Part of a scene in which the human issues a request
to make a video call on the robot and the robot travels to the
human’s location.

Audio Interface. In addition to manipulating the fgurines, demon-
strators must also specify the speech uttered by the human and
robot. Thus, Figaro listens for speech commands as demonstrators
perform scenes. We defne a speech command as a specifcation for
the speech that the robot should utter or the speech that it should
be able to recognize at a particular moment in time.

Figaro uses Mycroft-precise 2 in order to quickly detect human
or robot speech commands. If a demonstrator says “robot say” or
“human say,” Figaro knows to begin listening for robot speech or
human speech, respectively. Upon detection of a hotword, Figaro
will initiate real-time speech-to-text transcription.3 As demonstra-
tors speak a command, their speech is transcribed on the tabletop
in real-time. Transcription concludes when Figaro hears a pause
in the speech. The demonstrator can touch the displayed speech
to fag it for later review if, for example, the uttered speech was
incorrectly transcribed.

The transcribed utterance must then be classifed. Figaro feeds
the utterance into of-the-shelf intent recognition software to per-
form this categorization,4 which is pre-trained to recognize a small
set of general speech categories (e.g., greeting, farewell, thanking).
Figaro marks any speech that either cannot be classifed or was
fagged by the demonstrator as undefned. After a scene is complete,
Figaro will prompt the demonstrator to resolve undefned utter-
ances within the resolve mode of the control interface (Figure 4,
bottom-right). The demonstrator is queried to either classify the
speech within one of the general categories, defne a new category
for speech if no suitable existing category exists and add additional
speech examples to the new category, or discard the speech. Demon-
strators may also edit the transcription. New speech categories can
be re-used in future scenes by either stating the category name or
a phrase corresponding to the classifcation verbatim.

Illustrating the Start of a Scene. The demonstrator wants to play
out a scene in which a person in the kitchen (1) requests to make
a video call with the robot and (2) asks that the robot tilt its head
up to handle the case in which the human is standing and doing

2Hot-word detection is done using Mycroft-Precise, which can be found at
https://github.com/MycroftAI/mycroft-precise
3Speech to text is performed using Google Cloud Text to Speech, found at
https://cloud.google.com/text-to-speech/
4Intent recognition uses Dialogfow: https://dialogfow.com

Wait BehaviorPoint Behavior Nod Behavior

push down push down

tilt

b)

tilt

a)

detachable
peg doll

joystick
base

Figure 7: (a) The wooden peg doll fgurines attach to joystick
bases. (b) The three behaviors to which Figaro maps joystick
movements – pointing, waiting, and nodding.

dishes. Before beginning the scene, the demonstrator places the
human fgurine in the kitchen region of the environment and the
robot in the charge region. The demonstrator then uses the control
interface to begin a scene. The demonstrator utters

Human say: Robot, I need to make a call.
Robot say: On my way.
For the purpose of illustration, we will assume that Figaro’s

speech classifer recognizes and classifes the phrase “robot, I need
to make a call” as CallRequest and the phrase “on my way” as
Respond. The demonstrator then moves the robot fgurine to the
kitchen and subsequently issues an additional utterance:

Human say: Can you tilt your head back?
Suppose that the human’s speech phrase “can you tilt your head

back” does not map well to any of the general speech categories
recognizable by the robot. Figaro fags this speech as undefned,
and will prompt the demonstrator to resolve it later by creating
a new speech category on the tablet (Figure 4, bottom-right). The
in-progress scene is illustrated in Figure 6.

Figurine Controllers. At the current point in the scene, the human
has asked the robot to tilt its head back so that the human can have
a better view of the video call. To fnish the scene by responding
to the human’s request, the demonstrator will need to enact a
head nod. While it is possible to verbally specify actions such as
a head nod, as was done in an early iteration of Figaro, doing
so increases the chance for speech misclassifcations. Thus, Figaro
enables demonstrators to enact robot actions directly on the fgurine
controllers, with the goal of decreasing speech classifcations and
providing a more direct mapping between demonstrator intent and
robot behaviors. To enable this enactment, the fgurines are afxed
to a joystick controller base (Figure 7a).

The joystick has three output voltages – x and y axis of the
joystick motion, and button displacement. These three measures
are transmitted via Bluetooth Low Energy (BLE) 5 6 to Figaro. We
enclose the electronics in a 3D printed case afxed to each fgurine.

Figaro then classifes combinations of voltage signals into one of
three possible categories – a pointing behavior, a head nod behavior,
or a wait behavior. Figure 7b depicts how each behavior can be
achieved on the fgurine. If the fgurine is tilted far enough in
a particular direction, Figaro recognizes a point behavior. While

5We use the Adafruit Feather NRF52840: https://www.adafruit.com/product/4062
6The microcontroller was programmed with CircuitPython, which can be found at:
https://circuitpython.org using the Adafruit_CircuitPython_BLE library, which can be
found at https://github.com/adafruit/Adafruit_CircuitPython_BLE

https://github.com/MycroftAI/mycroft-precise
https://cloud.google.com/text-to-speech/
https://dialogflow.com
https://www.adafruit.com/product/4062
https://circuitpython.org
https://github.com/adafruit/Adafruit_CircuitPython_BLE

−

−

− − −

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

pointing, clicking the fgurine causes Figaro to recognize a nod
behavior, downward if tilted forward and upward if tilted backward.
Clicking the fgurine without tilting it causes Figaro to recognize a
wait behavior, in which the robot idles.

Illustrating the End of a Scene. Simulating the robot responding to
the human’s request to tilt its head back, the demonstrator pushes
down on the fgurine and pulls it backward on the joystick, causing
Figaro to recognize a nod behavior. The human may then complete
their video call on the robot, which we consider to be an action
native to the tablet interface on the robot rather than one of the ro-
bot’s programmable behaviors. Finally, the demonstrator simulates
the case where the human has fnished their video call by uttering:

Human say: You can leave now.

Figaro’s classifer successfully recognizes this text as ExitRequest.
The demonstrator then releases the fgurine back to its resting
position and slides the robot fgurine back to its charging station.

3.5 Program Synthesis from Scenes
Figaro captures detailed raw information about the human and
the robot fgurine including fgurine position and orientation, joy-
stick manipulations, and timing for all behaviors. To synthesize
a high-level program, our synthesis approach must abstract the
relevant information from the multiple demonstrations that include
such low-level data. The purpose of these abstractions is to bal-
ance including a sufcient amount of detail in the program with
enabling our synthesizer to generalize full programs from a series
of demonstrations. Our synthesis approach is as follows: we frst
convert each scene to an execution trace, then feed each trace into
a synthesizer which constructs a program that accepts each trace.

Converting Scenes to Traces. The raw output from each scene con-
sists of a set of parallel recording tracks captured from the tabletop,
audio, and fgurine input signals. Figaro frst processes the record-
ing so that it adheres to any parameters that are specifc to the
particular robot being used. For example, if a robot can only sense
whether a human is close to it but cannot sense the human’s exact
location, the signal describing the human’s position on the tabletop
will be converted to a binary value indicating whether the human
is close to or far from the robot.

Next, Figaro compresses the information within the set of modal-
ities into into three categories—(1) the discrete behaviors that the
robot exhibits, (2) any event triggers that the robot can notice, and
(3) the state of the environment that the robot can perceive. We
denote the set of behaviors that the robot can exhibit as B, the set
of event triggers that the robot can recognize as E, and the set of
diferent environmental states the robot can observe as V .

Figaro then bins the processed recordings by intervals of time.
The start of a bin is denoted either by an event trigger, such as the
human uttering speech to the robot, or by the frst action taken by
the robot. The end of a bin is denoted either by the next event trigger
or the end of the recording. At the start of the bin, Figaro records
the state of the environment. Within a bin exists any sequential
and concurrent behaviors that the robot exhibits between triggers.
If within a bin the robot exhibits two sequential behaviors of the
same behavioral modality (e.g. one utterance followed by another
diferent utterance), the bin encompassing those behaviors will

Respond

Idle

Go to
charge

Idle

Tilt
head

a) traces for Call program

interrupt
triggered by
CallRequest

c) interrupts
interrupt: Call program

main: Patrol
program

Go to
charge

CallRequest

Idle
TiltCommand

ExitRequest
Go to
charge

Go to
table

Go to
charge

b) �nal Call program

ExitRequest TiltCommand

ExitRequest

Go to
bedroom

Tilt
head

start state
end state

Go to
kitchen

interrupt returns
to patrol program Respond Respond

Go to
kitchen

Go to
kitchen

ExitRequest

CallRequestCallRequest

Figure 8: Our synthesis approach within Figaro, which takes
(a) the set of demonstrator traces and (b) combines the traces
into a program. For simplicity, environmental state has been
removed from transitions, and unannotated arrows repre-
sent the self transition. (c) The Call procedure serves as an
interrupt to the main Patrol procedure.

be split into two bins, in which the trigger for the second bin is
considered to be self, indicating that the robot triggered its own
behavioral change.

In the next step, Figaro converts each bin to a trigger-
⟨ei ,vi ⟩environment-behavior triple, denoted as −−−−−→ bi , where ei ∈ V

is the event that triggered bin i; vi ∈ P(V) is the environmental
state recorded at the start of bin i , denoted as an element of the
powerset of V since Figaro observes multiple environmental states
simultaneously (e.g. the robot may observe itself to be in a particu-
lar position of the room while at the same time observing that it is
proximal to the human); and bi ∈ P(B) comprises the behaviors
observed within bin i , denoted as an element of the powerset of B
since Figaro can observe multiple robot behaviors within a particu-
lar bin. If bin i is the frst in the sequence, Figaro deems the event
that triggered the bin to be self and the environmental state to be
the state recorded at the start of the recording.

After all bins have been converted to trigger-environment-
⟨en,vn ⟩behavior triples, Figaro creates an accepting triple −−−−−−→ bn

in which en = self, vn is the environmental state recorded at the
end of bin n − 1, and bn = �. Finally, Figaro assembles an exe-
cution trace by linking consecutive trigger-environment-behavior
triples. Formally, we represent a trace as a sequence of triples:
⟨e0, v0 ⟩ ⟨e1, v1 ⟩ ⟨e2, v2 ⟩ ⟨en, vn ⟩
−−−−−−→ b0 −−−−−−→ b1 −−−−−−→ ... −−−−−−−→ bn .

Constructing a Program from Traces. Given a set of traces T , our task
is to construct an interaction program I that accepts each trace. The
program I is formalized as a tuple (S, s0, sf , fT , fB), where S is the
set of states; s0 ∈ S is the initial state; sf is an accepting state with
no outgoing transitions; fT : S × E × P(V) → S is the transition
relation, representing how the state changes in response to event
triggers and depending on the environment; and fB : S → P(B) is
a labelling function that assigns robot behaviors to states.

Synthesis algorithm—Our goal is to synthesize a program I that
is small and generalizes to unseen scenes (traces). To that end, we

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

implement an approach similar to that used by Porfrio et al. [45]
to efciently search the space of programs I with the goal of ac-
cepting every trace t ∈ T . This task is made simpler by abstractions
performed by Figaro, including, for instance, the conversion of
movement trajectories into binary values indicating whether or
not the robot is moving, and if so, the robot’s target destination.
Thus, multiple instances of movement to the same target destina-
tion, regardless of the specifc trajectory taken by the robot, can be
combined into the same behavioral state. A simple example of our
synthesis algorithm is depicted in Figure 8, in which Figaro com-
bines the set of traces collected from user demonstrations (Figure
8a) into a program (Figure 8b).

In a synthesized program, the robot will transition from behavior
to behavior only if an appropriate event trigger is produced and the
specifc conditions of the transition’s environmental state are met.
However, it is often the case that the environmental state recorded
by Figaro for a transition to occur is too strict. For instance, in the
Call program, if the demonstrator always starts a scene with the
robot in the living room, the resulting program would necessitate
that the robot starts in the living room in order to successfully
complete the interaction. Thus, Figaro loosens the preconditions
for a robot behavior to be performed such that if a behavior has
only one outgoing transition, Figaro will remove the environmental
state from that transition.

Interrupts—Our synthesis approach supports proceduralization
of behaviors through interrupts, or modularized interaction transi-
tion systems that can be executed at any point in time if a set of
conditions are met [21]. When the robot executes its interaction
program, it begins with a main procedure. The main procedure
includes all traces that begin with a self action on the robot. There-
fore, the main procedure involves the robot taking initiative to
perform actions. If no such traces are provided, the main procedure
can be automatically initialized as a simple wait loop in which
the robot waits indefnitely. At any point during execution of the
main procedure if the initial conditions for an interrupt are met,
the robot will halt execution of the main procedure and execute
the interrupt. Thus, demonstrators need only specify the robot’s
reaction to an event only once, rather than specifying the reaction
in multiple demonstrations. For example, if the demonstrator wants
the robot to react the same way every time the human says “thank
you,” the demonstrator need only create an interrupt triggered by a
thank event. Once an interrupt fnishes, it returns to the state from
which it was called. Figaro’s synthesis of the main procedure and
interrupts do not difer. Thus, an interrupt beginning with an event
e , self consists of all traces beginning with e .

Illustrating Program Synthesis. In addition to demonstrating the
scene in which the robot is asked to adjust its tablet, the demon-
strator may also have provided an additional scene in which the
human does not ask the robot to adjust its tablet. Figure 8a shows
the traces created from these two scenes, and Figure 8b illustrates
the synthesis of a complete Call procedure from these traces. Both
traces are accepted by the fnal program.

Figure 8c demonstrates a potential application of an interrupt
within the patrol robot design. Recall the design criteria for the
Call robot that the robot should move around the house looking
for interaction partners when it is not assisting the human with a

video call. To demonstrate this behavior, the demonstrator records
a Patrol scene in which the robot fgurine simply moves between
diferent regions in the drawn layout. The patrol scene results in
the partial interaction trace shown in 8c. Since the Patrol procedure
is initiated by the robot, it is designated as the main interaction.
The Call program is therefore an interrupt that can be triggered at
any point during the Patrol, regardless of what room the robot is in.
When the interrupt fnishes, it will return to the state in the main
interaction before the interrupt was triggered.

3.6 Deployment
After creating scenes, the synthesized program is available to be
tested on a robot. Currently, we deploy designs on the Temi7 and
virtual Pepper [11] platforms. Figure 9 illustrates what the execution
of the Call program looks like on the Temi robot.

Lastly, we implemented each fgurine behavior on the Temi.
Because Temi does not have arms, to execute a point behavior the
robot rotates its orientation towards its target, tilts its head down
and back up, and then rotates back to its original orientation. To
execute a head nod, the robot moves its screen up or down. In a
wait behavior, the robot waits passively for input for an extended
period of time.

4 EVALUATION
We evaluated Figaro with a user study in which participants used
Figaro to complete a human-robot interaction design task. In our
evaluation, we pay particular attention to design experiences and
techniques exhibited by demonstrators, and assess the efectiveness
of Figaro’s physical and visual components in furthering demon-
strators’ experiences.

4.1 Study Procedure
Upon providing informed consent to participate in the study, partic-
ipants were guided through an interactive tutorial on using Figaro.
The tutorial included moving fgurines on the tabletop, using the
robot fgurine to emit point, nod, and wait behaviors, and demon-
strating scenes. Following the tutorial, we presented participants
with a design scenario for a human-robot interaction at a museum
with three exhibits, and included a pre-made physical layout for
them to use. The scenario was purposefully left open-ended such
that participants could prioritize a variety of diferent interaction
paradigms—for instance, whether to keep the robot stationary and
create a conversational interaction, or whether to have the robot
guide visitors around the museum. Depending on the time remain-
ing in the study after the completion of the tutorial, participants
were allowed approximately 30 minutes to design their interac-
tions. We then conducted a semi-structured interview and asked
participants to fll out a questionnaire.

4.2 Measurement and Analysis
We conducted a refexive Thematic Analysis (TA) on the inter-
view transcriptions following the guidelines by Braun et al. [9] and
McDonald et al. [34]. Two authors who facilitated the study and
transcription process worked individually to generate potential

7https://www.robotemi.com/

https://www.robotemi.com/

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

Go to
kitchen

Tilt
head

Farewell

patrol procedure

“Goodbye.”
“Robot, I

need to make
a call.” “I’m on

my way!”

“Can you
please tilt

your head?”

“You can
leave now.”

1 2 3 4 5 6 7

charge

bar

table

bed

Interrupt
occurs.

self self TiltRequest ExitRequest �e patrol
procedure
resumes.

ExitRequest

Robot waits for
instruction.

If asked to
adjust its head... the robot complies.

When �nished, the human
can say goodbye.

call can occur

charge

bar

table

bed

patrol procedure

Respond Idle

Figure 9: An example deployment of the Call program on the Temi robot, split into seven steps. Detail has been removed from
the Patrol procedure for simplicity.

codes, and then regularly discussed candidate themes. Then the
authors revised and combined candidate themes until a fnal set
was established.

Lastly, we measured the efectiveness of various aspects of Fi-
garo through a twenty-one item questionnaire. Four items measured
the perceived efectiveness of scene demonstration as the primary
design method (α = 0.71), fve items measured the perceived ef-
fectiveness of Figaro as a tool for individual usage as opposed to
working with a partner (α = 0.85), and three items measured the
accessibility of Figaro’s interface (α = 0.64). Of the remaining nine
items, we extracted a single item as a measure of the perceived im-
portance of physicality in Figaro’s interface and an additional single
item as a measure of Figaro’s ability to immerse demonstrators into
the environment simulated by the design scenario. The remaining
seven items could not be grouped into coherent categories with
sufcient consistency.

4.3 Participants
We recruited 10 participants (6 males, 4 females) to participate in
our study, with an average self-reported programming experience
of3.25 (SD = 2.97) years. Five participants reported a background
in Computer Science, two in Industrial and Systems Engineering,
and one each in Mechanical Engineering, Integrative Biology, and
Speech Language Pathology. Four participants self-described them-
selves as having little experience programming robots, while the
remainder described themselves as having none. One participant
self-reported themselves as having design experience, while three
others described themselves as having "some," one as having "little,"
and fve as having no design experience at all.

4.4 Results
In our analysis of participant interviews, we identifed four main
themes that emerged from the use of Figaro: (1) Expressing ideas
tangibly, (2) Methods of idea generation, (3) Usability of the system,
and (4) System feedback and limitations. Within each theme we
include quotes from the participant interviews, which are attrib-
uted using both participant ID and line number in the interview
transcripts (e.g. P4.12 means “participant 4, line 12"). Within our

thematic analysis we also uncovered various subthemes, but we
reserve these subthemes for our discussion since they contain our
interpretations of participant feedback.

Theme 1: Expressing ideas tangibly. Seven of the ten partici-
pants discussed the tangibility of the interface in-depth. Particularly,
P9 referred to the expressiveness of gestures:

Um, pointing is basically without saying you can direct [...] the
human where to go. It’s answering by doing rather than
by speaking. So, I think it’s [...] very expressive. (P9.34)
Furthermore, participants described how tangibility afected or-

ganizing and expressing their understanding of the interaction:
And so by doing it physically [...] you’re able to do it, it’s
simulated exactly they way you’d want to do it in real
life. Because it’s, you’re limited by physicality. (P10.91)
Furthermore, several participants discussed what it might be like

to use input modalities other than the tangible fgurines:
...if it [...] were to be a little bit more concrete where I could
have total faith in the movements of the fgurines, um,
then maybe I’d be [...] more inclined to use it, because it’s also
just kind of fun. (P10.72)

Theme 2: Methods of idea generation. Nine of the ten partici-
pants discussed how the interface afected their ideation process.
Several participants commented on how Figaro afected their use
of imagination:

I think it’s pretty easy to be like, I can imagine a robot being
in the middle of the floor, so I’ll put him in the middle of
the foor and I’ll walk up to him, or imagine him standing
next to me and ask me a question about what I know more
<unintelligible> painting. (P5.42)
Participants also remarked on the efect of Figaro as a visual aid

on their imagination:
And because there was visual aid [...] to support it, [...] it was
easier for me to imagine. So maybe if I didn’t have this and
if I were to kind of imagine and, you know, program, maybe
some other scenarios I would have not even been able to come
up with. (P7.29)

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

Furthermore, participants commented on Figaro’s ability to con-
nect their designs to the real world:

Okay, so, I thought personally that was very useful. I like to
see things visually [...] So having those physical things in
front of me and being able to move them around with my
own hand and like pointing, that like kind of makes it more
realistic to me, and more human-like. (P8.24)
Several participants remarked on the physical limits imposed by

the fgurines on their designs:
And so by doing it physically, [...] you’re able to do it, it’s
simulated exactly the way you’d want to do it in real life.
Because [...] you’re limited by physicality. (P10.91)
Participants such as P4 also remarked how the visual and tangible

nature of Figaro afected their creativity:
Uhm it was good to see like the visual layout of everything.
I felt like it defnitely made me more creative (P4.50)
Additionally, participants commented how acting out the sce-

narios afected how they viewed their interactions unfold:
[...] I felt like [...] I was able to [...] enact the actual scenario,
so, it kind of made it easier to program [...] so when you
program it this way, maybe [...] the interaction between the
human and the robot could improve. (P7.21)

Theme 3: Usability of the system. Nine out of ten participants
referred to the usability of the system. One participant, for example,
references usability while describing how they corrected a mistake
in their speech during a scene:

But, I think there was one scenario wherein I had to like re-
word the phrase. So because I had that option it was easy.
(P7.26)
Four participants also remarked on the learnability of Figaro,

stating that it was difcult to pick up quickly or that they forgot
how to perform certain tasks. P1 in particular remarked that they
had to adjust to using the system:

Yeah I think that kind of goes back to like, [...] geting more
comfortable with it I think over time, where at frst like
saying it out loud was kind of weird, but then as I got through
it, I was like oh, okay, like, this isn’t that bad, this isn’t
that weird. (P1.26)
Other participants, however, commented positively on Figaro’s

approachability. Some suggested that this would be a suitable sys-
tem for non-programmers, and P4 mentioned that Figaro seems
approachable for children:

It seems like something you could use to you know maybe
like to elementary school kids, [...] people who are new to
coding. (P4.4)

Theme 4: System feedback and limitations. Seven of the ten
participants referred to the feedback or limitations of the system.
Participants expressed that the feedback helped them understand
what was happening on the tabletop. Specifcally, P8 comments on
how well the feedback worked:

Um, yeah that was really good, like wherever I pointed the
robot was able to point an arrow out and give the name
of the region, so that was really good. (P8.35)

1 2 3 4 5 6 7

Importance of Physicality
E�ectiveness of Figaro

Immersion in Interaction Env.
E�ectiveness of Demonstration

E�ectiveness of Individual Use
Accessibility of Interface

Figure 10: Results from the survey measuring the efective-
ness of Figaro. Error bars represent standard deviation.

Participants sometimes expressed confusion, either that Figaro did
not respond to an input that they expected, or that they were unsure
how Figaro would handle certain situations they might create:

[...] I also don’t totally understand how they sort of stack
up against each other, so like... when is he asking a question
vs if I did do patrol when is he patrolling? You know, there’s
some logic I guess that he executes situation A if it’s 3 o’clock
(P5.32)

Efectiveness of Figaro. Figure 10 shows the results of the efec-
tiveness survey. On average, participants rated the importance of
physicality in Figaro to be 4.1 (SD = 1.66) and their immersion
in the interaction environment to be 5.5 (SD = 1.18) on a 7-point
Likert scale. Participants also rated their perceived efectiveness of
demonstrations to be 5.25 (SD = 0.99), their perceived efectiveness
of Figaro as a tool for individual use as 5.08 (SD = 1.21), and the
accessibility of Figaro as 5.57 (SD = 1.02).

4.5 Usage Patterns
Below, we include descriptive results from observing participants
use Figaro and the programs that they created.

Interface Usage. We examined the study video footage to reveal
usage patterns of Figaro that emerged in the user study. Our anal-
ysis encompasses all scenes created by participants, even scenes
that were not ultimately included in participants’ fnal interac-
tion designs. We found that six participants included dialogue and
movement-based scenes; three participants created dialogue-based
scenes, but the robot was moved in between scenes; and only one
participant created a scenario purely consisting of dialogue. Ten par-
ticipants utilized the point gesture on the robot fgurine, three used
the nod behavior, and fve used the wait behavior. Six participants
performed a gesture simultaneously with speech, and one of those
participants also used a gesture simultaneously with movement.
This combination was most often pointing and speaking. A variety
of scene structures were used. Three participants demonstrated
scenes in-series with each other, in which rather than each scene
containing a categorical beginning and ending, each scene picks
up where the previous one left of. Five others made independent
scenes where they would repeat similar situations with diferent
outcomes or were simply unrelated to each other, and three used
a mix of the two methods. Some features of Figaro were not em-
phasized in Figaro’s tutorial and were therefore not widely used by
participants. Only two participants interacted with the touch table,
three deleted scenes, and three added additional objects or regions
to the physical layout.

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

User-Created Programs. In order to characterize the participant
programs created with Figaro, we select a small set of participant
programs to describe in detail.

Participant 1—This participant demonstrated seven scenes.
Rather than representing each scene as an individual, disjoint in-
teraction between the human and robot, participant 1 crafted each
scene in-sequence as part of a larger interaction story.

Scene 1: The robot greets the human, and the human greets
back. The robot then ofers assistance.
Scene 2: The human asks where exhibit 1 is. The robot moves
to the exhibit, states that the exhibit is “over here,” and then
beckons the human to “follow me.” The human then moves
to the robot’s location.
Scene 3: Starting from exhibit 1, the human asks for informa-
tion about the exhibit, and the robot responds accordingly.
Scene 4: Starting from exhibit 1, the robot prompts the human
to ask for more information about the exhibit. The human
asks for more information, and the robot answers accord-
ingly.
Scene 5: Starting from exhibit 1, the human thanks the robot,
and the robot ofers to direct the human to exhibit 2. The
robot then says “Follow me” and moves to exhibit 2.
Scene 6: Starting from exhibit 2, the robot beckons the human
to approach the exhibit. The human approaches the robot in
exhibit 2, and states that they do not want to go to exhibit 2.
The robot asks “Why not?”
Scene 7: Starting in exhibit 2, the human asks the robot to
point the way to exhibit 3. The robot moves to exhibit 3 and
answers that exhibit 3 is “to my left.”

As Figaro’s synthesis approach does not connect scenes end-to-
end, it is not possible to reproduce an uninterrupted sequence of
scenes, beginning from the greeting in scene 1 and ending with the
approach to exhibit 3 in scene 7, within a single execution trace
of the synthesized program. Instead, all seven scenes are compiled
into four program procedures. The main procedure includes scenes
1, 4, and 6, in which the robot will by default either greet the human,
answer a question about exhibit 1, or beckon them to exhibit 2. The
procedure generalized from these scenes contains program paths
not specifed by the participant, such as when the robot prompts
the human to ask them more information about exhibit 1 (trace
4). If the human deviates from trace 4 and does not respond to the
robot’s prompt, the robot will end the interaction. Additionally,
interrupts allow participant 1’s scenes to execute repeatedly—at
any point in the interaction can the robot handle being thanked
within the interrupt that is triggered with scene 5.

Participant 1, in addition to many other participants, overgener-
alized certain robot behaviors by using broad speech classifcations.
For instance, participant 1 categorized the phrases “Where may
I direct you?” (scene 1) and “Why not?” (scene 6) both under the
Question category. Therefore, in the main procedure, the synthesizer
combined both distinct phrases within the same behavioral state,
which can lead to nonsensical behaviors such as after an exchange
of greetings the robot says “Why not?” rather than asking where it
can direct the human.

Participant 10—This participant demonstrated fve unique scenes.
In the process, participant 10 demonstrated conficting scenes that,
if inserted into the interaction program, would result in nondeter-
minism. At the time of the user study, Figaro was not specifed to
handle conficts.

Scene 1: The robot waits for an event, then makes an an-
nouncement that it is available to be asked about the ex-
hibits.
Scene 2: The human approaches the robot, and the robot asks
if the human would like to know about the exhibits.
Scene 3: The human approaches the robot and asks who
created exhibit 1. The robot answers accordingly.
Scene 4: The human approaches the robot and asks for the
location of exhibit 2. The robot points to exhibit 2 and then
states “it is right over there.”
Scene 5: The human approaches the robot and asks for the
location of exhibit 3. The robot verbally states the location
of exhibit 3 and then points to the exhibit.

Scene 2 specifes that the robot should ask a question when the
human approaches it, while scenes 3, 4, and 5 specify that the robot
should remain idle. Thus, scene 2 conficts with scenes 3, 4 and 5.
Our description of participant 10’s program considers the case in
which only scene 2 is removed.

The four non-conficting scenes are compiled into two program
procedures. In contrast to participant 1, these scenes are indepen-
dent of each other. The main procedure includes the exact execution
trace created from scene 1, with no branching or looping. Thus,
by default, the main procedure will cause the robot to idle, and
then make an announcement after idling. A negative outcome of
this program is the inability of the robot to idle indefnitely in the
main procedure. Thus, after idling and making an announcement,
the robot terminates the program and ends any further chance for
a human to ask the robot a question. At any point in the main
procedure in which the human approaches the robot, a Question
interrupt will trigger that contains scenes 3, 4, and 5. The interrupt
contains three branches, each involving the linear paths specifed
in scenes 3, 4, and 5 with no further branching or looping.

5 EXTENSIONS OF FIGARO
In addition to the use of Figaro as a design tool for individuals
demonstrating the logic of interactions, we envision a number of
extensions to Figaro that make it suitable for collaboration and
the design of low-level interaction details. Below, we describe how
Figaro currently supports collaboration and low-level design and
how these capabilities can be further extended.

5.1 Figaro as a Collaborative Tool
Given the potential for multiple demonstrators to use Figaro at
the same time, the authors of this paper underwent an exploratory
collaborative design scenario for an airport guide robot who escorts
people from the security checkpoint to their gate. The design team
demonstrated three scenes. In the frst scene, the human asks the
robot for directions, and the robot successfully escorts the human
to their gate. In the second scene, the human asks the robot for
directions, and the robot attempts to escort the human to their gate

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

a) approach behavior

scene
demonstration

on Figaro

program
deployment

b) slide behavior

human

robothuman

robot

Figure 11: Two motion trajectories demonstrated where the
robot approaches (left) and slides past (right) the human.

but the human is separated from the robot before arriving with
the robot at the gate. In the third scene, the human stops the robot
mid-escort to ask for the location of a diferent gate. The robot
points in the direction of the other gate, and subsequently resumes
escorting the human.

We observed two characteristics of this design session that difer
from the individual design sessions in the evaluation of Figaro: (1)
the design team discussed ideas before executing them, and (2) each
member of the design team assigned themselves a particular role
during the demonstration of scenes. One demonstrator performed
the movements and speech of the robot fgurine, while the other
demonstrator did the same for the human fgurine and controlled
Figaro with the tablet. In our evaluation but not included in our
thematic analysis, participants expressed thoughts on these charac-
teristics, generally aligning in three diferent ways. First, having a
partner could support design ideation:

Uhm well you’d defnitely be able to have more input or more
uh creativity on how diferent scenarios come... (P2)
Second, having a partner could help coordinate the diferent

components of Figaro:
Maybe one person will work, will take the uh, the robot part
and then another will take the human part, and then let it
interact freely like that way... (P9)
Third, having a partner could cause the design process to become

unwieldy:
Um, obviously the difculty would come, you just have to be,
you know, very clear communication in once you actually start
a scene. (P10)
Similar to participants’ expectations, the authors found dis-

cussing scenes beforehand to be benefcial. However, a lack of
coordination within the design team often caused mistakes. In one
instance, the demonstrator controlling the robot prematurely ended
a scene on the tablet. In another instance, the demonstrator con-
trolling the robot paused a demonstration mid-scene to correct a
mistake made by the other demonstrator in a previous scene to
prevent the same mistake from happening in the current scene.

5.2 Figaro for Creating Motion Trajectories
Interaction designers may want precise control over a robot’s posi-
tion and rotation of its body to address certain design challenges,

such as how a robot should approach a human [29, 53] or how a
robot should navigate narrow spaces [57]. In each of these cases, the
robot’s exact position and orientation is important, which Figaro
can record as motion trajectories. When creating trajectories with
Figaro, each state in the resulting execution trace corresponds to
incremental movement by the robot. Due to their high precision,
multiple motion trajectories would not generalize well to a full
program under our current synthesis approach.

We implemented and deployed two motion trajectory scenarios—
an approach scenario shown in Figure 11a and a slide scenario shown
in 11b. In the approach scenario, the robot fgurine was moved
slowly across the tabletop towards the human fgurine. In the slide
scenario the robot fgurine was moved slowly towards the human,
and then was rotated to slide past the human, simulating movement
through a narrow space. We were able to replicate both behaviors
on the virtual Pepper using Figaro.

6 DISCUSSION
Below, we discuss insights from our evaluation of Figaro, including
our interpretations within each theme of our thematic analysis,
which take form in subthemes. Following our discussion of sub-
themes, we synthesize all fndings from Figaro and then discuss the
limitations of Figaro and plans for future work.

6.1 Expressing Ideas Tangibly
The fndings of our thematic analysis reveal two subthemes that pro-
vide insight into participants’ experiences with tangibility. Within
our frst subtheme, we found that Tangibility is Helpful, as evi-
denced by participants commenting on the helpful nature of the
gestures (P9.34, P10.91). For these participants, tangibility increased
their perceived expressivity of Figaro (P9.34) and helped them or-
ganize and understand their interaction designs. In contrast, we
found evidence for a second subtheme, Hesitation in Tangibility,
due to participants expressing a lack of confdence when using the
fgurines (P10.72). While participants generally found tangibility
to be enjoyable and helpful, some prefer less tangible input. Fur-
ther exploration is needed to determine if this hesitation is due to
tangibility in general or its implementation within the fgurines.

6.2 Figaro as a Means of Idea Generation
In our thematic analysis, we split this theme into three subthemes
that reveal ideation strategies used by participants. First, we found
that Figaro fostered Use of Imagination within participants, which
is evidenced by participants noting their use of imagination (P5.42)
and stating that Figaro as a visual aid helped foster the exploration
of ideas by facilitating their imagination (P7.29). Additional partic-
ipant feedback led us to uncover a second subtheme, Mapping to
Reality, which pertains to the physical nature of Figaro grounding
participants in the real world. Participants stated that the physical
nature increased the realism of the design interface (P8.24) and
also helped impose physical restrictions on participants’ designs
(P10.91). Lastly, we determined our third subtheme, Inspired by the
Interface, due to participants stating how Figaro afected their de-
sign process by fostering creativity (P4.50) or highlighting aspects
of their interaction designs to improve (P7.21).

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction CHI ’21, May 8–13, 2021, Yokohama, Japan

6.3 Usability of the System
Opinions on Figaro’s usability were mixed, possibly due to the
variety of backgrounds of participants in the study. Many comments
align with our frst subtheme, Easy & Intuitive, which is supported
by positive participant experiences in tasks such as fxing mistakes
(P7.26). Despite the intuitiveness of Figaro for many participants,
we determined our second subtheme to be Steep Learning Curve. In
particular, some participants viewed Figaro as difcult to pick up
quickly, even if they were able to ultimately learn the system (P1.26).
In contrast, we also found much evidence for a third subtheme
pertaining to how Approachable Figaro is for newcomers. Several
participants viewed Figaro as a highly approachable system, even
for non-experts and children (P4.4).

6.4 System Feedback and Limitations
Participants expressed mixed views on the feedback ofered by
Figaro, or lack thereof. Some participants were satisfed by feed-
back given by Figaro on speech, gestures, and movement (P8.35).
While Figaro’s feedback on gestures and motion seemed to help
participants grasp how to complete those actions, participants still
expressed hesitation and confusion that they did not know how
Figaro would interpret more complex actions or logic, such as what
would happen if they initiated a point behavior and moved the
robot at the same time (P5.32).

6.5 Synthesis of Findings
Despite mixed to positive feedback on the learnability of Figaro, the
feedback that it provides to participants, and some hesitation with
using its tangible components, our results support past fndings
surrounding the benefts of tangible and tabletop user interfaces.
The helpfulness of tangibility is supported by the widespread us-
age of point, nod, or wait behaviors on the robot, in addition to
participants moving the fgurines around the tabletop during or
in-between scenes. The tabletop additionally serves as an efec-
tive virtual space to represent the physicality of interactions, as
indicated by our idea generation subthemes. Finally, the scenes
demonstrated and programs created using Figaro reveal its ability
to create complex interaction fows. As with shadow puppetry, this
complexity is achieved with limited articulation of the fgurines.

6.6 Limitations and Future Work
From its limitations, Figaro presents many opportunities for future
work. In particular, Figaro’s emphasis on high-level fows leaves
much potential to incorporate lower-level design features into the
design pipeline, such as navigating a robot within a detailed phys-
ical layout. Future work must then explore how exact positions,
orientations, and velocities can be integrated into program synthe-
sis. Designing precise localization will also necessitate handling
deviations between the physical world and virtual tabletop environ-
ments, such as if furniture in the physical environment is moved.
For these deviations, the in-situ capabilities of Figaro can be ex-
panded upon, such as with augmented reality (e.g. [24, 65]).

Figaro can gain further low-level expressivity by mapping simple
fgurine movements to more complex robot motions, extending
from our point behavior, in which tilting the fgurine causes the
robot to rotate its body, tilt its head down and then back up, and

then rotate back to its original position. Extensions of point can
allow demonstrators to select and parameterize even more complex
behaviors in a similar way to how joysticks enable complex motions
on video game characters. For a robot with arms, rotating the robot
while pointing forward may induce a presenting behavior so that
the robot may refer to multiple objects in front of it [55]. The
speed of the behavior and objects that the robot refers to could be
parameterized by characteristics of the fgurine movement.

Furthermore, although Figaro’s synthesizer takes various steps
to generalize programs from scenes, it cannot produce a program
that incorporates unseen regions in the physical layout, nor can
it produce a program that contains individual states or transitions
not present in the scenes provided by the demonstrator. Future
work can improve Figaro’s ability to generalize programs using
learning techniques to further incorporate unseen paths into the
interaction program and querying demonstrators for clarifcation
if Figaro deems any interaction parameters underspecifed.

Aside from Figaro’s capability as a design tool, the workfow sup-
ported by Figaro is also limited in that demonstrators receive little
support for iterating on their designs after deployment, and little
debugging support that could guide the quality of their designs. Fu-
ture work should expand Figaro’s workfow by drawing on existing
testing and debugging approaches similar to those performed in
Porfrio et al. (2019) [45] in which program simulation is an active
component of the design pipeline and demonstrators are prompted
to review and edit execution traces after each demonstration. While
building on testing and debugging, the role of the tablet interface
in facilitating mobile workfows such as monitoring deployment
can be explored.

Other limitations include that Figaro currently only supports
dyadic interactions, whereas many interesting design scenarios
exist with multiple interaction partners. And fnally, the scope
of our evaluation is limited in the participants recruited to use
Figaro. In making the improvements to Figaro stated above, future
work should ensure that Figaro is evaluated with its target users,
including professional interaction designers.

7 CONCLUSION
In this paper, we present Figaro, a tabletop authoring environment
for mobile robots, inspired by shadow puppetry, that exploits the in-
tuitiveness of tangible and tabletop interfaces to provide designers
with a natural, situated representation of human-robot interactions.
Figaro projects a drawing of a physical layout on the tabletop while
users manipulate instrumented fgurines that represent a human
and the robot to demonstrate scenes of an interaction. After demon-
strating scenes, Figaro employs real-time program synthesis to
assemble a complete robot program. Our user study with Figaro
demonstrates the efects that tangibility and tabletop design have
on specifying the fow of human-robot interactions.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (NSF)
awards 1651129 and 1925043 and an NSF Graduate Research Fel-
lowship. We also thank Kevin Ponto for providing guiding insights
into tabletop interface design.

CHI ’21, May 8–13, 2021, Yokohama, Japan David Porfirio, Laura Stegner, Maya Cakmak, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu

REFERENCES
[1] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. 2012.

Trajectories and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In Proceedings of the seventh annual ACM/IEEE international con-
ference on Human-Robot Interaction. 391–398. https://doi.org/10.1145/2157689.
2157815

[2] Sonya Alexandrova, Maya Cakmak, Kaijen Hsiao, and Leila Takayama. 2014.
Robot programming by demonstration with interactive action visualizations.. In
Robotics: science and systems. Citeseer.

[3] Sonya Alexandrova, Zachary Tatlock, and Maya Cakmak. 2015. RoboFlow: A
fow-based visual programming language for mobile manipulation tasks. In 2015
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 5537–5544.
https://doi.org/10.1109/ICRA.2015.7139973

[4] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and computation 75, 2 (1987), 87–106. https://doi.org/10.1016/0890-
5401(87)90052-6

[5] Brenna Argall, Brett Browning, and Manuela Veloso. 2007. Learning by demon-
stration with critique from a human teacher. In 2007 2nd ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI). IEEE, 57–64. https:
//doi.org/10.1145/1228716.1228725

[6] J-C Baillie. 2005. Urbi: Towards a universal robotic low-level programming
language. In 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 820–825. https://doi.org/10.1109/IROS.2005.1545467

[7] Dan Bohus, Sean Andrist, and Eric Horvitz. 2017. A study in scene shaping: Ad-
justing F-formations in the wild. In Proceedings of the 2017 AAAI Fall Symposium:
Natural Communication for Human-Robot Collaboration.

[8] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[9] Virginia Braun, Victoria Clarke, Nikki Hayfeld, and Gareth Terry. 2019. Thematic
analysis. Handbook of Research Methods in Health Social Sciences (2019), 843–860.
https://doi.org/10.1007/978-981-10-2779-6_103-1

[10] Marion Buchenau and Jane Fulton Suri. 2000. Experience prototyping. In Pro-
ceedings of the 3rd conference on Designing interactive systems: processes, practices,
methods, and techniques. ACM, 424–433. https://doi.org/10.1145/347642.347802

[11] Maxime Busy and Maxime Caniot. 2019. qiBullet, a Bullet-based simulator for
the Pepper and NAO robots. arXiv preprint arXiv:1909.00779 (2019).

[12] Bill Buxton. 2010. Sketching user experiences: getting the design right and the right
design. Morgan kaufmann.

[13] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V.Ra: An In-Situ Visual Authoring System for Robot-IoT Task Plan-
ning with Augmented Reality. In Proceedings of the 2019 on Designing Interactive
Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing
Machinery, New York, NY, USA, 1059–1070. https://doi.org/10.1145/3322276.
3322278

[14] Crystal Chao and Andrea L Thomaz. 2012. Timing in multimodal turn-taking
interactions: Control and analysis using timed petri nets. Journal of Human-Robot
Interaction 1, 1 (2012), 4–25. https://doi.org/10.5898/JHRI.1.1.Chao

[15] Chu. 2011. Clearing the decks. https://news.mit.edu/2011/automated-fight-
decks-0802.

[16] Stéphane Conversy, Jeremie Garcia, Guilhem Buisan, Mathieu Cousy, Mathieu
Poirier, Nicolas Saporito, Damiano Taurino, Giuseppe Frau, and Johan Debattista.
2018. Vizir: A Domain-Specifc Graphical Language for Authoring and Operating
Airport Automations. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 261–273. https://doi.org/10.1145/
3242587.3242623

[17] Peter Dalsgaard and Kim Halskov. 2012. Tangible 3D tabletops: combining
tangible tabletop interaction and 3D projection. In Proceedings of the 7th Nordic
Conference on Human-Computer Interaction: Making Sense Through Design. 109–
118. https://doi.org/10.1145/2399016.2399033

[18] Scott Davidof, Min Kyung Lee, Anind K Dey, and John Zimmerman. 2007. Rapidly
exploring application design through speed dating. In International Conference
on Ubiquitous Computing. Springer, 429–446. https://doi.org/10.1007/978-3-540-
74853-3_25

[19] Tom Djajadiningrat, Stephan Wensveen, Joep Frens, and Kees Overbeeke. 2004.
Tangible products: redressing the balance between appearance and action. Per-
sonal and Ubiquitous Computing 8, 5 (2004), 294–309. https://doi.org/10.1007/
s00779-004-0293-8

[20] Yuxiang Gao and Chien-Ming Huang. 2019. PATI: a projection-based augmented
table-top interface for robot programming. In Proceedings of the 24th International
Conference on Intelligent User Interfaces. 345–355. https://doi.org/10.1145/3301275.
3302326

[21] Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot inter-
action design using Interaction Composer eight years of lessons learned. In 2016
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
303–310. https://doi.org/10.1109/HRI.2016.7451766

[22] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119. https:

//doi.org/10.1561/2500000010
[23] Yosuke Horiuchi, Tomoo Inoue, and Ken-ichi Okada. 2012. Virtual stage linked

with a physical miniature stage to support multiple users in planning theatrical
productions. In Proceedings of the 2012 ACM international conference on Intelligent
User Interfaces. 109–118. https://doi.org/10.1145/2166966.2166989

[24] Baichuan Huang, Deniz Bayazit, Daniel Ullman, Nakul Gopalan, and Stefanie
Tellex. 2019. Flight, camera, action! using natural language and mixed reality
to control a drone. In 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 6949–6956. https://doi.org/10.1109/ICRA.2019.8794200

[25] Chien-Ming Huang and Bilge Mutlu. 2012. Robot behavior toolkit: generating ef-
fective social behaviors for robots. In 2012 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, 25–32. https://doi.org/10.1145/2157689.
2157694

[26] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI. IEEE, 453–
462. https://doi.org/10.1145/2909824.3020215

[27] Hiroshi Ishii. 2008. The tangible user interface and its evolution. Commun. ACM
51, 6 (2008), 32–36. https://doi.org/10.1145/1349026.1349034

[28] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. 2013. Picode: inline photos
representing posture data in source code. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 3097–3100. https://doi.org/10.1145/
2470654.2466422

[29] Yusuke Kato, Takayuki Kanda, and Hiroshi Ishiguro. 2015. May I help you?-Design
of human-like polite approaching behavior. In 2015 10th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 35–42. https://doi.org/10.
1145/2696454.2696463

[30] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.
2014. Kitty: Sketching Dynamic and Interactive Illustrations. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 395–405. https://doi.org/10.1145/2642918.2647375

[31] Paul Lapides, Ehud Sharlin, and Mario Costa Sousa. 2008. Three dimensional
tangible user interface for controlling a robotic team. In Proceedings of the 3rd
ACM/IEEE international conference on Human robot interaction. 343–350. https:
//doi.org/10.1145/1349822.1349867

[32] Kexi Liu, Daisuke Sakamoto, Masahiko Inami, and Takeo Igarashi. 2011. Ro-
boshop: Multi-Layered Sketching Interface for Robot Housework Assignment and
Management. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Vancouver, BC, Canada) (CHI ’11). Association for Computing Ma-
chinery, New York, NY, USA, 647–656. https://doi.org/10.1145/1978942.1979035

[33] Phoebe Liu, Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Data-
driven HRI: Learning social behaviors by example from human–human inter-
action. IEEE Transactions on Robotics 32, 4 (2016), 988–1008. https://doi.org/10.
1109/TRO.2016.2588880

[34] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (Nov.
2019), 23 pages. https://doi.org/10.1145/3359174

[35] Eric Meisner, Volkan Isler, and Jef Trinkle. 2008. Controller design for human-
robot interaction. Autonomous Robots 24, 2 (2008), 123–134. https://doi.org/10.
1007/s10514-007-9054-7

[36] Ryo Murakami, Luis Yoichi Morales Saiki, Satoru Satake, Takayuki Kanda, and
Hiroshi Ishiguro. 2014. Destination unknown: walking side-by-side without
knowing the goal. In Proceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction. 471–478. https://doi.org/10.1145/2559636.2559665

[37] Lorenzo Nardi and Luca Iocchi. 2014. Representation and execution of social
plans through human-robot collaboration. In International Conference on Social
Robotics. Springer, 266–275. https://doi.org/10.1007/978-3-319-11973-1_27

[38] Daniel Neider. 2014. Applications of automata learning in verifcation and syn-
thesis. Ph.D. Dissertation. Hochschulbibliothek der Rheinisch-Westfälischen
Technischen Hochschule Aachen.

[39] Don Norman. 2013. The design of everyday things: Revised and expanded edition.
Basic books.

[40] William Odom, John Zimmerman, Scott Davidof, Jodi Forlizzi, Anind K Dey,
and Min Kyung Lee. 2012. A feldwork of the future with user enactments. In
Proceedings of the Designing Interactive Systems Conference. 338–347. https:
//doi.org/10.1145/2317956.2318008

[41] Antti Oulasvirta, Esko Kurvinen, and Tomi Kankainen. 2003. Understanding
contexts by being there: case studies in bodystorming. Personal and ubiquitous
computing 7, 2 (2003), 125–134. https://doi.org/10.1007/s00779-003-0238-7

[42] Oğuzhan Özcan. 2002. Cultures, the traditional shadow play, and interac-
tive media design. Design Issues 18, 3 (2002), 18–26. https://doi.org/10.1162/
074793602320223262

[43] Ayberk Özgür, Séverin Lemaignan, Wafa Johal, Maria Beltran, Manon Briod, Léa
Pereyre, Francesco Mondada, and Pierre Dillenbourg. 2017. Cellulo: Versatile
handheld robots for education. In 2017 12th ACM/IEEE International Conference on
Human-Robot Interaction (HRI. IEEE, 119–127. https://doi.org/10.1145/2909824.

https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1145/2157689.2157815
https://doi.org/10.1109/ICRA.2015.7139973
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/1228716.1228725
https://doi.org/10.1145/1228716.1228725
https://doi.org/10.1109/IROS.2005.1545467
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1145/347642.347802
https://doi.org/10.1145/3322276.3322278
https://doi.org/10.1145/3322276.3322278
https://doi.org/10.5898/JHRI.1.1.Chao
https://news.mit.edu/2011/automated-flight-decks-0802
https://news.mit.edu/2011/automated-flight-decks-0802
https://doi.org/10.1145/3242587.3242623
https://doi.org/10.1145/3242587.3242623
https://doi.org/10.1145/2399016.2399033
https://doi.org/10.1007/978-3-540-74853-3_25
https://doi.org/10.1007/978-3-540-74853-3_25
https://doi.org/10.1007/s00779-004-0293-8
https://doi.org/10.1007/s00779-004-0293-8
https://doi.org/10.1145/3301275.3302326
https://doi.org/10.1145/3301275.3302326
https://doi.org/10.1109/HRI.2016.7451766
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/2166966.2166989
https://doi.org/10.1109/ICRA.2019.8794200
https://doi.org/10.1145/2157689.2157694
https://doi.org/10.1145/2157689.2157694
https://doi.org/10.1145/2909824.3020215
https://doi.org/10.1145/1349026.1349034
https://doi.org/10.1145/2470654.2466422
https://doi.org/10.1145/2470654.2466422
https://doi.org/10.1145/2696454.2696463
https://doi.org/10.1145/2696454.2696463
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/1349822.1349867
https://doi.org/10.1145/1349822.1349867
https://doi.org/10.1145/1978942.1979035
https://doi.org/10.1109/TRO.2016.2588880
https://doi.org/10.1109/TRO.2016.2588880
https://doi.org/10.1145/3359174
https://doi.org/10.1007/s10514-007-9054-7
https://doi.org/10.1007/s10514-007-9054-7
https://doi.org/10.1145/2559636.2559665
https://doi.org/10.1007/978-3-319-11973-1_27
https://doi.org/10.1145/2317956.2318008
https://doi.org/10.1145/2317956.2318008
https://doi.org/10.1007/s00779-003-0238-7
https://doi.org/10.1162/074793602320223262
https://doi.org/10.1162/074793602320223262
https://doi.org/10.1145/2909824.3020247
https://doi.org/10.1145/2909824.3020247

Figaro: A Tabletop Authoring Environment for Human-Robot Interaction

3020247
[44] Kevin Ponto, Maurizio Seracini, and Falko Kuester. 2009. Wipe-Of: An Intuitive

Interface for Exploring Ultra-Large Multi-Spectral Data Sets for Cultural Heritage
Diagnostics. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 2291–
2301. https://doi.org/10.1111/j.1467-8659.2009.01532.x

[45] David Porfrio, Evan Fisher, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu.
2019. Bodystorming Human-Robot Interactions. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. 479–491. https:
//doi.org/10.1145/3332165.3347957

[46] David Porfrio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Au-
thoring and verifying human-robot interactions. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology. 75–86.
https://doi.org/10.1145/3242587.3242634

[47] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier. 2009. Choregraphe: a graph-
ical tool for humanoid robot programming. In RO-MAN 2009 - The 18th IEEE
International Symposium on Robot and Human Interactive Communication. 46–51.
https://doi.org/10.1109/ROMAN.2009.5326209

[48] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[49] Harald Rafelt, Bernhard Stefen, and Therese Berg. 2005. Learnlib: A library for
automata learning and experimentation. In Proceedings of the 10th international
workshop on Formal methods for industrial critical systems. 62–71. https://doi.
org/10.1145/1081180.1081189

[50] Mary Beth Rosson and John M Carroll. 2009. Scenario-based design. In Human-
computer interaction. CRC Press, 161–180.

[51] Theodosios Sapounidis and Stavros Demetriadis. 2016. Educational robots driven
by tangible programming languages: A review on the feld. In International
Conference EduRobotics 2016. Springer, 205–214. https://doi.org/10.1007/978-3-
319-55553-9_16

[52] Theodosios Sapounidis, Stavros Demetriadis, and Ioannis Stamelos. 2015. Evalu-
ating children performance with graphical and tangible robot programming
tools. Personal and Ubiquitous Computing 19, 1 (2015), 225–237. https:
//doi.org/10.1007/s00779-014-0774-3

[53] Satoru Satake, Takayuki Kanda, Dylan F Glas, Michita Imai, Hiroshi Ishiguro, and
Norihiro Hagita. 2009. How to approach humans? Strategies for social robots to
initiate interaction. In Proceedings of the 4th ACM/IEEE international conference
on Human robot interaction. 109–116. https://doi.org/10.1145/1514095.1514117

[54] Allison Sauppé and Bilge Mutlu. 2014. Design patterns for exploring and pro-
totyping human-robot interactions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 1439–1448. https://doi.org/10.1145/
2556288.2557057

[55] Allison Sauppé and Bilge Mutlu. 2014. Robot deictics: How gesture and context
shape referential communication. In 2014 9th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI). IEEE, 342–349. https://doi.org/10.1145/
2559636.2559657

[56] Yasaman S Sefdgar, Prerna Agarwal, and Maya Cakmak. 2017. Situated tangible
robot programming. In 2017 12th ACM/IEEE International Conference on Human-
Robot Interaction (HRI. IEEE, 473–482. https://doi.org/10.1145/2909824.3020240

[57] Emmanuel Senft, Satoru Satake, and Takayuki Kanda. 2020. Would You Mind
Me if I Pass by You? Socially-Appropriate Behaviour for an Omni-based Social
Robot in Narrow Environment. In Proceedings of the 2020 ACM/IEEE International

CHI ’21, May 8–13, 2021, Yokohama, Japan

Conference on Human-Robot Interaction. 539–547. https://doi.org/10.1145/3319502.
3374812

[58] Armando Solar-Lezama. 2009. The sketching approach to program synthesis.
In Asian Symposium on Programming Languages and Systems. Springer, 4–13.
https://doi.org/10.1007/978-3-642-10672-9_3

[59] Bernhard Stefen, Falk Howar, and Maik Merten. 2011. Introduction to active
automata learning from a practical perspective. In International School on For-
mal Methods for the Design of Computer, Communication and Software Systems.
Springer, 256–296. https://doi.org/10.1007/978-3-642-21455-4_8

[60] Ryo Suzuki, Jun Kato, Mark D Gross, and Tom Yeh. 2018. Reactile: Programming
swarm user interfaces through direct physical manipulation. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems. 1–13. https:
//doi.org/10.1145/3173574.3173773

[61] Andrea L Thomaz and Crystal Chao. 2011. Turn-taking based on information
fow for fuent human-robot interaction. AI Magazine 32, 4 (2011), 53–63. https:
//doi.org/10.1609/aimag.v32i4.2379

[62] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim,
Milo MK Martin, and Rajeev Alur. 2013. TRANSIT: specifying protocols with
concolic snippets. ACM SIGPLAN Notices 48, 6 (2013), 287–296. https://doi.org/
10.1145/2499370.2462174

[63] John Underkofer and Hiroshi Ishii. 1999. Urp: a luminous-tangible workbench
for urban planning and design. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems. 386–393. https://doi.org/10.1145/302979.303114

[64] Kanae Wada, Dylan F Glas, Masahiro Shiomi, Takayuki Kanda, Hiroshi Ishiguro,
and Norihiro Hagita. 2015. Capturing expertise: developing interaction content
for a robot through teleoperation by domain experts. International Journal of
Social Robotics 7, 5 (2015), 653–672. https://doi.org/10.1007/s12369-015-0288-9

[65] Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafr. 2018. Com-
municating robot motion intent with augmented reality. In Proceedings of the
2018 ACM/IEEE International Conference on Human-Robot Interaction. 316–324.
https://doi.org/10.1145/3171221.3171253

[66] Nick Walker, Yu-Tang Peng, and Maya Cakmak. 2019. Neural Semantic Parsing
with Anonymization for Command Understanding in General-Purpose Service
Robots. In RoboCup Symposium. Springer, 337–350. https://doi.org/10.1007/978-
3-030-35699-6_26

[67] James Young, Takeo Igarashi, and Ehud Sharlin. 2008. Puppet master: Designing
reactive character behavior by demonstration. Technical Report. University of
Calgary. https://doi.org/10.11575/PRISM/31028

[68] James Young, Kentaro Ishii, Takeo Igarashi, and Ehud Sharlin. 2012. Style by
demonstration: teaching interactive movement style to robots. In Proceedings
of the 2012 ACM international conference on Intelligent User Interfaces. 41–50.
https://doi.org/10.1145/2166966.2166976

[69] James Young, Daisuke Sakamoto, Takeo Igarashi, and Ehud Sharlin. 2009. Puppet
master: Designing reactive character behavior by demonstration. In Human-Agent
Interaction (HAI).

[70] James E Young, Ehud Sharlin, and Takeo Igarashi. 2013. Teaching robots style:
designing and evaluating style-by-demonstration for interactive robotic locomo-
tion. Human–Computer Interaction 28, 5 (2013), 379–416. https://doi.org/10.1080/
07370024.2012.697046

[71] Shengdong Zhao, Koichi Nakamura, Kentaro Ishii, and Takeo Igarashi. 2009.
Magic cards: a paper tag interface for implicit robot control. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 173–182.
https://doi.org/10.1145/1518701.1518730

https://doi.org/10.1145/2909824.3020247
https://doi.org/10.1111/j.1467-8659.2009.01532.x
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3242587.3242634
https://doi.org/10.1109/ROMAN.2009.5326209
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1007/978-3-319-55553-9_16
https://doi.org/10.1007/978-3-319-55553-9_16
https://doi.org/10.1007/s00779-014-0774-3
https://doi.org/10.1007/s00779-014-0774-3
https://doi.org/10.1145/1514095.1514117
https://doi.org/10.1145/2556288.2557057
https://doi.org/10.1145/2556288.2557057
https://doi.org/10.1145/2559636.2559657
https://doi.org/10.1145/2559636.2559657
https://doi.org/10.1145/2909824.3020240
https://doi.org/10.1145/3319502.3374812
https://doi.org/10.1145/3319502.3374812
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1145/3173574.3173773
https://doi.org/10.1145/3173574.3173773
https://doi.org/10.1609/aimag.v32i4.2379
https://doi.org/10.1609/aimag.v32i4.2379
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/302979.303114
https://doi.org/10.1007/s12369-015-0288-9
https://doi.org/10.1145/3171221.3171253
https://doi.org/10.1007/978-3-030-35699-6_26
https://doi.org/10.1007/978-3-030-35699-6_26
https://doi.org/10.11575/PRISM/31028
https://doi.org/10.1145/2166966.2166976
https://doi.org/10.1080/07370024.2012.697046
https://doi.org/10.1080/07370024.2012.697046
https://doi.org/10.1145/1518701.1518730

	Abstract
	1 Introduction
	2 Related Work
	2.1 Designing Human-Robot Interactions
	2.2 Programming Interfaces in Human-Robot Interaction
	2.3 Synthesizing and Representing Programs

	3 Figaro: Design and Implementation
	3.1 Design Pipeline
	3.2 Design Scenario
	3.3 Control Interface
	3.4 Demonstrating Scenes
	3.5 Program Synthesis from Scenes
	3.6 Deployment

	4 Evaluation
	4.1 Study Procedure
	4.2 Measurement and Analysis
	4.3 Participants
	4.4 Results
	4.5 Usage Patterns

	5 Extensions of Figaro
	5.1 Figaro as a Collaborative Tool
	5.2 Figaro for Creating Motion Trajectories

	6 Discussion
	6.1 Expressing Ideas Tangibly
	6.2 Figaro as a Means of Idea Generation
	6.3 Usability of the System
	6.4 System Feedback and Limitations
	6.5 Synthesis of Findings
	6.6 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References

