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ARTICLE INFO ABSTRACT

Keywords: Crop phenology regulates seasonal agroecosystem carbon, water, and energy exchanges, and is a key component

Phenology ) in empirical and process-based crop models for simulating biogeochemical cycles of farmlands, assessing gross

ie“}"tf sensing and net primary production, and forecasting the crop yield. The advances in phenology matching models provide
griculture

a feasible means to monitor crop phenological progress using remote sensing observations, with a priori infor-
mation of reference shapes and reference phenological transition dates. Yet the underlying geometrical scaling
assumption of models, together with the challenge in defining phenological references, hinders the applicability
of phenology matching in crop phenological studies. The objective of this study is to develop a novel hybrid
phenology matching model to robustly retrieve a diverse spectrum of crop phenological stages using satellite
time series. The devised hybrid model leverages the complementary strengths of phenometric extraction methods
and phenology matching models. It relaxes the geometrical scaling assumption and can characterize key
phenological stages of crop cycles, ranging from farming practice-relevant stages (e.g., planted and harvested) to
crop development stages (e.g., emerged and mature). To systematically evaluate the influence of phenological
references on phenology matching, four representative phenological reference scenarios under varying levels of
phenological calibrations in terms of time and space are further designed with publicly accessible phenological
information. The results indicate that the hybrid phenology matching model can achieve high accuracies for
estimating corn and soybean phenological growth stages in Illinois, particularly with the year- and region-
adjusted phenological reference (R-squared higher than 0.9 and RMSE less than 5 days for most phenological
stages). The inter-annual and regional phenological patterns characterized by the hybrid model correspond well
with those in the crop progress reports (CPRs) from the USDA National Agricultural Statistics Service (NASS).
Compared to the benchmark phenology matching model, the hybrid model is more robust to the decreasing
levels of phenological reference calibrations, and is particularly advantageous in retrieving crop early pheno-
logical stages (e.g., planted and emerged stages) when the phenological reference information is limited. This
innovative hybrid phenology matching model, together with CPR-enabled phenological reference calibrations,
holds considerable promise in revealing spatio-temporal patterns of crop phenology over extended geographical
regions.

Crop progress
Planting date

1. Introduction

The vegetation phenological dynamics regulate intra- and inter-
annual biosphere-atmosphere interactions, and are key indicators of
climatic and environmental changes in terrestrial ecosystems (Cleland
et al., 2007; Richardson et al., 2013; White et al., 2005; Xu et al., 2020).
The phenological progress of crops plays an essential role in modeling
seasonal agroecosystem carbon, water, and energy exchanges, assessing
biomass accumulation and net primary production, and scheduling farm
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management practices (e.g., irrigation, fertilizer, and other chemical
applications) (Chen et al., 2015; Liao et al., 2019; Lokupitiya et al.,
2009; Magney et al., 2016; Vina et al., 2004; Walthall et al., 2013). Crop
phenology is also a critical parameter in empirical and process-based
crop models for yield forecasting and estimation, which has marked
implications for food security, commodity trading, and risk management
(Bolton and Friedl, 2013; Funk and Budde, 2009; Gao et al., 2018;
Johnson, 2014; Sakamoto et al., 2013). As the sensitivity of crop growth
to climate change and weather anomalies (e.g., water and heat stress)
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differs across crop physiological growth stages, such phenological in-
formation is crucial to assess the influence of weather stress on yield loss
and to support targeted interventions for resilient agricultural devel-
opment. For instance, water stress has considerably damaging effects on
yields particularly during the silking stage of corn, and during the latter
part of the reproductive stages of soybean (De Souza et al., 1997; Lauer,
2012; Vina et al., 2004). Affected by a combination of weather condi-
tions, soil properties, landscape variations and anthropogenic activities,
crop phenological development trajectories may vary widely across
geographic locations and years (Brown and de Beurs, 2008; Brown et al.,
2012; Siebert and Ewert, 2012). Accurate monitoring of crop phenology
over space and time is imperative to advance farm management prac-
tices, and to improve agricultural resilience to adverse environmental
conditions.

Remote sensing provides a feasible solution to monitor crop pheno-
logical stages over large geographical regions in a repeated and
consistent fashion. With the satellite time series, a range of phenological
transition dates that are characteristic of crop phenological stages have
been explored (Diao, 2019; Gao et al., 2020a; Gao et al., 2020b; Gao
etal., 2017; Liu et al., 2018; Wardlow et al., 2006; Zeng et al., 2020). In
particular, Diao (2020) developed a remote sensing phenological
monitoring framework that comprises three major constituents to detect
a multitude of crop phenological stages. Those constituents are time
series phenological pre-processing, time series phenological modeling,
and time series phenological characterization. Time series phenological
pre-processing consists of outlier and seasonality filtering to smooth the
satellite time series, to remove spurious observations, and to eliminate
the influence of off-season vegetation covers (e.g., weed and cover crop).
Time series phenological modeling includes several curve fitting-based
phenological models (e.g., three variants of double logistic models and
a data-driven spline model) to track the rapid growth of crops
throughout the growing season, and to model their seasonal phenolog-
ical patterns. Time series phenological characterization encompasses
diverse phenometric extraction methods (e.g., curve derivative- and
curvature-based methods) to estimate the transition dates that denote
the timings of crop phenological development shifting from one stage to
another. With a systematic set of methodology, the phenological
framework embodies comprehensive remote monitoring strategies to
detect several corn and soybean growth stages using satellite time series.
Despite the promising results, the crop growth stages are mostly char-
acterized in terms of satellite time series curve properties (e.g., inflection
points), the potential of which to extend to other physiological growth
stages may be limited. Detecting the growth stages that do not maintain
distinct curve properties may be challenging. Besides, the crop planting
dates, when crops do not produce vegetative remotely sensed signals,
cannot be detected using the phenological framework.

As the initial timing of crop growth, crop planting dates represent the
time boundary of seasonal carbon, water, and energy exchanges be-
tween croplands and atmosphere (Rosenzweig et al., 2013; Twine et al.,
2004). The planting dates affect agricultural management practices of
subsequent phenological stages, regulate the weather conditions expe-
rienced by crops over the growing season, and have considerable con-
trols on crop growth and yields (Kogan et al., 2013; Miiller et al., 2019;
Ortiz-Monasterio et al., 1994; Otegui et al., 1995). Delayed planting of
corn in the Midwestern US may cause large reductions in yield, since the
crop is more inclined to encounter water or heat stress during its vege-
tative and reproductive stages (Irwin et al., 2015). Crop planting dates
are also essential parameters in process-based crop simulation models to
estimate dry matter accumulation and crop yields (Folberth et al., 2012;
Keating et al., 2003; Moulin et al., 1998). At regional to global scales,
many crop models assume fixed planting dates (or specified planting
time windows), or assume a relationship between planting dates and
weather conditions (e.g., temperature and precipitation) (Bondeau
et al., 2007; Miiller et al., 2019; Sacks et al., 2010). However, crop
planting dates are influenced by both environmental conditions (e.g.,
weather and soil) and farming activities (Kucharik, 2006). Adjusting the
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planting dates is one of the most critical adaptation strategies to mitigate
yield loss in the face of climate change and increasing climatic vari-
ability (Lauer et al., 1999; Liu et al., 2013; Nendel et al., 2014; Waha
et al., 2013). The complexity of the combined environmental and
anthropogenic factors makes the estimation of spatio-temporal patterns
of planting dates challenging. To accommodate the spatio-temporal
phenological variations, remotely sensed phenological characteristics
have been employed to estimate crop planting dates with varying suc-
cess (Jain et al., 2016; Liu et al., 2018; Manfron et al., 2017; Sadeh et al.,
2019; Sakamoto et al., 2005; Son et al., 2016; Urban et al., 2018). Those
studies generally assume that the planting dates can be correlated with
the greenup onset dates (i.e., start of the growing season) of the satellite
time series. The dates of greenup onset can be characterized from the
satellite time series by threshold-defined algorithms (e.g., 10% of the
amplitude), inflection point algorithms (e.g., local maxima or minima of
the rate of curvature change), or moving average algorithms (e.g.,
change of short and long moving averages) (Gao et al., 2020a; Gao et al.,
2020b; White et al., 2009; Zhang et al., 2003). Yet the greenup onset
dates have been found to approximate the phenological stage of crop
emergence, instead of the planted stage (Gao et al., 2020a; Gao et al.,
2017; Ren et al., 2017; Wardlow et al., 2006; Xu et al., 2017). Large
timing gaps (e.g., 2-3 weeks) may exist between the satellite detected
characteristics and observed planting dates. Despite the relationship
assumed between crop planting and emergence dates, the correlation
estimated may be subject to local agro-meteorological conditions, and
might not be extrapolated over space and time for effective planting date
estimation (Abendroth et al., 2011; Kucharik, 2006). A more accurate
and robust remotely sensed measure that can be directly characteristic
of crop planting dates is to be developed.

Apart from the critical need to retrieve crop planting dates, it is
important to develop appropriate modeling strategies that can be flex-
ible in remotely detecting a diverse set of crop growth stages with sig-
nificant physiological implications. Some key crop growth stages with
no distinctive vegetated feature change may be challenging to identify
using curve properties (e.g., inflection points) of satellite time series.
With a priori information of reference shapes and reference phenolog-
ical transition dates (a.k.a. reference dates), phenology matching models
provide desired alternatives to characterize specific phenological stages
along the crop seasonal growth trajectory (Zeng et al., 2020). Reference
shapes are crop-specific geometrical patterns that are representative of
typical satellite time series profiles of crop growth, and reference dates
are pre-defined phenological transition dates on reference shapes based
on ground phenological observations. As the prime phenology matching
model, the shape model fitting (SMF) method assumes that crop
phenological patterns embedded in the satellite time series can be
approximated through geometrical scaling of crop-specific reference
shapes (i.e., geometrical scaling assumption) (Sakamoto et al., 2013;
Sakamoto et al., 2011; Sakamoto et al., 2010; Sun et al., 2021; Zeng
et al., 2020). The phenological transition dates can then be estimated
using the corresponding optimum scaling parameters, coupled with
crop-specific reference dates (Sakamoto et al., 2010). By characterizing
macroscopic scaling features, the SMF method can reduce the influence
of localized fluctuations in the satellite time series, as well as estimate
crop transition dates connected to its physiological growth stages.
Despite the potential of the SMF method for crop phenological charac-
terization, the geometrical scaling assumption between reference shapes
and crop satellite time series curves might not be satisfied over extended
geographical regions, given that a variety of factors might affect the
annual crop growth profile. A more robust phenology matching strategy
that can relax the shape model assumption is to be explored. Addition-
ally, the performance of the SMF method is influenced by the charac-
teristics of a priori reference shapes and reference dates, which are
typically defined based on limited field sites and phenological obser-
vations (but see Sakamoto (2018)). The selection of field sites may be
opportunistic, and the site-specific crop reference information might not
be representative across locations and years. As the theoretical basis for
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phenology matching, the reference shapes and dates exert a significant
role in determining phenological retrieval accuracy. Thus a systematic
evaluation of strategies to design reference shapes and dates, particu-
larly using publicly accessible crop phenological information, is desired.

The objective of this study is to develop a novel hybrid phenology
matching model to robustly retrieve a range of crop phenological growth
stages using satellite time series. The devised hybrid model leverages the
complementary strengths of phenometric extraction and phenology
matching models. It relaxes the geometrical scaling assumption and can
characterize key phenological stages of crop cycles, ranging from
farming practice-relevant stages (e.g., planted and harvested) to crop
development stages (e.g., emerged and mature). Specifically, we seek to
1) devise the hybrid phenology matching model for crop phenological
characterization; 2) evaluate the performance of the hybrid model under
various designs of reference shapes and dates with publicly available
phenological information; and 3) compare the devised hybrid model
with the benchmark SMF method in estimating a variety of crop
phenological stages. The hybrid phenology matching model is assessed
for corn and soybean in Illinois from 2002 to 2017.

2. Study site and data
2.1. Study site

The study site is the state of Illinois. Located in the Midwest, Illinois
is a leading agricultural production state in the US. With a maximum
north-south distance of over 600 km, the climate varies widely
throughout the state. The diverse weather and environmental condi-
tions, along with different farm management practices, result in a va-
riety of crop phenological development trajectories across regions and
years. Corn and soybean are the two major agricultural crops grown in
the state, taking up more than 95% of the croplands. Most fields in II-
linois belong to rainfed and monoculture systems, with crop rotation
between corn and soybean commonly practiced. The state consists of
nine agricultural statistics districts (ASD), and each ASD contains a
group of counties that are geographically conterminous with compara-
ble agricultural characteristics (Fig. 1). The nine ASDs are southwest
(SW), southeast (SE), west southwest (WSW), east southeast (ESE), west
(W), central (C), east (E), northwest (NW), and northeast (NE) ASDs. The
large acreage of crops and the variation in crop phenology across the
state make Illinois specifically suitable for this study.

2.2. Remote sensing and ground reference data

The Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD43A4 nadir Bidirectional Reflectance Distribution Function (BRDF)
adjusted reflectance dataset is employed as the main source of remote
sensing data to extract satellite time series phenological information of
corn and soybean (Schaaf and Wang, 2015). With its daily temporal
resolution and 500 m spatial resolution, the MODIS MCD43A4 dataset
has been used for vegetation phenological monitoring at regional to
global scales. For each date, the surface reflectances during the 16-day
period are utilized to build the semi-empirical BRDF model and then
to compute Nadir BRDF-adjusted Reflectance (NBAR) to remove view
angle effects. The MCD43A4 data covering the study site from 2002 to
2017 are acquired, and the time series of normalized difference vege-
tation index (NDVI) is derived on a per-pixel basis for crop phenological
monitoring. The NDVI time series is pre-processed using the snow/ice
quality layer of the MCD43A2 product and the land surface temperature
layer of the MOD11A1 product (Wan et al., 2002). These ancillary layers
are employed to filter out outlying observations caused by snow or ice
contamination. Specifically, the NDVI observations with snow-cover or
daytime surface skin temperatures less than 5 °C are flagged as spurious
observations, which are then replaced by the mean values of good
quality neighboring observations in the time series similar to Zhang
et al. (2006). Complementary to the snow/ice quality layer, the 5 °C
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Fig. 1. The nine ASDs in Illinois, US.

daytime temperature is utilized to reduce the influence of partial snow,
ice, and other background conditions in winter (Zhang and Goldberg,
2011). The NDVI time series is further pre-processed using a combina-
tion of outlier filters (e.g., blue, spline, and median filters) to diminish
the effects of cloud, snow, and other residual contaminations, as well as
the seasonality filter to eliminate the influence of off-season vegetation
covers. The pre-processed NDVI time series is then fitted with a double
logistic function to generate more consistent and stable crop pheno-
logical patterns for subsequent analyses. More information of NDVI time
series pre-processing can be found in the previous study (Diao, 2020).

With the spatial resolution of 500 m, the phenological information in
one MODIS pixel may contain the signals from multiple land covers. The
Cropland Data Layer (CDL) dataset is thus utilized to extract target
“pure” corn and soybean pixels. The CDL dataset is produced annually
by National Agricultural Statistics Service (NASS), United States
Department of Agriculture (USDA), and contains spatial distribution
information of a number of major crop types at 30 m spatial resolution
(Boryan et al., 2011). The yearly CDLs are downloaded and resampled to
the spatial resolution of the MODIS MCD43A4 product. The resampled
pixels with the fractions of corn or soybean over 90% are selected as
target pixels to generate pre-processed smoothed NDVI time series (i.e.,
target NDVI time series).

Throughout the US, the most comprehensive and publicly accessible
crop ground phenological reference data are the crop progress reports
(CPRs), published by USDA (NASS CPR, 2020). The CPRs in Illinois
provide the cumulative percentages of major crop types (e.g., corn or
soybean) that reach certain phenological stages at both ASD- and state-
levels, and are updated weekly throughout the growing season. The corn
phenological stages recorded in the CPRs include planted, emerged,
silking, dough, dented, mature, and harvested stages. As for soybean, the
phenological stages in the CPRs are planted, emerged, blooming, setting
pods, turning yellow, dropping leaves, and harvested stages. These
stages are systematically and consistently monitored by the trained field
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observers of USDA based upon the USDA phenological terms and de
finitions (Table S1). All these critical phenological stages are taken
into account for phenological retrieval in this study. The CPRs at the
ASD level of Illinois from 2002 to 2017 are employed as the phenolog-
ical reference data to validate the satellite-derived crop phenological
transition dates.

3. Methods

In this study, we propose to devise a hybrid phenology matching
model to retrieve a diverse range of crop phenological stages (Section
3.1). The hybrid modeling scheme follows the phenology matching
concept through aligning the phenological pattern of target NDVI time
series with that of a priori reference shape. With the aligned patterns, it
then transforms the pre-calibrated reference phenological transition
dates on the reference shape to those on the target NDVI curve for
phenological characterization. As the benchmark phenology matching
method, the SMF method is briefly introduced in Section 3.2. To better
understand the effects of the reference shapes and dates on phenology
matching, we design four CPR-based phenological reference scenarios (i.
e., year- and region-adjusted, year-adjusted, region-adjusted, and base
scenarios) that represent different levels of calibrated reference
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phenological information (Section 3.3). The performance of the hybrid
model is then evaluated and compared to that of the SMF method under
various reference scenarios. Fig. 2 shows the flowchart of this study.

3.1. Hybrid phenology matching model

The hybrid phenology matching model integrates the designs of
phenometric extraction methods and phenology matching models.
Phenometric extraction methods mostly take advantage of the changing
characteristics of the NDVI time series to detect the curve landmarks
with distinct curve properties (e.g., inflection points) for phenological
characterization. Phenology matching models leverage a priori pheno-
logical reference to retrieve target critical phenological stages, through
matching the phenological patterns of the reference and target curves.
The hybrid model synthesizes characteristic landmarks with pre-
defined/calibrated shape and date references to characterize pheno-
logical patterns of crop NDVI time series on a per-pixel basis, and to
estimate corresponding phenological transition dates (Fig. 3). The
design of varying phenological reference scenarios to define the refer-
ence shapes and calibrate the reference dates is introduced in Section
3.3. The hybrid model comprises two key components, namely land-
mark registration and phenophase matching.

MODIS NDVI
time series
(pre-processed)

Cropland data
layer

Crop progress
reports

=/ [

!

Phenological reference scenario designs
1) year- and region-adjusted scenario

2) vear-adjusted scenario
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(Section 3.3)

Target NDVI time series

NDVI
NDVI

!

eference shapes and reference dates
(by scenario)

Hybrid phenology matching model
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: e ; Ve
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i

!

Target curve retrieved crop phenological stages

NDVI

S\
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Fig. 2. The flowchart of this study. Four scenarios (year- and region-adjusted, year-adjusted, region-adjusted, and base scenarios) are considered in the assessment.
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the figure is for the illustration purpose. The derivative- and curvature-based curves are not in the same scales as those of target and reference curves, and not all the

characteristic landmarks or transition dates are shown in the figure.

The landmark registration component of the model is devised to
identify and pair the landmarks of NDVI time series with distinct curve
properties. The curve landmarks include local extrema and curve/cur-
vature inflection points, and they characterize the timing of crop un-
dergoing major biophysical and biochemical changes along the
phenological development trajectory. The inflection points are identi-
fied using two widely utilized phenometric extraction methods, namely
the derivative- and curvature-based methods (Diao, 2020). The
derivative-based method retrieves the local extremes of the first deriv-
ative of the NDVI time series curve as the curve inflection points
(Fig. 3a). As the curve derivative measures the extent of changes in crop
canopy greenness and photosynthetic activities, the drastic changes
captured by the derivative-based inflection points tend to be connected
with distinct crop phenological characteristics. Two landmarks can be
identified using the derivative-based method. The curvature-based
method captures the local extremes in the change rate of the curva-
ture of the NDVI time series as the curvature inflection points (Fig. 3a)
(Zhang et al., 2003). Throughout the crop growth cycle, about four
curvature inflection points (i.e., greenup, maturity, senescence, and
dormancy) that correspond to the rapid changes in the curvature of the
time series can be identified. The greenup and maturity points represent
the landmarks where the curvature change rate achieves the two local
maxima during the upward trajectory of the crop growth cycle. The
greenup point denotes the onset of plant photosynthetic activity and the
maturity point represents the timing of maximum plant green leaf area.
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Comparably, the senescence and dormancy points denote the landmarks
where the curvature change rate reaches the two local minima of the
downward trajectory. The senescence point denotes the onset of
decrease of plant photosynthetic activity and the dormancy point rep-
resents the timing of plant physiological activity approaching zero. With
the phenometric extraction methods, a set of characteristic landmarks
are detected for both reference and target time series curves. As crop
phenological stages with distinct curve properties maintain relatively
stable positions across satellite time series curves (Diao, 2020; Gao et al.,
2017), compatible landmarks between the reference and target curves
are paired (e.g., greenup of the reference curve paired with greenup of
the target curve) for the following phenophase matching.

With the paired landmarks, the phenophase matching component is
devised to align the target phenological pattern with that of the refer-
ence time series, and to retrieve target phenological transition dates via
the matched curves. It employs an innovative phenology matching
strategy to selectively align the paired landmarks of the target and
reference curves, and to warp corresponding curve intervals for
geometrical pattern matching (Fig. 3). This matching strategy follows
the multi-interval curve alignment (MICA) algorithm, and progressively
aligns the characteristic landmark pairs using a global slope-based dis-
tance function (Eq. (1)) (Bender et al., 2012; Mann et al., 2018).

d(C,C) =n""Y " |5 — 5| )]
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Here, C, and C, denote a target curve and a reference curve,
respectively. C; is defined by the tuple (X%, Y%), and X% and Y% are the
x-coordinates and y-coordinates of C,, respectively. C, is defined by the
tuple (X&, Y% ) accordingly.s¢ and s& represent the slopes of the curves
C, and C, on the day of year (DOY) i, respectively. n is the number of days
in a year. d(C;, C,) is the arithmetic mean of the absolute slope differ-
ences of the curves C, and C,.

The slope-based distance function measures geometrical pattern
similarities of the curves, and is invariant to the shift in NDVI values
caused by atmospheric interference and instrumental noise. Compared
to the NDVI-based distance function, the slope-based distance function
emphasizes more on matching the shapes of the target and reference
curves, and synchronizing geometrical patterns of crop growth profiles.
The landmark pairs are aligned by shifting their respective x-coordinates
to the corresponding mean values, and the curves are adjusted accord-
ingly through a warping function A(X) that maps the curve original x-
coordinates to the aligned positions. By aligning the landmark pairs and
warping corresponding curve intervals, the MICA-based matching
strategy seeks to minimize d((A,(X%), Y% ), (A;(X%),Y%) ). The warp-
ing function A,(X%)for the target curve C, is defined as:

Xlu chr = Xlr
(X = Xin) (Xi, — Xiep) ¢
Xt + X <X
4 (X'AC’)XWSX,C' <Xright = “ X]’ - X"'ﬁ ' ! (2)
(Krighy = Xi") Krign = Xi) 1
X"iyhl B Xrigh[ - Xl, Xi > XI;

Here, Xf‘ is the x-coordinate of the curve C.. Xy, and X, are the x-
coordinates of the start and end points of the curve interval being
warped, respectively. [; and I, represent a landmark pair to be aligned on
C. and C,, respectively. When aligning the landmark pair, the x-co-
ordinates of the selected landmarks on C; and C,, denoted as X;, and X,
are shifted to their mean x-coordinate X;, (i.e., X;, = (X;, + X;,)/2), as
shown in Fig. 3c. The x-coordinates of the rest of the curve C; within the
interval are mapped through the warping function, which facilitates the
matching of curve phenological patterns as well as the calculation of
slope-based curve distance. The warping function A,(X%) for the refer-
ence curve C, is defined analogously to A,(X%).

As demonstrated in Fig. 3, the MICA-based matching strategy con-
siders the whole curve as one interval (i.e., Xz = 1 and Xpgp, = 1)
during the first round of phenological alignment. Within this initial in-
terval, it searches for an optimal landmark pair, the alignment of which
gives rise to the lowest distance d((A:(X%),Y%), (A, (X%),Y%))
(Fig. 3c). After aligning the first landmark pair, the two curves are each
partitioned into two intervals by the aligned landmark pair. The same
process is then repeated within each interval until 1) there is no un-
aligned compatible landmark pair, or 2) aligning the remaining land-
mark pairs does not lead to a decreased distance (Fig. 3d and 3e).

The phenophase matching of the model iteratively aligns critical
landmark pairs that can minimize the slope-based distance between the
mapped curve intervals. By leveraging characteristic landmarks, this
iterative phenology matching starts with the generic geometrical pattern
alignment between the target and reference curves, followed by the fine-
tuning of the aligned patterns. It attempts to generate a consensus of
aligned phenological patterns, with the matched target and reference
curves sharing the same mapped phenological transition dates. Hence
the pre-calibrated reference phenological transition dates on the refer-
ence curve C, can be transferred to the aligned target curve C; (the green
dots from Fig. 3b to 3e). The phenological transition dates on the orig-
inal target curve C; can then be estimated through the inversion of the
warping function A,(X%).

As the seasonal growth profiles of the same crop species usually
follow comparable phenological patterns, several constraints are
employed in the model to restrict curve distortions in phenology
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matching, as well as to ensure computational efficiency. During the
landmark registration, only compatible landmarks (i.e., same type of
landmarks from the same phenometric extraction method, such as
greenup identified using the curvature-based method) on the target and
reference time series profiles can be paired. Considering that varying
numbers of landmarks may be detected from the target and reference
profiles, the model targets for optimal registration of compatible land-
marks, without requiring every landmark pair to be aligned. With a
multitude of experiments in reference to previous MICA-based studies,
constraints are also applied to interval length, shift in x-coordinates, and
warping factor in phenophase matching (Bender et al., 2012; Mann
et al., 2018). The minimal interval length is set to be 5% of the length of
whole curves of a year, so the model can be more computationally
efficient by avoiding aligning intervals that are too trivial. The maximal
warping factor is set to be 2, meaning that the length of one interval after
alignment cannot be more than two times of its original length. The
maximally allowed shift in x-coordinates is set to be 20% of the length of
whole curves. The maximal warping factor and maximally allowed shift
in x-coordinates together help constrain the distortion of the curves in
phenology matching.

The devised hybrid model leverages the complementary strengths of
phenometric extraction methods and phenology matching models to
achieve more robust and accurate crop phenological retrieval. It in-
tegrates characteristic landmarks with phenological references for crop
growth stage characterization. The landmark registration preserves the
critical curve properties, as well as constrains the curve distortion in
geometrical phenological pattern alignment. The phenophase matching
further accommodates the relationships between landmarks and refer-
ence phenological transition dates. This integrated landmark and
reference design not only enables more comprehensive crop phenolog-
ical pattern matching, but also facilitates the retrieval of the crop
phenological stages without distinct curve properties (e.g., planted
stage). It may particularly be beneficial for modeling complicated and
non-linear phenological patterns with phenological reference and
characteristic landmarks. The devised model relaxes the SMF method
assumption and can simultaneously retrieve a wide spectrum of crop
phenological stages. As the phenological stages are retrieved through
the mapping of pre-calibrated reference phenological transition dates,
the model also maintains strong potentials to characterize extended
physiological growth stages with a priori information of relevant
reference transition dates.

3.2. SMF method

For evaluating the hybrid phenology matching model, we compare it
to the benchmark SMF method proposed by Sakamoto et al. (2010). This
section briefly introduces the SMF method for better understanding.
Guided by the geometrical shape concept, the SMF method characterizes
target seasonal crop growth patterns through geometrical phenology
matching of pre-defined reference shapes (Fig. 4). It assumes that crop
phenological patterns embedded in the NDVI time series can be
approximated by the geometrical scaling of crop-specific reference
shapes, regardless of all the factors that may affect crop growth progress.
The SMF method attempts to optimize the scaling parameters that
geometrically fit the reference shape to the target NDVI time series. The
phenological transition dates of the time series can then be estimated
using the optimum scaling parameters and pre-calibrated reference
dates. The SMF method focuses on characterizing macroscopic scaling
features that can conduct the phenological shape and pattern matching,

as well as diminish the influence of localized fluctuations. The
geometrical scaling process of the SMF method is defined as:
Cy(x) = yscale-C,(xscale-(x + tshift) ) 3

Here, Cy(x) is the fitted NDVI value from the SMF method on the DOY
x, and C;(x) is the NDVI value of the pre-defined reference curve on the
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Fig. 4. The SMF method for estimating phenological transition dates of target NDVI time series curves.

DOY x. The geometrical scaling process of the reference curve to fit the
target time series curve is controlled by the parameters xscale, yscale,
and tshift. xscale and yscale denote the magnitude of stretching or
compressing of the reference curve on the horizontal and vertical axes,
respectively. tshift is the relative shift of crop phenological timing of the
reference curve. The combination of the scaling parameters character-
izes the phenological difference between the reference and target
curves, and enables the geometrical pattern matching to accommodate
diverse crop phenological patterns under varying growth conditions
over space and time. The scaling parameters are optimized by mini-
mizing the root mean square error (RMSE) between the SMF-fitted curve
and the target curve (Eq. (4)).

RMSE = \/%Zj:mm (G(x) - ) )

Here, Cs(x) and C,(x) denote the fitted NDVI value from the SMF
method and the NDVI value of the target curve on the DOY x, respec-
tively. n is the number of days in a year. With a suite of experiments in
reference to previous studies, the searching ranges to optimize the
scaling parameters were empirically determined as follows: 0.3 < xscale
< 1.5, 0.3 < yscale < 1.5, and —80 < tshift < 80 (Sakamoto et al., 2010).

With the optimum scaling parameters and pre-calibrated reference
dates, the phenological transition dates on the target curve are estimated
through the geometric conversion equation (Eq. (5)).

X6 = xscalen,,,(ch + tshift 5)

opt )

Here, X% and X% are the estimated phenological transition dates on
the target curve, and the pre-calibrated reference dates on the reference
curve, respectively. xscale,,: and tshift,, are the optimum scaling pa-
rameters derived from the SMF method. Comparable to the hybrid
model, the SMF method transfers the reference dates from reference
curves to target curves for crop phenological retrieval. It can retrieve a
range of characteristic phenological stages with the geometrical scaling
assumption.

3.3. Design of phenological reference scenarios

With the considerable role of reference shapes and reference dates in
phenology matching, the design and characteristic of phenological
reference affect the crop phenological retrieval accuracy. Given the
difficulty of collecting year-long field-based crop phenological obser-
vations across years and locations, it becomes important and imperative
to explore the potential of phenological reference design with publicly
accessible phenological information (e.g., CPRs) (Sakamoto, 2018). The
ASD-level CPRs on a yearly basis in Illinois provide an ideal source to
systematically evaluate the reference designs in phenology matching.
With the Illinois CPRs, the crop-specific reference shapes and reference
dates can be pre-defined/calibrated for each combination of ASDs and
years. The nine ASDs in Illinois, together with 16 mapping years, result
in 144 unique year-ASD combinations. Specifically, for each year-ASD
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combination, the crop-specific reference shape is defined as the indi-
vidual crop pre-processed NDVI time series curve that is the most
comparable to the 90th percentile of all the target NDVI curves of the
crop for the given year and ASD. With a range of experiments, the 90th
percentile is selected to define the reference shapes that can be repre-
sentative of crop phenological profiles under optimal growth conditions,
as well as robust to potential outlying NDVI curves (Sakamoto et al.,
2010). The pinpointing of an individual curve approaching the 90th
percentile of all relevant target curves further preserves the crop growth
geometrical pattern.

With the defined year-ASD reference shape, the corresponding
reference dates are pre-calibrated using the cumulative crop phenolog-
ical information of the publicly accessible CPRs. For each year-ASD
combination, half of the target NDVI curves are randomly selected for
reference date calibration, and the other half of the curves are reserved
for model testing. During the calibration procedure, the selected target
curves are first aligned with the pre-defined reference shape through
phenological matching (e.g., hybrid or SMF method), so that the
warping relationships between the target curves and the reference shape
are established. The phenological transition dates on the target curves
can then be estimated through the warping relationship and the refer-
ence dates. For each phenological stage, the reference date is calibrated
within a searching range of two weeks before and after the median date
of that stage in the CPRs. Within the searching range, the calibrated
reference date will result in the lowest estimation error of the transition
dates on the target curves upon comparison to CPRs. The estimation
error is calculated as the RMSE between the CPR-documented cumula-
tive percentages of observation dates and the estimated cumulative
percentages of corresponding transition dates. Thus with the yearly
ASD-level CPR, the reference dates on the pre-defined reference shape
for each year-ASD combination are calibrated by minimizing the dif-
ference between the estimated transition date distributions of the cali-
bration data and CPR-documented ones. The calibration of reference
dates with publicly accessible CPRs not only overcomes the challenge of
collecting representative field-based crop phenological observations,
but also facilitates the large-scale crop phenological retrieval over wide
geographical regions (Sakamoto, 2018).

The pre-defined/calibrated reference shapes and reference dates for
each combination of years and ASDs provide an avenue to systematically
evaluate the reference designs in phenology matching, particularly with
varying levels of reference phenological information. The level of
reference phenological information denotes the extent of the inter-
annual and regional crop phenological variations being accommo-
dated in reference designs. In this study, we design four CPR-based
phenological reference scenarios with different levels, namely the
year- and region-adjusted scenario (scenario 1), the year-adjusted sce-
nario (scenario 2), the region-adjusted scenario (scenario 3), and the
base scenario (scenario 4) (Table 1 and Fig. 5). Scenario 1 accommo-
dates both the inter-annual and regional crop phenological variations in
the reference designs. Under scenario 1, the crop growth reference
patterns are assumed to be unique across both years and ASDs. The



C. Diao et al.

Table 1

Design of four phenological reference scenarios using NASS CPRs.
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Scenario Reference Reference Date NASS CPR Calibration Level Reference Design Assumption
Shape
Scenario 1 Year- and ASD-  Year- and ASD-calibrated CPR data for all Accommodate both inter-annual and The crop growth reference patterns are

Scenario 2.1

Scenario 2.2

Scenario 3.1

Scenario 3.2

Scenario 4.1

Scenario 4.2

adjusted

Year-adjusted,
central ASD
Year- and ASD-
adjusted

Year 2006,
ASD-adjusted
Year- and ASD-
adjusted

Year 2006,
Central ASD
Year- and ASD-
adjusted

For each year, central ASD
calibrated

For each year, central ASD
calibrated, other ASDs
transferred

For each ASD, year 2006
calibrated

For each ASD, year 2006
calibrated, other years
transferred

Central ASD in 2006 calibrated

Central ASD in 2006 calibrated,
other year-ASD combinations

transferred

years and ASDs

CPR data for all
years of central
ASD

CPR data for all
ASDs in 2006

CPR data for
central ASD in
2006

regional crop phenological variations in
reference designs

Accommodate inter-annual crop
phenological variations in reference
designs

Accommodate regional crop
phenological variations in reference
designs

Not accommodate either inter-annual or
regional crop phenological variations in
reference designs

unique across years and ASDs

The crop growth reference patterns are
unique across years, but can be shared
across ASDs for each year

The crop growth reference patterns are
unique across ASDs, but can be shared
across years for each ASD

The crop growth reference patterns are
shared across years and ASDs.

NDVI [ i Year

Scenario 1

Doy

I,

Scenario 2.2

Phenological references
4 (calibrated) from 2002 to
F 2017

Phenological references
— (calibrated) of 2006

Scenario 3.1

Phenological references
(transferred) from 2002
t0 2017

Phenological references
(calibrated) of 2006;
(transferred) of other years

Fig. 5. Design of four phenological reference scenarios with varying levels of phenological calibrations. The reference shapes in green denote that the corresponding
reference dates are calibrated for the associated year-ASD combinations. The reference shapes in yellow denote that the corresponding reference dates are not
calibrated, but transferred for the associated year-ASD combinations. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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phenological reference information is available for all the years and all
the ASDs, and each year-ASD combination has its own reference shape
and reference dates. The target curves in the specific year and ASD are
matched to the corresponding year-ASD phenological reference for
transition date estimation. This scenario can be applied to downscale
crop growth stages from the ASD level to a finer scale, such as large fields
or county-level statistics.

Scenario 2 only accommodates the inter-annual phenological varia-
tions in the reference designs. The crop growth reference patterns under
this scenario are assumed to be unique across years, but can be shared
across ASDs for each year. We design this scenario by assuming that only
one ASD’s CPRs for all the years are available, and select the central ASD
for phenological reference with consideration of its geographical loca-
tion, environmental conditions, and farming practices. Only the refer-
ence dates in the central ASD for all the years can be calibrated in this
scenario. As the reference shapes are defined using satellite time series
profiles, the reference shapes of ASDs are not subject to the availability
of corresponding CPRs. To further test the role of reference shapes in
reference designs, we devise two sub-scenarios (scenario 2.1 and sce-
nario 2.2) in scenario 2. Scenario 2.1 is the year-adjusted, central ASD
scenario, of which the reference shape and reference dates calibrated for
the central ASD of a year serve as the phenological reference for all the
ASDs of the same year. The reference shapes of the other ASDs are not
considered in this sub-scenario. Scenario 2.2 is the year-adjusted, ASD
transferred scenario, of which the reference dates calibrated for the
central ASD of a year are transferred to other ASDs of the same year,
based on corresponding reference shapes and phenology matching
strategies (hybrid or SMF method). Besides the central ASD, other ASDs
have their own year-specific reference shapes and transferred reference
dates. Scenario 2 can be applied when the CPRs from the same year are
available from the neighboring district.

Scenario 3 only accommodates the regional phenological variations
in the reference designs. Under this scenario the crop growth reference
patterns are assumed to be unique across ASDs, but can be shared across
years for each ASD. We design this scenario by assuming that the ASD-
level CPRs are only available in one year, and select the year 2006 for
phenological reference as the reference shapes of 2006 are mostly in the
middle of reference shapes of all the years. Only the reference dates for
the ASDs of the year 2006 can be calibrated in this scenario. Similar to
scenario 2, we further devise two sub-scenarios (scenario 3.1 and sce-
nario 3.2) to test the role of reference shapes. Scenario 3.1 is the region-
adjusted, year 2006 scenario, of which the reference shape and reference
dates calibrated for an ASD of 2006 serve as the phenological reference
for this ASD of all the years. The reference shapes of the other years are
not considered in this sub-scenario. Scenario 3.2 is the region-adjusted,
year transferred scenario, of which the reference dates calibrated for
2006 of an ASD are transferred to other years of the same ASD, based on
corresponding reference shapes and phenology matching strategies.
Besides the year 2006, the other years have their own ASD-specific
reference shapes and transferred reference dates. Scenario 3 could be
applicable for a region to use CPRs from historical years for the current
year, similar to crop phenology mapping within the season.

Scenario 4 does not accommodate either inter-annual or regional
phenological variations in the reference designs. The crop growth
reference patterns are shared across both years and ASDs. We design this
base scenario by assuming that the CPR is only available for one ASD of
one year, and select the central ASD of year 2006 for phenological
reference. Only the reference dates for the central ASD of the year 2006
can be calibrated in this scenario. This scenario has a minimum
requirement of the reference shape and dates, and is comparable to
previous phenology matching studies that used limited field observa-
tions as phenological reference to extract crop phenology over large
areas (Sakamoto et al., 2010). Similar to scenarios 2 and 3, we further
design two sub-scenarios (scenario 4.1 and scenario 4.2) to assess the
role of reference shapes. Scenario 4.1 is the base, 2006-central ASD
scenario, of which the reference shape and reference dates calibrated for
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the central ASD of 2006 serve as the phenological reference for all the
ASDs and years. The reference shapes except the central ASD of 2006 are
not considered in this sub-scenario. Scenario 4.2 is the base, year-ASD
transferred scenario, of which the reference dates calibrated for the
central ASD of 2006 are transferred to all other year-ASD combinations,
based on corresponding reference shapes and phenology matching
strategies. Besides the central ASD of 2006, all other year-ASD combi-
nations have their own reference shapes and transferred reference dates.
It is noted that the purpose of the study is not to exhaust all the reference
scenario designs, but to investigate the performance of phenology
matching with representative phenological references. Specifically, the
performance of the hybrid model under scenario 1 will be presented in
section 4.1, and its performance under other scenarios will be in section
4.2. The comparison results of the performance of the hybrid and SMF
methods under all the scenarios will be in section 4.3. At large scales, the
levels of publicly accessible phenological information may vary across
years and locations. Those reference scenario designs will shed light on
the influence of characteristics of reference shapes and dates on
phenology matching.

3.4. Accuracy assessment

As the CPRs are collected at the ASD level, our model predictions for
the corn (or soybean) target curves that are not employed for pheno-
logical calibrations are aggregated accordingly to the ASD level for ac-
curacy assessment. For each year-ASD combination, the predicted
median dates of the seven phenological stages of corn (or soybean) are
compared with the reference median dates of the corresponding stages
from the CPRs. For each phenological stage, a total of 144 data points (9
ASDs by 16 years) are utilized to calculate the R-squared and RMSE
values. The R-squared measures the proportion of the variance in the
reference median dates of the CPRs explained by the corresponding
predicted median transition dates, and the RMSE measures the errors (in
days) of the predictions. The spatio-temporal patterns of those accuracy
measures across ASDs and years are also explored. To evaluate the in-
fluence of various scenario settings of reference shapes and dates on the
phenological retrieval accuracy, we further examine the differences in
the calibrated reference dates under the four devised scenarios, and
compare the RMSE and R-squared values among those scenarios.

4. Results
4.1. Hybrid model-retrieved phenological characteristics

The phenological transition dates of the testing target time series
curves for both corn and soybean are retrieved using the hybrid model,
and summarized to the ASD level to be compared to corresponding
reference CPRs. As the year- and region-adjusted scenario (scenario 1)
represents the ideal phenological reference scenario and yields the
highest retrieval accuracy, only the phenological results under scenario
1 are presented in section 4.1 to demonstrate the performance of the
hybrid model. The performance of the hybrid model under other sce-
narios will be presented in section 4.2. For each year-ASD combination,
the predicted median transition dates of crop phenological stages are
compared against the reference median dates of crops going into those
stages in the CPRs (Fig. 6). For both corn and soybean, the retrieved and
reference median pairs are close to the 1:1 line (the solid diagonal line),
which indicates the good performance of the hybrid model in estimating
most of phenological stages across ASDs and years, particularly for the
emerged, silking, and dough stages of corn, and emerged, blooming,
turning yellow, and dropping leaves stages of soybean. The median
planting dates for both corn and soybean are accurately predicted for
most of ASDs and years. The differences between the retrieved and
reference median dates for most of the stages are within 5 days.
Compared to other stages, the harvested stages tend to have larger date
differences, partly attributable to more variations in crop harvest
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Fig. 6. Scatterplots of the hybrid model-retrieved versus CPR-based reference median transition dates for each year-ASD combination.

management practices among farms.

With the retrieved and reference median pairs, the RMSE and R-
squared values of all the phenological stages of corn and soybean are
further calculated (Fig. 7). Overall, the hybrid model generates satis-
factory results, with RMSEs of the first six stages of both corn and soy-
bean around 2 days and R-squared of those stages higher than 0.9. As
regards corn, the retrieved transition dates of the silking stage yield the
lowest errors (RMSE = 1.35 and R-squared = 0.97), while the retrieved
harvested transition dates give the highest errors (RMSE = 5.99 and R-
squared = 0.85). The RMSEs of other estimated transition dates are from
1.9 to 2.5 days, and the corresponding R-squared values range from 0.95
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to 0.97. For soybean, the retrieved harvested transition dates generate
the highest errors (RMSE = 3.96 and R-squared = 0.83), while the
transition dates of all other stages achieve R-squared values ranging
from 0.91 to 0.96, and RMSEs from 1.67 to 2.31 days. With the devised
hybrid model, more than 80 percent of variability in the ground-based
median transition dates in the CPRs can be explained by the model
retrieved median dates under appropriate calibration of reference
shapes and dates (R-squared from 0.85 to 0.97 for corn, and from 0.83 to
0.96 for soybean). For most of the stages, the average of the difference
between the model retrieved and ground-based phenological measures
is less than 2.5 days. In particular, the hybrid model demonstrates strong
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Fig. 7. The RMSE and R-squared values of the hybrid model for corn and soybean under scenario 1 by crop phenological stage.
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potentials to directly estimate crop planting dates. The RMSE values for
the corn and soybean planted stages are 2.26 days and 2.19 days,
respectively. On the other hand, the harvested stage retrieval shows
relatively large errors for both crops, as reflected in both Fig. 6 and
Fig. 7. Though these two farming practice-relevant stages are both
influenced by a variety of factors, the planting of crops is primarily
determined by soil and weather conditions. Yet the harvesting of crops is
subject to human decisions (e.g., harvest capability and logistics) with
more farm-level uncertainties and variabilities.

From 2002 to 2017, the inter-annual phenological patterns captured
by the hybrid model correspond well with those in the CPRs (Fig. 8). A
variety of cropping conditions and associated crop phenological devel-
opment trajectories during the study period are characterized by the
devised model. The relatively late dates for corn and soybean entering
respective phenological stages in 2008 and 2009 are reflected in both
hybrid model-estimated results and CPRs. Due to heavy rainfall, wet
soil, and cool temperatures, both corn and soybean were planted late
during the spring of years 2008 and 2009. The delayed planting affected
the timings of the crops going into subsequent growth stages. In 2012,
the warm and dry weather prompted earlier planting of corn and the
earlier transition dates of its corresponding growth cycle, as revealed in
both hybrid model-derived estimates and CPRs. The hybrid model can
accommodate the inter-annual variations in crop phenology, as well as
characterize varying inter-annual patterns for different phenological
growth stages. For instance, the planted stages of corn and soybean
exhibit U-shape patterns from 2002 to 2009, due to changing environ-
mental conditions and farming practices. These inter-annual patterns of
early phenological stages are yet diluted in succeeding phenological
stages. The diverse and complicated yearly patterns across crop
phenological stages emphasize the importance of directly retrieving
phenological transition characteristics of each individual stage. By ac-
commodating the inter-annual and regional crop phenological varia-
tions in the phenological reference design, the hybrid model under
scenario 1 achieves high estimation accuracies for a range of corn and
soybean phenological stages, and reconciles with CPRs in revealing the
characteristic phenological patterns across years in Illinois.
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4.2. Four phenological reference scenarios

Four CPR-based phenological reference scenarios with varying levels
of phenological calibrations are devised to systematically evaluate the
reference designs in phenology matching. With the hybrid model, the
crop phenological retrieval accuracies differ among the scenarios
(Fig. 9). The year- and region-adjusted scenario (scenario 1) achieves the
highest estimation accuracy of all the phenological stages of corn and
soybean, emphasizing the importance of accommodating the inter-
annual and regional phenological variations in reference designs.
Under scenario 1, the RMSEs of most of the corn and soybean stages are
around 2 days. With the unique reference shapes and calibrated refer-
ence dates for each year and ASD combination, the reference design
under scenario 1 takes into account the spatio-temporal differences in
crop growing and management conditions, including climate, soil
properties, crop varieties, and cultivation methods.

Under scenarios 2, 3, and 4, two corresponding sub-scenarios are
devised to assess the role of reference shapes in reference designs. The
comparisons between scenarios 2.1 and 2.2, between scenarios 3.1 and
3.2, and between scenarios 4.1 and 4.2, demonstrate that transferring
the reference dates of limited calibration to formulate year-ASD specific
phenological reference does not improve the model performance. The
RMSEs are larger after transferring the reference information in each
sub-scenario for almost all the phenological stages of both corn and
soybean. Though the reference shapes can be uniquely pre-defined for
each year-ASD combination with satellite time series, the lack of cali-
brated reference dates for certain years or ASDs may not be compensated
by corresponding transferred reference dates using reference shapes and
the hybrid model. On one hand, the transferred phenological references
tend to share comparable phenological characteristics with corre-
sponding calibrated phenological references designed in each scenario,
as the transferred reference dates stem from the calibrated reference
dates with phenology matching. The transferred phenological references
may not represent the characteristic crop phenological development for
the target year-ASD combinations, which may possess different crop
growing and management conditions. On the other hand, the trans-
ferring process may bring additional uncertainties and errors into
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Fig. 9. Comparisons of RMSEs of the hybrid model under four phenological reference scenarios for (a) corn and (b) soybean.

subsequent transition date estimations, attributing to the under-
performance of each transferred sub-scenario. Since the performance of
the hybrid model does not benefit from the transferred phenological
references, only scenarios 1, 2.1, 3.1, and 4.1 are considered in the
following analyses.

Among the scenarios, the year-adjusted scenario (scenario 2.1) per-
forms the next best, with only larger overall transition date estimation
errors than scenario 1. The RMSE values under scenario 2.1 range from
3.2 to 7.3 days for the phenological stages of corn, and from 3.9 to 5.7
days for the stages of soybean. The region-adjusted scenario (scenario
3.1) yields generally lower accuracy compared to scenario 2.1, with
RMSE values ranging from 3.7 to 10.3 days for corn phenological stages,
and from 4.4 to 6.5 days for soybean stages. The base scenario (scenario
4.1) also shows larger RMSEs compared to scenario 2.1, and the RMSEs
are from 3.9 to 10.7 days for corn, and from 3.8 to 7.1 days for soybean.
With the CPRs, it is ideal to design both year- and region-adjusted
phenological reference, with each year-ASD combination maintaining
its own reference shapes and calibrated reference dates. Yet compared to
region-adjusted phenological reference, the hybrid model with year-
adjusted reference tends to attain higher phenological retrieval accu-
racy in Illinois. The underlying phenological reference designs under
those scenarios indicate that the inter-annual changes of crop growing
season conditions and phenological development trajectories are more
pronounced than the regional phenological variations across ASDs of
Illinois. Correcting the year-dependent bias errors under scenario 2.1 is
more effective than correcting the region-dependent bias errors under
scenario 3.1 for most of the corn and soybean phenological stages in
Illinois. The hybrid model under scenarios 3.1 and 4.1 exhibits compa-
rable performance for many phenological stages, indicating that only
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accommodating the regional phenological variations may not be sulffi-
cient to generate more favorable results for our study site. Among the
phenological stages, the silking and dough stages of corn, as well as the
emerged, turning yellow, and dropping leaves stages of soybean, achieve
higher and more consistent retrieval accuracies across the devised
scenarios.

We further assess the phenological reference designs by comparing
the differences of reference dates of varying levels of calibrations under
four devised scenarios. The calibrated reference dates under four sce-
narios employed for each year-ASD combination are normalized to its
pre-defined reference shape using the hybrid model, respectively. As
scenario 1 achieves the highest accuracy and the reference dates under
this scenario are calibrated individually for each year-ASD combination,
the calibrated reference dates of scenario 1 serve as the benchmark for
quantifying the reference date differences under varying levels of cali-
brations. For each scenario, the absolute differences between the
scenario-normalized reference dates and corresponding calibrated
reference dates of scenario 1 are calculated for each year-ASD combi-
nation, and are then averaged across years and ASDs by crop pheno-
logical stages (Fig. 10). Upon comparisons with scenario 1, the mean
absolute differences (MADs) of calibrated reference dates in scenario 2.1
are less than those in scenarios 3.1 and 4.1 for all phenological stages of
corn and soybean. The smaller MADs indicate that the phenological
reference design of scenario 2.1 is more similar to that of scenario 1. The
variations of phenological stages across years and ASDs are accommo-
dated more by the year-adjusted reference, compared to region-adjusted
or base references. The comparable MADs under scenarios 3.1 and 4.1
for most of the corn and soybean stages illustrate the diminishing role of
region-adjusted reference in Illinois, resonating with scenario
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performances in Fig. 9.

The average RMSEs of phenological retrieval of each ASD (and each
year) are calculated for both corn and soybean under the four scenarios,
with corresponding spatial and temporal patterns shown in Fig. 11. For
most ASDs and years, the phenological retrieval accuracies decrease
from scenario 1 to scenario 3.1 (and scenario 4.1), consistent with Fig. 9
and Fig. 10. In general, the average RMSEs are the smallest under sce-
nario 1 and much larger under scenarios 3.1 and 4.1. The comparable
and relatively high estimation accuracies for most ASDs and years under
scenarios 1 and 2.1 demonstrate the potential of the hybrid model with
appropriate phenological references to characterize spatio-temporal

years can be attributed to phenological reference designs and spatio-
temporal variations in characteristic phenology. With the central ASD
and year 2006 selected for reference designs of limited calibrations, the
average RMSEs are generally smaller in this particular region (or year)
across scenarios. The delayed crop phenological development in 2009
instead leads to larger estimation errors, especially for scenarios 3.1 and
4.1 where inter-annual phenological variations are not accommodated.

4.3. Comparisons of the hybrid and SMF methods

The hybrid model is further compared with the SMF method for

phenological variations of both corn and soybean in Illinois. The

. . . . . ) retrieving phenological transition dates under the four scenarios using
divergent patterns in the retrieval accuracies for certain regions and

RMSE and R-squared (Fig. 12). As for corn, the performances of the
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Fig. 11. The average RMSEs of phenological retrieval of each ASD (a and b) and each year (¢ and d) using the hybrid model for corn and soybean in Illinois.
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reference scenarios.

hybrid and SMF methods are mostly comparable under scenarios 1, 2.1,
and 3.1, yet the hybrid model achieves higher R-squared values for the
corn harvested stage in scenario 1, the dough and dented stages in
scenario 2.1, and the planted stage in scenario 3.1. Under scenario 4.1,
the hybrid model attains higher retrieval accuracies for most of the
stages in terms of both RMSE and R-squared (Table 2). The RMSEs of the
hybrid and SMF methods are 10.71 days and 12.92 days for the corn

planted stage, respectively, and are 8.17 days and 10.44 days for the
corn emerged stage, respectively. The R-squared values of the hybrid
model are higher for almost all the stages of corn, particularly for its
planted and emerged stages. With respect to soybean, the hybrid and
SMF methods also yield similar performances under scenarios 1, 2.1, and
3.1. Under scenario 4.1, the hybrid model yields consistently higher
estimation accuracies for all the stages according to both RMSE and R-

Table 2

RMSE and R-squared values of the hybrid and SMF methods for corn and soybean under scenario 4.1.
Corn Stage RMSE R-squared Soybean Stage RMSE R-squared

Hybrid SMF Hybrid SMF Hybrid SMF Hybrid SMF

Planted 10.707 12.921 0.624 0.472 Planted 5.402 9.412 0.742 0.393
Emerged 8.169 10.442 0.675 0.515 Emerged 4.298 8.381 0.777 0.524
Silking 3.932 4.554 0.790 0.775 Blooming 7.149 9.772 0.619 0.576
Dough 5.734 5.281 0.669 0.670 Setting Pods 5.645 5.836 0.564 0.531
Dented 8.842 8.250 0.675 0.624 Turning Yellow 3.909 4.464 0.630 0.597
Mature 6.422 6.469 0.712 0.669 Dropping Leaves 3.830 4.309 0.671 0.633
Harvested 9.721 9.280 0.742 0.671 Harvested 6.494 6.648 0.488 0.475
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squared, especially for the planted, emerged, and blooming stages. For
instance, the RMSEs of the hybrid and SMF methods for the soybean
planted stage are 5.40 days and 9.41 days, respectively, and the corre-
sponding R squares of the hybrid and SMF methods are 0.74 and 0.39,
respectively. The superior performances of the hybrid model under
scenario 4.1 suggest that the devised model is more robust to the
decreasing levels of phenological reference calibrations than the SMF
method, and is particularly advantageous when the phenological refer-
ence information is limited.

Given the interest and importance of directly estimating crop planted
stages, we further examine the scatterplots of the hybrid model-
retrieved versus CPR-based median planting dates, and the scatter-
plots of SMF-retrieved versus CPR-based median planting dates, under
the four scenarios for corn and soybean (Fig. 13 and Fig. 14). Under
scenarios 1 and 2.1, the scatterplots generated by the hybrid and SMF
methods are comparable for both corn and soybean. Yet for scenarios 3.1
and 4.1, the hybrid model-based median pairs are less dispersed and
closer to the 1:1 diagonal line, associated with higher R-squared values
and smaller RMSEs. Compared to SMF, the hybrid model in particular
exhibits improved capabilities in predicting soybean planting dates,
with most of the median pairs falling within the range of [-10, 10] days
differences. The hybrid model also achieves enhanced performance for
corn planting date estimation, though the delayed corn planting in
certain years and ASDs tends to be estimated earlier, partly due to the
deviation of actual corn planting time from the limited phenological
references under scenarios 3.1 and 4.1.

Overall, the hybrid and SMF methods share similar patterns in the
prediction accuracies across different crop phenological stages. Both
methods can better estimate the transition dates of silking and dough for
corn, alongside the dates of turning yellow and dropping leaves for
soybean. The hybrid and SMF methods attain comparable accuracies
when spatio-temporal phenological variations of crops are adequately
accommodated in phenological reference designs (e.g., scenarios 1 and
2.1). Yet when the phenological references are of limited calibrations (e.
g., scenario 4.1), the hybrid model is more robust and performs partic-
ularly better for the crop early phenological stages (e.g., planted and
emerged stages). These results demonstrate the potential of the hybrid
model in expanding the phenology matching designs for crop stage

a) Hybrid — Scenario 1 b) Hybrid — Scenario 2.1
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retrieval, with its ability to accommodate larger discrepancies between
the predicted phenological transition dates and the reference ones.

5. Discussion

The hybrid phenology matching model can achieve high accuracies
for estimating corn and soybean phenological stages, particularly with
the year- and region-adjusted reference shapes and dates. Under sce-
nario 1, the RMSE values for the corn estimated phenological transition
dates are less than 6 days, and the R-squared values are higher than 0.85.
With regard to soybean, the RMSE values for all the phenological stages
are less than 4 days, along with R-squared being higher than 0.83. The
inter-annual and regional phenological patterns characterized by the
hybrid model correspond well with those in the CPRs. As an innovative
phenology matching model, the hybrid model exhibits enhanced capa-
bilities in simultaneously retrieving a wide suite of crop phenological
stages, owing to its three unique properties. First, the hybrid model in-
tegrates the designs of phenometric extraction methods and phenology
matching models. It integrates characteristic landmarks with a priori
shape and date references for phenological identification. The integrated
landmark and reference design not only enables more effective curve
alignment, but also dramatically facilitates the characterization of the
crop stages without distinct curve properties (e.g., planted stages).
Second, the hybrid model employs the global slope-based distance
function to conduct the phenology matching. Compared to the NDVI-
based distance function, the slope-based function is particularly ad-
vantageous in synchronizing the geometrical patterns of crop growth
profiles, as well as accommodating the shifts and fluctuations of NDVI
time series across locations and years. Third, the hybrid model is flexible
and robust in crop growth pattern matching. Depending on the crop
growth profiles, certain types of characteristic landmarks (e.g., local
extrema) may or may not be identified. Given varying numbers of
landmarks may be identified for the satellite time series profiles, the
hybrid model targets for optimal registration of compatible landmarks,
without requiring every landmark pair to be aligned. The flexible
landmark registration facilitates more comprehensive crop phenological
modeling, particularly for non-linear and complicated phenological
patterns. It also enhances the hybrid model’s robustness to localized
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Fig. 13. Scatterplots of the hybrid model-retrieved versus CPR-based median planting dates (a, b, ¢, and d), and SMF-retrieved versus CPR-based median planting

dates (e, f, g, and h) for corn under four scenarios.
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Fig. 14. Scatterplots of the hybrid model-retrieved versus CPR-based median planting dates (a, b, ¢, and d), and SMF-retrieved versus CPR-based median planting

dates (e, f, g, and h) for soybean under four scenarios.

non-vegetation-related fluctuations and noises in the satellite time se-
ries, with the model achieving comparable performances for smoothed
and unsmoothed NDVI time series under devised scenarios (see Fig. S1
and Fig. S2 for details). As the landmarks affected by the noises may not
help with crop geometrical pattern matching, they may not be targeted
for optimal registration and may be left unaligned.

The devised four phenological reference scenarios illustrate that the
calibration procedures of reference phenological transition dates on
reference shapes exert a significant role in determining the retrieval
accuracies of the hybrid model. Among the scenarios, the hybrid model
under the year- and region-adjusted scenario is the most superior across
all the phenological stages in terms of RMSE and R-squared for both corn
and soybean. It can capture most of the variability in the median
phenological transition dates of the CPRs, with its predicted dates
comparable to the observed ones. Calibrating the hybrid model with
such rich CPR-enabled phenological information is favored for accurate
characterization of crop growing progress. The year-adjusted scenario
can lead to more accurate phenological retrieval than the region-
adjusted and base ones. The crop growth profiles and associated char-
acteristics (e.g., planted and harvested stages) exhibit more inter-annual
phenological variations than the regional variations of a year, as climate
conditions and farming practices tend to differ more from year to year in
Illinois. The performance of the region-adjusted scenario is mostly
similar to that of the base scenario. It is yet noted that the phenological
scenario designs tested for Illinois in this study may diminish the role of
region-adjusted phenological references in the hybrid model, as crop
phenological characteristics within the extent of Illinois may not vary
dramatically for a single mapping year. Further inspections of reference
designs over extended geographical regions would be desired in future
studies for more comprehensive evaluations. With the combined satel-
lite time series and CDLs, the reference shapes can potentially be defined
for each ASD and year. The reference dates with varying calibration
levels can be defined according to CPRs. Yet the increased RMSEs
induced by transferred reference dates under scenarios 2-4 emphasize
the importance of appropriately calibrated reference dates on reference
shapes, particularly the ones that can accommodate the inter-annual
phenological variations. Overall, the phenological calibration process
through publicly accessible CPRs enables the hybrid model to reveal the
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characteristic spatio-temporal patterns of a variety of crop growth
stages, without requiring long-term field phenological observations. The
phenological reference scenario designs are also instructional in
formulating appropriate reference shapes and dates for phenological
retrieval over other geographical regions, which may be subject to
varying levels of publicly available phenological information.

Among the phenological stages, the silking and dough stages of corn,
along with the turning yellow and dropping leaves stages of soybean,
can be more accurately estimated (RMSEs around or less than 5 days) by
both the hybrid and SMF methods. The performances of these two
methods for those stages are relatively robust under different calibration
levels of phenological references, partly because the transition dates of
those stages maintain relatively stable relationships with characteristic
landmarks (e.g., maturity timing) of NDVI time series. Some of those
stages do not possess distinct curve properties and might not be accu-
rately predicted by the phenological monitoring framework devised in
previous studies (Diao, 2020). For instance, the RMSE of the corn dough
stage is around 10 days under the phenological framework, despite with
the preferred combinations of curve fitting phenological models (e.g.,
Beck-based double logistic model) and phenometric extraction methods
(e.g., curve derivative).

Beyond the phenological framework, the hybrid and SMF methods
can also estimate the transition dates of the planted stage of crops, with
RMSEs ranging from around 2 days to 13 days. Compared to the SMF
method, the hybrid model is more robust and maintains more advan-
tages in predicting the planted stages, particularly under the base sce-
nario. The SMF method characterizes macroscopic scaling features for
reference shape transformation by following the geometrical scaling
assumption. It has been found to capture the phenological features near
the peak of the crop profiles (e.g., silking stage) better than those near
the tails of the profiles (e.g., planted stage) (Sakamoto, 2018). By
contrast, the hybrid model focuses on aligning characteristic landmarks
that widely spread over the crop profiles and can reduce the effects of
the geometrical scaling assumption. The integration of characteristic
landmarks and reference phenology not only enables more compre-
hensive modeling of geometrical patterns of crop growth profiles, but
also accommodates the relationships between landmarks and reference
transition dates, both of which can facilitate better and more robust
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detection of crop planted stages. This integrative modeling design of the
hybrid model holds great potential to characterize complicated crop
phenological patterns, such as double and multiple growth cycles. By
developing the hybrid model, we attempt to expand the phenology
matching designs tailored for crop stage characterization, as well as to
complement the previously devised phenological monitoring frame-
work. Despite the good performance of the hybrid model, some
phenological stages (e.g., dented stage of corn and blooming stage of
soybean) can be better estimated by the phenological monitoring
framework, particularly under the base scenario. Further synthesizing of
the methods in the phenological monitoring framework with the hybrid
model would facilitate more comprehensive crop phenological
detection.

Defining representative reference shapes and dates is crucial in
conducting phenology matching. The devised phenological reference
scenarios illustrate the importance of accommodating the inter-annual
phenological variations in reference designs. For many crop-producing
states, the yearly CPRs are generally available to the public, which
can largely facilitate individual calibration of reference shapes and dates
from year to year. Yet for other geographical regions with limited cross-
year phenological reference, the model performance may be degraded if
there is considerable variability in NDVI time series curves across years.
As meteorological conditions (e.g., temperature) play an important role
in affecting the crop growth and phenological development, combining
the crop models with satellite time series profiles may help define
environment-based phenological reference. Zeng et al. (2016) improved
the SMF method by leveraging the crop models to generate the ground-
based phenological reference in terms of accumulated photothermal
time (APTT). By taking into account dominant environmental factors (e.
g., air temperature and photoperiod), the APTT-based reference infor-
mation reduces the influence of inter-annual climatic fluctuations to
improve the SMF phenological detection accuracy. Yet crop growth is
affected by a combination of factors (e.g., water stress, management
practices, and crop cultivars), appropriately simulating phenological
reference of crop growth profiles in response to a synthesis of environ-
mental factors at large scales is challenging (Zeng et al., 2020). Due to
the potential uncertainties from the simulation process, scrutinizing the
design of phenological reference in light of various environmental fac-
tors is out of the scope of this study, but would be a desired future di-
rection to further improve the hybrid model performance. Additionally,
the study is conducted at the MODIS scale to be compatible with that of
the phenological framework of our previous study, and to demonstrate
the potential of the hybrid model. The hybrid model, along with the
methods in the phenological framework, can largely expand our capa-
bilities to estimate a suite of crop growth stages at regional scales,
particularly for relatively large farmlands. The recently available
harmonized Landsat and Sentinel-2 data, combined with MODIS and
Visible Infrared Imaging Radiometer Suite (VIIRS), can further facilitate
the crop phenological monitoring at field levels (Bolton et al., 2020;
Zhang et al., 2020).

The CPRs released by USDA represent the most comprehensive and
systematic ground-based observations of crop phenological progress,
and have been widely utilized to validate the remotely sensed pheno-
logical measures at the ASD and state levels. We further demonstrate the
potential of CPRs in guiding the calibration of reference shapes and
transition dates to build representative crop growth profiles under
various scenarios. For the regions with only state-level CPRs, the year-
adjusted scenario (scenario 2) and the base scenario (scenario 4)
devised in the study could be instrumental for relevant phenological
reference designs. In recent years, the rapid growth of near surface
remote sensing (e.g., unmanned aerial vehicle, PhenoCam, and smart
phone-based photos) provides new means to collect crop phenological
observations for individual farm fields (Hufkens et al., 2019; Richardson
et al., 2018). Those objective field-level phenological observations may
further help with the calibration of phenological references and vali-
dation of phenological characteristics. Besides, a range of vegetation
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indices have been developed for agricultural remote sensing, with each
emphasizing unique crop properties (Xue and Su, 2017). Further in-
spection of other vegetation indices, together with near surface remote
sensing, will improve the understanding of the devised hybrid model in
crop phenological retrievals. The designed hybrid model is a retroactive
approach that needs a crop type map (CDL in this study) to define the
reference shapes and phenological dates for the target year. Although it
could be a challenge to use the retroactive approach within the season
due to the limited observations and crop type maps (Gao and Zhang,
2021), the hybrid model in this paper is beneficial for investigating the
spatial and temporal variability of crop growth stages and generating
statistical reports at finer scales using publically available CPRs.

6. Conclusions

Monitoring the biological lifecycles of crops provides a feasible
means to evaluate the agricultural responses to climate change, envi-
ronmental variability, and farming activities from one phenological
stage to another. In this study, we develop an innovative hybrid
phenology matching model that can robustly detect a range of crop
growth stages under different phenological reference scenarios. With its
integrative landmark and reference design, the hybrid model demon-
strates enhanced capabilities in characterizing the phenological stages
without distinct curve properties. In Illinois, the hybrid model with the
year- and region-adjusted phenological reference can identify the me-
dian transition dates of most phenological stages of corn and soybean
with R-squared higher than 0.9 and RMSEs less than 5 days. Compared
to the SMF method, the hybrid model exhibits better and more robust
performance particularly in retrieving the crop planting dates, and
promises to capture complicated phenological patterns with the relaxed
geometrical scaling assumption. The characteristic spatio-temporal
patterns of crop planting dates can help construct more accurate crop
simulation models and design proactive adaptation strategies of crop
planting under varying environmental conditions. The hybrid model
expands the phenological monitoring framework, as well as phenology
matching designs. This innovative hybrid phenology matching model,
together with CPR-enabled phenological reference calibrations, holds
large potential in revealing spatio-temporal patterns of crop phenology
over extended geographical regions.
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