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Figure 1: Figaro enables users to program robots through demonstrations via scenes (left) and constructs an interaction pro-
gram from user demonstrations (center), which can be deployed on a robot (right). 

ABSTRACT 
Human-robot interaction designers and developers navigate a com-
plex design space, which creates a need for tools that support in-
tuitive design processes and harness the programming capacity of 
state-of-the-art authoring environments. We introduce Figaro, an ex-
pressive tabletop authoring environment for mobile robots, inspired 
by shadow puppetry, that provides designers with a natural, situated 
representation of human-robot interactions while exploiting the 
intuitiveness of tabletop and tangible programming interfaces. On 
the tabletop, Figaro projects a representation of an environment. 
Users demonstrate sequences of behaviors, or scenes, of an inter-
action by manipulating instrumented fgurines that represent the 
robot and the human. During a scene, Figaro records the movement 
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of fgurines on the tabletop and narrations uttered by users. Subse-
quently, Figaro employs real-time program synthesis to assemble 
a complete robot program from all scenes provided. Through a 
user study, we demonstrate the ability of Figaro to support design 
exploration and development for human-robot interaction. 
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interaction design process must consider the context of the interac-
tion, including the potential attitudes, preferences, and behavioral 
diferences of humans interacting with the robot, in addition to the 
limitations of the physical environment within which the robot 
will be deployed. However, most existing programming approaches 
for social robotics require designers to work with highly abstract 
representations that are far removed from the context of the target 
interaction. On one extreme, traditional programming tools require 
designers to immerse themselves in low-level syntax and seman-
tics, such as through traditional text-based programming interfaces 
(e.g., [6, 48]). In another extreme, interfaces that employ graphical 
representations of the interaction, such as fnite automata, require 
designers to memorize symbolic representations of interaction logic 
(e.g., [21]). In both cases, designers must independently maintain 
mental models of how their abstract representations of the inter-
action map to situated interactions in real life. Although recent 
work has aimed to close this gap between the designer’s vision and 
system behavior, e.g., by mapping designer demonstrations to robot 
behaviors [45], designers still lack representations of the situated 
resources, requirements, and constraints of the interaction. With-
out a clear mapping between abstract programming functionality 
used at design time and how the robot will behave in the target 
social environment at execution time, designers must rely heavily 
on simulation, extensive testing, and their own imaginations to 
predict how their designs will play out after deployment. 

To address the gap introduced by programming abstractions be-
tween design and execution times, we have developed Figaro (Figure 
1), a tabletop authoring environment for designing human-robot 
interaction fows that situates the interaction design process within 
a miniature representation of the target user environment in order 
to enable designers and developers of robot applications to focus ex-
clusively on specifying system behavior. Figaro’s design is inspired 
by “shadow puppetry,” where a puppeteer can perform highly ex-
pressive scenes using a few static props and puppets with limited 
articulation through the use of motion and narration. The props 
and the stage provide the performer with just the right amount of 
context for situated play-acting, and simple motions of the pup-
pets and the narration provide sufcient expressivity to convey 
social behavior and afect. As in shadow puppetry, using Figaro, 
designers who we refer to as demonstrators play out high-level 
sequences of robot and human behaviors by manipulating fgurines 
representing human and robot agents on the tabletop and narrating 
verbal commands to specify speech for each fgurine. We refer to a 
sequence of behaviors as a scene. A drawing of the target deploy-
ment environment is projected from underneath the tabletop onto a 
translucent surface, giving demonstrators a clear representation of 
the space where humans will interact with the robot. Demonstrator 
narration is combined with actions performed on the fgurines and 
their position and movement within the deployment environment 
to create a complete model of each scene. Figaro automatically re-
solves the program semantics of each scene, freeing demonstrators 
from these low-level details. Given a collection of scenes, Figaro 
employs real-time program synthesis to construct a full interaction 
automata that can be deployed on a robot. 

Despite detaching the demonstrator from direct control over 
the semantics of interactions, Figaro still maintains expressivity 
over critical aspects of the design process. First, demonstrators 

control the physical layout of the environment that is projected 
onto the tabletop, which specifes the physical space where the 
interaction is to take place. Prior to creating scenes, demonstrators 
specify the various objects that the robot can recognize and regions 
over which the robot can navigate. Second, Figaro enables detailed 
control over the robot’s behaviors in the interaction through (1) 
tracking the relative position of the robot to the human and each 
object in the scene, (2) tracking the orientation of the robot with 
respect to these same components, (3) instrumenting the fgurines 
so that the demonstrator may tangibly select behaviors that the 
robot should perform and (4) allowing the demonstrator to verbally 
specify speech utterances that the robot can emit or understand 
from a human. 

In addition to providing an open-source software implementa-
tion of Figaro, the research contributions of our work include: 

• A novel tabletop programming interface through which users 
can manipulate fgurines to demonstrate the fow of human-
robot interaction programs; 

• A versatile synthesis approach that combines streams of user 
input into expressive HRI programs; 

• An exploratory user study of Figaro that demonstrates its 
ability to support design exploration and programming. 

2 RELATED WORK 
Below we discuss prior work with regards to design considerations 
and methods for creating human-robot interactions, programming 
interfaces that enable this design to occur, and how these programs 
can be represented and automatically synthesized. 

2.1 Designing Human-Robot Interactions 
There are many aspects of human-robot interactions for designers 
to consider, many of which Figaro broadly intersects such as verbal 
and nonverbal communication [25, 54]. Locomotion in particular, 
which is a large focus of Figaro, requires designers to reason about 
the robot’s physical proximity to its interaction partners [7] and 
situate the robot in a physical space [29, 53, 57]. Other navigation 
complexities to consider include humans and robots walking side-
by-side [36] and ensuring that the trajectory taken by the robot 
reduces stress on the human [35]. 

The multi-faceted nature of human-robot interactions is easy for 
designers to use themselves in situ or recognize when incorrect, but 
is difcult for designers to articulate for ad hoc purposes. To help 
mitigate this issue, Wada et al. [64] implemented a system where 
the designer would frst ideate, then tele-operate a robot to test their 
design, refning as needed. This immersive, hands-on experience 
gave the designers a better feel for the actual interactions they may 
encounter and how they might progress, however such a design 
methodology is not always practical. A more hands-of approach by 
Liu et al. [33] sought to use high-precision sensors to gather a large 
collection of human-human interactions in a public environment 
in order to automatically generate a human-robot interaction. 

Figaro uses immersive design methods to help demonstrators 
in recognizing and articulating the needs of multiple interaction 
possibilities. For example, in scenario-based design, designers focus 
on envisioned use scenarios that guide the development of the 
system, which includes both the actual scenario fow as well as 
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personal motivations and histories for each actor in the scenario 
[50]. Drawing from this work, Figaro prompts demonstrators to 
create scenes of an interaction by thinking about the various ways 
that a robot might, or should be used, but does not prompt them 
to think about the background or motivations of the actors. Figaro 
also takes inspiration from design methods such as speed dating 
[18], bodystorming [41], and more traditional user enactments [40], 
all of which immerse designers in the context of an interaction 
through the use of role-playing and environmental similarity. 

2.2 Programming Interfaces in Human-Robot 
Interaction 

Prior work on robotic programming tools spans expert text-based 
frameworks (e.g., [6, 48]) to more user-friendly interfaces (e.g., 
[21, 26]). Some of these tools target general use (e.g., [48]), while 
others focus specifcally on social robotics (e.g., [46, 47]). Previous 
work in user-friendly HRI authoring tools includes an extensive set 
of visual programming interfaces (VPE’s) such as Interaction Com-
poser, which similar to Figaro represents interaction programs as a 
collection of states and transitions [21]. However, Interaction Com-
poser, in addition to other robot programming VPE’s (e.g., [3, 46]), 
assumes that the designer possesses some programming knowl-
edge. The authoring tool Code3 addresses diferences in designers’ 
skills by providing diferent authoring layers suitable for diferent 
levels of expertise [26]. The assistance provided to designers takes 
many forms, from abstracting away low-level design details [54] to 
assisting designers by using methods such as formal verifcation 
[46]. Other VPE’s have shown the efcacy of birds-eye-view maps 
where the user specifes movement paths and other logic elements 
[13, 16, 30, 32]. 

Given the challenges of programming robots with traditional 
text-based frameworks and VPEs, particularly for novice program-
mers, recent robot programming interfaces involve less traditional 
means of capturing user intent, such as through natural language 
[66], demonstration through tangible programming [56] and table-
top interfaces [20], or role-playing scenes of an interaction with a 
partner [45]. These interfaces seek to capture the results of a more 
immersive design process and automatically synthesize it into a 
program, addressing many of the issues novices face in traditional 
programming. 

Creating a natural mapping between interface control and func-
tionality is a key challenge in interface design [39]. This challenge 
is exacerbated for interfaces with functionality that does not neces-
sarily map to a physical domain [19]. Prior work on bodystorming 
HRIs, which leverages the embodied nature of both the bodystorm-
ing design method and the interaction itself, shows that designers 
feel that the interaction can seem artifcial, making it difcult to cap-
ture the actual nuances of an interaction [45]. To avoid the artifcial 
nature of bodystorming, Figaro borrows from shadow puppetry to 
use a “stage,” a set of fgurines, and projected props to prototype an 
interaction in a situated, tangible way. Prior work has argued that 
shadow puppetry ofers an appropriate framework for designing 
interactive media [42]. Building on the puppetry metaphor, Young 
et al. developed Puppet Master–a system for designing reactive vir-
tual agents through demonstrations that express style, personality 
and emotions [67, 69]. The idea of the use of fgurines for design 

expression is supported by concepts from experience prototyping 
[10] and sketching [12], which both suggest that using physical 
artifacts in the design process allows the designer to more intensely 
experience and understand the design scenario. 

Tangible user interfaces (TUIs) leverage small objects as program-
ming manipulatives to close the gap between how we conceptualize 
goals for programs and then communicate those goals to our pro-
gram [27]. Given the physical nature of robots, robot programming 
is a natural application of TUIs. Prior work exploring children’s use 
of TUIs shows that they ofer several key advantages, namely low-
ering the barrier of entry for non-programmers [51]. Sapounidis et 
al. [52], found that compared with using a graphical user interface 
(GUI), children using a TUI to program robots were able to complete 
tasks more quickly and with fewer errors. Tools for programming 
robot manipulators have also used TUIs [20], signifcantly reducing 
training time compared to traditional programming interfaces. 

Tabletop TUIs have been used in numerous applications: urban 
planning [63], theater stage planning [23], fight-clearing of naval 
aircrafts from a ship [15], augmenting physical objects to create tan-
gible displays [17], and robot navigational tasks [31]. Across these 
diferent interfaces, a few common benefts emerge: it is easier to 
collaborate in the tabletop interface, and for spatially-focused tasks, 
the visualization ofered a much more intuitive experience. Figaro 
expands the use of these tabletop TUIs in robotics programming 
by applying it to the novel domain of HRI. 

Various HRI programming interfaces, tangible and non-tangible 
alike, ofer similar interaction paradigms to Figaro, but unlike Fi-
garo, are not intended for the demonstration and generalization of 
high-level interaction fows. Reactile, for instance, ofers a tabletop 
interface but excels in programming the fne-grained coordination 
of swarm robots [60]. The “style by demonstration” approach co-
incides with Figaro’s design of dyadic interactions but is used to 
craft physical reactions to stimuli [67–70]. At the level of specifying 
interaction logic, users of Picode demonstrate individual behaviors 
but must program fow textually [28]. At an even higher level, Magic 
Cards reasons about tasks in a physical environment but abstracts 
steps necessary to perform them [71]. Figaro’s interface also bears 
striking similarity to educational interfaces such as Cellulo, where 
children interact with small robots in a simulated layout but do not 
program the robots themselves [43]. 

2.3 Synthesizing and Representing Programs 
In facilitating the collection of scenes to serve as input to pro-
gram synthesis, Figaro draws from keyframe demonstrations to 
program interactions, in which signifcant events in the interaction 
are demonstrated but the precise trajectory taken by the robot is 
left to the synthesizer [1]. Prior work has also explored program 
refnement after one or more demonstrations have been provided, 
such as by interacting with a visualization of the program [2] or 
by ofering critiques after an initial program has been created from 
demonstration [5]. 

In our particular approach, Figaro uses inductive synthesis— 
learning a program from a small set of examples [22]—to construct 
HRI programs from designer input. An example of inductive syn-
thesis is TRANSIT, which synthesizes protocols from execution 
traces [62]. Other prior work has generalized sets of execution 
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Figure 2: The design process that Figaro facilitates, from 
drawing a physical layout (left), leading to demonstrating 
scenes (center), and ending with testing/deployment (right). 

traces into automata [38, 45]. In an inductive synthesis approach, 
counterexamples from the synthesized program can subsequently 
be used as input to further iterations of synthesis [58]. The goal 
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of Figaro is similar to that of automata learning: constructing an 
automaton by querying whether or not traces are accepted by a 
target system [4, 49, 59]. In classical automata learning, the target 
system is already specifed and the algorithm seeks to build a model 
of that system, but for Figaro, the target system is not yet specifed, 
so the synthesis must both create and model the target system. 

While Figaro creates interaction programs that solely dictate the 
robot’s behavior based on sensory input, prior work has developed 
representations that include both human and robot actions in the 
execution of a human-robot collaboration plan [37]. Other prior 
work in programatically representing interactions reasons about 
timing between the robot’s behaviors in order to create fuent in-
teractions [14, 61], while Figaro reasons only about the ordering of 
discrete events. 

3 FIGARO: DESIGN AND IMPLEMENTATION 
In this section, we describe the technical details and implementation 
of Figaro,1 beginning with the design pipeline that Figaro facilitates. 
We then introduce a running example of a potential design scenario, 
and subsequently describe each component of Figaro in detail using 
the running example for illustration. 

3.1 Design Pipeline 
Figure 2 depicts the design pipeline facilitated by Figaro. In general, 
demonstrators will draw the physical layout of the environment in 
which the robot will function and then iteratively demonstrate dif-
ferent scenes of how the robot should interact with people, objects, 
and regions within its environment. Between iterative demonstra-
tions of scenes, Figaro will synthesize the full interaction program in 
the background and query demonstrators about ambiguities within 
their designs. At any point, demonstrators can compile these inter-
action programs onto a robot for testing/deployment. 

The components of Figaro, shown in Figure 3, facilitate the design 
pipeline described above. The Figaro system includes (1) a tablet 
control interface through which demonstrators can enter various 
design modes; (2) two wooden peg doll fgurines that represent the 
human and the robot; (3) a projected tabletop design interface used 

1An open-source implementation of Figaro is available at https://github.com/Wisc-
HCI/Figaro. 

Figure 3: The Figaro system includes the tabletop interface 
connected to a computer, a tablet control interface, and a ro-
bot for deploying designs. 

by demonstrators to manipulate fgurines to demonstrate scenes; (4) 
an audio component that listens to and interprets demonstrators as 
they narrate human and robot speech; and (5) a program synthesizer 
for interpreting and building programs from collections of scenes. 

3.2 Design Scenario 
Consider the following toy example: A demonstrator wishes to 
program a household robot that can host video calls on a tablet, 
which we refer to as the Call robot. Upon request, the robot should 
approach a human. If the human is standing, the robot may need to 
adjust its screen to suit the height of the human. The human is then 
free to initiate a call by interacting with the tablet. Until a video 
call is requested, the robot will move around the house looking for 
people to interact with. Given these capabilities, the details of how 
the robot will complete these tasks are left to the demonstrator. In 
the following sections, we describe how each component of Figaro 
facilitates the design of this scenario. 

3.3 Control Interface 
The tablet interface provides access to various modes (Figure 4) 
as demonstrators progress through the design process, while also 
ensuring that demonstrators are not confned to the tabletop at all 
times. The primary modes of Figaro are (1) draw a physical layout, 
(2) create scenes, and (3) resolve ambiguities. From the home screen, 
a demonstrator can enter draw mode or create mode, and resolve 
mode is automatically triggered whenever a design ambiguity needs 
resolution. The tablet displays the current mode as well as options 
within that mode. We briefy introduce the modes below. 

Draw a Physical Layout—Through the tablet, Figaro allows 
demonstrators to draw a coarse physical environment within which 
the robot will be placed (Figure 4, top-right). A drawn environment 
has two components: regions and objects. The physical layout is 
split into a grid that can be used to specify regions, which represent 
specifc areas of the space recognizable to the robot, such as a room 
or a certain area within a room. Shapes can be drawn on top of the 
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physical layout grid to specify physical items in the regions. The 
demonstrator can also specify the names of regions and objects. 
Due to the low-fdelity nature of drawn environments, Figaro is 
best suited for cases in which only discrete locations need to be 
incorporated into the fnal programs, rather than the exact physical 
characteristics of objects and regions. 

Create Scenes—Creating scenes encompasses the main part of 
the design process. Within the create mode (Figure 4, bottom-left), 
the demonstrator can start and stop scenes, remove existing scenes, 
and view details of previously created scenes. 

Resolve Ambiguities—The resolve mode allows Figaro to query 
demonstrators for additional information or to reconcile conficting 
information. As a demonstrator narrates a scene, they may verbally 
specify a behavior that Figaro cannot recognize, e.g., failed speech 
recognition or categorization. After the scene is complete, the tablet 
will prompt demonstrators to clarify their intent (Figure 4, bottom-
right). Ambiguities are further discussed in Audio Interface. 

Illustrating Design Flow with the Control Interface. The demonstra-
tor for the Call robot must frst specify the household’s physical 
layout. They click Draw Physical Layout on the tablet home screen 
to enter draw mode. The robot should begin at its charging station, 
so the demonstrator specifes a charge region. The demonstrator 
draws other areas recognizable by the robot, such as the kitchen and 
a bedroom. When the demonstrator is satisfed with the drawn lay-
out, they return to the home screen via the Done button. Then, the 
demonstrator presses the Create button to enter create mode. When 
the demonstrator wants to begin a scene, they press Begin a scene. 
Once the scene is complete, the demonstrator presses Done and the 
tablet returns to the create mode. From there, the demonstrator can 
choose to create additional scenes using the same process. 

3.4 Demonstrating Scenes 
When demonstrators initiate a scene, Figaro passes control from the 
tablet to the tabletop. We describe the three main components of 

Figure 4: The tablet interface and its various modes, includ-
ing the home screen (top-left), the draw mode screen (top-
right), the create mode screen (bottom-left), and the resolve 
mode screen (bottom-right). 

Figurine
Detection

Touch
Detection

Figure 5: Figaro tracks the position and orientation of fg-
urines using an infrared camera and performing blob and 
pattern detection. 

the tabletop that facilitate scene demonstration: the tabletop design 
interface, the audio interface for natural language commands, and 
the instrumented fgurines. 

Tabletop Design Interface. Within a scene, the demonstrator ma-
nipulates the positions and orientations of the fgurines on the 
tabletop to demonstrate the behaviors of a robot or a human in 
the environment. As the demonstrator manipulates the fgurines, 
Figaro (1) projects the drawn physical layout onto the tabletop 
from underneath its surface, (2) tracks the positions of fgurines, 
(3) detects when a demonstrator touches the tabletop surface, and 
(4) ofers visual feedback to demonstrators. 

Hardware—The tabletop design interface, measuring approxi-
mately 0.94 m × 0.92 m × 0.61 m, is comprised of a rear projection 
setup similar to the Wipe-Of interface [44]. A projector from un-
derneath the table shines an image of the physical layout to tracing 
paper attached to the underside of a clear sheet of acrylic, while 
an 850 nm infrared camera with a built-in infrared lamp tracks 
the position and orientation of fgurines from under the table. We 
use OpenCV to detect the position of fgurines by placing simple 
geometric shapes under each fgure – a half-circle for the robot 
and a circle for the human – and using blob detection to isolate the 
shapes and pattern detection to assign them identities [8]. Further-
more, the orientation of the half-circle under the robot fgurine is 
used to calculate its orientation. As Figaro tracks the movement of 
fgurines across the board, it displays a trail of movement onto the 
projected display interface to provide the demonstrator with visual 
feedback that the fgure is being tracked correctly. Figure 5 (top) 
depicts our approach to fgurine detection. 

Lastly, two 850 nm infrared LED light strips span the length of 
the perimeter of the acrylic to enable fngertip touch detection via 
frustrated total internal refection. When demonstrators touch the 
board, Figaro highlights the area that was touched in a circle to 
provide visual feedback that the touch has been registered. While 
demonstrating scenes, basic touch capability allows the demonstra-
tor to focus solely on the tabletop without needing to shift their 
focus to the tablet. Instances of the touch input capabilities include 
pausing/playing the scene creation or interacting with dialog boxes 
that Figaro displays (further discussed in Audio Interface). Figure 5 
(bottom) depicts our approach to touch detection. 
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Figure 6: Part of a scene in which the human issues a request 
to make a video call on the robot and the robot travels to the 
human’s location. 

Audio Interface. In addition to manipulating the fgurines, demon-
strators must also specify the speech uttered by the human and 
robot. Thus, Figaro listens for speech commands as demonstrators 
perform scenes. We defne a speech command as a specifcation for 
the speech that the robot should utter or the speech that it should 
be able to recognize at a particular moment in time. 

Figaro uses Mycroft-precise 2 in order to quickly detect human 
or robot speech commands. If a demonstrator says “robot say” or 
“human say,” Figaro knows to begin listening for robot speech or 
human speech, respectively. Upon detection of a hotword, Figaro 
will initiate real-time speech-to-text transcription.3 As demonstra-
tors speak a command, their speech is transcribed on the tabletop 
in real-time. Transcription concludes when Figaro hears a pause 
in the speech. The demonstrator can touch the displayed speech 
to fag it for later review if, for example, the uttered speech was 
incorrectly transcribed. 

The transcribed utterance must then be classifed. Figaro feeds 
the utterance into of-the-shelf intent recognition software to per-
form this categorization,4 which is pre-trained to recognize a small 
set of general speech categories (e.g., greeting, farewell, thanking). 
Figaro marks any speech that either cannot be classifed or was 
fagged by the demonstrator as undefned. After a scene is complete, 
Figaro will prompt the demonstrator to resolve undefned utter-
ances within the resolve mode of the control interface (Figure 4, 
bottom-right). The demonstrator is queried to either classify the 
speech within one of the general categories, defne a new category 
for speech if no suitable existing category exists and add additional 
speech examples to the new category, or discard the speech. Demon-
strators may also edit the transcription. New speech categories can 
be re-used in future scenes by either stating the category name or 
a phrase corresponding to the classifcation verbatim. 

Illustrating the Start of a Scene. The demonstrator wants to play 
out a scene in which a person in the kitchen (1) requests to make 
a video call with the robot and (2) asks that the robot tilt its head 
up to handle the case in which the human is standing and doing 

2Hot-word detection is done using Mycroft-Precise, which can be found at 
https://github.com/MycroftAI/mycroft-precise
3Speech to text is performed using Google Cloud Text to Speech, found at 
https://cloud.google.com/text-to-speech/
4Intent recognition uses Dialogfow: https://dialogfow.com 
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Figure 7: (a) The wooden peg doll fgurines attach to joystick 
bases. (b) The three behaviors to which Figaro maps joystick 
movements – pointing, waiting, and nodding. 

dishes. Before beginning the scene, the demonstrator places the 
human fgurine in the kitchen region of the environment and the 
robot in the charge region. The demonstrator then uses the control 
interface to begin a scene. The demonstrator utters 

Human say: Robot, I need to make a call. 
Robot say: On my way. 
For the purpose of illustration, we will assume that Figaro’s 

speech classifer recognizes and classifes the phrase “robot, I need 
to make a call” as CallRequest and the phrase “on my way” as 
Respond. The demonstrator then moves the robot fgurine to the 
kitchen and subsequently issues an additional utterance: 

Human say: Can you tilt your head back? 
Suppose that the human’s speech phrase “can you tilt your head 

back” does not map well to any of the general speech categories 
recognizable by the robot. Figaro fags this speech as undefned, 
and will prompt the demonstrator to resolve it later by creating 
a new speech category on the tablet (Figure 4, bottom-right). The 
in-progress scene is illustrated in Figure 6. 

Figurine Controllers. At the current point in the scene, the human 
has asked the robot to tilt its head back so that the human can have 
a better view of the video call. To fnish the scene by responding 
to the human’s request, the demonstrator will need to enact a 
head nod. While it is possible to verbally specify actions such as 
a head nod, as was done in an early iteration of Figaro, doing 
so increases the chance for speech misclassifcations. Thus, Figaro 
enables demonstrators to enact robot actions directly on the fgurine 
controllers, with the goal of decreasing speech classifcations and 
providing a more direct mapping between demonstrator intent and 
robot behaviors. To enable this enactment, the fgurines are afxed 
to a joystick controller base (Figure 7a). 

The joystick has three output voltages – x and y axis of the 
joystick motion, and button displacement. These three measures 
are transmitted via Bluetooth Low Energy (BLE) 5 6 to Figaro. We 
enclose the electronics in a 3D printed case afxed to each fgurine. 

Figaro then classifes combinations of voltage signals into one of 
three possible categories – a pointing behavior, a head nod behavior, 
or a wait behavior. Figure 7b depicts how each behavior can be 
achieved on the fgurine. If the fgurine is tilted far enough in 
a particular direction, Figaro recognizes a point behavior. While 

5We use the Adafruit Feather NRF52840: https://www.adafruit.com/product/4062 
6The microcontroller was programmed with CircuitPython, which can be found at: 
https://circuitpython.org using the Adafruit_CircuitPython_BLE library, which can be 
found at https://github.com/adafruit/Adafruit_CircuitPython_BLE 

https://github.com/MycroftAI/mycroft-precise
https://cloud.google.com/text-to-speech/
https://dialogflow.com
https://www.adafruit.com/product/4062
https://circuitpython.org
https://github.com/adafruit/Adafruit_CircuitPython_BLE
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pointing, clicking the fgurine causes Figaro to recognize a nod 
behavior, downward if tilted forward and upward if tilted backward. 
Clicking the fgurine without tilting it causes Figaro to recognize a 
wait behavior, in which the robot idles. 

Illustrating the End of a Scene. Simulating the robot responding to 
the human’s request to tilt its head back, the demonstrator pushes 
down on the fgurine and pulls it backward on the joystick, causing 
Figaro to recognize a nod behavior. The human may then complete 
their video call on the robot, which we consider to be an action 
native to the tablet interface on the robot rather than one of the ro-
bot’s programmable behaviors. Finally, the demonstrator simulates 
the case where the human has fnished their video call by uttering: 

Human say: You can leave now. 

Figaro’s classifer successfully recognizes this text as ExitRequest. 
The demonstrator then releases the fgurine back to its resting 
position and slides the robot fgurine back to its charging station. 

3.5 Program Synthesis from Scenes 
Figaro captures detailed raw information about the human and 
the robot fgurine including fgurine position and orientation, joy-
stick manipulations, and timing for all behaviors. To synthesize 
a high-level program, our synthesis approach must abstract the 
relevant information from the multiple demonstrations that include 
such low-level data. The purpose of these abstractions is to bal-
ance including a sufcient amount of detail in the program with 
enabling our synthesizer to generalize full programs from a series 
of demonstrations. Our synthesis approach is as follows: we frst 
convert each scene to an execution trace, then feed each trace into 
a synthesizer which constructs a program that accepts each trace. 

Converting Scenes to Traces. The raw output from each scene con-
sists of a set of parallel recording tracks captured from the tabletop, 
audio, and fgurine input signals. Figaro frst processes the record-
ing so that it adheres to any parameters that are specifc to the 
particular robot being used. For example, if a robot can only sense 
whether a human is close to it but cannot sense the human’s exact 
location, the signal describing the human’s position on the tabletop 
will be converted to a binary value indicating whether the human 
is close to or far from the robot. 

Next, Figaro compresses the information within the set of modal-
ities into into three categories—(1) the discrete behaviors that the 
robot exhibits, (2) any event triggers that the robot can notice, and 
(3) the state of the environment that the robot can perceive. We 
denote the set of behaviors that the robot can exhibit as B, the set 
of event triggers that the robot can recognize as E, and the set of 
diferent environmental states the robot can observe as V . 

Figaro then bins the processed recordings by intervals of time. 
The start of a bin is denoted either by an event trigger, such as the 
human uttering speech to the robot, or by the frst action taken by 
the robot. The end of a bin is denoted either by the next event trigger 
or the end of the recording. At the start of the bin, Figaro records 
the state of the environment. Within a bin exists any sequential 
and concurrent behaviors that the robot exhibits between triggers. 
If within a bin the robot exhibits two sequential behaviors of the 
same behavioral modality (e.g. one utterance followed by another 
diferent utterance), the bin encompassing those behaviors will 
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Figure 8: Our synthesis approach within Figaro, which takes 
(a) the set of demonstrator traces and (b) combines the traces 
into a program. For simplicity, environmental state has been 
removed from transitions, and unannotated arrows repre-
sent the self transition. (c) The Call procedure serves as an 
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be split into two bins, in which the trigger for the second bin is 
considered to be self, indicating that the robot triggered its own 
behavioral change. 

In the next step, Figaro converts each bin to a trigger-
⟨ei ,vi ⟩environment-behavior triple, denoted as −−−−−→ bi , where ei ∈ V 

is the event that triggered bin i; vi ∈ P(V ) is the environmental 
state recorded at the start of bin i , denoted as an element of the 
powerset of V since Figaro observes multiple environmental states 
simultaneously (e.g. the robot may observe itself to be in a particu-
lar position of the room while at the same time observing that it is 
proximal to the human); and bi ∈ P(B) comprises the behaviors 
observed within bin i , denoted as an element of the powerset of B 
since Figaro can observe multiple robot behaviors within a particu-
lar bin. If bin i is the frst in the sequence, Figaro deems the event 
that triggered the bin to be self and the environmental state to be 
the state recorded at the start of the recording. 

After all bins have been converted to trigger-environment-
⟨en,vn ⟩behavior triples, Figaro creates an accepting triple −−−−−−→ bn 

in which en = self, vn is the environmental state recorded at the 
end of bin n − 1, and bn = �. Finally, Figaro assembles an exe-
cution trace by linking consecutive trigger-environment-behavior 
triples. Formally, we represent a trace as a sequence of triples: 
⟨e0, v0 ⟩ ⟨e1, v1 ⟩ ⟨e2, v2 ⟩ ⟨en, vn ⟩ 
−−−−−−→ b0 −−−−−−→ b1 −−−−−−→ ... −−−−−−−→ bn . 

Constructing a Program from Traces. Given a set of traces T , our task 
is to construct an interaction program I that accepts each trace. The 
program I is formalized as a tuple (S, s0, sf , fT , fB ), where S is the 
set of states; s0 ∈ S is the initial state; sf is an accepting state with 
no outgoing transitions; fT : S × E × P(V ) → S is the transition 
relation, representing how the state changes in response to event 
triggers and depending on the environment; and fB : S → P(B) is 
a labelling function that assigns robot behaviors to states. 

Synthesis algorithm—Our goal is to synthesize a program I that 
is small and generalizes to unseen scenes (traces). To that end, we 
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implement an approach similar to that used by Porfrio et al. [45] 
to efciently search the space of programs I with the goal of ac-
cepting every trace t ∈ T . This task is made simpler by abstractions 
performed by Figaro, including, for instance, the conversion of 
movement trajectories into binary values indicating whether or 
not the robot is moving, and if so, the robot’s target destination. 
Thus, multiple instances of movement to the same target destina-
tion, regardless of the specifc trajectory taken by the robot, can be 
combined into the same behavioral state. A simple example of our 
synthesis algorithm is depicted in Figure 8, in which Figaro com-
bines the set of traces collected from user demonstrations (Figure 
8a) into a program (Figure 8b). 

In a synthesized program, the robot will transition from behavior 
to behavior only if an appropriate event trigger is produced and the 
specifc conditions of the transition’s environmental state are met. 
However, it is often the case that the environmental state recorded 
by Figaro for a transition to occur is too strict. For instance, in the 
Call program, if the demonstrator always starts a scene with the 
robot in the living room, the resulting program would necessitate 
that the robot starts in the living room in order to successfully 
complete the interaction. Thus, Figaro loosens the preconditions 
for a robot behavior to be performed such that if a behavior has 
only one outgoing transition, Figaro will remove the environmental 
state from that transition. 

Interrupts—Our synthesis approach supports proceduralization 
of behaviors through interrupts, or modularized interaction transi-
tion systems that can be executed at any point in time if a set of 
conditions are met [21]. When the robot executes its interaction 
program, it begins with a main procedure. The main procedure 
includes all traces that begin with a self action on the robot. There-
fore, the main procedure involves the robot taking initiative to 
perform actions. If no such traces are provided, the main procedure 
can be automatically initialized as a simple wait loop in which 
the robot waits indefnitely. At any point during execution of the 
main procedure if the initial conditions for an interrupt are met, 
the robot will halt execution of the main procedure and execute 
the interrupt. Thus, demonstrators need only specify the robot’s 
reaction to an event only once, rather than specifying the reaction 
in multiple demonstrations. For example, if the demonstrator wants 
the robot to react the same way every time the human says “thank 
you,” the demonstrator need only create an interrupt triggered by a 
thank event. Once an interrupt fnishes, it returns to the state from 
which it was called. Figaro’s synthesis of the main procedure and 
interrupts do not difer. Thus, an interrupt beginning with an event 
e , self consists of all traces beginning with e . 

Illustrating Program Synthesis. In addition to demonstrating the 
scene in which the robot is asked to adjust its tablet, the demon-
strator may also have provided an additional scene in which the 
human does not ask the robot to adjust its tablet. Figure 8a shows 
the traces created from these two scenes, and Figure 8b illustrates 
the synthesis of a complete Call procedure from these traces. Both 
traces are accepted by the fnal program. 

Figure 8c demonstrates a potential application of an interrupt 
within the patrol robot design. Recall the design criteria for the 
Call robot that the robot should move around the house looking 
for interaction partners when it is not assisting the human with a 

video call. To demonstrate this behavior, the demonstrator records 
a Patrol scene in which the robot fgurine simply moves between 
diferent regions in the drawn layout. The patrol scene results in 
the partial interaction trace shown in 8c. Since the Patrol procedure 
is initiated by the robot, it is designated as the main interaction. 
The Call program is therefore an interrupt that can be triggered at 
any point during the Patrol, regardless of what room the robot is in. 
When the interrupt fnishes, it will return to the state in the main 
interaction before the interrupt was triggered. 

3.6 Deployment 
After creating scenes, the synthesized program is available to be 
tested on a robot. Currently, we deploy designs on the Temi7 and 
virtual Pepper [11] platforms. Figure 9 illustrates what the execution 
of the Call program looks like on the Temi robot. 

Lastly, we implemented each fgurine behavior on the Temi. 
Because Temi does not have arms, to execute a point behavior the 
robot rotates its orientation towards its target, tilts its head down 
and back up, and then rotates back to its original orientation. To 
execute a head nod, the robot moves its screen up or down. In a 
wait behavior, the robot waits passively for input for an extended 
period of time. 

4 EVALUATION 
We evaluated Figaro with a user study in which participants used 
Figaro to complete a human-robot interaction design task. In our 
evaluation, we pay particular attention to design experiences and 
techniques exhibited by demonstrators, and assess the efectiveness 
of Figaro’s physical and visual components in furthering demon-
strators’ experiences. 

4.1 Study Procedure 
Upon providing informed consent to participate in the study, partic-
ipants were guided through an interactive tutorial on using Figaro. 
The tutorial included moving fgurines on the tabletop, using the 
robot fgurine to emit point, nod, and wait behaviors, and demon-
strating scenes. Following the tutorial, we presented participants 
with a design scenario for a human-robot interaction at a museum 
with three exhibits, and included a pre-made physical layout for 
them to use. The scenario was purposefully left open-ended such 
that participants could prioritize a variety of diferent interaction 
paradigms—for instance, whether to keep the robot stationary and 
create a conversational interaction, or whether to have the robot 
guide visitors around the museum. Depending on the time remain-
ing in the study after the completion of the tutorial, participants 
were allowed approximately 30 minutes to design their interac-
tions. We then conducted a semi-structured interview and asked 
participants to fll out a questionnaire. 

4.2 Measurement and Analysis 
We conducted a refexive Thematic Analysis (TA) on the inter-
view transcriptions following the guidelines by Braun et al. [9] and 
McDonald et al. [34]. Two authors who facilitated the study and 
transcription process worked individually to generate potential 

7https://www.robotemi.com/ 

https://www.robotemi.com/
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the Patrol procedure for simplicity. 

codes, and then regularly discussed candidate themes. Then the 
authors revised and combined candidate themes until a fnal set 
was established. 

Lastly, we measured the efectiveness of various aspects of Fi-
garo through a twenty-one item questionnaire. Four items measured 
the perceived efectiveness of scene demonstration as the primary 
design method (α = 0.71), fve items measured the perceived ef-
fectiveness of Figaro as a tool for individual usage as opposed to 
working with a partner (α = 0.85), and three items measured the 
accessibility of Figaro’s interface (α = 0.64). Of the remaining nine 
items, we extracted a single item as a measure of the perceived im-
portance of physicality in Figaro’s interface and an additional single 
item as a measure of Figaro’s ability to immerse demonstrators into 
the environment simulated by the design scenario. The remaining 
seven items could not be grouped into coherent categories with 
sufcient consistency. 

4.3 Participants 
We recruited 10 participants (6 males, 4 females) to participate in 
our study, with an average self-reported programming experience 
of3.25 (SD = 2.97) years. Five participants reported a background 
in Computer Science, two in Industrial and Systems Engineering, 
and one each in Mechanical Engineering, Integrative Biology, and 
Speech Language Pathology. Four participants self-described them-
selves as having little experience programming robots, while the 
remainder described themselves as having none. One participant 
self-reported themselves as having design experience, while three 
others described themselves as having "some," one as having "little," 
and fve as having no design experience at all. 

4.4 Results 
In our analysis of participant interviews, we identifed four main 
themes that emerged from the use of Figaro: (1) Expressing ideas 
tangibly, (2) Methods of idea generation, (3) Usability of the system, 
and (4) System feedback and limitations. Within each theme we 
include quotes from the participant interviews, which are attrib-
uted using both participant ID and line number in the interview 
transcripts (e.g. P4.12 means “participant 4, line 12"). Within our 

thematic analysis we also uncovered various subthemes, but we 
reserve these subthemes for our discussion since they contain our 
interpretations of participant feedback. 

Theme 1: Expressing ideas tangibly. Seven of the ten partici-
pants discussed the tangibility of the interface in-depth. Particularly, 
P9 referred to the expressiveness of gestures: 

Um, pointing is basically without saying you can direct [...] the 
human where to go. It’s answering by doing rather than 
by speaking. So, I think it’s [...] very expressive. (P9.34) 
Furthermore, participants described how tangibility afected or-

ganizing and expressing their understanding of the interaction: 
And so by doing it physically [...] you’re able to do it, it’s 
simulated exactly they way you’d want to do it in real 
life. Because it’s, you’re limited by physicality. (P10.91) 
Furthermore, several participants discussed what it might be like 

to use input modalities other than the tangible fgurines: 
...if it [...] were to be a little bit more concrete where I could 
have total faith in the movements of the fgurines, um, 
then maybe I’d be [...] more inclined to use it, because it’s also 
just kind of fun. (P10.72) 

Theme 2: Methods of idea generation. Nine of the ten partici-
pants discussed how the interface afected their ideation process. 
Several participants commented on how Figaro afected their use 
of imagination: 

I think it’s pretty easy to be like, I can imagine a robot being 
in the middle of the floor, so I’ll put him in the middle of 
the foor and I’ll walk up to him, or imagine him standing 
next to me and ask me a question about what I know more 
<unintelligible> painting. (P5.42) 
Participants also remarked on the efect of Figaro as a visual aid 

on their imagination: 
And because there was visual aid [...] to support it, [...] it was 
easier for me to imagine. So maybe if I didn’t have this and 
if I were to kind of imagine and, you know, program, maybe 
some other scenarios I would have not even been able to come 
up with. (P7.29) 
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Furthermore, participants commented on Figaro’s ability to con-
nect their designs to the real world: 

Okay, so, I thought personally that was very useful. I like to 
see things visually [...] So having those physical things in 
front of me and being able to move them around with my 
own hand and like pointing, that like kind of makes it more 
realistic to me, and more human-like. (P8.24) 
Several participants remarked on the physical limits imposed by 

the fgurines on their designs: 
And so by doing it physically, [...] you’re able to do it, it’s 
simulated exactly the way you’d want to do it in real life. 
Because [...] you’re limited by physicality. (P10.91) 
Participants such as P4 also remarked how the visual and tangible 

nature of Figaro afected their creativity: 
Uhm it was good to see like the visual layout of everything. 
I felt like it defnitely made me more creative (P4.50) 
Additionally, participants commented how acting out the sce-

narios afected how they viewed their interactions unfold: 
[...] I felt like [...] I was able to [...] enact the actual scenario, 
so, it kind of made it easier to program [...] so when you 
program it this way, maybe [...] the interaction between the 
human and the robot could improve. (P7.21) 

Theme 3: Usability of the system. Nine out of ten participants 
referred to the usability of the system. One participant, for example, 
references usability while describing how they corrected a mistake 
in their speech during a scene: 

But, I think there was one scenario wherein I had to like re-
word the phrase. So because I had that option it was easy. 
(P7.26) 
Four participants also remarked on the learnability of Figaro, 

stating that it was difcult to pick up quickly or that they forgot 
how to perform certain tasks. P1 in particular remarked that they 
had to adjust to using the system: 

Yeah I think that kind of goes back to like, [...] geting more 
comfortable with it I think over time, where at frst like 
saying it out loud was kind of weird, but then as I got through 
it, I was like oh, okay, like, this isn’t that bad, this isn’t 
that weird. (P1.26) 
Other participants, however, commented positively on Figaro’s 

approachability. Some suggested that this would be a suitable sys-
tem for non-programmers, and P4 mentioned that Figaro seems 
approachable for children: 

It seems like something you could use to you know maybe 
like to elementary school kids, [...] people who are new to 
coding. (P4.4) 

Theme 4: System feedback and limitations. Seven of the ten 
participants referred to the feedback or limitations of the system. 
Participants expressed that the feedback helped them understand 
what was happening on the tabletop. Specifcally, P8 comments on 
how well the feedback worked: 

Um, yeah that was really good, like wherever I pointed the 
robot was able to point an arrow out and give the name 
of the region, so that was really good. (P8.35) 
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Figure 10: Results from the survey measuring the efective-
ness of Figaro. Error bars represent standard deviation. 

Participants sometimes expressed confusion, either that Figaro did 
not respond to an input that they expected, or that they were unsure 
how Figaro would handle certain situations they might create: 

[...] I also don’t totally understand how they sort of stack 
up against each other, so like... when is he asking a question 
vs if I did do patrol when is he patrolling? You know, there’s 
some logic I guess that he executes situation A if it’s 3 o’clock 
(P5.32) 

Efectiveness of Figaro. Figure 10 shows the results of the efec-
tiveness survey. On average, participants rated the importance of 
physicality in Figaro to be 4.1 (SD = 1.66) and their immersion 
in the interaction environment to be 5.5 (SD = 1.18) on a 7-point 
Likert scale. Participants also rated their perceived efectiveness of 
demonstrations to be 5.25 (SD = 0.99), their perceived efectiveness 
of Figaro as a tool for individual use as 5.08 (SD = 1.21), and the 
accessibility of Figaro as 5.57 (SD = 1.02). 

4.5 Usage Patterns 
Below, we include descriptive results from observing participants 
use Figaro and the programs that they created. 

Interface Usage. We examined the study video footage to reveal 
usage patterns of Figaro that emerged in the user study. Our anal-
ysis encompasses all scenes created by participants, even scenes 
that were not ultimately included in participants’ fnal interac-
tion designs. We found that six participants included dialogue and 
movement-based scenes; three participants created dialogue-based 
scenes, but the robot was moved in between scenes; and only one 
participant created a scenario purely consisting of dialogue. Ten par-
ticipants utilized the point gesture on the robot fgurine, three used 
the nod behavior, and fve used the wait behavior. Six participants 
performed a gesture simultaneously with speech, and one of those 
participants also used a gesture simultaneously with movement. 
This combination was most often pointing and speaking. A variety 
of scene structures were used. Three participants demonstrated 
scenes in-series with each other, in which rather than each scene 
containing a categorical beginning and ending, each scene picks 
up where the previous one left of. Five others made independent 
scenes where they would repeat similar situations with diferent 
outcomes or were simply unrelated to each other, and three used 
a mix of the two methods. Some features of Figaro were not em-
phasized in Figaro’s tutorial and were therefore not widely used by 
participants. Only two participants interacted with the touch table, 
three deleted scenes, and three added additional objects or regions 
to the physical layout. 
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User-Created Programs. In order to characterize the participant 
programs created with Figaro, we select a small set of participant 
programs to describe in detail. 

Participant 1—This participant demonstrated seven scenes. 
Rather than representing each scene as an individual, disjoint in-
teraction between the human and robot, participant 1 crafted each 
scene in-sequence as part of a larger interaction story. 

Scene 1: The robot greets the human, and the human greets 
back. The robot then ofers assistance. 
Scene 2: The human asks where exhibit 1 is. The robot moves 
to the exhibit, states that the exhibit is “over here,” and then 
beckons the human to “follow me.” The human then moves 
to the robot’s location. 
Scene 3: Starting from exhibit 1, the human asks for informa-
tion about the exhibit, and the robot responds accordingly. 
Scene 4: Starting from exhibit 1, the robot prompts the human 
to ask for more information about the exhibit. The human 
asks for more information, and the robot answers accord-
ingly. 
Scene 5: Starting from exhibit 1, the human thanks the robot, 
and the robot ofers to direct the human to exhibit 2. The 
robot then says “Follow me” and moves to exhibit 2. 
Scene 6: Starting from exhibit 2, the robot beckons the human 
to approach the exhibit. The human approaches the robot in 
exhibit 2, and states that they do not want to go to exhibit 2. 
The robot asks “Why not?” 
Scene 7: Starting in exhibit 2, the human asks the robot to 
point the way to exhibit 3. The robot moves to exhibit 3 and 
answers that exhibit 3 is “to my left.” 

As Figaro’s synthesis approach does not connect scenes end-to-
end, it is not possible to reproduce an uninterrupted sequence of 
scenes, beginning from the greeting in scene 1 and ending with the 
approach to exhibit 3 in scene 7, within a single execution trace 
of the synthesized program. Instead, all seven scenes are compiled 
into four program procedures. The main procedure includes scenes 
1, 4, and 6, in which the robot will by default either greet the human, 
answer a question about exhibit 1, or beckon them to exhibit 2. The 
procedure generalized from these scenes contains program paths 
not specifed by the participant, such as when the robot prompts 
the human to ask them more information about exhibit 1 (trace 
4). If the human deviates from trace 4 and does not respond to the 
robot’s prompt, the robot will end the interaction. Additionally, 
interrupts allow participant 1’s scenes to execute repeatedly—at 
any point in the interaction can the robot handle being thanked 
within the interrupt that is triggered with scene 5. 

Participant 1, in addition to many other participants, overgener-
alized certain robot behaviors by using broad speech classifcations. 
For instance, participant 1 categorized the phrases “Where may 
I direct you?” (scene 1) and “Why not?” (scene 6) both under the 
Question category. Therefore, in the main procedure, the synthesizer 
combined both distinct phrases within the same behavioral state, 
which can lead to nonsensical behaviors such as after an exchange 
of greetings the robot says “Why not?” rather than asking where it 
can direct the human. 

Participant 10—This participant demonstrated fve unique scenes. 
In the process, participant 10 demonstrated conficting scenes that, 
if inserted into the interaction program, would result in nondeter-
minism. At the time of the user study, Figaro was not specifed to 
handle conficts. 

Scene 1: The robot waits for an event, then makes an an-
nouncement that it is available to be asked about the ex-
hibits. 
Scene 2: The human approaches the robot, and the robot asks 
if the human would like to know about the exhibits. 
Scene 3: The human approaches the robot and asks who 
created exhibit 1. The robot answers accordingly. 
Scene 4: The human approaches the robot and asks for the 
location of exhibit 2. The robot points to exhibit 2 and then 
states “it is right over there.” 
Scene 5: The human approaches the robot and asks for the 
location of exhibit 3. The robot verbally states the location 
of exhibit 3 and then points to the exhibit. 

Scene 2 specifes that the robot should ask a question when the 
human approaches it, while scenes 3, 4, and 5 specify that the robot 
should remain idle. Thus, scene 2 conficts with scenes 3, 4 and 5. 
Our description of participant 10’s program considers the case in 
which only scene 2 is removed. 

The four non-conficting scenes are compiled into two program 
procedures. In contrast to participant 1, these scenes are indepen-
dent of each other. The main procedure includes the exact execution 
trace created from scene 1, with no branching or looping. Thus, 
by default, the main procedure will cause the robot to idle, and 
then make an announcement after idling. A negative outcome of 
this program is the inability of the robot to idle indefnitely in the 
main procedure. Thus, after idling and making an announcement, 
the robot terminates the program and ends any further chance for 
a human to ask the robot a question. At any point in the main 
procedure in which the human approaches the robot, a Question 
interrupt will trigger that contains scenes 3, 4, and 5. The interrupt 
contains three branches, each involving the linear paths specifed 
in scenes 3, 4, and 5 with no further branching or looping. 

5 EXTENSIONS OF FIGARO 
In addition to the use of Figaro as a design tool for individuals 
demonstrating the logic of interactions, we envision a number of 
extensions to Figaro that make it suitable for collaboration and 
the design of low-level interaction details. Below, we describe how 
Figaro currently supports collaboration and low-level design and 
how these capabilities can be further extended. 

5.1 Figaro as a Collaborative Tool 
Given the potential for multiple demonstrators to use Figaro at 
the same time, the authors of this paper underwent an exploratory 
collaborative design scenario for an airport guide robot who escorts 
people from the security checkpoint to their gate. The design team 
demonstrated three scenes. In the frst scene, the human asks the 
robot for directions, and the robot successfully escorts the human 
to their gate. In the second scene, the human asks the robot for 
directions, and the robot attempts to escort the human to their gate 
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Figure 11: Two motion trajectories demonstrated where the 
robot approaches (left) and slides past (right) the human. 

but the human is separated from the robot before arriving with 
the robot at the gate. In the third scene, the human stops the robot 
mid-escort to ask for the location of a diferent gate. The robot 
points in the direction of the other gate, and subsequently resumes 
escorting the human. 

We observed two characteristics of this design session that difer 
from the individual design sessions in the evaluation of Figaro: (1) 
the design team discussed ideas before executing them, and (2) each 
member of the design team assigned themselves a particular role 
during the demonstration of scenes. One demonstrator performed 
the movements and speech of the robot fgurine, while the other 
demonstrator did the same for the human fgurine and controlled 
Figaro with the tablet. In our evaluation but not included in our 
thematic analysis, participants expressed thoughts on these charac-
teristics, generally aligning in three diferent ways. First, having a 
partner could support design ideation: 

Uhm well you’d defnitely be able to have more input or more 
uh creativity on how diferent scenarios come... (P2) 
Second, having a partner could help coordinate the diferent 

components of Figaro: 
Maybe one person will work, will take the uh, the robot part 
and then another will take the human part, and then let it 
interact freely like that way... (P9) 
Third, having a partner could cause the design process to become 

unwieldy: 
Um, obviously the difculty would come, you just have to be, 
you know, very clear communication in once you actually start 
a scene. (P10) 
Similar to participants’ expectations, the authors found dis-

cussing scenes beforehand to be benefcial. However, a lack of 
coordination within the design team often caused mistakes. In one 
instance, the demonstrator controlling the robot prematurely ended 
a scene on the tablet. In another instance, the demonstrator con-
trolling the robot paused a demonstration mid-scene to correct a 
mistake made by the other demonstrator in a previous scene to 
prevent the same mistake from happening in the current scene. 

5.2 Figaro for Creating Motion Trajectories 
Interaction designers may want precise control over a robot’s posi-
tion and rotation of its body to address certain design challenges, 

such as how a robot should approach a human [29, 53] or how a 
robot should navigate narrow spaces [57]. In each of these cases, the 
robot’s exact position and orientation is important, which Figaro 
can record as motion trajectories. When creating trajectories with 
Figaro, each state in the resulting execution trace corresponds to 
incremental movement by the robot. Due to their high precision, 
multiple motion trajectories would not generalize well to a full 
program under our current synthesis approach. 

We implemented and deployed two motion trajectory scenarios— 
an approach scenario shown in Figure 11a and a slide scenario shown 
in 11b. In the approach scenario, the robot fgurine was moved 
slowly across the tabletop towards the human fgurine. In the slide 
scenario the robot fgurine was moved slowly towards the human, 
and then was rotated to slide past the human, simulating movement 
through a narrow space. We were able to replicate both behaviors 
on the virtual Pepper using Figaro. 

6 DISCUSSION 
Below, we discuss insights from our evaluation of Figaro, including 
our interpretations within each theme of our thematic analysis, 
which take form in subthemes. Following our discussion of sub-
themes, we synthesize all fndings from Figaro and then discuss the 
limitations of Figaro and plans for future work. 

6.1 Expressing Ideas Tangibly 
The fndings of our thematic analysis reveal two subthemes that pro-
vide insight into participants’ experiences with tangibility. Within 
our frst subtheme, we found that Tangibility is Helpful, as evi-
denced by participants commenting on the helpful nature of the 
gestures (P9.34, P10.91). For these participants, tangibility increased 
their perceived expressivity of Figaro (P9.34) and helped them or-
ganize and understand their interaction designs. In contrast, we 
found evidence for a second subtheme, Hesitation in Tangibility, 
due to participants expressing a lack of confdence when using the 
fgurines (P10.72). While participants generally found tangibility 
to be enjoyable and helpful, some prefer less tangible input. Fur-
ther exploration is needed to determine if this hesitation is due to 
tangibility in general or its implementation within the fgurines. 

6.2 Figaro as a Means of Idea Generation 
In our thematic analysis, we split this theme into three subthemes 
that reveal ideation strategies used by participants. First, we found 
that Figaro fostered Use of Imagination within participants, which 
is evidenced by participants noting their use of imagination (P5.42) 
and stating that Figaro as a visual aid helped foster the exploration 
of ideas by facilitating their imagination (P7.29). Additional partic-
ipant feedback led us to uncover a second subtheme, Mapping to 
Reality, which pertains to the physical nature of Figaro grounding 
participants in the real world. Participants stated that the physical 
nature increased the realism of the design interface (P8.24) and 
also helped impose physical restrictions on participants’ designs 
(P10.91). Lastly, we determined our third subtheme, Inspired by the 
Interface, due to participants stating how Figaro afected their de-
sign process by fostering creativity (P4.50) or highlighting aspects 
of their interaction designs to improve (P7.21). 
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6.3 Usability of the System 
Opinions on Figaro’s usability were mixed, possibly due to the 
variety of backgrounds of participants in the study. Many comments 
align with our frst subtheme, Easy & Intuitive, which is supported 
by positive participant experiences in tasks such as fxing mistakes 
(P7.26). Despite the intuitiveness of Figaro for many participants, 
we determined our second subtheme to be Steep Learning Curve. In 
particular, some participants viewed Figaro as difcult to pick up 
quickly, even if they were able to ultimately learn the system (P1.26). 
In contrast, we also found much evidence for a third subtheme 
pertaining to how Approachable Figaro is for newcomers. Several 
participants viewed Figaro as a highly approachable system, even 
for non-experts and children (P4.4). 

6.4 System Feedback and Limitations 
Participants expressed mixed views on the feedback ofered by 
Figaro, or lack thereof. Some participants were satisfed by feed-
back given by Figaro on speech, gestures, and movement (P8.35). 
While Figaro’s feedback on gestures and motion seemed to help 
participants grasp how to complete those actions, participants still 
expressed hesitation and confusion that they did not know how 
Figaro would interpret more complex actions or logic, such as what 
would happen if they initiated a point behavior and moved the 
robot at the same time (P5.32). 

6.5 Synthesis of Findings 
Despite mixed to positive feedback on the learnability of Figaro, the 
feedback that it provides to participants, and some hesitation with 
using its tangible components, our results support past fndings 
surrounding the benefts of tangible and tabletop user interfaces. 
The helpfulness of tangibility is supported by the widespread us-
age of point, nod, or wait behaviors on the robot, in addition to 
participants moving the fgurines around the tabletop during or 
in-between scenes. The tabletop additionally serves as an efec-
tive virtual space to represent the physicality of interactions, as 
indicated by our idea generation subthemes. Finally, the scenes 
demonstrated and programs created using Figaro reveal its ability 
to create complex interaction fows. As with shadow puppetry, this 
complexity is achieved with limited articulation of the fgurines. 

6.6 Limitations and Future Work 
From its limitations, Figaro presents many opportunities for future 
work. In particular, Figaro’s emphasis on high-level fows leaves 
much potential to incorporate lower-level design features into the 
design pipeline, such as navigating a robot within a detailed phys-
ical layout. Future work must then explore how exact positions, 
orientations, and velocities can be integrated into program synthe-
sis. Designing precise localization will also necessitate handling 
deviations between the physical world and virtual tabletop environ-
ments, such as if furniture in the physical environment is moved. 
For these deviations, the in-situ capabilities of Figaro can be ex-
panded upon, such as with augmented reality (e.g. [24, 65]). 

Figaro can gain further low-level expressivity by mapping simple 
fgurine movements to more complex robot motions, extending 
from our point behavior, in which tilting the fgurine causes the 
robot to rotate its body, tilt its head down and then back up, and 

then rotate back to its original position. Extensions of point can 
allow demonstrators to select and parameterize even more complex 
behaviors in a similar way to how joysticks enable complex motions 
on video game characters. For a robot with arms, rotating the robot 
while pointing forward may induce a presenting behavior so that 
the robot may refer to multiple objects in front of it [55]. The 
speed of the behavior and objects that the robot refers to could be 
parameterized by characteristics of the fgurine movement. 

Furthermore, although Figaro’s synthesizer takes various steps 
to generalize programs from scenes, it cannot produce a program 
that incorporates unseen regions in the physical layout, nor can 
it produce a program that contains individual states or transitions 
not present in the scenes provided by the demonstrator. Future 
work can improve Figaro’s ability to generalize programs using 
learning techniques to further incorporate unseen paths into the 
interaction program and querying demonstrators for clarifcation 
if Figaro deems any interaction parameters underspecifed. 

Aside from Figaro’s capability as a design tool, the workfow sup-
ported by Figaro is also limited in that demonstrators receive little 
support for iterating on their designs after deployment, and little 
debugging support that could guide the quality of their designs. Fu-
ture work should expand Figaro’s workfow by drawing on existing 
testing and debugging approaches similar to those performed in 
Porfrio et al. (2019) [45] in which program simulation is an active 
component of the design pipeline and demonstrators are prompted 
to review and edit execution traces after each demonstration. While 
building on testing and debugging, the role of the tablet interface 
in facilitating mobile workfows such as monitoring deployment 
can be explored. 

Other limitations include that Figaro currently only supports 
dyadic interactions, whereas many interesting design scenarios 
exist with multiple interaction partners. And fnally, the scope 
of our evaluation is limited in the participants recruited to use 
Figaro. In making the improvements to Figaro stated above, future 
work should ensure that Figaro is evaluated with its target users, 
including professional interaction designers. 

7 CONCLUSION 
In this paper, we present Figaro, a tabletop authoring environment 
for mobile robots, inspired by shadow puppetry, that exploits the in-
tuitiveness of tangible and tabletop interfaces to provide designers 
with a natural, situated representation of human-robot interactions. 
Figaro projects a drawing of a physical layout on the tabletop while 
users manipulate instrumented fgurines that represent a human 
and the robot to demonstrate scenes of an interaction. After demon-
strating scenes, Figaro employs real-time program synthesis to 
assemble a complete robot program. Our user study with Figaro 
demonstrates the efects that tangibility and tabletop design have 
on specifying the fow of human-robot interactions. 
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