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Abstract—Transparency logs are designed to help users audit
untrusted servers. For example, Certificate Transparency (CT)
enables users to detect when a compromised Certificate Authority
(CA) has issued a fake certificate. Practical state-of-the-art trans-
parency log systems, however, suffer from high monitoring costs
when used for low-latency applications. To reduce monitoring
costs, such systems often require users to wait an hour or more for
their updates to take effect, inhibiting low-latency applications.
We propose Merkle?, a transparency log system that supports
both efficient monitoring and low-latency updates. To achieve
this goal, we construct a new multi-dimensional, authenticated
data structure that nests two types of Merkle trees, hence the
name of our system, Merkle?. Using this data structure, we then
design a transparency log system with efficient monitoring and
lookup protocols that enables low-latency updates. In particular,
all the operations in Merkle? are independent of update intervals
and are (poly)logarithmic to the number of entries in the log.
Merkle? not only has excellent asymptotics when compared to
prior work, but is also efficient in practice. Our evaluation shows
that Merkle? propagates updates in as little as 1 second and can
support 100 x more users than state-of-the-art transparency logs.

I. INTRODUCTION

Interest in transparency logs [1], [2], [3], [4], [5], [6],
[71, [81, [9], [10], [11] has increased in recent years because
they promise a trustworthy PKI [12], [13], [14] or certificate
infrastructure [3], [15]. For example, certificate transparency
(CT) [3], [15] enables building accountable PKIs for web
applications and is widely deployed. As of March 2021, CT
has publicly logged over 12 billion certificates [16]; Google
Chrome requires web certificates issued after April 30, 2018
to appear in a CT log [17]. Besides CT, there have been
significant efforts into key transparency [1], [7], [9], [18],
[19] for managing the public keys of end-users and software
transparency [20], [21], [22], [23], [24], [25] for securing
software updates.

Transparency logs provide a consistent, immutable, and
append-only log: anybody reading the log entries will see
the same entries in the same order, nobody can modify the
data already in the log, and parties can only append new
data. One of their distinctive features is that they combine
aspects of blockchains/ledgers [26], [27], [28], [29], [30], [31],
[32], [33] with aspects of traditional centralized hosting. Like
blockchains and ledgers, transparency logs rely on decen-
tralized verification, enabling anyone to verify their integrity.
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At the same time, they are hosted traditionally by a central
service provider, such as Google [3], [5]. Due to guarantees
provided by the log and decentralized verification by third
parties, the service provider cannot modify or fork the log
without detection. Additionally, centralized hosting enables
these logs to be significantly more efficient than Bitcoin-like
blockchains; they provide higher throughput and lower latency
while avoiding expensive proof of work or the expensive
replication of the ledger state at many users.

Common transparency logs are append-only logs that pro-
vide an efficient dictionary for key-value pairs stored in
the log. State-of-the-art transparency logs like CONIKS [1]
provide the following crucial properties for applications: effi-
cient membership and non-membership proof, and monitoring
proof. In particular, when users look up key-value pairs,
the server can provide a succinct proof of membership or
non-membership to convince users that it returns the correct
lookup result. For example, in CT [3], the browser only
downloads logarithmic-sized data to check whether a particular
website’s certificate is in the log. However, unlike CONIKS,
CT cannot provide succinct non-membership proofs, so CT
cannot support efficient revocation for certificates.

A major impediment to the wider adoption of transparency
logs is their high update latency, precluding their use in
many low-latency applications. To understand what impacts
update latency, one must first understand monitoring, a key
component of transparency logs. Monitoring allows other
parties to monitor the state of an untrusted server and the
results it returns to users. The server periodically — every
epoch — publishes a digest summarizing the state of the system.
Transparency logs rely on auditors [1], [2], [5], [9] (third-
parties or individual users) to keep track of digests published
by the server and gossip with each other to prevent server
equivocation. Data owners and users who look up data from
the log retrieve the digest from the auditors. Given the digest,
data owners can check the integrity of their data, and users can
check the correctness of the lookup results from the server.

A key challenge in existing, state-of-the-art, practical trans-
parency logs like CONIKS [1] or Key Transparency (KT) [5]
is that every data owner must monitor their data for every
published digest. For example, Google’s KT proposal [19],
[34] cites 1 second as a desirable epoch interval (enabling a
variety of applications). For those transparency logs supporting
a desired target of 1 billion users, handling each user monitor-
ing every second is too large of a cost for the server both in



bandwidth and computation power. For example, if CONIKS
runs with a desirable epoch interval of 1 second [19], [34],
every year every user has to download about 65 GB of data to
check their data. For 1 billion users, the server has to provide
about 65 exabytes of data.

This dependence of the server’s cost proportional to the
product of users and epochs is what drives existing proposals
to set infrequent epochs, e.g., of hours or days. In turn, long
epoch intervals affect responsiveness and user experience in
applications requiring low-latency updates [18]. We consider
PKI as an example. Prior transparency logs [1] have users wait
an hour to be able to start using the service, as it takes an
epoch for new public keys to appear on the log enabling other
users to look them up. However, a study [35] shows that the
tolerable waiting time for web users is only two seconds. For
example, users may not want to wait an hour before being
able to register and set up IoT devices that generate SK-PK
pairs [2], [36], [37], [38]. Also, key owners may not want to
wait an hour to revoke compromised keys as the attacker may
use the compromised key to steal data or information. Appli-
cations like intrusion detection systems [39], [40], [41] aim to
stop incidents and revoke malicious accounts immediately.

To reduce the monitoring cost, researchers proposed trans-
parency logs based on heavy cryptographic primitives such
as recursive SNARKSs [42], [43], [44] or bilinear accumula-
tors [9]. However, these works result in high append latency
and memory usage. Other work [2], [8], [10], [11] has auditors
check every operation on behalf of users, which results in a
high overhead on auditors. We elaborate in Sections IX and X.

Hence, this paper asks the question: Is it possible to build a
transparency log system that supports both efficient monitoring
and low-latency updates? We propose Merkle?, a low-latency
transparency log system, to answer this question. At the core of
Merkle? is a new data structure designed to support efficient
append, monitoring, and lookup protocols. As a result, the
server can publish digests frequently, and data owners do not
need to check each digest published by the server. Moreover,
data owners only download polylogarithmic-sized data for
monitoring throughout the system life.

We implemented Merkle? and evaluated it on Amazon EC2.
Merkle? can sustain an epoch size of 1 second, enabling low-
latency applications. For such an epoch size, Merkle? can
support up to 8 x 105 users per server machine (Amazon
EC2 r5.2xlarge instance), which is 100x greater than CONIKS.
For this significant increase in monitoring efficiency, the cost
of append and lookup in Merkle? increases only slightly;
as a result, for large epoch size, when the monitoring cost
of CONIKS is acceptable, CONIKS may perform slightly
better than Merkle?. For example, when the epoch size is
1 hour, CONIKS can support 2x more users than Merkle?.
However, such a large epoch size is difficult to accommodate
in various low-latency applications. In Section VII, we apply
Merkle? to certificate and key transparency applications and
show the benefits it brings in these settings compared to
existing transparency logs. We compare Merkle®’s asymptotic
complexity with prior systems in Table L.

Works Storage | Append Monitoring Cost Lookup
Cost Cost Auditor | Owner Cost
AAD [9] An Aog3(n) | log(n) - logZ(n)
ECT [8] n log(n) Plog(n) | — log(n)
CONIKS [1]| E-n log(n) — Elog(n) | log(n)
CONIKS* nlog(n)| log(n) — Elog(n) | log(n)
Merkle? nlog(n)| log?(n) log(n) log?(n) logZ(n)

TABLE I: Asymptotic costs of the server in Merkle? against
other systems. n refers to the number of entries in the log, A is
the security parameter for AAD, E is the number of epochs,
and P is the number of appends between epochs. Red indicates
the worst performance in the category. For the storage cost, we
measure the number of nodes in data structures throughout the
system life. For the monitoring cost, the auditor column refers
to the size of proof provided to each auditor per epoch; the
owner column refers to the size of proof provided to each data
owner for each log entry throughout the system life. We do
not consider “collective verification” for ECT since it relies on
a different threat model. The original CONIKS design copies
and reconstructs the whole data structure in each epoch to
enable the data owners, who go offline, to verify their data in
epochs they missed. With CONIKS™, we optimize CONIKS
by leveraging persistent data structures [45], which we discuss
in Section IX.

A. Overview of our techniques

Background. Merkle? is built upon Merkle trees [46]. Two
types of Merkle trees are common in transparency logs: prefix
trees (whose leaves are ordered in lexicographic order) as
in CONIKS [1] and chronological trees (whose leaves are
ordered by time of append) as in CT [3]. We elaborate in
Appendix A-C. In prior transparency logs, the server stores
data in Merkle trees and publishes the root hash as the digest
in every epoch. When users access the data, the server provides
an authentication path of the corresponding leaf as proof.

Our data structure. The advantages and limitations of
chronological trees and prefix trees are complementary: CT,
which is based on chronological trees, does not require users
to monitor each digest but cannot provide efficient lookup
or revocation; CONIKS can support efficient lookup, but not
efficient monitoring. Therefore, a natural question arises: is
there a way to combine them to obtain both benefits?

We solve this problem by leveraging ideas from “multi-
dimensional” data structures [47]. Merkle?’s data structure
(Section 1V) consists of nested Merkle trees, with chrono-
logical trees in the outer layer. Each internal node of the
chronological layer corresponds to a prefix tree, hence the
name for our system, Merkle?. The hash of each data block
is stored in a leaf node of a chronological tree, and, for each
node from that leaf to the root of the chronological tree, in its
corresponding prefix tree. We provide a “pre-build” technique
(Section IV-B) to avoid high append time in the worst case.

We show that Merkle?’s data structure has many convenient
properties that enable us to design efficient monitoring and
lookup protocols. For example, each data block is stored in
only O(log(n)) prefix trees, where n is the number of leaves in
the chronological layer. Those prefix trees allow us to look up



data blocks based on indices like CONIKS. Also, the structure
of the chronological layer allows us to design a monitoring
protocol like CT so that data owners do not have to check
every digest, but can simply only check the latest digest.

Transparency log system design. By leveraging Merkle?’s
data structure, we design the monitoring (Section V) and
lookup (Section VI) protocols of our transparency log system.

The first problem we want to avoid is data owners having
to monitor their data in every digest. To address this problem,
we adapt the consistency proof in CT to provide an extension
proof for Merkle?’s nested trees. The consistency proof in CT
allows auditors to ensure no certificate is removed or modified
when the server publishes a new digest. Using it, domain
owners do not need to check every digest in CT. We observe
that the consistency proof preserves not only the integrity of
leaves, but also the integrity of internal nodes. Because each
internal node contains a prefix tree, it is paramount that no
leaf node values or internal node contents are changed. Thus,
we design an extension proof that allows auditors to ensure
the integrity of all existing nodes in future system states. We
further show that our extension proof allows data owners to
verify only the latest digest instead of every digest in history,
and be assured that they will see earlier modifications to their
data. So far, this proof only ensures that the prefix tree root
hash in the internal node remains unmodified, but it does not
check the actual content in the prefix tree. Therefore, Merkle?
has each data owner check contents of O(n) prefix trees.

To further reduce the monitoring cost of each data owner, we
require that data owners check only O(log(n)) prefix trees to
ensure the membership of their data block. Moreover, because
of the extension proof guarantee, the data owner needs to
check each of these prefix trees only once throughout the
life of the system. However, by requiring the data owner to
check only O(log(n)) prefix trees, we do not prevent attackers
from adding corrupted data blocks for an index that does not
belong to them. To solve this problem, we co-design signature
chains, which enable users to verify data block ownership in
lookup results. The security of the signature chain relies on
the chronological order maintained by chronological trees.

Finally, we design a lookup protocol for users to ver-
ify lookup results efficiently. The protocol involves (non-
ymembership proofs from only O(log(n)) prefix trees that
cover all data blocks in the entire system. Moreover, we design
an optimized protocol for looking up only the latest append.

II. SYSTEM OVERVIEW

In this section, we describe the architecture and API of
Merkle®. Merkle? is a transparency log system consisting of
key-value pairs. We refer to these as ID-value pairs to avoid
confusion with cryptographic keys. As in CONIKS [1] and
Google Key Transparency [5], Merkle? indexes data blocks
on the ledger based on their ID to support efficient ID lookup.

A. System architecture

Merkle?’s system setup (in Fig. 1) is similar to that of prior
transparency logs. Recall that in transparency log systems,

Digests 1 Auditor Side _ _ _
— ; T — :
! Verification Daemon 1 |
1 I Merkle?

! Client L4 Server | ] Data !

1 Libra 1
: Library | : Y1 | Structure |
ilClient : I | Server :
| alarm | 1 I |
: o Merkle? API I 1 |

|

1 Application : " @ :
: ﬂD User Side | : Server Side Storage ||

Fig. 1: System overview of Merkle®. Shaded areas indicate
components introduced by Merkle?.

time is split into epochs. The system consists of a logical
server, auditors, and clients, whose roles are described below.
Server. The (logical) server stores users’ ID-value pairs and
is responsible for maintaining Merkle®’s data structure and
servicing client requests. The server produces proofs for clients
and auditors to monitor the system. At the end of each epoch,
the server publishes a digest to the auditors summarizing the
state of Merkle®. Every response provided by the server will
be signed.

Auditors. Auditors are responsible for verifying that the server
provides to clients and other auditors a consistent view of the
state. At the end of every epoch, each auditor requests a server-
signed digest of the overall state from the server along with
a short proof. By verifying the proof, the auditor confirms
that the state transition from the previous epoch is valid. It is
critical that auditors gossip with each other about the digests to
make sure they share a consistent view of the system. If two
auditors discover different digests for the same epoch, they
can prove server’s misbehavior by presenting the signature.
Anyone can volunteer to serve as an auditor. We present the
monitoring protocol for auditors in Section V. Clients fetch
digests from multiple auditors and cross check them.
Clients. Users run the client software, including a client library
and a verification daemon. Users’ applications interact with the
client library to append and look up ID-value pairs through
the API shown in Section II-B. Each user is responsible for
monitoring their own ID-value pairs on the server. We define
the owner of an ID as the person who appends the first value
for that ID in the system. Only the ID owner is allowed to
append new values for that ID. A user can become the owner
of multiple IDs. The verification daemon runs as a separate
process that regularly monitors the ID-value pairs of the ID
owner. After the first append, the daemon will periodically
come online and send monitoring requests to the server.

B. Merkle®’s API

We now explain the API that Merkle? provides to applica-
tion developers wanting to use a transparency log.
¢ append({ID, val)): Appends a new value val for ID to the
log. If there does not exist a value for ID before the append, the



user will be identified as the owner of |D. Otherwise, only the
owner of ID is allowed to append a new value. We describe in
Section V-C how Merkle? enforces this condition. The server
adds (ID,val) to both persistent storage and Merkle*’s data
structure. We discuss how to maintain Merkle?’s data structure
in Section IV-B. The append will not take effect until the server
publishes a new digest in the next epoch. For each append, the
verification daemon will periodically come online and monitor
(ID,val) on behalf of the ID owner to ensure its integrity.
Section V explains the monitoring protocol in detail.

¢ lookup(ID): Looks up all values for ID. The server should
return all values for ID appended by the ID owner so far, sorted
in chronological order by append time. The lookup result does
not contain values appended after the current epoch; but, in
this case, the server can notify the user to send another lookup
request in the next epoch. We also introduce an extended API
that supports lookup_latest, which allows users to look up
the latest value for ID, because for many applications the most
recent value is the only one of interest. This value is the
latest append for ID in epochs before the lookup operation.
To verify a lookup result, clients must fetch the latest digest
from auditors and the lookup proof from the server. We discuss
the lookup protocol in Section VI.

III. THREAT MODEL AND SECURITY GUARANTEE

Now, we describe Merkle?’s threat model and guarantees
intuitively and then formalize them in Guarantee 1. Merkle?
protects the system against a malicious attacker who has
compromised the server. A hypothetical attacker can modify
data or control the protocol running at the server. In particular,
it can fork the views of different users [48] or return old data.
Merkle? guarantees that honest users and auditors will detect
these kinds of active attacks.

As in most transparency logs [3], [2], [1], we assume
that at least some of the auditors are trusted, which means
they will verify the digest and proof published at the end of
each epoch and detect forks. Intuitively, the requirement is that
any user should be able to reach at least one connected and
trusted auditor. Each ID owner is responsible for monitoring
its own ID-value pairs. Unlike systems that rely on strong ID
owners [1], ID owners in Merkle? do not need to monitor every
epoch. They can choose a monitoring frequency, like once
per day or once per week, and monitor updates in between
monitoring periods by checking only the latest epoch. If an
ID owner monitors the digest in epoch p without detecting
a violation, honest users performing a lookup for ID before
epoch p (inclusive) are guaranteed to receive the correct values
or to detect a violation.

To define Merkle®’s guarantee, we introduce the following
conventions. If the owner appends an ID-value pair in epoch
E, other users can look it up starting with epoch E + 1.
The server assigns a position number to each ID-value pair to
indicate its global order in the system. When users append or
lookup, they also receive the position number from the server.

We further define the notion of a correct lookup result,
as follows. We denote by S'P the ordered list of ID-value

pairs and corresponding position numbers that the ID owner
appended for ID before epoch E, and SP the ordered list that
the user received as the lookup result for ID in epoch E. A
correct lookup result for ID in epoch E means that the two
lists S'2 and S7P are identical.

Merkle? provides the following guarantee, for which we
provide a proof sketch in Appendix A.

Guarantee 1. Assume that the hash function used by Merkle®
is a collision-resistant hash function [49] and that the signa-
ture scheme is existentially unforgeable [49].

For any set of users U, for any set of honest auditors A, for
any set of append, lookup and monitoring operations by users
in U, for any set of honest users C € U, for any 1D whose
owner is in C, let F be the first epoch in which 1D’s owner
appends the first value for |D, and let E5 > E, for each
lookup operation for |D performed by a user u in C' during
epochs E1 +1...Es, if

Connectivity conditions:

1) users in C' can reach the server and at least one of the
auditors in A;

2) auditors in A can reach the server and all other auditors
in A;

3) in every epoch e > 1, the server outputs the digest of
epoch e — 1 to all the auditors in A.

Honesty conditions:

4) the auditors in A follow the monitoring protocol in
Section V to gossip with each other and check digests
in epochs 1... Fo;

5) the owner of |D follows the monitoring protocol in
Section V to check its ID-value pairs in epoch Fo.

6) whenever a user in C looks up D, it follows the lookup
protocol in Section VI for |1D;

then, if user u did not receive the correct lookup result for ID
during 4+ 1... Es, then at least one of the following parties
has detected a server violation: users in C (including the ID
owner), or auditors in A.

IV. MERKLE?’S DATA STRUCTURE

In this section, we explain Merkle?’s data structure.

A. Data structure layout

Fig. 2 depicts Merkle?’s data structure. For clarity, we use
usernames as IDs, so users append values associated with
their usernames in the form of ID-value pairs. Merkle?’s data
structure consists of several top-level trees called chronological
trees (sorted by time), and for every internal node in this tree,
there exists a prefix tree (sorted by IDs). We now elaborate
on each type of tree and on how they are nested.

The Chronological Tree stores users’ ID-value pairs at its
leaves from left to right in chronological order. For example,
if Alice adds an ID-value pair into the system before Bob,
her pair will appear on the left side of Bob’s pair. Each ID-
value pair is given a position number, which indicates the
position of the leaf in the tree. For example, in Fig. 2, Alice has
two values Valy and Vals, which are assigned to leaves with
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Fig. 2: The center tree is the chronological tree in which internal nodes store root hashes of prefix trees. We denote H the hash
value of the node, and Root the root hash of the Merkle prefix tree. Each leaf in the chronological tree has a position number
(from O to 3). We denote by [X:Y] the node that covers leaves with position number from X to Y. The other two trees are
prefix trees with the Merkle root Root[g 1) and Root|g 3 respectively. We denote by Index the index of leaves in prefix trees.

position numbers 0 and 3, respectively. The ID-value pair can
later be referenced by its position number as a leaf node. Each
internal node of the chronological tree has a corresponding
prefix tree, as shown in Fig. 2. The hash of each internal node
in the chronological tree is the hash of the following triple:
« the hashes of its two children in the chronological tree, and
« the root hash of the prefix tree corresponding to this node.
This allows the root hash of a chronological tree to summarize
the states of all the prefix trees within that chronological tree.

The Prefix Tree stores users’ ID-value pairs, arranged in
lexicographic order by ID. The prefix tree associated with
an internal node stores all ID-value pairs that appear inside
the subtree rooted at that node. For example, in Fig. 2, the
prefix tree corresponding to node [0:1] of the chronological
tree stores all children in the subtree of [0:1]. Thus, the prefix
tree of [0:1] (depicted on the left of Fig. 2) stores ID-value
pairs Alice||Valp and Bob||Val;. Meanwhile, the prefix tree on
the right in Fig. 2 stores all of the ID-value pairs, because it is
associated with the root node [0:3]. If a user appends multiple
values, they will all be stored under the same leaf node in
the prefix tree because they share the same ID. Since Alice
appends two values (Valp and Valz), both are stored in the
same leaf node of the prefix tree. The hash of the internal node
in a prefix tree is computed as in a typical Merkle tree, where
the parent node hash is the hash of left and right child hashes
concatenated together (H(leftChildHash||rightChildHash)).

The reason why we chose the chronological tree as the
outer layer is that auditors can check a succinct proof for all
the appends between epochs. We elaborate in Section V-A. In
contrast, if we use the prefix tree as the outer layer, the size of
the proof, which auditors need to check, might be linear to the
number of appends between epochs. That is also the reason
why CT [3] chooses the chronological tree. Other systems such
as CONIKS [1] avoid this overhead by asking each ID owner
to monitor every epoch.

The forest of chronological trees. Merkle®’s data structure
consists of a forest of chronological trees. Each such tree is
full; that is, no leaf is missing. This property is maintained so

Epoch; | Epoch,
|

| [[0:1]

[10:01]; [[0:0]] [11:11)[12:21] {[[0:0]] [[1:1]] [[2:2]] [13:3]]
Fig. 3: A forest transition starting from one leaf to four leaves.
The red nodes indicate the Merkle roots in the digest. Leaves
in bold indicate ID-value pairs added in each epoch.

that as ID-value pairs get appended in epoch, , ;, we preserve
the structure of the chronological trees from epoch,. We ensure
that in epoch;, ;, we only add parents to the existing trees of
epoch, or add separate trees altogether. This helps greatly with
our extension proof in Section V-A. Thus, leaves are added by
extending Merkle?’s data structure to the right; as more leaves
are added, new internal nodes (and therefore new roots) are
created whenever we can construct a larger, full binary tree
(as discussed in Section IV-B).

Fig. 3 illustrates the transition of Merkle?’s data structure
after a set of appends. The internal node [0:1] is automatically
created because leaves [0:0] and [1:1] can be stored under
a full binary tree. Note that each internal node ([0:1], [2:3],
[0:3]) contains the root hash of a prefix tree as shown in Fig. 2.
This forest design ensures that the roots of an old forest remain
as internal nodes in any later version of the forest, and their
hashes will still be the same. For example, the hashes of [0:1]
and [2:2] will not change between epoch, and epochs.

This construction enables us to design a succinct global
extension proof and, as shown later, enables users to check
only the latest version. Since the latest version is an extension
of all of the versions before it, no others need to be checked.
The digest of Merkle?’s data structure contains: (1) the root
hashes of the chronological trees in the forest; (2) the total
number of leaves. The digest stores O(log(n)) root hashes
because n leaves can be stored under O(log(n)) full binary
trees, and there are O(log(n)) chronological trees in the forest.
Storage complexity analysis. At first glance, the fact that
each internal node of the chronological tree is associated with
a prefix tree implies O(n?log(n)) storage as there are O(n)



internal nodes in the chronological tree and each prefix tree
may require O(nlog(n)) nodes. However, we observe that the
size of most prefix trees is much smaller than O(nlog(n))
since each prefix tree only stores a small portion of ID-value
pairs. Moreover, each prefix tree can be compressed to require
only O(p) nodes where p is the number of ID-value pairs
in the prefix tree. We describe the compression algorithm in
Appendix C. Now, we consider the storage costs for all prefix
trees at each height of the chronological forest. The number
of ID-value pairs of all the prefix trees in the same height is
O(n); thus, there are O(n) prefix tree nodes at each height
of the chronological forest. And there are O(log(n)) levels
in total. Therefore, Merkle?’s data structure with n ID-value
pairs requires only O(nlog(n)) storage.

B. Appending ID-value pairs

To append a new ID-value pair, Merkle®’s data structure
first extends the forest by creating a new leaf node containing
the ID-value pair. As mentioned above, the ID-value pair is as-
signed a position number according to the leaf position. Then,
Merkle?’s data structure recursively merges the rightmost two
chronological trees into one big chronological tree if they have
the same size. This process repeats until it is no longer possible
to merge the last two trees. For each root node created in the
merging process, a corresponding prefix tree must be built by
inserting all the ID-value pairs that occur under that root node.

For example, in epoch; of Fig. 3, the leaf [3:3] is added and
the ID-value pair is assigned a position number 3. Nodes [2:3]
and [0:3] are created to merge equally-sized chronological
trees. The prefix tree of [2:3] is created by adding the ID-
value pairs of [2:2] and [3:3]. And, the prefix tree of [0:3] is
created by adding all ID-value pairs appended so far.

We now analyze the complexity of appending an ID-value
pair. A single append results in the creation of only O(log(n))
internal nodes, but Merkle?’s data structure has to build a
new prefix tree for each new internal node. The bottleneck
is building new prefix trees, since some prefix trees may have
O(n) leaves. However, every leaf node has at most O(log(n))
ancestor nodes, which means each ID-value pair is inserted
into O(log(n)) prefix trees. The cost of inserting an ID-value
pair into a prefix tree is O(log(n)). Thus, the amortized cost
of appending a new ID-value pair is O(log®(n)).

However, this solution is still impractical for a low-latency
system. Suppose there are 2%0_1 ID-value pairs in the system;
the next append combines all roots into a singular chrono-
logical tree, under node [0:2%°-1]. Building the corresponding
prefix tree, which contains at most 2%° leaves, incurs a O(n)
cost. Thus, although the amortized cost is O(log®(n)), some
appends results in linear-time operations in the worst case.

To solve this problem, we introduce the pre-build strategy.
We first fix the maximum number of ID-value pairs supported
by Merkle?’s data structure. This number can be sufficiently
large, such as 232. To append an ID-value pair, Merkle®’s data
structure inserts it into all possible prefix trees, including those
that do not exist yet but are supposed to be built in the future.
In other words, we pre-build prefix trees that may be used in

the future. For example, if Merkle?’s data structure supports
at most 232 ID-value pairs, we will add an ID-value pair to
32 prefix trees, which correspond to all the existing and future
ancestor nodes of the leaf. The cost of each append is still
O(log®(n)), where n now is the maximum number of ID-
value pairs, but we avoid the high latency of the worst case
operations. We provide more details in Appendix B.

V. MONITORING PROTOCOL IN MERKLE?

In this section, we show how Merkle? performs monitoring
efficiently. ID owners are responsible for monitoring their own
ID-value pairs, while auditors keep track of digests published
by the server in each epoch. The goal of our monitoring
protocol is to:

« avoid the need to monitor in every single epoch;

« enable efficient monitoring in any given epoch.
Intuition. To address the former problem, we design an
efficient extension proof that allows auditors to prove that every
epoch is an extension of the previous one. This way, when
an ID owner verifies a monitoring proof for epoch ¢, the ID
owner is implicitly also verifying epochs ¢t —1, ..., 1. Thus, the
ID owner need not monitor each digest, only the latest one.

For the latter property, we carefully design a monitoring
proof and co-design signature chains that enable an ID owner
to verify that their values have not been tampered with.

A. Extension proofs

In prior transparency log [1], each ID owner must monitor
their ID-value pairs in every epoch as there is no guaranteed
relationship between the server’s state in different epochs. For
example, at epoch,, the server could switch to a corrupted state
s’ (having some corrupted value for some ID) for this epoch
alone and then switch back to the correct state s in epoch, .
Thus, the server is able to equivocate, and ID owners will
never detect it if they do not audit the equivocated epoch,.

As a first step in solving this problem, Merkle? maintains
the invariant that a system state in epoch, is an extension of the
state in epoch,_;. In other words, every epoch is an extension
of those before it, with the existing ID-value pairs in the same
chronological order as before with all the new ID-value pairs
occurring after the existing ones. Our extension proof, thus, is
designed to be used by auditors to verify these requirements
between system states in different epochs.

Each state of the system s, can be summarized by the root
hashes of the trees in its chronological forest. For example, in
Fig. 3, the state of the system in epoch, can be represented by
the hashes of nodes [0:1] and [2:2]. To prove that a state s, is
an extension of a state s,,, we must prove that all chronological
roots of s, are contained within those of s,. By providing the
minimum set of hashes necessary, it is possible to compute
the root hashes of s, from those of s, thereby proving the
extension relationship between the two states.

For example, in Fig. 3, the extension proof between epoch,
and epoch; contains the following hashes: the chronologi-
cal tree node hash, Hy3.3 and the prefix tree root hashes,
Root|z.3], Root[g.3). Given the hashes Hjg.1}, Hpo.o) from the



old epoch’s digest, the auditor can check if the hash Hyg.3
in the new digest is computed correctly as follows:

1) compute Hpa.3) using Hya.o), His.3), Root .35

2) compute Hig.3) using Hig.1j, Hp2:3), Rootyg.3);

3) check if Hjp.3) matches the root hash in the new digest.

At the end of each epoch, auditors receive the new digest
and the extension proof from the server. After verifying the
extension proof, auditors gossip with each other to ensure that
they share a consistent view of the new digest. To reduce
server load, auditors can also share extension proofs amongst
themselves, since they are checking the same extension proofs.

Extension proofs prevent attackers from removing or mod-
ifying existing nodes in Merkle?’s data structure. Once an
internal node is created, it will be a part of all future epochs,
as they are extensions of the current state. Moreover, because
each internal node contains a corresponding prefix tree, all
prefix trees that exist in an earlier epoch will remain the same
for all future epochs. Thus, once an ID owner monitors epoch,
and goes offline for m epochs, the ID owner only has to
monitor the latest epoch (epoch, , ,.,), and implicitly verifies the
system states in epoch, , ., ..., epoch,, ;. In contrast, CONIKS
requires owners to monitor system states in all epochs.

The Merkle? extension proof is similar to the consistency
proof in CT [3]; thus, the extension proof provides a similar
property. There are a few key differences though. A difference
is that the extension proof contains root hashes of prefix trees
in the path due to the nested Merkle tree design. Another
difference is that the consistency proof ensures that leaves
are append-only and thus guarantees CT’s security. Still, the
extension proof alone does not suffice for Merkle®’s security
goal because the attacker might compromise newly added
prefix trees. Thus, we need monitoring proofs for ID owners
to check prefix trees as explained in Section V-B.
Complexity analysis. The size of the extension proof from a
state s, into a state s, is dependent on the number of hashes
required to construct the root hashes of s, from those of s;.
Because the depth of any chronological root is O(log(n)),
there are O(log(n)) ancestor node hashes required to prove the
inclusion of the roots of s, in those of s,. Thus, the extension
proof between two epochs contains O(log(n)) hashes.

B. Monitoring proofs

Monitoring proofs enable ID owners to check contents of
prefix trees in Merkle®’s data structure. For concreteness of
exposition, consider that Bob wants to monitor his ID, denoted
IDpoy. A strawman design for the monitoring proof has Bob
check every prefix tree for ID-value pairs matching IDpg.p.
This way, for each prefix tree, the server provides a (non-
)membership proof for IDp,;, which can convince Bob that
there are no unwanted changes. Unfortunately, the cost of this
strawman is quasilinear in the number of ID-value pairs.

Instead, Merkle? requires ID owners to check only the prefix
trees that are supposed to store their ID-value pairs. ID owners
keep track of position numbers assigned to their ID-value pair;
thus, they can infer which prefix trees to check. Given an ID-
value pair (ID, val), we denote by v the leaf node that stores it

in the chronological tree. The only prefix trees that will contain
(ID, val) are those that correspond to the ancestors of v in the
chronological tree. Thus, for each of these prefix trees, the
server generates a membership proof for ID to ensure it exists
within the prefix tree. Once checked, each membership proof
will generate the prefix root hash it belongs to. Note that this
mechanism by itself does not prevent a compromised server
from adding ID-value pairs (the attacker can add values to the
prefix trees that ID owners do not check); our signature chain
co-design (Section V-C) addresses this aspect.

The ID owner is not done yet, however, because she must
still verify that the generated prefix root hashes are correct.
The digest provided by the server only contains the root
hashes of the chronological forest. Thus, we must provide the
minimum set of hashes so that the ID owner can reproduce the
chronological root hash and compare it with the digest. Notice
that the generated prefix tree root hashes each correspond to
an ancestor of v in the chronological tree. If we provide the
authentication path for v, the ID owner will have enough
information to reproduce a digest root hash. Therefore, the
monitoring proof for (ID, val) corresponding to leaf node v in
the chronological tree consists of the following:

« membership proofs for prefix trees in ancestor nodes of v;
« the authentication path in the chronological tree for v.

The verification process works as follows. Given (ID,val),
its monitoring proof, and the digest, the ID owner begins
by computing the root hashes of the prefix trees using the
membership proofs. In conjunction with the authentication
path, the verifier can reconstruct the hashes of every ancestor
of node v until eventually reaching the root of the chrono-
logical tree. Then, the verifier can compare the computed
root hash with the corresponding root hash in the digest.
For example, in Fig. 2, Bob wants to monitor the ID-value
pair Bob||Val;. First, Bob computes the prefix root hashes
Root|g.1], Root[g.3) using the membership proofs for the prefix
trees corresponding to nodes [0:1], [0:3]. Then, together with
the authentication path (H{g.q), Hj2:3)), Bob can reconstruct
and verify the chronological tree root hash Hg.3; with the
corresponding hash in the digest.

The protocol described thus far allows ID owners to ef-
ficiently monitor Merkle? in a particular epoch. Because of
the extension proofs in Section V-A, the server cannot modify
existing content of Merkle? in future epochs. Therefore, if a
prefix tree has already been verified by an ID owner, it does not
need to be verified again. When ID owners come online and
request a monitoring proof, they can specify the latest epoch
they have already monitored and only download membership
proofs from prefix trees added since that should contain that
ID-value pair. This way, a single prefix tree is only checked
once by the same ID owner.

Complexity analysis. We now analyze the size of monitoring
proofs. For each ID-value pair, we observe that the ID owner
only needs to check O(log(n)) prefix trees, because each leaf
node in the chronological tree has at most O(log(n)) ancestor
nodes. For each of those prefix trees, the membership proof
is of size O(log(n)). Note that the ID owner can skip and
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Fig. 4: Alice’s values are Valp and Val;. The attacker may add
values for the ID “Alice” in the chronological trees [24:27].
The signature chain prevents such attacks.

cache prefix trees if they have been checked before. Overall,
for each ID-value pair, the ID owner downloads monitoring
proofs of total size O(log?(n)) throughout the system’s life.

C. Signature chains design

The monitoring proof discussed in Section V-B only guar-
antees that the attacker cannot remove ID-value pairs from
Merkle®’s data structure. It does not prevent the compromised
server from adding ID-value pairs (e.g. to prefix trees the ID
owners never check). For example, in Fig. 4, Alice cannot
detect that the attacker inserted Alice||Val’ at position 25,
because Alice does not have a value inside the chronological
tree rooted at node [24:27], so the monitoring proof will not
include a membership proof for the prefix tree at node [24:27].

To prevent attackers from adding corrupted ID-value pairs,
Merkle? co-designs signature chains as follows. The ID owner
attaches a verifying key to each ID-value pair in Merkle®. And,
on append, each new ID-value pair, its position, and the new
verifying key are signed by the verifying key attached to the
previous ID-value pair for the owner. Users can then verify
the signature on an ID-value pair with the same verifying
key. By verifying the signature chain, users can confirm that
all the ID-value pairs are indeed appended by the ID owner.
In the example of Fig. 4, although the attacker can still add
Alice||Val” without being caught by Alice, other users will not
accept the corrupted pair because the attacker cannot produce a
valid signature. Notice that the attacker may try to hide the end
of the chain during lookup. The monitoring proof ensures that
the attacker cannot hide the owner’s values without detection.

The protocol described thus far is still insecure because the
first value is not signed. An attacker may insert a corrupt ID-
value pair and try to convince users that it is the first value
for that ID; thus, the attacker could circumvent the signature
chain. We observe, however, that if the honest ID owner
already has inserted values for that ID in Merkle?, the attacker
cannot convince other users that the falsified value is the first
for that ID. This holds true because the monitoring proof
ensures that the attacker cannot remove existing values without
being detected. For example, in Fig. 4, the attacker cannot
hide Alice||21||Valy and claim Alice||25||Val’ as the first pair
for “Alice”; as shown in our lookup protocol in Section VI,
other users looking up Alice’s values will verify the non-
membership proof for the prefix tree in [16:23]. Meanwhile,
Alice will also check the membership proof for [16:23] by
verifying the monitoring proof. The server cannot provide

[16:23]

[116:191 | [20:23]

[0:15]

[16:17] || [18:19] [20:21]

| [20:20] || Alice]|21][Val

\
\

fo
Fig. 5: Alice appends the first value Val for her ID at position
21. Someone (either another honest user or the attacker) has
appended Val’ for ID “Alice” at position 17 already. Alice will
verify the first-value proof, which contains non-membership
proofs for ID “Alice” in the prefix trees at the green nodes.

both a membership and non-membership proof for a leaf node
associated with the ID “Alice” for the same prefix tree.
First-value checking. The ID owner must ensure that it
indeed appends the first ID-value pair for that ID in Merkle?,
otherwise others may have obtained ownership for that ID
already. It is not feasible to check all the leaves appended
before it. Instead, we can leverage non-membership proofs
from prefix trees to prove that no value exists for that
particular ID. For example, if the ID-value pair is added at
position z, there exists a minimum set of chronological trees
Cty, ..., Ct, that cover the previous x — 1 leaves (there are
only O(log(x)) chronological trees in this covering set). For
the prefix tree corresponding to every chronological root of
Ct;, we can generate a non-membership proof for the ID. The
non-membership proofs allow the ID owner to compute the
root hashes of the prefix trees; in order to compute the root
hashes of the chronological roots, Cty, ..., Ct,, the first-value
proof also contains the minimum set of node hashes needed
to do so. This way, the ID owner can compute the hashes of
the chronological roots and compare them against the digest.
For example, in Fig. 5, Alice verifies the non-membership
proofs of the prefix trees for nodes [0:15], [16:19], and [20:20]
to ensure that they do not contain values for “Alice.” If the
non-membership proofs are not valid and there exists a value
for “Alice,” Alice will know that she does not have ownership
of that ID. If another honest user appends Alice||17||Val’
before Alice appends Alice||21]||val, then the attacker cannot
hide Alice||17|[Val’ from Alice because when the honest user
performs the monitoring protocol, it verifies the membership
proof of the prefix tree of node [16:19]. Since the server cannot
provide both a membership and non-membership proof for the
same leaf node in the same prefix tree, the misbehavior will be
detected. In addition to the non-membership proofs, the server
must also provide the hashes necessary for Alice to compute
the root hashes of the digest. For example, Alice can compute
prefix root hash of node [16:19] using the non-membership
proof provided, but she still needs H(16.17], H{1s:19) to compute
H{16:109- With the other hashes, Alice can finally compute the
chronological root hash, Hi1¢.23), to see if it matches the digest.
It is possible for a malicious server to add Alice||17||Val’
to the chronological tree but remove it from the prefix tree
at node [16:19]. However, once Alice appends the first value
and successfully verifies the first-value proof, the attacker can
no longer add Val’ back to any prefix trees associated with its



ancestor nodes without detection. New ancestor nodes added
in the future will also be ancestors of Alice||21]|val, so they will
be checked in monitoring proofs by Alice. Thus, the attacker
may be the owner of ID “Alice” before Alice joins the system;
but, after Alice appends her first value, any value appended
previously by the attacker will not be accepted by honest users,
and the attacker no longer has the ability to append values for
“Alice” without a valid signature.

Complexity analysis. If there are O(n) ID-value pairs in the
system, the covering set contains O(log(n)) trees. Thus, there
are O(log(n)) total non-membership proofs to verify, each
with a size of O(log(n)), so the total cost of the first-value
proof is O(log?(n)). ID owners only need to check the first-
value proof once due to extension proofs.

V1. LOOKUP PROTOCOL IN MERKLE?

In this section, we present the construction of lookup proofs
in Merkle®. We denote by Cty, . .., Ct,, the chronological trees
in the forest of Merkle?’s data structure, and Pty,. .., Pt, the
prefix trees at their roots, which we also refer to as root prefix
trees. The lookup proof must be able to convince users that
the lookup result contains all the values for a given ID. By
providing (non-)membership proofs for all the root prefix trees,
the server can prove the (non-)membership of ID-value pairs
for the given ID in all of Merkle?. Further, the signature chain
helps users verify the authenticity of the lookup result.

Based on these ideas, the lookup protocol for an ID works as
follows. For each ID-value pair except the first one, the lookup
proof contains a signature signed by the ID owner. For each
prefix tree Pt;, we generate a proof, 7;; if there exists a value
for ID in Pt;, m; is a membership proof. Otherwise, 7; is a non-
membership proof. The lookup proof also contains the hashes
LH;, RH; of the left and right children of root node Ct;, which
allows users to compute the root hashes and compare them
to those in the digest. Finally, the lookup proof contains the
signature chain and the following tuples: ({m1,LH;,RHy), ...,
(7, LH,, RH,,)). Intuitively, the lookup proof captures which
chronological roots contain values for ID and which do not.

In the example of Fig. 4, the lookup proof for Alice’s values
contains the signature chain and (non-)membership proofs for
prefix trees [0:15], [16:23], [24:27], and [28:29]. The proofs
for [16:23] and [28:29] are membership proofs of the leaf
values associated with Alice. The proofs for [0:15] and [24:27]
are used to prove non-membership of Alice’s ID. Finally, the
lookup proof also contains any hashes which are necessary to
compute the root hashes; for example, Hg.7) and Hyg.15 are
used to compute the root hash Hj.;5).

During lookup proof verification, the user possesses the
following: 1) the lookup result, which contains all ID-value
pairs for the target ID; 2) the latest digest from auditors that
contains the root hashes of each chronological tree in the
forest; 3) the lookup proof corresponding to the lookup result.

The user proceeds as follows:

1) verifies the signature chain using the verifying keys pro-
vided in each ID-value pair;
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Fig. 6: Alice appends the fr;aster verifying key as the first
value. Following values are signed by the master signing key.

2) for each ID-value pair, finds which chronological tree Ct;
and corresponding prefix tree Pt; it belongs to;
3) computes the root hash Root; for each Pt; using 7; and
the ID-value pairs in Pt; based on the results from step 2;
4) computes the root hash for Ct; using Root; and (LH;, RH;)
If the signature chain is valid and the computed root hashes
match those in the digest, the user can accept the lookup result.
Complexity analysis. The signature chain is of length O(¥)
where ¢ is the number of values. The lookup proof contains
(non-)membership proofs from O(log(n)) prefix trees, and
each (non-)membership proof is of size O(log(n)). Therefore,
the overall lookup proof is of size O(£ + log?(n)).

A. Lookup for the latest ID-value pair

We provide an optimized protocol to look up the latest (i.e.,
most recent) value for an ID. In many applications, users may
want the latest value instead of all values. We make use of
master keys, shown in Fig. 6, to replace signature chains since
the size of the chain is linear to the number of values. ID
owners generate a pair of master keys and append the master
verifying key as their first ID-value pair in the log. ID owners
must also ensure the master verifying key is the first value by
verifying the first-value proof. All future pairs appended by
the ID owner will be signed using the master signing key.

Instead of downloading all the ID-value pairs and signature
chain for a given ID, users can download only the latest value
and the master verifying key to verify the signature. Users also
need (non-)membership proofs from prefix trees to ensure that
the master verifying key is in fact the first value for the given
ID and that the lookup result is in fact the latest one.

For example, in Fig. 6, users can verify that Alice’s master
verifying key MVK is the first value for “Alice” by verifying
the non-membership proof for the prefix tree [0:31] and the
membership proof for the prefix tree [32:47]. Similarly, users
can also verify that Alice||57||Valy is the latest value by
verifying the membership proof for the prefix tree [56:59] and
the non-membership proof for the prefix tree [60:61].

We assume ID owners will not change their master keys
in the system. If required, Merkle? can permit ID owners to
change their master keys as follows. ID owners can revoke
master keys by appending and signing the new master key
using the old master key. However, allowing changes to master
keys will increase the lookup cost because the other users
now also need to check the signature chain of the master
keys. Instead, users can use existing techniques for backing up
master keys on multiple devices securely just as they would



do for their secret keys for end-to-end encrypted services, for
example by using secret sharing [50], [51], [52]. The cost of
this modified lookup protocol is O(log®(n)) since there is no
longer a signature chain cost. Users can also cache master keys
to further reduce the cost of a lookup.

VII. APPLICATIONS OF MERKLE?

In this section, we discuss two applications of Merkle?: a
ledger for web certificates and for a public key infrastructure.

A. Transparency log for web certificates

The security issues, where CAs have been compromised
and issued certificates incorrectly [53], [54], [55], [56], [57],
prompted the design of web certificate management systems
using transparency logs, where the owner of a certificate can
verify the integrity of their own certificate and hold CAs
accountable for corrupted certificates [15], [17], [8], [3], [4].

We now describe how to use Merkle® for certificate man-

agement in place of existing systems [15], [3]. The log server
runs Merkle?’s server to manage certificates for each domain
name. The ID is the domain name and the values are the
web certificates for that domain. There may be more than one
certificate for the same domain. Instead of storing certificates
as different domain-certificate pairs, we bundle multiple cer-
tificates together as a single value, and each append will be the
hash of all the certificates for the domain name. Merkle? also
supports revocation efficiently by allowing the domain owner
to append the hash of all the unrevoked certificates for the
same domain name. If a certificate is not in the latest append
for this domain name, it is not valid (e.g., it was revoked). In
the end, web browsers can simply retrieve the latest value for
the domain to check whether a certificate is valid.
Benefits of our system. We compare Merkle? to existing
proposals. Deployed CT systems [15], [3] do not support
revocation. Enhanced certificate transparency (ECT) [8] aims
to solve this problem. ECT also uses prefix trees (they use
a similar design called lexicographic trees) and chronological
trees, but ECT keeps these trees separate; thus, ECT requires
auditors to verify the relation between these two trees by
scanning linearly through all entries in the log. Hence, auditors
require O(n) time and space to perform their monitoring. In
contrast, Merkle? provides a way to nest the two trees to reap
their benefits simultaneously through our “multi-dimensional”
design, which reduces the cost of auditors to only O(log(n)).
We give a concrete performance comparison in Section IX.

B. Transparency log for public keys

Merkle? can also be used for a transparent public-key
infrastructure as an alternative to CONIKS [1] or KT [5]. We
use end-to-end encrypted email systems [58] as a real-world
example. In this application, an ID in Merkle® corresponds to
a user’s email, e.g. alice@org.com, and the value corresponds
to the public key of the user, e.g., PKajice. To join the system,
Alice appends the first public key for her email address
alice@org.com. To revoke a public key, Alice appends a new
public key for her email address. If Bob wants to send an
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encrypted email to Alice, he looks up the latest public key for
alice@org.com and uses it to encrypt and send the email. For
company communications, the organization can monitor all the
email-PK pairs. For a personal account, the client running on
the user’s devices can monitor the transparency log regularly.
Benefits of our system. We compare Merkle? to CONIKS [1],
a state-of-the-art key transparency system. Monitoring in
CONIKS is inefficient as key owners must check each digest
published by the server. In contrast, each key owner in Merkle?
only monitors O(log?(n)) data throughout the system’s life,
where n is the number of keys in the log. As we will show in
Section IX, Merkle? can support short enough epoch periods
(such as 1 second) to be considered low-latency [19], [34].
Privacy concerns. CONIKS [1] shows that verifiable random
functions (VRFs) [59] can reduce the leakage of IDs to ma-
licious users. The same technique can be applied to Merkle?.
Instead of using an ID directly, users compute indices using
the output of VRFs on the ID; the server also includes the
information needed to verify the VRF result in the reply.

VIII. IMPLEMENTATION

We implement a prototype of Merkle? in Go. It consists of
four parts, as in Fig. 1: the server (= 800 LoC), auditor (=~
200 LoC), client library (= 450 LoC), and verification daemon
(= 600 LoC), which all depend on a set of core Merkle?
data structure libraries (=~ 2400 LoC). The Merkle? library is
available at https://github.com/ucbrise/MerkleSquare.

Our server implementation backs up ID-value pairs in
persistent storage in case the server fails using LevelDB [60],
which has been used in previous transparency log systems [1],
[5]. To provide a 128-bit security level, we used SHA-3 [61] as
the hash function and Ed25519 signatures [62] (this is the only
public key operation in the system). We did not implement
VRFs [59] since privacy is not the focus of this paper. We
limit the chronological tree height in Merkle? to 31 to support
the pre-build strategy, which means it can store up to 23! ID-
value pairs and each append will be added to 31 prefix trees.
Concurrency control. Merkle?’s server can serve requests
in parallel, relying on concurrency control of Merkle®’s data
structure and LevelDB. Merkle?’s data structure prohibits con-
current appends since two appends may affect the same prefix
tree. For each append, the server sends a position number to
the user, and the user should reply with the signature. If the
user withholds or does not reply with the signature within a
short time bound, the server rejects the append. Lookups and
monitoring can be concurrent with appends because required
hashes have been computed in the past epochs.

IX. EVALUATION

Experiment setups. We ran our experiments on Amazon EC2
instances; the microbenchmarks and system server were run
on a r5.2xlarge instance. The auditor and client services were
run on a rba.xlarge and c4.8xlarge instance, respectively.

Baselines. We chose three state-of-the-art transparency logs
to compare with: CONIKS [1], AAD [9], and ECT [8]. We
compare Merkle?’s complexity with these baselines in Table I.
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Fig. 9: Monitoring cost for auditors

in AAD and Merkle?. in CONIKS.

We compare Merkle? with CONIKS via both microbench-
marks and end-to-end system performance. The original
CONIKS implementation [63] is quite incomplete; for ex-
ample, it does not support monitoring or persistent storage.
Moreover, since CONIKS is not designed for short epochs,
it copies and reconstructs the entire Merkle tree in each
epoch; this incurs a large time and space cost, which would
unfairly disadvantage CONIKS in comparison to Merkle?. To
produce a fair comparison, we enhanced the CONIKS design
to use persistent data structures [45], avoiding the overhead of
copying the entire tree. We also implemented the monitoring
functionality from its paper, and wrapped the CONIKS data
structure into a server system. We disabled VRFs [59] in the
CONIKS implementation since we do not focus on privacy.
Similarly to Merkle?, the modified CONIKS implementation
can process lookups and monitoring during appends, but does
not allow concurrent appends.

AAD is an asymptotically efficient transparency log built on
top of bilinear accumulators [64], but its constants are large.
We compare with AAD’s microbenchmarks results from their
paper and repository [9], [65] because our setup cannot support
running experiments for AAD. For example, it takes more
than 20 hours to generate the public parameters necessary, and
as shown in [9], the experiments were run on a r4.16xlarge
instance, which is much more powerful than our machines.

We also compare Merkle? with ECT, for the use case of
transparent web certificates. Since there is no ECT implemen-
tation available, we use the numbers provided in their paper
and other online statistics for the comparison.

A. Microbenchmarks

We compare Merkle?’s core protocol to AAD [9] and
CONIKS [1] via microbenchmarks for individual operations.
Append time. The append time comparison (depicted in
Fig. 7) measures the total time taken for the last 100 appends

# Epochs (256 appends/epoch)
Fig. 10: Monitoring cost for ID owners
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# ID-Value Pairs
Fig. 11: Monitoring cost for ID owners

in Merkle?.

for a given number of ID-value pairs. AAD only provides
benchmarks up to 23 = 8192 ID-value pairs because of how
long larger scale appends would take [9]. AAD supports a
batching mechanism to speed up append operations; in our
graph, we include only the result for the 32 ID-value pair
batch as the time for a single append is too high. In spite of
the batching, AAD is still significantly slower than Merkle?
and CONIKS because it uses bilinear accumulators. CONIKS,
on the other hand, is faster than Merkle?; a single append in
CONIKS inserts only an ID-value pair into a single prefix
tree. In Merkle?, we measured the append cost with the pre-
build strategy. Because we set the maximum chronological tree
height to 31, each append is added to 31 prefix trees. If there
are 229 ID-value pairs in the system, it takes 3 ms for the last
100 appends in CONIKS, while in Merkle? it takes 151 ms.

Monitoring cost. In Fig. 9, we contrast the monitoring costs
of auditors in AAD and in Merkle?. We compare proof size
and verification time for extension proofs between system
states containing 10° and 10°*! ID-value pairs. Clearly, the
monitoring costs of auditors in AAD is higher than those of
auditors in Merkle? for both proof size and verification time.
Because system states in different epochs in CONIKS share no
defined relationship, CONIKS does not have extension proofs,
so it was excluded from this experiment.

Now, we compare the monitoring costs of ID owners in
CONIKS with those of ID owners in Merkle2. In Fig. 10,
we add 220 ID-value pairs into a CONIKS system. Then, we
vary the number of epochs the ID owner must monitor because
CONIKS requires each ID owner to monitor every epoch. The
monitoring costs of CONIKS grow linearly with the number of
epochs. In contrast, Merkle?’s monitoring proof depends only
on the number of existing ID-value pairs; it is independent of
the number of epochs since ID owners can simply monitor
the latest epoch. In MerkleQ, an ID owner must check the



first-value proof when they join the system and then regularly
monitor their ID-value pairs; the costs are depicted in Fig. 11.
As discussed in Section V-B, ID owners can cache monitoring
proofs and need to verify the first-value proof only once; thus,
the monitoring cost of ID owners in Merkle? is significantly
lower than those of ID owners in CONIKS.

Lookup cost. In Fig. 8, we compare the average lookup proof
size and verification time for all three systems. The lookup
cost in Merkle? and AAD may increase when there are more
values for the target ID, so we measure the results for both
single ID-value pairs and batches of 32. Lookup costs fluctuate
as performance depends on the underlying structure of the
system. In Merkle?, for example, 2'2 — 1 ID-value pairs result
in more root prefix trees than 10* ID-value pairs. What first
appears to be a discrepancy is actually an odd feature of the
system. The batched lookup proof, however, is not affected
because the cost is dominated by the signature chain.

In Merkle?, the master key and latest value lookups are
more efficient than the batched lookup because they do not
require signature chains. Note that the master key lookup cost
of Merkle? is close to that of CONIKS. This occurs due
to the forest design in Merkle?, where the root prefix trees
at the beginning of the forest span more ID-values than the
others. Because master keys require non-membership proofs
beginning from the left of the forest, there are fewer (non-
)membership proofs in the master key proof than in the latest
value proof. In most cases, the master key is covered by
the largest chronological tree. Thus it contains only a single
membership proof and has a cost close to that of CONIKS.
Memory usage. Fig. 12 compares the memory cost of
Merkle? and CONIKS. We fix the number of appends per
epoch to be 256. We also limit the chronological tree height
in Merkle? to 31 to support the pre-build strategy.

For 220 ID-value pairs, Merkle? consumed about 22 GiB of
RAM, and CONIKS consumed about 6.3 GiB of RAM. We
obtain the memory usage of AAD from its paper [9], and it
consumed 263 GiB of RAM. AAD additionally required 64
GiB of RAM for public parameters.

The original CONIKS implementation copies the prefix tree
for each epoch and results in O(F - n) nodes where E is
the number of epochs, which is prohibitively large for shorter
epochs. Instead, we improve CONIKS by leveraging persistent
data structures [45] to avoid copying prefix trees in each epoch.
Each insertion in the persistent prefix tree creates O(log(n))
nodes; thus, CONIKS has to store O(n log(n)) nodes in total.
Merkle?’s asymptotic storage cost is the same as CONIKS, but
the memory usage is higher due to the larger constants. We
discuss how to optimize Merkle?’s storage in Section IX-D.

B. End-to-end system evaluation

In this section, we evaluate Merkle?’s system-level per-
formance with that of CONIKS. Note that we do not use
VRFs [59] in either Merkle? or CONIKS as we are interested
in the main system cost. We also limit the chronological tree
height in Merkle? to 31. In the experiment, we insert 10¢ ID-
value pairs into each system before running the benchmarks.
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Operation [ Merkle? [ CONIKS

Append 4.39 3.02

Master key 1.62
Lookup Latest value 2.31 1.28

1 epoch 1.29
Owner 10 epochs 2.33 2.32
Monitor 100 epochs ’ 10.62

1000 epochs 88.03
Auditor Monitor 0.25 0.22

TABLE II: Latency (in ms).

Operation [ Merkle? [ CONIKS

Append 42B 42B

Master key 3.8KB
Lookup Latest value 9.8KB 1.6KB

1 epoch 2.1KB
Owner 10 epochs 21KB
Monitor 100 epochs 22.9KB 209.6KB

1000 epochs 2.IMB
Auditor Monitor 654B 370B

TABLE III: Message size of server’s responses.

End-to-end performance. We analyze the end-to-end perfor-
mance from the client’s perspective, which includes the proof
verification and communication with the server and auditor.
Table II shows the average latency and Table III shows the
message size of server responses for 10° operations. For
Merkle?, we measure only the latest-value lookup protocol
as it is more efficient and useful in real-world applications.
And, we separate the cost of looking up the master verifying
key and latest ID-value pair, since users can store and reuse
master keys as discussion in Section VI-A. The result shows
that appends and lookups in Merkle? are more expensive. The
cost for the master key lookup is cheaper than that of the
latest-value lookup; this occurs because the proof for the latter
is smaller due to the forest design in Merkle?.

To measure the cost for ID owners to monitor, we vary the
number of epochs the user is offline since last monitoring. As
mentioned, ID owners in CONIKS must check every digest
published, which makes the cost grow significantly when a
user is offline for some time. In contrast, Merkle? does not see
the same increase because ID owners can check only the latest
digest. Based on results in Table IT and Table III for CONIKS,
we can estimate the cost of an ID owner who wishes to verify
all digests in a given month. Suppose the epoch is 1 second,
as is desired by Google KT [19]; in a month, there will be
30-24-60-60 = 2592000 epochs. Then, the ID owner needs
to download % - 2.1MB =~ 5.4GB of data and spend
25190200000 -88ms ~ 3.8mins to verify it. This cost is problematic
for the server who has to incur this cost for every data owner.
In contrast, ID owners in Merkle? only download 22.9KB of
data, which is independent of the number of epochs.

We measure the cost for auditors to check the new digest.
Auditors in Merkle? check the extension proof, whereas audi-
tors in CONIKS fetch only the digest from the server. The
result shows that if there are 2% appends between epochs,
auditors in Merkle? are as lightweight as those in CONIKS.
Note that auditors in Merkle® can gossip the extension proof
with each other to further reduce the bandwidth of the server.
Throughput. Next, we measure the throughput of frequent
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operations in Merkle? and CONIKS, depicted in Fig. 13. In
the experiments, we randomly choose an ID-value pair for
lookup and monitoring. CONIKS can support more append
and lookup operations because its append and lookup are more
efficient than those of Merkle?. The throughput of the master
key lookup is much higher than that of the latest-value lookup
because the master key lookup proof is smaller than the latest
value lookup proof, as shown in Table III.

For the monitoring throughput benchmark, we fix every ID
owner’s monitoring frequency; for CONIKS, there is a fixed
number of digests the ID owners must monitor. The results
clearly show that the server’s performance decreases signifi-
cantly when ID owners monitor larger numbers of epochs. In
Merkle?, the monitoring cost is independent of the number
of epochs, and ID owners can cache and skip membership
proofs of prefix trees that are checked in the past. To illustrate
the saving provided by this caching mechanism, let ¢ be the
height of the highest node associated with the prefix tree that
is in ID owners’ cache. ID owners do not need to download
membership proofs for prefix trees at nodes below height 7. In
Fig. 13, we vary the height ¢ to show the throughput. “Height
0” shows the worst case result, as it means ID owners need to
check all the prefix trees. The results show that the throughput
increases when ID owners cache more monitoring proofs.

C. Performance in applications

In this section, we compare Merkle®’s performance in the
applications described in Section VII.
Web certificate management. To compare with ECT, we
estimate the cost of ECT based on numbers in their paper
and with the help of online statistics. Recent certificate statis-
tics [66] show that about 5, 002, 599 certificates are appended
every day since June 2018. Additionally, auditors in ECT
require 2 KB of data for each append [8]. Thus, ECT auditors
have to download 5002599 x 2KB ~ 9.5GB of data per day
for monitoring. In contrast, Merkle? auditors require only
log(10?) * 32B * 2 ~ 1.9KB of data for monitoring.
Public keys management. As shown in previous sections,
Merkle® supports efficient monitoring but sacrifices some
performance for append and lookup operations. To understand
the benefits of Merkle2, we must run our benchmarks under
workloads matching the target application. Thus, we compare
Merkle? and CONIKS in the following scenario.

7 Apped Lookup Mon
Operation
Fig. 13: Server throughput.
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We consider the real-world application of encrypted emails
using available statistics; in particular, there are 200 appends
per second for 1 billion users [19], [34], and each user sends
42 emails per day [67]. Users may also cache public keys
for emails sent within a short period of time, such as 1 hour.
Using the Enron email dataset [68], we find that users need to
perform a key lookup for about 62% of emails. In summary,
each user may send 42 - 62% = 26 lookup requests per day.
We control the number of monitoring requests by adjusting
the average monitoring frequency. Based on these results, we
generate the workload for different numbers of users under
different epoch intervals and monitoring frequencies. To keep
the experiment time reasonable, we add only 10° ID-value
pairs into the system before running them.

Fig. 14 depicts the number of supported users by a single
server machine for both systems. The result shows that the
epoch interval does not affect the performance of Merkle?.
When users monitor the server more frequently, Merkle®’s
performance decreases because the server has to serve more
requests. CONIKS’s performance is significantly worse than
Merkle? when the epoch interval is short because of its expen-
sive monitoring protocol. Users may increase their monitoring
frequency to avoid larger computations as a result of being
offline for many epochs. However, this increases the number
of monitoring requests that the server must handle, which
may decrease its performance. On the other hand, when the
epoch interval becomes 1 hour, CONIKS starts to outperform
Merkle? because its appends and lookups are more efficient.
We find that the monitoring caching mechanism does not
improve the performance of Merkle? when the monitoring
interval is long (more than 1 hour) because lookups dominate
the workload in this application. The caching mechanism is
more helpful in applications with more frequent monitoring. In
conclusion, Merkle? significantly outperforms CONIKS when
the epoch interval is small (for example, one second), which
is desirable for a low-latency key transparency system.

D. Limitations and future work

These experiments suggest Merkle® cannot outperform
CONIKS when the epoch interval is long because appends
and lookups become the bottleneck. Merkle? leaves as future
work improving its append and lookup efficiency. For example,
we can use one server to pre-build large prefix trees that



are supposed to be used in the future; thus, another server
can cache smaller prefix trees and serve users’ requests more
efficiently. Also, we can batch lookup proofs for different users
and leverage proxies to save the bandwidth of the server.

Given that data is replicated in Merkle?’s data structure,
memory usage is also a concern. We notice that prefix trees
associated with the right children in chronological trees are
not needed; thus, the server can save half of the space by
skipping these prefix trees. We leave these optimizations to
future work.

X. RELATED WORKS

Transparency logs. We have already compared extensively
with CT [15], [3], ECT [8], CONIKS [1], and AAD [9].

Recently, there has been extensive research into improv-
ing the performance of transparency logs. One school of
thought [2], [8], [10], attempts to use prefix trees and chrono-
logical trees in parallel for efficient lookup and state mon-
itoring, respectively. Unfortunately, as in ECT, auditors and
owners must still verify all operations in the chronological
tree to verify that the prefix tree is built correctly. WAVE [2]
relies on strong auditors to monitor on behalf of users, which
incurs a large burden on the auditors. SEEMless [11] is the first
for proposing persistent data structures to optimize CONIKS.
However, it relies on strong auditors to monitor the append-
only property of the Persistent Patricia Trie, which still incurs
a super-linear cost on the auditors. ECT and DTKI [10] also
rely on users to collectively verify server states; collective
verification, however, assumes enough honest users in the
system, which limits its use in real-world applications. Google
KT [19] recently proposed a new design that requires users
performing a lookup on a value to only perform verification
of the same digest as the value owner. To ensure that the value
owner and user both verify the same digest, KT uses a meet-
in-the-middle algorithm. As a result, the monitoring cost of
the owner becomes O(log(E) log(n)), where E is the number
of epochs. However, the cost of a lookup also increases to
O(log(FE)log(n)). We do not perform any comparison to KT
in our evaluations as it is still in its early stages, and there is no
protocol detail or implementation available for benchmarking.
AKI [69] has the server maintain prefix trees, as in CONIKS;
it distributes the monitoring workload to auditors, ID owners,
users, and other third parties. Unfortunately, AKI operates
on the assumption that no parties collude. ARPKI [70] and
PoliCert [71] extend the security of AKI by protecting against
attackers controlling n-1 out of n parties.

Another approach is to use recursive SNARKSs [42], [43],
[44], [72] or cryptographic accumulators [64], [73]. However,
these solutions are too expensive to be practical.

Several gossip protocols [24], [4], [74], [25] are designed to
ensure a consistent view of digests among users and auditors.
Merkle? can use these to share digests and extension proofs.
Software transparency logs [20], [21], [22], [23], [24], [25]
are designed for securing software updates. Merkle® can be
used to improve the performance of these systems.
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Previous works also formalize the security guarantees of
CT [75], [76] and those of general transparency logs [75], [9].
The security guarantees of Merkle? can be analyzed under the
same model; we leave this for future work.

Authenticated data structures. Authenticated data struc-
tures [77], [9] are at the core of transparency logs. Some
works [78], [79] focus on improving the performance of
Merkle tree implementations, which can also be applied to
Merkle?. Cryptographic accumulators [64], [73], [73] can also
be used for building authenticated data structures; however,
these cryptographic primitives have a large overhead.

Blockchains and consensus protocols. Decentralized ledgers
can be built on top of blockchains using consensus pro-
tocols [29], [30], [31], [32], [33], [80], which have seen
widespread adoption in cryptocurrencies [26], [27], [28], [80].
Merkle? is more efficient and lightweight than blockchain-
based systems because it is hosted centrally; this way, there is
no need for expensive consensus protocols or data replication.
At the same time, Merkle? loses the availability guarantee of
blockchain systems, since a malicious server can deny service.

Another approach is to use blockchains to provide efficient

auditing mechanisms for transparency logs [7], [25], [81], [82],
[83]. However, the performance of this approach is limited by
the underlying blockchain protocol. Some works [84], [85],
[86] leverage trusted hardware to improve the performance
of blockchain systems. However, existing hardware, like Intel
SGX, are susceptible to side-channel attacks [87].
File sharing with an untrusted server. Many systems [48],
[88], [89], [90] allow users to share files on untrusted storage.
The focus of these works is to provide a file sharing function-
ality instead of an immutable append-only log. SUNDR [48]
and Venus [90] achieve weaker consistency guarantee than
Merkle?. Verena [88] relies on two “non-colluding” servers.
Ghostor [89] relies on either a blockchain or transparency log,
so Merkle? can be used as a foundation for Ghostor.

XI. CONCLUSION

In this paper, we present Merkle?, a low-latency trans-
parency log system. Merkle® contributes a novel authenticated
data structure and the system design leveraging it, which
achieve efficient append, lookup, and monitoring protocols.
For epochs as a short as 1 second, a Merkle? server can serve
100x more users than CONIKS. Merkle? has applications to
both web certificate and public key transparency.
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APPENDIX A
SECURITY OF MERKLE?

Before we can prove the security of Merkle®, we must
first consider the properties of the data structure. Our first
step is thus to define the security properties of the prefix
trees and chronological trees that make up Merkle?’s data
structure in Appendix A-A and Appendix A-B. Armed with
these properties, we prove Guarantee 1 in Appendix A-C.

A. Prefix trees

In this section, we briefly introduce prefix trees [1] used in
Merkle?. The prefix tree is a binary trie [91] built over a set of
ID-value pairs S. Each node in the prefix tree is labeled with
an index that is defined recursively: the root node is labeled
with an empty index string; given a node with index p, its left
and right children are labeled with indices p+'0" and p+’ 1,
respectively. The leaf node with prefix p stores the hash of all

the ID-value pairs (ID,val) in S for which ID is equal to the
index p. The internal node hash will be the hash of its left and
right children hashes. We use the term empty node to denote
any node with an index that is not a prefix of any ID in S.
The empty node has a special hash to avoid a collision in the
same location [1]. We define the authentication path in prefix
trees below.

Definition A.1 (Authentication paths in prefix trees). Given a
prefix tree T and a node v with index I, the authentication
path of v contains node hashes that are on the co-path of v.

The server proves membership by presenting the authentica-
tion path for the leaf node with index matching ID. If the user
successfully recomputes the root hash, it ensures that the server
returns all the values for ID in S. The server can prove that
there is no value for ID in S by presenting the authentication
path for an empty node, whose index is the prefix of ID.

Given a prefix tree root hash Root, an ID, the node hash H
(H can be the hash of the empty node with index that is the
prefix of ID), and an authentication path Path, we denote by
PrefixTree.Check(Root, ID, H, Path) the process to check the
authentication path. PrefixTree.Check(Root, ID, H, Path) = 1
means that users successfully recompute the root hash Root.
We define (non-)membership security of prefix trees below.

Guarantee A.2 ((Non-)Membership security of prefix trees).
Assume that the hash function used in the prefix tree is a
collision-resistant hash function [49]. For all polynomial-time
adversaries A there exists a negligible function v(-) such that:

(ROO'E7 |D7 Hl, Pathl, HQ, Pathg) — A(l)\) :

Hy # Hg
P " = ()
"| PrefixTree.Check(Root, ID, Hy, Pathy) =1 | ~ "\ -
AN

PrefixTree.Check(Root, ID, Hy, Pathy) = 1

This is a standard security property of Merkle prefix
trees [1]; thus, we do not prove it here due to space constraints.

B. Chronological trees

In this section, we introduce chronological trees in Merkle?.
Our chronological trees are different from those in CT [3]
since the internal nodes contain root hashes of prefix trees.
A chronological tree is a full binary tree, whose leaves are
created chronologically. A chronological forest is a set of
chronological trees as discussed in Section IV-A. We define
the index for a node v as a tuple [L:R], where the subtree
rooted at v includes all leaves with position numbers L to R.
If v is a leaf, L and R will be the position number of v. The
node index enables us to specify the location of node in the
chronological forest. We define the authentication path below.

Definition A.3 (Authentication path in chronological trees).
Given a chronological forest F, a chronological tree T in F,
and a node v with index [L : R] in T, the authentication path
of v consists of the following hashes:

e prefix tree root hashes in all the ancestor nodes of v in T



o the node hashes that are on the co-path of v in T.

The server uses the authentication path to prove the mem-
bership of both leaf and internal nodes. That is, given a prefix
tree root hash, the server can prove that it is stored in a
node in the chronological forest. For example, the server first
proves a node v has the node hash H, by presenting the
authentication path of v. Then, the server can provide the node
hashes Hyeft, Hright of left and right children of v, and the user
checks by recomputing H,, using the prefix tree root hash.

Given a digest D of a chronological forest (which contains
hashes of all the root nodes in the forest and the forest size),
a node index Z, the node hash H, and an authentication path
Path, we denote by ChronForest.Check(D,Z, H, Path) the
process to check the authentication path. The user first finds
the chronological tree root hash Root in D based on the forest
size and the index Z. If ChronForest.Check(D,Z, H, Path) =
1, then the user successfully recomputed the root hash Root
and ensured that the node with index Z has node hash H. If
the node with index Z is the root node, then Path is empty,
and the user will compare H with Root directly. We define
membership security of chronological trees below.

Guarantee A.4 (Membership security of chronological trees).
Assume that the hash function used in chronological trees is a
collision-resistant hash function [49]. For all polynomial-time
adversaries A there exists a negligible function v(-) such that:

(D,I, H1, Pathl, HQ, Path2) «— A(l)\) :
H; # Hq
A
ChronForest.Check(D,Z,Hy, Path;) =1
A\
ChronForest.Check(D, Z, Hy, Pathy) = 1

Pr v(A) -

One can prove the above security guarantee via a straight-
forward extension to the membership security proof in CT [3].
We do not include it here due to space constraints.

The chronological tree in Merkle? can also provide the
extension proof for updates. At the end of each epoch, the
server provides the extension proof to auditors to show that
the update does not modify existing node hashes. Given two
digests Dy,D, and an extension proof 7, we denote by
Extension.Check(D1, D2, ) the process to check the exten-
sion proof. Auditors first check the forest size in D, is greater
than the size in D1, and then try to recompute root hashes in
D5 using Dy and 7. If Extension.Check(Dy, Dy, w) = 1, then
auditors will accept the update to the chronological forest. We
define the append-only property of chronological trees below.

Guarantee A.5 (Append-only security of chronological trees).
Assume that the hash function used in chronological trees is a
collision-resistant hash function [49]. For all polynomial-time
adversaries A there exists a polynomial-time extractor £ and
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a negligible function v(-) such that:

(D17D277F7I7 H7 Pathl) — A(lA)v
Pathy « 8(1)‘,'D1,D2, w,Z, H7 Pathl) :
Extension.Check(D;, Do, ) = 1
A\
ChronForest.Check(D1,Z, H, Path,) = 1

J
| ChronForest.Check(Ds,Z, H, Pathy) = 1 |

Proof. We show how to construct the authentication path
Pathy by using Path; and 7. Root; and Roots each denotes
the root hash of the tree, from D; and D, respectively, that
contains the node v with index Z. There are two cases:

Case 1. Root; = Rooty. We can use Path; as the authentica-
tion path between the node v and the root hash Roots.

Case 2. Root; # Rooty. The extension proof 7 between D,
and Dy must contain necessary hashes that enable us to com-
pute Roots from Dj; thus, we can construct an authentication
path Path’ between Root; and Root, by obtaining hashes from
D; and . Finally, we can construct Paths by merging Path;
and Path’ since Path; enables us to compute Root; from H,
and Path’ enables us to compute Root, from Root;. O

We prove a lemma that is useful in Merkle?. Although
auditors only check the extension proof between neighboring
epochs, there exist a extension proof between any two epochs.

Lemma A.6. Assume that the hash function used in chrono-
logical trees is a collision-resistant hash function [49]. For all
polynomial-time adversaries A there exists a polynomial-time
extractor € and a negligible function v(-) such that:

(D1, Dy, D3, M2, ma3) + A(1%);
T3 < g(lA,Dl,DQ’D?”ﬂ-lQ,Tng) :
Extension.Check(Dy, Do, m12) = 1

AN

Extension.Check(Ds, D3, me3) = 1

3
| Extension.Check(Dy, D3, m13) = 1 |

Pr

Proof. The proof is similar to the proof of Guarantee A.5. We
can construct the extension proof 713 by obtaining necessary
hashes from 712 and mo3. O

C. Security proof of Guarantee 1

We will perform a reduction to show that if there exists an
adversary B that can compromise lookup results without being
detected, then there exists an adversary A that can violate
the security properties of prefix trees or chronological trees,
the collision-resistance of the hash function, or the existential
unforgeability of the signature scheme.

Since B is not detected, B can violate the property in
Guarantee 1 for a user v in C' who looks up ID in epoch
e, where Fy < e < Es, while remaining undetected by the
owner r of ID, the user u, and auditors in A. We denote by S,
the ordered list of ID-value pairs and their position numbers
that are appended by r before epoch e, and S/ the ordered



list received by u as the lookup result in epoch e. Because

Se # 5., B’s attack must fall into one of three cases.

1) The first element in S, and S’ are identical, but there exist
an element that is in S, but NOT in S..

2) The first element in S, and S’ are identical, but there exist
an element that is NOT in S/ but in S.

3) The first element in S, and S, are NOT identical.

We will show that no matter which of the above three cases

describes B’s attack, A can either break the security of Merkle
trees, find a hash collision, or forge the signature. We denote
by p the position number of the first element elem in S., and
p’ the position number of the first element elem’ in S7.
Case 1. In this case, the first ID-value pair in the lookup result
is correct (p = p’ and elem = elem’), but there exist other ID-
value pairs that are not appended by the ID owner r. Due to
the signature chain design, each ID-value pair is associated
with a verifying key.

The fact that the first elements of S, and S, are identical
does not imply that the user can retrieve the correct verifying
key associated with the first element in the Merkle?’s design;
thus, we begin by proving that the verifying key that the user
u received for the first ID-value pair is the one appended by
the owner, r. The lookup protocol has the user u check the
prefix tree of a node in the chronological forest with the index
[L:R] in epoch e, where L < p < R and [L:R] is the root node
in epoch e (if L = R, the user u will check the node hash
directly). The monitoring protocol also has the owner r check
the prefix tree of the node [L:R] in epoch FEs.

We denote by H( .r) the hash of the node in the chrono-
logical forest with index [L:R]. If e = Ej, the hash H g, is
the root hash in the digest Dg, (D, ). By our assumptions in
Guarantee 1, both the owner r and the user u retrieve the same
digest of epoch Fy (which is equal to e) from honest auditors
in A; thus, they will see the same hash for [L:R]. If e < FEj,
because auditors in A check digests in epochs e...Es, by
Guarantee A.5 and Lemma A.6, there exists an authentication
path for the node [L:R] and digest Dg,. By Guarantee A4,
the owner 7 and the user u will see the same node hash H ).

If the user u and the owner r see different verifying keys,
they will obtain different prefix tree root hashes for [L:R];
otherwise, Guarantee A.2 will be violated. Recall that they
also obtain the same node hash H..rj. Therefore, if B cheated
without being detected by the user » and the owner r, we will
successfully find a collision for Hy ).

Now, we conclude that the user u received the correct
verifying key associated with the first ID-value pair. We denote
by elem” the first element in S’ but not in S.. The user
u will check the signature chain when receiving the lookup
result; thus, elem” must be associated with a signature that
can be verified using the verifying key associated with the
previous element. Because elem” is the first compromised
element in S’, the attacker must provide a valid signature
without knowing the signing key associated with the previous
element. This violates the existential unforgeability of the
signature scheme.
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Case 2. In this case, the first ID-value pair in the lookup result
is correct, but there exists an ID-value pair that the user u did
not receive but was appended by the owner, . We denote by
p the position number of the ID-value pair {ID,val) that is
in S, but not in S’. Similar to the previous case, both the
user v and the owner r are supposed to check the prefix tree
associated with the node [L:R] where L < p < R and [L:R] is
the root node in epoch e. Using the same argument, the owner
r and the user u will see the same node hash H.g). However,
because the user u did not receive (ID, val), u must check the
non-membership proof of the prefix tree [L:R] as specified in
the lookup protocol. v and r will obtain different prefix tree
root hashes for [L:R] due to Guarantee A.2. Therefore, we can
find a collision for Hy ).
Case 3. In this case, the attacker B circumvents the signature
chain by forging the first ID-value pair in S’ (elem # elem’).
If p < p’, the server must hide elem, otherwise the user u will
notice elem for the same ID before elem’. Then, we can use a
similar argument as in case 1 to find a collision for the hash
HiL.r), where L < p < R and [L:R] is the root in epoch e.

We denote by [L’:R’] the node index where L’ < p’ < R’
and [L":R’] is the root in epoch e. We now consider the case
where p’ < p < R’. The monitoring protocol has the owner
check the prefix tree of [L':R’], which is supposed to contain
elem. However, elem in not S; thus, we can apply the same
argument as in case 1 to find a collision for Hy /g

What about p’ < R’ < p? The owner r will check the
prefix tree associated with [L":R’] in the first-value proof. For
simplicity, we assume the owner r checks the first-value proof
in epoch E; + 1. The owner will choose a minimum set of
chronological trees Cty,...,Ct, to cover leaf nodes from 0
to p — 1. Because [L':R’] is the root node in epoch e and
R’ < p, there must exist a chronological tree Ct; whose root
node is [L":R’]. Through the first-value proof, the owner 7 will
check the prefix tree associated with the root node of Ct;; it
is supposed not to contain elem’. However, the user u can
find elem’ in the prefix tree of [L’:R’]. By Guarantee A.2 and
Guarantee A.5, the user v and the owner r cannot obtain the
same prefix tree root hash. But, the user u and the owner
r obtain the same node hash Hs.rj. Therefore, we find a
collision for Hy ./}

APPENDIX B
PRE-BUILD STRATEGY

In this section, we describe the pre-build strategy in
Merkle?. The pre-build strategy amortizes the construction
of prefix trees so that they are incrementally built as ID-
value pairs are appended to Merkle?. In other words, before a
chronological tree internal node N; is even created, Merkle?
maintains its prefix tree P;; as ID-value pairs are appended to
Merkle?, they are appended to P; if they will be in the subtree
rooted at NV;. In the process, the cost of building any prefix
tree P; is amortized across all appends to Merkle®. Thus, when
creating N;, there is no additional overhead for building F;.

For every internal node N;—even those not yet created—in
the ancestor chain of the ID-value pair, we must append the



ID-value pair to the corresponding prefix tree P;. Because
we have not set a limit on the maximum height of Merkle?,
each ID-value pair would have infinite ancestor nodes; thus,
we choose a maximum height H so that the root to leaf
path in Merkle? may not exceed H. Now, each ID-value pair
will be a part of at most H prefix trees; so, we perform
H appends to pre-built prefix trees in the ancestor chain,
resulting in O(H logn) operations on each append. Because
H = O(log(n)), the cost of each append is still O(log*(n)).

[0:3]]] [0:3]] | [03]

[0:0]] H[o:oml:u\lv

Fig. 15: The progression of Merkle? through 4 appends. The
maximum height is set to H = 2. The green nodes represent
the most recent appends to Merkle®. Red indicates the internal
nodes whose prefix trees the ID-value pair was appended to.

Fig. 15 illustrates the progression of Merkle? through 4
appends. The first ID-value pair is appended to the green node
[0:0]. To maintain the pre-build strategy, the ID-value pair is
also appended to the prefix trees of nodes [0:1] and [0:3]. Note
that the internal nodes at [0:1] and [0:3] have yet to be created
but that the pre-build strategy requires that we maintain their
corresponding prefix trees. The next ID-value pair is appended
to the node [1:1]. It is also added to the prefix trees of internal
nodes [0:1] and [0:3] since they are in its ancestor chain. After
the second append, the subtree rooted at [0:1] will no longer
change because no future ID-value pairs will be added to [0:1].
The third append will be added to the node [2:2] and also to
the prefix trees of nodes [2:3] and [0:3]. Finally, the last ID-
value pair is appended to the node [3:3] and the prefix trees
of nodes [2:3] and [0:3], completing this instance of Merkle?
with height 2.

APPENDIX C
COMPRESSION ALGORITHM

In this section, we explain the compression algorithm for
prefix trees. We show that a prefix tree with O(n) ID-value
pairs can be compressed so that it requires only O(n) nodes.

We have already introduced prefix trees in Appendix A-A.
We observe that many of the internal nodes in the prefix
tree only have one child, and a chain of such nodes can be
represented by a single compressed node instead; thus, in a
compressed prefix tree, each node will either have 2 children
or O children (leaf nodes). Each node will also store a partial
prefix representing the compressed path. The internal node
hash additionally includes the partial prefix. For example, in
Fig. 16, nodes on the path from the root node to the leaf node
associated with Alice’s value only have one child; thus, they
can be compressed as a single node in the compressed prefix
tree. The partial prefix “001” represents the compressed path.

Now we explain how to add a new ID-value pair to the
compressed prefix tree. If there exists no value for the ID in
the prefix tree, we will find a compressed node v whose index
only partially matches the ID. We denote by p the shared prefix
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Uncompressed Prefix Tree
Fig. 16: Blue nodes in the left tree will be compressed into
one node in the right tree because they are all nodes (internal
or leaf) with at most one child.

between the index of v and the ID. Then, we split the node v
and add three new compressed nodes: (1) a new node v’ that
replaces the old node v with the index p; (2) a child node ug
of v' with the index matching that of v; (3) a child node u; of
v’ with the index matching the ID. The partial prefix of new
nodes can be computed accordingly. The node u; will store
the hash of the new ID-value pair.

0

Fig. 17: Node X will be split into three nodes (A, B, C). The
new ID-value pair will be stored in node C.

In Fig. 17, if a new ID-value pair with index “0110” is
added, we will find the node X with index “010”. Because
“010” is not the prefix of “0110”, we must decompress the
node X into three nodes (node A, B, C). The index of node
A is “01”, which is the prefix of “0110”, and node B inherits
the index and children of node X. We also add node C as the
child of node A to store the new ID-value pair.

Next, we analyze the storage cost of a compressed prefix
tree. When adding a new ID-value pair, we only add a
constant number (three) of new nodes to the prefix tree; thus,
a compressed prefix tree with O(n) appends only requires
O(n) nodes. Note that although adding a new ID-value pair
creates only three new nodes, it still costs O(log(n)) time
per append because we must update the hash of O(log(n))
ancestor nodes.



