
1

Adaptively Reduced DRAM Caching for
Energy-Efficient High Bandwidth Memory

Payman Behnam,Student Member IEEE, and Mahdi Nazm Bojnordi, Member IEEE

Abstract—In-package DRAM cache provides a higher bandwidth than conventional memory systems. Adapting the cache
management to the run-time characteristics of each application seems a promising approach improving bandwidth efficiency and
performance. Regrettably, fine-grained cache block monitoring and adaptation often becomes impractical due to its significant
bandwidth, performance and hardware overheads. This paper proposes a novel mechanism for monitoring cache blocks using two
parameters that are adjustable at run time. We propose two low-cost counter-based mechanisms to realize the block monitors in
DRAM. Moreover, we propose a novel scheduling mechanism that opportunistically transfers the counter information to the DRAM
stack when the data movement overhead reaches its minimum. Our simulation results on a set of data intensive parallel applications
indicate that the proposed mechanisms achieve averages of 31%, 24% performance improvements over the state-of-the-art DRAM
cache architectures. System energy savings over the same baselines are 29%, 18% on average.

Index Terms—Computer Architecture, High Bandwidth Memory, DRAM Caching.

F

1 INTRODUCTION

High bandwidth memory (HBM) has been proposed to
enable large scale in-package memory systems that provide
high bandwidths in excess of Tbps [3], [9]. One promising
design approach to HBM systems is to build a general-
purpose cache for accelerating data-intensive applications.
However, remarkable challenges must be addressed prop-
erly before one can fully exploit all the performance and
energy potentials of HBM caching.

One key challenge for designing an efficient HBM cache
is to select an appropriate caching granularity. Existing
proposals have examined two different approaches for fine-
and coarse-granularity cache architectures. A fine-grained
cache [12], [25], [29], [37] provides a better data management
within the cache space; however, significant bandwidth and
memory storage may be required for tag management. In
contrast, a coarse-grained DRAM cache [13], [16], [17], [18],
[23], [26], [39] reduces the tag management overhead by
increasing the size of cache blocks from tens of bytes to kilo-
bytes. A coarser granularity may result in a more significant
bandwidth consumption and more data transfer over the in-
package and off-chip interfaces. The simultaneous increase
in bandwidth and data transfer may degrade performance
of most applications that have limited spatial locality.

One of the key challenges in fine-grained cache architec-
tures is the high cost of monitoring individual cache blocks
at run-time. This has been the main motivation behind
numerous stochastic solutions for DRAM caching in the
literature [12], [18], [39]. In particular, stochastic mechanisms
have used sampling counters for page placement [18], re-
placement policy in coarse-grained architectures [39], and
bypassing the DRAM cache during a miss fill [12]. While
these solutions can reduce the implementation costs, they

Payman Behnam and Mahdi Nazm Bojnordi are with the School of Com-
puting, University of Utah, Salt Lake City, Utah. E-mail: {behnam, bo-
jnordi}@cs.utah.edu

may lead to making costly inaccurate decisions and becom-
ing suboptimal.

We introduce RedCache, a fine-grained HBM cache ar-
chitecture based on adaptively reducing the load of DRAM
cache according to the run-time application characteristics.
RedCache provides a more deterministic approach to run-
time monitoring of individual cache blocks using a pair of
access indicators: upper (γ) and lower (α) bounds. Red-
Cache tunes the bounds at run-time to better capture only
bandwidth-hungry blocks in HBM. As DRAM read and
write have different requirements, RedCache provides dif-
ferent mechanisms for the read and write accesses. Alpha is
used to eliminate all unnecessary cache accesses (including
the first tag checks) for cache blocks that have not been
identified as bandwidth hungry. RedCache employs HBM
to store the information of individual blocks and exploits a
novel DRAM scheduling mechanism to access the block in-
formation when bandwidth overhead is minimal. For a wide
range of data-intensive applications, RedCache achieves
virtually the same performance as an ideal RedCache imple-
mentation with in-situ tag processing capabilities. Overall,
this article makes the following contributions.

Contribution 1: We study the run-time behavior of
various data-intensive applications and count their number
of reuses for individual cache blocks. We then estimate
the bandwidth requirements of each block at run-time. We
observe that (1) DRAM cache blocks have different band-
width requirements, and (2) most last accesses to a DRAM
cache block are writes. These two observations become the
foundation of various optimizations in this work.

Contribution 2: To facilitate adaptive caching of DRAM
blocks, we define two run-time parameters: (1) a local pa-
rameter (α) for each DRAM cache page that exploits the
similarities of behaviors among all its cache blocks. This
parameter determines when a block should be installed in
HBM. (2) a global parameter (γ) that captures the temporal
similarities of all the accessed blocks during an execution.

2

Contribution 3: To alleviate the high cost of updates to
a fine-grained HBM cache, we propose a novel scheduling
mechanism that opportunistically transfers cache blocks to
HBM when the bandwidth overhead is minimal.

Our simulation results on a set of data-intensive parallel
applications indicate that RedCache achieves averages of
31% and 24% performance improvements over the state-
of-the-art Alloy and Bear cache architectures, respectively.
Respective energy savings over the same baselines are 29%
and 18% on average. When applied to a two-way set as-
sociative in-package cache, RedCache achieves averages of
32% and 30% improvements in performance and energy.

2 DESIGN PRINCIPLES

Caching is not free and may not be useful for all data
blocks. Inserting a cache block into an HBM cache con-
sumes additional memory bandwidth for data placement
and tag management, occupies in-package DRAM, and ne-
cessitates tag checking on every future access to the block.
On the other hand, HBM provides a higher bandwidth than
main memory, which makes it more suitable for storing
bandwidth-hungry blocks. Therefore, a significant challenge
in designing efficient HBM caches becomes how to strike
a balance between bandwidth consumption and caching
overheads for individual data blocks. To address this design
challenge, we make the following observations across a set
of parallel applications1. First, increasing the bandwidth
utilization does not necessarily results in a higher system
efficiency; second, HBM cache blocks exhibit diverse band-
width requirements over the execution time of different
applications; and third, the majority of last accesses to the
cache blocks are write accesses. We exploit these findings
to monitor the individual cache blocks at run-time and
adaptively tune HBM caching at fine granularity.

2.1 Bandwidth Efficiency
The overall performance of a system with HBM caching is
significantly influenced by how efficiently one can utilize
the aggregate bandwidth of HBM and main memory. We
consider three system topologies to analyze the bandwidth
efficiency of HBM-based caches (Figure 1). We model a
No-HBM system comprising a multicore CPU and off-
chip DRAM without an HBM cache. We also consider an
IDEAL HBM system that employs a perfect HBM cache with
100% hit rate. IDEAL never misses a requested cache block;
however, it consumes additional bandwidth and storage for
tag checks. (Please notice that IDEAL is not necessarily the
best system configuration due to not exploiting the off-chip
bandwidth at all.) The No-HBM and IDEAL systems repre-
sent two extreme cases in comparison with a third system
using a normal HBM cache between the CPU and off-chip
DRAM. HBM implements the Alloy Cache architecture [29]
for understanding the bandwidth requirements of various
applications.

Assume that CPU sends a read request for a 64B data
block. No-HBM transfers the requested data on the DRAM
interface with no overhead bits, thereby requiring the least
amount of transferred data per block. The IDEAL system

1. Details of the experimental setup are provided in Section 5.

(c) HBM Cache

DRAM

CPU

HBM
Cache

DDRx
WideIO

(b) IDEAL Cache

CPU

HBM
CacheWideIO

(a) No-HBM

DRAM

CPU

DDRx

additional data
movement

Fig. 1. Example system topologies for No-HBM (a), IDEAL (b), and HBM
cache (c).

provides a higher memory bandwidth and achieves a better
performance than No-HBM; however, it needs to trans-
fer 72B cache lines (including data and metadata) on the
WideIO interface. In the HBM cache system, the bandwidth
consumption and the transferred data both increase because
of the additional traffic between main memory and the HBM
cache for block placement and replacement on every cache
miss. We study the efficiency of all three systems through
measuring the aggregate bandwidth consumption and the
transferred data over the WideIO and DDRx interfaces.
Figure 2 shows how bandwidth efficiency is impacted by
system topology (a) and data granularity (b). Each design
point represents relative amounts of aggregated bandwidth
and data transfer averaged across all of the evaluated ap-
plications. In the system topology plot, all of the design
points are normalized to No-HBM. IDEAL with more chan-
nels consumes about 6× of the No-HBM bandwidth and
requires 33% more data to be transferred on the WideIO
and DDRx interfaces. This significant increase in the band-
width utilization results in a 4.5× superior performance
over No-HBM. The HBM cache system benefits from both
WideIO and DDRx interfaces to utilize a slightly higher
bandwidth than IDEAL. However, a considerable portion
of the WideIO and DDRx bandwidths is consumed for
transferring blocks between main memory and HBM, which
results in 40% performance degradation over IDEAL. Based
on these observations, we set our design objectives towards
balancing the bandwidth utilization and the amount of data
movement over the interfaces.

Relative Transferred Data on WideIO and DDRx

R
el

at
iv

e W
id

eI
O

 a
nd

D

D
R

x
Ba

nd
w

id
th

(a) System Topology (b) Data Granularity

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5

HBM
IDEAL

No-HBM

0

1

2

3

4

5

6

0 2 4 6 8

256B

128B

64B

t = 1.24

t = 1higher
performance

Fig. 2. Bandwidth efficiency of various system topologies (a) and block
granularities (b).

We further study how bandwidth efficiency is impacted
by the data movement between main memory and HBM.
Figure 2(b) shows three HBM cache systems using various
data granularities (i.e., 64, 128, and 256 bytes) for transfer-
ring cache blocks between main memory and HBM. (All
the numbers are normalized to 64B HBM.) Prior work has

3

also studied coarse-grained caching for large in-package
memories to reduce the overhead of tag management [16],
[17], [18], [23], [39]. Installing a larger data block in the HBM
cache may help to reduce the miss rate and gain speedup
for the applications with high spatial locality. However,
transferring large data blocks requires more bandwidth that
may become counterproductive for the cache blocks with
low spatial locality and high address conflicts such as our
evaluated parallel applications. For the evaluated parallel
benchmarks, we observe respective averages of 12% and
21% hit-rate improvements when increasing the granular-
ity from 64B to 128B and 256B. However, using coarse
grained blocks results in a significantly larger bandwidth
consumption and more transferred data, thereby degrading
the average performance by 8-24%. We use the bandwidth-
efficiency plots to visualize the direction of performance
optimization in HBM cache systems. Given that x and y
axes are respectively the transferred data and bandwidth,
the slope of the plot is the inverse of the execution time
(i.e., bandwidth = TransferredData

Time). Every design point
is located on a line (y = x/t) that passes through the
origin with the gradient 1/t. (Although not shown in the
figure, each performance line follows a roofline model that
is bounded at the peak WideIO plus DDRx bandwidth.)
To achieve a higher performance, the goal is to select from
design points that are located on lines with larger gradients.
Among the points of each performance line, we observe
that the closer point to the origin results in less interface
utilization and better energy-efficiency. Accordingly, for the
evaluated parallel applications, fine-grained block manag-
ment (e.g., 64B blocks) is the best configuration.

2.2 Bandwidth Requirements
Every application exhibits a unique bandwidth requirement
for each cache line that depends on the mapping of data
to the cache address space at run-time and the inherent
characteristics of the applications. RedCache is designed
to monitor the run-time requirements of individual cache
lines and to identify the cache blocks with high bandwidth
costs for insertion to the HBM cache. Figure 3 shows the
relationship between bandwidth costs and the number of
block reuses for different applications in the No-HBM sys-
tem. On the y-axis, each plot represents the total amount of
off-chip bandwidth consumed over the course of execution
for various blocks. Every point on the x-axis indicates a set
of all data blocks with the same number of reuses, called
a homo-reuse group. To accurately capture the applications’
characteristics, we compute the bandwidth cost based on
the exact number of DDRx cycles required for serving each
DRAM request. For the evaluated benchmarks, we observe
that a considerable amount of bandwidth cost is due to
accessing only a subset of cache blocks that exhibit a narrow
range of reuses. This observation motivates us to design a
low cost mechanism that identifies these costly blocks and
transfers them to the HBM cache. Details on the proposed
techniques are provided in the next sections.

2.3 Last Block Updates
Most applications exhibit a common pattern for updating
the HBM blocks, which can be used for improving the band-
width efficiency. We observe that more than 82% of the last

Number of Block Reuses

O
ff-

ch
ip

 B
an

dw
id

th
 C

os
t

0

0.05

0.1

0.15

0.2

0 50 100 150

LU

0

0.05

0.1

0.15

0.2

0 50 100 150

MG

0

0.05

0.1

0.15

0.2

0 50 100 150

RDX

0

0.1
0.2
0.3
0.4
0.5

0 50 100 150

HIST

Fig. 3. Bandwidth requirements for four example parallel applications.

accesses to cache blocks in HBM cache are writebacks from
the CPU to update a cache line. These last write accesses
are counterproductive mainly because they (1) introduce an
unnecessary bandwidth and energy overhead for updating
cache lines before being moved to the main memory and
(2) impose an additional bandwidth overhead for changing
the HBM bus direction from a read for tag checking to a
write for updating data. Recent studies [11], [33] prove that
avoiding frequent changes of bus direction improves the
system performance and energy efficiency. One difficulty is
to accurately recognize the last writes among all the requests
generated for each application. RedCache employs a moni-
toring mechanism on individual cache blocks to identify the
last writes and route them to DRAM directly.

3 ADAPTIVELY REDUCED HBM CACHING

3.1 RedCache Block Management

RedCache proposes a novel control mechanism for manag-
ing bandwidth-hungry data in the HBM cache. One way to
identify costly cache blocks for insertion into HBM is to com-
pute a reuse count for each individual block and compare
the resultant value against a threshold to determine if the
block contributes in bandwidth consumption significantly.
Beside reuse counts, the population of blocks with the same
number of reuses determines the significance of bandwidth
consumption by each group of homo-reuse blocks2. Figure 4
illustrates the computed reuse counts for an example appli-
cation and a histogram plot of the bandwidth costs required
by homo-reuse blocks. (Real examples of such histograms
are provided in Figure 3.)

X 20
... ...
L 0
... ...
H 10
... ...

Block Count

Number of Reuses

Ba
nd

w
id

th
 C

os
t

α γ

X

H

L

Fig. 4. Demonstration that shows how α and γ can help to define costly
cache blocks for insertion into HBM.

2. RedCache identifies multiple data blocks as a homo-reuse group if
they exhibit the same number of reuses at runtime.

4

L, H, and X are three cache blocks that exhibit the key
attributes of three possible classes of data. The entire dataset
is classified using two reuse count thresholds, α and γ. The
α parameter determines the minimum number of reuses for a
block to be identified as highly reused data. Cache blocks
with reuse counts less than α, such as L, are not able to
amortize the bandwidth and storage costs of caching in
HBM due to their relatively low reuse counts. As a result,
RedCache prefers to keep such L-type blocks in the off-chip
DRAM even if they require high memory bandwidths. The γ
parameter threshold is defined to categorize the highly reused
blocks based on the significance of bandwidth consumption made
by homo-reuse groups. H-type blocks are highly reused and
contribute to the majority of bandwidth consumption. In
contrast, despite their high reuse counts, the X-type blocks
require a relatively lower bandwidth. RedCache transfers
the H- and X-type data to the HBM cache; however, the
X-type blocks are considered as the first candidates for
eviction or invalidation from HBM if further capacity for
H-type blocks is necessary. Please note that α and γ are
determined at run-time based on application demeanor.
Caching the frequently access blocks and on-chip dead block
prediction mechanism have been explored by recent work
in the literature [20], [22], [28], [30]. RedCache is different
from dead block prediction solutions in the following ways.
First, almost all of dead block methods try to increase hit
rate or decrease power consumption using prediction and
stochastic solutions. Second, in dead block prediction, some
status bits need to be kept that leads to an extra accesses
to DRAM cache located in a different die. This accesses
leads to performance and energy-efficiency degradation.
Third, dead block prediction evict some blocks with zero
reuse that may waste the bandwidth and performance.
In RedCache, the goal is to improve system performance
and decrease system energy by increasing the efficiency
of bandwidth utilization in HBM caches by identifying
bandwidth-hungry blocks rather than evicting dead blocks.
Moreover, instead of evicting zero reuse blocks, we only
invalidate some low bandwidth-hungry blocks during only
write operations without a need to an additional access
to the DRAM cache. We believe the existing dead block
prediction solutions in the case of DRAM cache are not
helpful to improve performance and bandwidth efficiency
Although previous work such as SMS [32] and STeMS [31]
show high spatial locality in streaming applications, this is
not the case in evaluated parallel applications. Especially in
the case of graph applications, there are a lot of irregular
access patterns that make spatial locality less effective. we
should explain independent relation to physical address as
well.

3.2 Runtime Block Classification

A perfect implementation of the RedCache block manage-
ment requires a global knowledge of the ultimate number
of block reuses and the aggregate bandwidth consumptions
for homo-reuse groups per every user application, which is
not practical. Instead, RedCache proposes an adaptive block
management mechanism that employs runtime counters
to estimate the bandwidth costs and the number of block
reuses. The proposed mechanism employs the counters to

constantly tune the α and γ thresholds based on the runtime
characteristics of applications. Theoretically, every cache
block requires a pair of α- and γ-counters that compute
the number of reuses for adjusting the thresholds and
maintaining data in HBM. The α-counter computes the
number of accesses to every cache block stored in the main
memory before placement in the HBM cache. Whereas, the
γ-counters track the total number of reuses for individual
cache blocks in the HBM cache before eviction.

3.2.1 Alpha Counting

As alpha counting is necessary for the entire memory space,
every cache block requires a counter. However, tracking
each cache block with a counter may result in a significant
memory overhead. For example, a 32GB main memory
requires a 512MB additional space for storing 8-bit α-counts
per 64B data blocks. In addition to the significant area and
capacity overheads, accessing a large table of α-counts may
result in large energy and delay overheads per memory ac-
cess, thereby degrading performance and energy-efficiency.
RedCache reduces the costs of α-counts through (1) sharing
counters among cache blocks, (2) storing the counts in the
main memory, and (3) buffering only a subset of the α-
counts on the processor die for fast and energy-efficient
block management. We observe that the majority of cache
blocks within each 4KB OS page exhibit the same reuse
counts. We compute the average standard deviation bins
of number of reused blocks within a page across all the
evaluated applications. Our results show that in average,
90% of blocks inside a page falls into [0,1), 6% of the
blocks falls into [1,2) and the rest belong to other intervals.
Based on this observation, RedCache provides a single α-
count to compute the average number of accesses to all the
64B blocks within each 4KB page. Therefore, the memory
requirement for maintaining α-counts is decreased by 64×.
Similar to existing work [39], the count values are added to
the page table in the main memory. 3 On every update to the
CPU TLBs (i.e., miss rate in TLBs is low [39]), the α-counts
are fetched from the main memory (as the part of the page
table) and stored in a buffer at the block manager of the
RedCache controller. RedCache enjoys a virtually free ride
by the existing mechanism for accessing α-counts stored
in the main memory [8]. An on-chip buffer with the same
number of entries as in the CPU TLBs is used to store the
α-counts for physical page numbers (Figure 5). For every
incoming memory request, the contents of a corresponding
α-count is updated and its new value is sent to the block
manager logic. Then, the block manager determines if the
block is yet placed in the HBM cache.

Physical Page ID α-count

TLB
Virtual

Address

Page Table

Update

Memory Request

Block
Manager

Logic

Fig. 5. Illustrative example of the proposed alpha counting mechanism.

3. Also, they can be stored in main memory independent of the page
tables requiring only 8MB of memory overhead.

5

3.2.2 Gamma Counting
Gamma counting is only necessary for the existing cache
blocks in HBM. The γ-counts may be stored as parts of the
tag bits. For example, every 64B data block with 8B tags
and ECC is now augmented with an additional byte that
represents the reuse count. (A 1.3% memory overhead is
required for storing the reuse counts.) Each reuse count is
set to zero once its corresponding block is placed in HBM
and is incremented on every following reads and writes.4 A
cache block becomes a candidate for eviction or invalidation
from HBM if its reuse count is greater than or equal to the
adaptive γ value. In other words, γ represents an expected
lifetime for the HBM cache blocks at any time.

Not only do multiple applications exhibit different life-
times but also the expected lifetime varies during the ex-
ecution of a single application. The γ value is updated
on a regular basis to capture the temporal characteristics
of each execution phase. On every cache hit, RedCache
uses the count value of the recently accessed block to
compute the new γ (Figure 6). To average out the abrupt
deferences among the counts, we adopt a linearly ascend-
ing/descending approach to update γ. The count and γ
values are compared by the block manager. If they are
different, γ will be incremented or decremented to reduce
the gap. Please note that we thoroughly study both sub-
and super-linear functions as well as different approaching
speeds. However, the evaluated applications exhibit a better
performance and energy-efficiency when a linear function is
employed.

γ

Request

Block
Manager

LogicUpdate

r-count Tag + ECC Data

Fig. 6. Illustrative example of the proposed gamma counting mecha-
nism.

4 REDCACHE ARCHITECTURE

This section provides the RedCache system overview
and explains two architectural mechanisms for alpha and
gamma counting in RedCache. As the proposed mecha-
nisms are supplementary to each other, the designers may
include one or both of the proposed mechanisms in an in-
package cache systems based on the application needs.

4.1 System Overview
Figure 7 shows an overview of the RedCache architec-
ture. An off-chip DRAM system is employed as the main
memory under a DDR4 interface. The RedCache controller
exploits the HBM dice as an in-package cache for storing
bandwidth-hungry data blocks in the processor package,
thereby eliminating the needs for accessing the off-chip
memory frequently. Along the lines of prior work on fine-
grained cache [12], [29], HBM rows are partitioned into
multiple blocks of tag and data, each of which is accessed

4. In practice, RedCache employs saturating counters for tracking
block reuses.

using one read or write command. For example, the Bear
cache stores 28 blocks per every 2KB row, where each
block comprises 64B data and 8B metadata [12]. Similarly,
RedCache stores 28 blocks per row while further utilizing
the remainder bytes per row for augmenting every metadata
with an eight-bit reuse count. Therefore, RedCache provides
virtually the same capacity as the Bear cache. To implement
the gamma counting mechanism, the controller maintains a
register for the γ value on die. Moreover, a lookup table is
used by the RedCache controller to store the α-counts for
managing the cache blocks.

Shared L3

O
ff-

C
hi

p
D

R
A

M

DDR4

WideIO
RedCache Controller

Main Memory Controller

Processor Die

Core
L1/L2

Core
L1/L2

Core
L1/L2

Core
L1/L2

T
SV

 S
tr

ip
e

... ...

DRAM Dice
Bank

Fig. 7. Illustrative top view of the proposed RedCache architecture in a
multicore system.

The block manager at the RedCache controller follows
the operations shown in Figure 8 to optimize HBM caching
based on the proposed alpha and gamma counting mech-
anisms. All the caching operations are optimized based on
the assumption that a single tag and data may be accessed
per every transfer on the HBM interface. All memory re-
quests need an initial read access for tag checking, where it
also fetches the data from HBM to the controller. On a read
hit, no follow up accesses are necessary; however, a second
HBM access is required if the request is a write hit. The three
main components of the flow are (1) alpha counting and
forwarding the least frequently accessed blocks to the main
memory, (2) gamma counting and evicting the last writes
from HBM, and (3) normal HBM caching for the bandwidth
hungry blocks.

4.2 Alpha Counting Unit
The RedCache controller employs a set of 6-bit down coun-
ters to realize alpha counting for individual memory pages.
The α-counts start from a non-zero positive number and are
decremented on every memory access until they reach 0.
(No further decrement is performed if the counter is zero.)
The initial value of an α-count must represent the expected
number of page accesses before any data from the page is
reused. For example, the 65th access to a page with 64 cache
blocks will be a block reuse if all the previously accessed
data are touched once. We count reuse per page; Since it is a
direct mapped all access may refer to one block. So, no need
to touch all of them once to be considered as reuse On the
first access to a page, α-count is initialized with n

ζ ; where,
n is the total number of blocks per page and ζ represents
the expected block reuses at the time of initialization Red-
Cache is able to adapt α to the application characteristics
at run-time. For example, consider initializing α for a new
page in two different applications HIST and LU when ζ is
respectively set to 1 and 32. RedCache considers a larger α

6

Yes

No

Memory Request

⍺-count--

⍺-count = 0

Request
Type

Write

Read

Evict Old Block

Tag

update !
r-count++

Miss

Main Memory

HBM Fill

Return to
L3

Hit

Tag

update !
r-count++

r-count > !

Invalidate
Block

Hit

Yes

Old BlockMiss

Main
Memory

Evict Old Block

HBM WriteNo

Dirty

Clean

Alpha Counting

Gamma Counting

Fig. 8. Example flow of the necessary operations for applying alpha and
gamma counting in RedCache.

(=64) for HIST to skip more blocks from HBM caching as the
application exhibits a low block reuse. In contrast, a smaller
α (=2) is computed for LU that results in installing cache
blocks in HBM after the first page; therefore, bandwidth-
hungry data blocks are more likely to be cached by HBM.

4.3 Gamma Counting Unit
RedCache employs γ to alleviate the overheads of last block
updates in the HBM cache (recall from Section 3). As shown
in Figure 8, an incoming request may undergo gamma
counting if its corresponding α-count is zero. A tag checking
is necessary for either of reads and writes to determine if
the requested block exists in the HBM cache. On both read
and write hits, the block’s r-count is incremented to track
the number of block reuses. Moreover, γ is updated with
respect to the r-count value on every tag hit (Section 3.2.2).
For every write hit, if the newly computed r-count equals
γ, the HBM cache block is invalidated and the write request
is forwarded to the main memory. Otherwise, the RedCache
controller updates the block contents with an HBM write
operation and r-count is incremented. On a write miss,
pushing the block into HBM may require an additional
writeback to the main memory if an eviction is required
and the existing old block is dirty. To avoid updating both
HBM and main memory, RedCache writes the block into
HBM only if the old block is clean; otherwise, the block is
directly written to the main memory.

Unlike alpha counting, the counters for tracking gamma
(i.e., r-counts) are stored in HBM; therefore, any update to an
r-count must be performed using a WideIO write command.
As mentioned in Figure 8, r-counts doesn’t need to be up-
dated on cache misses. For any write hit, the block’s r-count
can be updated as part of the block write operation; there-
fore, there is no need for any additional writes. However,
every read hit necessitates an extra WideIO write to update
the block. These additional writes may significantly degrade
bandwidth efficiency and performance. Figure 9 shows a

few important WideIO timing parameters [34] required for
two tag reads with and without a write in between. In
the absence of the write, the second read is delayed by a
column-to-column delay (tCCD). The write, however, in-
creases the delay significantly due to three additional timing
parameters enforced between the write and the second read.
The additional timing parameters (i.e., tBURST, tCWD, and
tWTR) are necessary to ensure (1) the block transfer on the
bus is not interrupted, (2) write operation in DRAM layers
is complete, and (3) the bus direction is ready for reading
data.

Time

(a) Two Tag Reads

(b) A Write (update) in Between Two Tag Reads

RD X RD Y

RD X WT X RD Y

tCCD

tCCD tBURST+tCWD+tWTR

Fig. 9. Diverse impact of block updates on the WideIO bandwidth.

Changing bus direction from a read to a write for up-
dating data is expensive in terms of latency and energy.
For instance, This bus turnaround delay tWTR is about
7.5-9.5 ns for multiple DDR generations [11]. To alleviate
the high cost of block updates in RedCache, we propose
an r-count update (RCU) manager that supplements the
WideIO command scheduler. On every read hit, the RCU
manager receives a copy of the block with updated r-count.
The block is stored in an internal buffer that accommodates
up to 32 entries. Figure 10 shows an illustrative example
of the RCU architecture including the RCU manager logic,
a 32-entry content-addressable memory (CAM) for block
indices, and a 32-entry random addressable memory (RAM)
for storing the cache blocks. The RCU manager relies on
a set of status signals from the transaction queue to decide
when an update can be performed with a minimal impact on
bandwidth-efficiency and performance. To accomplish this
goal, the RCU manager postpones each r-count update until
at least one of the following events occurs. (1) The command
scheduler serves a block write to the same index—i.e.,
channel, rank, bank, and row—as that of the queued RCU
request. Therefore, the additional delay by the RCU request
can be lowered to tCCD. This condition is evaluated by the
CAM component on every write issued by the command
scheduler. (2) The transaction queue becomes empty. Thus,
all of the queued RCU request are served without delay-
ing any cache requests. (3) The RCU queue is full. Our
simulation results on the evaluated parallel applications
indicate that in more than 97% of the total cases, none of
the condition becomes true. This means that the additional
latency will be reduced by a factor tCCD

tBurst+tCWD+tWTR =
6.375. Moreover, it prevents changing bus direction from
read to write and vice versa.

The RCU queue can be viewed as a 2.5KB memory that
stores 32 recently read data. We observe that a number of
requested blocks by future accesses may be found in the
RCU queue. As a result, RedCache further employs the RCU
buffer as a block cache for eliminating some of the HBM
accesses.

7

New

RCU
Manager

Logic

Index Tag Data

Block

Status

To HBM LayersCommand
Scheduler

Fig. 10. The proposed RCU manager.

5 EXPERIMENTAL SETUP

5.1 Architecture
For all of the evaluations, we consider a sixteen-core out-of-
order CPU with three levels of on-die cache: L1 and L2 are
private per core and L3 is shared by all of the cores. For the
HBM cache system, we consider multiple in-package DDR4
DRAM layers connected to the processor die through an
eight-channel WideIO interface [14], [34].Data bus is 128-bit
wide and cache tags are placed together data in unused ECC
bits [15], [37]. We model a 32GB main memory with two
DDR4 channels, two ranks per channel, and eight banks per
rank [5]. The main memory and HBM have the same access
latency. Table 1 shows the simulation parameters considered
for RedCache and the baselines.

TABLE 1
The evaluated system configurations.

Processor
Core 16 4-issue OoO cores, 256 ROB entries, 3.2 GHz

IL1/DL1 cache 64KB/64KB, 2-way/4 way, LRU, 64B block
L2 cache 128KB, 8-way, LRU, 64B block
L3 cache 8MB, 8-way, LRU, 64B block

DRAM cache
Specifications 2GB, 4 channels, 8 rank/channel,

16 banks/channel, 1600MHz DDR4, 128 bits per channel
Timing tRCD:44, tCAS:44, tCCD:16, tWTR:31, tWR:4, tRTP:46, tBL:10

(CPU cycles) tCWD:61, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181
Off-Chip Main Memory

Specifications 32GB, 2 channel, 2 ranks/channel,
8 banks/rank,1600 MHz DDR4, 64 bits per channel

Timing tRCD:44, tCAS:44, tCCD:61, tWTR:31, tWR:4, tRTP:46, tBL:10
(CPU cycles) tCWD:44, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181

5.2 Workloads
We assess power and performance of RedCache and the
baseline systems by executing a mix of 17 applications:
15 parallel and six serial applications. The parallel pro-
grams are selected from the NAS Parallel Benchmarks [6],
SPLASH-2 [35], and Phoenix [36] benchmark suites. The
serial programs are selected from integer and floating-point
SPEC2017 benchmark suites [4]. All the serial applications
are executed in the rate mode. We use GCC to compile all
of the applications with -O3 flag. For all the benchmarks,
we consider warming up the cache until the cache is full;
then, we simulate the next ten billion instructions or until
the application completes, whichever happens first. Table 2
shows the workload characteristics and their corresponding
input sets.

5.3 Methodology
We use the ESESC [19] simulator for modeling a multi-
core system with three on-die cache levels. The simulator

TABLE 2
Workloads and data sets.

Label Benchmarks Suite Input
FT Fourier Transform NAS Class A
IS Integer Sort NAS Class A

MG Multi-Grid NAS Class A
CH Cholesky SPLASH-2 tk29.0

RDX Radix SPLASH-2 2M integer
OCN Ocean SPLASH-2 514x514 ocean
FFT FFT SPLASH-2 1048576 data points
LU Lower/Upper Triangular SPLASH-2 isiz02=64

BRN Barnes SPLASH-2 16K particles
HIST Histogram PHOENIX 100MB file
LREG Linear Regression PHOENIX 50MB key file
GCC C Compiler SPEC2017 gcc-smaller.c
X264 Video Compression SPEC 2017 BUCKBunny.264 1280x720
XZ Data Compression SPEC 2017 CPU2006docs.tar

MCF Route Planning SPEC2017 15000 nodes, 162202 Active Arcs
NAB Molecular Dynamics SPEC 2017 1am0 11222214447 122

NAMD Molecular Dynamics SPEC 2017 apoa1.input

is heavily modified to model an integrated cycle-accurate
module for the in-package DRAM using a detailed WideIO
interface. Similarly, we integrate a cycle-accurate model for
the off-chip DRAM via a DDR4 interface. On top of the
WideIO controller, we implement the cache controllers for
the Alloy [29] and Bear Cache [12].

We implement six variants of RedCache to fully assess its
performance and energy benefits, which include all or some
of the proposed optimizations. RedCache is the main archi-
tecture that includes alpha and gamma counting, as well
as the RCU management to alleviate the cost of r-count up-
dates. We also model a basic version of the RedCache, called
Red-Basic, that exclude RCU. We model a more futuristic
architecture with in-DRAM processing capabilities, called
Red-InSitu. This variant of RedCache enables updating r-
counts inside DRAM layers with no need for transferring r-
count values over the WideIO bus. As Figure 11 shows, Red-
InSitu enables the global row buffer (ROB) to perform tag
checking, r-count updating, and gamma comparing. Red-
InSitu employs XOR and NOR gates for tag checking and
comparing gamma against block r-counts. To reduce the
complexity of the increment logic, we use a linear feedback
shift register (LFSR) that generates a pseudo-random se-
quence instead of ordered numbers. The LFSR’s polynomial
is set to X8 +X6 +X5 +X4 + 1 to produce 28 − 1 = 255
distinct pseudo random numbers [27]. For each increment,
a previously computed count is first loaded from DRAM
to the LFSR; then, the result of increment is written back to
DRAM. This, however, makes the count values incompatible
with γ. To address the issue, the cache controller converts γ
to a corresponding γ′ before sending it to the in-situ logic.
This structure requires only three additional gates rather
than sixteen gates for an 8-bit block counting with ripple
carry adders.

We compute the area and delay overheads of in-situ
r-count management using the DRAM Power Model [10]
with a 55nm technology. We then scale the results to a
22nm technology. We also model Red-Gamma an an in-
DRAM version of gamma counting with Alloy caches and
Red-Alpha as a direct mapped cache with alpha counting
only. We accurately model the energy and performance of
the HBM and DRAM controllers. We use CACTI 7.0 [7]
to compute the additional delay and per-access energy of
table accesses for alpha counting and RCU management
at the memory controller. The system energy and power

8

Global Row Buffer

Additional
Logic

tag1

Counter Enable

SA
8

...

...

!'8
!'1

1

2

3

SA
6

SA
5

SA
4

SA1SA8 SA7 SA6 SA5 SA4 SA3 SA2

!'2

SA
2

...

...

SA1SA7tag7

Fig. 11. The proposed in-memory logic for gamma counting in Red-
Cache.

computation is done using the ESESC simulator [19] in
coordination with McPAT [24] for the processor die, Micron
power calculator [1], [2] for the main memory, and prior
work on HBM memories for the in-package DRAM cache
architecture.

6 EVALUATION

We evaluate the area overhead, system performance, the in-
package cache and main memory traffics, and the energy
consumption of the baseline systems as well as RedCache.
We further study the impact of each optimization solutions
and different parameters such as DRAM cache sizes, and
number of banks. Also, we examine a set associative Red-
Cache.

6.1 Hardware Overhead
RCU requires a 2.5KB buffer with 32 entries, each of which
is 73B wide. We model the RCU buffer as a fully associative
cache, where the CAM component stores 16-bit cache in-
dices. The results indicate a 300ps access time for the buffer,
which is modeled as one additional CPU cycle to every
HBM access. For every search and read operations we con-
sider 16pJ and 17pJ respectively for our energy evaluations.
Similarly, we compute the energy and delay overheads of
the 768B alpha counting table, which is modeled as a 4-
way set-associative cache. The energy and delay of the alpha
counting table are 1ps and 25ps, respectively. Our results for
the Red-InSitu model indicate less than 1% area overhead
and 3% more power consumption due to the additional logic
for r-count management and tag checks.

6.2 Execution Time
Figure 12 shows the execution time of different DRAM cache
architectures normalized to that of the Alloy Cache for 14
parallel workloads. For all of the applications both α and
γ contribute in reducing the execution time; however, the
impact of α is greater than γ (27% versus 14%). The reason
is that γ influences the write requests by invalidating a
block from the HBM cache. In contrast, α affects both read
and write requests by decoding if a data block should be
placed in the DRAM cache. By putting counter values in the

RCU queue, RedCache can reach almost an execution time
close to that of Red-InSitu (i.e., about 98% of Red-InSitu).
RedCache outperforms Alloy Cache and Bear Cache by 31%
and 24%, respectively. Red-InSitu outperforms them by 33%
and 26%. Unlike Bear Cache, RedCache is not a stochastic
solution. RedCache can eliminate all the unnecessary cache
accesses before tag checking, even for the blocks that have
not been identified as bandwidth hungry. Moreover, Bear
Cache does not provide solutions for installing and evicting
blocks in the HBM cache.

0
0.2
0.4
0.6
0.8
1
1.2
1.4

Ex
ec

ut
io

nT
im

e N
or

m
al

iz
ed

to

 th
e A

llo
y

C
ac

he

Bear Red-Alpha Red-Gamma Red-Basic Red-InSitu RedCache

Fig. 12. Relative execution time.

6.3 Energy

RedCache reduces the HBM energy for several reasons.
First, many HBM accesses are omitted because α can decide
to bypass HBM and send the request to the main memory
directly. Second, further HBM accesses are eliminated on a
cache miss if the existing block in HBM is dirty. The request
is sent to the main memory directly without evicting the
existing dirty block from HBM. Third, RedCache decreases
the execution time hence the static energy. Figure 13 shows
the DRAM cache energy for all the evaluated systems.
RedCache improves the HBM energy by 37% and 42% over
the Bear and Alloy baselines. RedCache also outperforms
Red-InSitu in terms of HBM energy because it does not
perform any computation inside HBM.

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

H
BM

 E
ne

rg
y

N
or

m
al

iz
ed

to

 th
e A

llo
y

C
ac

he

Bear Red-Alpha Red-Gamma Red-Basic Red-InSitu RedCache

Fig. 13. Relative HBM cache Energy

RedCache reduces the system energy by 29% and 18%
compared to Alloy and Bear Caches. Red-InSitu doesn’t
need to transfer the counter values over the HBM channels
and reaches the best system energy compared to the other
baselines (33% over the Alloy Cache). Figure 14 shows the
system energy for all the evaluated systems.

We also compute the energy-delay product for the eval-
uated architectures. RedCache reduces the energy-delay
product by 51% and 40% compared to the Alloy and Bear
baselines, respectively.

9

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Sy
st

em
 E

ne
rg

y
N

or
m

al
iz

ed

to
 th

e A
llo

y
C

ac
he

Bear Red-Alpha Red-Gamma Red-Basic Red-InSitu RedCache

Fig. 14. Relative system energy.

6.4 HBM and Main Memory Traffic

The aggregated transferred bits over the HBM and main
memory channels for the evaluated workloads normalized
to the Alloy Cache baseline is demonstrated in Figure 15.
In general, the amount of transferred data is reduced due
to eliminating HBM accesses. However, sending metadata
(i.e., counter values) over the HBM interface increases the
aggregated traffic in Red-Basic and RedCache. Hence, the
aggregated traffic will not be reduced considerably in com-
parison with Alloy Cache (i.e., about 2-3% less than Alloy
Cache).

Red-InSitu overcomes this problem by updating the
counters inside the HBM cache. It outperforms Bear Cache
by 11%. In RedCache, we exploit the HBM bandwidth to
achieve the same gains of Red-InSitu by putting the counter
values in RCU. Note that unlike Bear [12] and Banshee [39],
RedCache doesn’t take advantage of bypassing policy in
the case of a miss fill [12]. Nevertheless, this technique
is orthogonal to the proposed RedCache and can further
reduce the aggregated traffic for RedCache. However, both
α and this method has to be considered simultaneously to
efficiently put the cache blocks inside HBM. Further studies
of applying this technique to the RedCache is left for future
work.

0

0.2

0.4

0.6

0.8

1

1.2

A
gg

re
ga

te
d

Tr
an

sf
er

re
d

Bi
ts

N
or

m
al

iz
ed

 to
 th

e A
llo

y
C

ac
he

Bear Red-Alpha Red-Gamma Red-Basic Red-InSitu RedCache

Fig. 15. Relative aggregated transferred bits over HBM and main mem-
ory channels.

6.5 Discussion

This section examines several sensitivity analyses to study
the impacts of HBM sizes and banks. For the following
experiments, we use the same configuration mentioned in
Table 1 and only change the parameters that are specifically
mentioned. All the results are normalized to Alloy Cache
with the same configuration.

6.5.1 Varying the HBM Size

Tables 3 and 4 report the normalized execution time and
HBM energy to Alloy cache for various HBM sizes. Table 3
shows that increasing the HBM size for RedCache results in
a reduced execution time benefit by 4.85% (form 38.89% to
34.04%). In the case of Bear Cache, this reduction is larger
(12.81%).

TABLE 3
Geomean of execution time normalized to Alloy Cache for various HBM

sizes.

Sizes RedCache Bear Cache
0.5GB 61.11% 77.71%
1GB 62.04% 80.19%
4GB 65.96% 89.92%

As shown in Table 4, the RedCache energy benefit is
reduced by 5.13% while increasing the HBM size from 0.5GB
to 4GB. This reduction in energy benefits is 9.33% in the case
of Bear Cache.

TABLE 4
Geomean of the HBM cache energy normalized to Alloy Cache for

various HBM sizes.

Sizes RedCache Bear Cache
0.5GB 56.48% 75.70%
1GB 57.29% 78.07%
4GB 61.61% 85.03%

6.5.2 Varying the Number of HBM Banks

A similar trend is observed when the number of banks
varies. By increasing the number of banks per channel from
4 to 32, the performance benefits are decreased by 3.98% for
RedCache, which is less than 10.36% for the case of Bear
Cache.

TABLE 5
Geomean of the execution time normalized to Alloy Cache for various

number of HBM banks.

Sizes RedCache Bear Cache
4banks 61.85% 76.25%
8banks 62.02% 80.20%
32banks 65.83% 86.61%

Table 6 shows that the DRAM cache energy for both
RedCache and Bear Cache changes equally (i.e., about 4%)
while varying the number of HBM banks.

TABLE 6
Geomean of HBM cache energy normalized to Alloy Cache by varying

number of banks.

Sizes RedCache Bear Cache
4banks 56.54% 77.95%
8banks 56.88% 79.10%
32banks 60.32% 81.87%

Overall, these results demonstrate that the Bear baseline
is more sensitive than RedCache to the in-package DRAM
size and the number of HBM banks.

10

6.6 Evaluating for the SPEC Workloads

We study the potentials of RedCache for multiple serial
programs selected from SPEC 2017. In general, serial pro-
grams show less conflict misses in HBM. Therefore, we
also consider mixed workloads that is a combination of
multiple programs. Due to the heavy load of simulations
in our cycle-accurate simulator, we only present the results
for Bear, Red-InSitu, and RedCache. Figures 16 and 17
illustrate the execution time and system energy normalized
to those of Alloy Cache. RedCache and Red-InSitu improve
the execution time by respectively 7% and 9% over Bear
Cache. In terms of system energy, RedCache and Red-InSitu
are better than Bear Cache by 10% and 12%, respectively.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

GCC X264 XZ MCF NAB NAMD Mixed GeomeanE
xe

cu
tio

n
Ti

m
e

N
or

m
al

iz
ed

to

 th
e A

llo
y

C
ac

he

Bear Red-InSitu RedCache

Fig. 16. Relative execution time of SPEC benchmarks.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

GCC X264 XZ MCF NAB NAMD Mixed Geomean

Sy
st

em
-E

ne
rg

y
N

or
m

al
iz

ed

to
 th

e A
llo

y
C

ac
he

Bear Red-InSitu RedCache

Fig. 17. Relative system energy of SPEC benchmarks.

6.7 Set Associative RedCache

To improve hit rate and execution time, we build a 2-way
set associative RedCache architecture. Similar to Accord
Cache [37], the set associative RedCache is based on way-
install and way-prediction. For each cache block, if α de-
cides to put the cache block in HBM, the incoming cache
block is routed to a preferred way. To do so, we employ the
Probabilistic Way-Steering (PWS) and Ganged Way-Steering
(GWS). In PWS, cache blocks are driven to a preferred
way based on a probabilistic approach. In GWS, cache
blocks of a spatially contiguous region are sent to a way
where an earlier cache block from that region was installed.
This preferred way is used as the default way prediction.
Figures 18 and 19 demonstrate the relative execution time
and system energy of a set associative Alloy Cache (Assoc-
Alloy), Red-Cache, and a 2-way set associative RedCache
(Assoc-Red). Associative RedCache improves the execution
time and system energy by respectively 32% and 30% over
Assoc-Alloy.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Ex
ec

ut
io

nT
im

e o
f A

ss
oc

ia
tiv

e
C

ac
he

sN
or

m
al

iz
ed

 to
 th

e
A

llo
y

C
ac

he

Assoc-Alloy RedCache Assoc-Red

Fig. 18. Relative execution time for associative cache.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Sy
st

em
 E

ne
rg

y
of

 A
ss

oc
ia

tiv
e

C
ac

he
s N

or
m

al
iz

ed
 to

 th
e

A
llo

y
C

ac
he

Assoc-Alloy RedCache Assoc-Red

Fig. 19. Relative system energy for associative cache.

6.8 Where RedCache Stands
Figure 20 shows the bandwidth efficiency of all the eval-
uated cache architectures for the parallel workloads. Red-
Cache and Red-InSitu are almost located on the same line,
which indicates that RedCache achieves virtually the same
performance as Red-InSitu. RedCache achieves the highest
bandwidth utilization. However, due to transferring meta-
data, the amount of transferred data is worse than Bear
Cache.

Relative Transferred Data on WideIO and DDRx

R
el

at
iv

e W
id

eI
O

 a
nd

D

D
R

x
Ba

nd
w

id
th

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1

t = 0.67

t = 0.81

0.9

1

1.1

1.2

1.3

1.4

1.5

0.7 0.8 0.9 1

RedCache

Red-Insitu Red-Alpha

Bear

Red-Gamma

Red-Basic

Fig. 20. Efficiency of bandwidth utilization.

7 RELATED WORK

A large body of work has been done to improve the DRAM
cache performance. Loh-Hill Cache [25] proposes a 29-way
set-associative architecture that increases the hit ratio. It also
increases the latency and bandwidth waste per request as
it requires transferring three cache lines for a tag check.
Instead, Alloy Cache [29] forms a tag and data entry in a
direct mapped architecture to reduce latency.

Bear Cache [12] (1) employs a bit for each cache block
(DCP) indicating if it’s in LLC to eliminate probing on a
dirty block eviction; and (2) alleviates bandwidth waste
due to misses via buffering tags of lately accessed neighbor
blocks (NTC). Unlike Bear Cache, RedCache is not a stochas-
tic solution. RedCache can eliminate all unnecessary cache

11

accesses before tag checking, even for the blocks that have
not been identified as bandwidth hungry blocks. Also, Bear
Cache does not provide solutions for installing and evicting
blocks in/from HBM cache. The proposed optimizations by
Bear Cache (e.g., bandwidth aware bypass) can complement
RedCache.

Footprint Cache [17] is a page-based set associative
DRAM cache that fetches only those blocks within a page
that is accessed during the page’s residency in cache. Al-
though it eliminates extra off-chip bandwidth associated
with the page-based architectures, it is not scalable since
it stores tags on-chip. Moreover, it does not provide low
hit latency. Unison cache [16] tries to achieve high hit rates
and low DRAM cache access latency by taking the best of
Alloy Cache [29] and Footprint Cache [17]. In the Unison
Cache, each DRAM row includes two sets and four pages.
It reads all tags in DRAM row, predicts the way and then
read the data block from that way. However, in the case
of miss prediction, it needs to read all the way serially.
Both Footprint and Unison Caches, wastes the DRAM cache
capacity due to unused blocks within a page.

TDC [23] proposes a tagless cache architecture for in-
package DRAM by introducing a cache-map Translation
Lookaside Buffer that stores virtual to cache address map-
pings. FTDC [13] solves the problem of over-fetching blocks
within a page that never get used by fetching only the blocks
that are likely to be used during the page’s lifetime. Both
TDC and FTDC impose performance overhead and com-
plexity to keep coherent address mappings in TLBs among
all the cores [39]. Banshee [39] is another page-granularity
DRAM cache that takes advantage of software/hardware
techniques to optimize bandwidth without compromising
the latency for applications with high spatial locality. Like
TDC, Banshee also uses TLB to eliminate the tag lookup
overhead. However, it updates the page table and TLB
entries when a tag buffer is full. RedCache does not impose
any TLB, page table entries, tag buffer, and operating system
overheads for tag checking. Instead, it has a tag manage-
ment mechanism and solutions for data block placement,
eviction, and bypassing the DRAM cache based on precise
monitoring of the application behavior.

Young et al. [38] suggest a replacement policy to improve
the hit rate of direct-mapped DRAM caches. They propose
a replacement that monitors and protects the highly reused
cache block via bypassing others. Similar to RedCache, the
authors observed that coarse-grained approaches like Bear
Cache are not efficient when the HBM size or associativity
increases. However, RedCache is different from this work
in several ways. This prior work contemplates replacement
policies for improving the hit rate; while, RedCache goes
further and even investigates placement in the main mem-
ory before tag checking. The prior work mainly suites appli-
cations with high spatial locality; while, RedCache targets
parallel multi-threaded applications with low spatial local-
ity and high address conflicts. Moreover, Redcache identifies
block with a high number of reuses with two deterministic
parameters at run-time. While the local parameter (α) is
to some extent similar to Efficient Track Reuse proposed by
the prior work, the global parameter (γ) is different and
identifies when to evict a block from HBM. To mitigate the
overhead of such precise monitoring, RedCache takes into

account the physical restrictions on the bus for switching
from a tag check to a data write and performs the counter
updates at the right time to minimize the overheads.

Unlike the precise monitoring of RedCache, there exist
several methods to detect cache blocks that are not reused
after placement in caches [20], [21], [22], which are based on
stochastic sampling and prediction.

8 CONCLUSIONS

RedCache brings new insight for designing control mecha-
nisms for DRAM caches, especially for the parallel applica-
tions that show considerable amounts of conflict misses in
DRAM cache. The insight is based on the new observations
of bandwidth requirement of a set of parallel applications.
RedCache proposes a unified architecture for block installa-
tion and eviction and also bypassing HBM cache based on
the exact monitoring of dynamic behavior of applications.
RedCache creates a balance between bandwidth utilization,
bandwidth efficiency and caching overhead to improve
performance and system energy significantly.

REFERENCES

[1] Micron ddr4 power calculator. https://www.micron.com/∼/
media/documents/products/power-calculator/ddr4 power
calc.xlsm.

[2] Micron lpddr3 power calculator. http://www.micron.com/.
[3] Amd. high bandwidth memory. URL http://www.amd.com/ en-

us/innovations/software- technologies/hbm., 2016.
[4] Spec cpu20017 benchmark suites. https://www.spec.org/cpu2017/.,

2017.
[5] JEDEC Solid State Technology Association et al. Jedec standard:

Ddr4 sdram. JESD79-4, Sep, 2012.
[6] D. H. Bailey et al. NAS parallel benchmarks. Technical report,

NASA Ames Research Center, March 1994. Tech. Rep. RNR-94-
007.

[7] Rajeev Balasubramonian, Andrew B Kahng, Naveen Murali-
manohar, Ali Shafiee, and Vaishnav Srinivas. Cacti 7: New
tools for interconnect exploration in innovative off-chip memories.
ACM Transactions on Architecture and Code Optimization (TACO),
14(2):14, 2017.

[8] Thomas W Barr, Alan L Cox, and Scott Rixner. Translation caching:
skip, don’t walk (the page table). ACM SIGARCH Computer
Architecture News, 38(3):48–59, 2010.

[9] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale,
Lei Jiang, Gabriel H Loh, Don McCaule, Pat Morrow, Donald W
Nelson, Daniel Pantuso, et al. Die stacking (3d) microarchitecture.
In Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 469–479. IEEE Computer Society, 2006.

[10] K Chandrasekar, C Weis, Y Li, B Akesson, N Wehn, and
K Goossens. Drampower: Open-source dram power & energy
estimation tool. 2014. URL: http://www. drampower. info (visited on
11/14/2017).

[11] Niladrish Chatterjee, Naveen Muralimanohar, Rajeev Balasubra-
monian, Al Davis, and Norman P Jouppi. Staged reads: Mitigating
the impact of dram writes on dram reads. In IEEE International
Symposium on High-Performance Comp Architecture, pages 1–12.
IEEE, 2012.

[12] Chiachen Chou, Aamer Jaleel, and Moinuddin K Qureshi. Bear:
techniques for mitigating bandwidth bloat in gigascale dram
caches. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd
Annual International Symposium on, pages 198–210. IEEE, 2015.

[13] Hakbeom Jang, Yongjun Lee, Jongwon Kim, Youngsok Kim, Jang-
woo Kim, Jinkyu Jeong, and Jae W Lee. Efficient footprint caching
for tagless dram caches. In High Performance Computer Architecture
(HPCA), 2016 IEEE International Symposium on, pages 237–248.
IEEE, 2016.

[14] Spec JEDEC. High bandwidth memory (hbm) dram. JESD235,
2013.

12

[15] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon Phi
Processor High Performance Programming: Knights Landing Edition.
Morgan Kaufmann, 2016.

[16] Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi.
Unison cache: A scalable and effective die-stacked dram cache. In
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 25–37. IEEE Computer Society, 2014.

[17] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked
dram caches for servers: hit ratio, latency, or bandwidth? have it
all with footprint cache. In ACM SIGARCH Computer Architecture
News, volume 41, pages 404–415. ACM, 2013.

[18] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar
Iyer, Srihari Makineni, Donald Newell, Yan Solihin, and Rajeev
Balasubramonian. Chop: Adaptive filter-based dram caching for
cmp server platforms. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, pages 1–12.
IEEE, 2010.

[19] E. K. Ardestani and J. Renau. ESESC: A Fast Multicore Simulator
Using Time-Based Sampling. In International Symposium on High
Performance Computer Architecture, HPCA’19, 2013.

[20] Samira Manabi Khan, Yingying Tian, and Daniel A Jimenez.
Sampling dead block prediction for last-level caches. In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 175–186. IEEE Computer Society, 2010.

[21] Mazen Kharbutli and Yan Solihin. Counter-based cache replace-
ment and bypassing algorithms. IEEE Transactions on Computers,
57(4):433–447, 2008.

[22] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction
& dead-block correlating prefetchers. In Computer Architecture,
2001. Proceedings. 28th Annual International Symposium on, pages
144–154. IEEE, 2001.

[23] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyunggyun Yang,
Jangwoo Kim, Jinkyu Jeong, and Jae W Lee. A fully associative,
tagless dram cache. In ACM SIGARCH Computer Architecture News,
volume 43, pages 211–222. ACM, 2015.

[24] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman,
Dean M Tullsen, and Norman P Jouppi. McPAT: an integrated
power, area, and timing modeling framework for multicore and
manycore architectures. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pages 469–480.
IEEE, 2009.

[25] Gabriel H Loh and Mark D Hill. Efficiently enabling conventional
block sizes for very large die-stacked dram caches. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 454–464. ACM, 2011.

[26] Mitesh R Meswani, Sergey Blagodurov, David Roberts, John Slice,
Mike Ignatowski, and Gabriel H Loh. Heterogeneous memory
architectures: A hw/sw approach for mixing die-stacked and off-
package memories. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 126–136.
IEEE, 2015.

[27] Amit Kumar Panda, Praveena Rajput, and Bhawna Shukla. Fpga
implementation of 8, 16 and 32 bit lfsr with maximum length
feedback polynomial using vhdl. In Communication Systems and
Network Technologies (CSNT), 2012 international conference on, pages
769–773. IEEE, 2012.

[28] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely,
and Joel Emer. Adaptive insertion policies for high performance
caching. In ACM SIGARCH Computer Architecture News, vol-
ume 35, pages 381–391. ACM, 2007.

[29] Moinuddin K Qureshi and Gabe H Loh. Fundamental latency
trade-off in architecting dram caches: Outperforming impractical
sram-tags with a simple and practical design. In Proceedings
of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 235–246. IEEE Computer Society, 2012.

[30] Vivek Seshadri, Onur Mutlu, Michael A Kozuch, and Todd C
Mowry. The evicted-address filter: A unified mechanism to ad-
dress both cache pollution and thrashing. In Proceedings of the
21st international conference on Parallel architectures and compilation
techniques, pages 355–366. ACM, 2012.

[31] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and
Babak Falsafi. Spatio-temporal memory streaming. In ACM
SIGARCH Computer Architecture News, volume 37, pages 69–80.
ACM, 2009.

[32] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak
Falsafi, and Andreas Moshovos. Spatial memory streaming. In

33rd International Symposium on Computer Architecture (ISCA’06),
pages 252–263. IEEE, 2006.

[33] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C Hunter,
and Lizy K John. The virtual write queue: Coordinating dram and
last-level cache policies. In ACM SIGARCH Computer Architecture
News, volume 38, pages 72–82. ACM, 2010.

[34] Wide i/o 2 (wideio2). http://www.jedec.org/standards-
documents/results/jesd229-2.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. In ISCA-22, 1995.

[36] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis.
Phoenix rebirth: Scalable MapReduce on a large-scale shared-
memory system. In International Symposium on Workload Charac-
terization, 2009.

[37] Vinson Young, Chiachen Chou, Aamer Jaleel, and Moinuddin
Qureshi. Accord: Enabling associativity for gigascale dram
caches by coordinating way-install and way-prediction. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 328–339. IEEE, 2018.

[38] Vinson Young and Moinuddin K Qureshi. To update or not to
update?: Bandwidth-efficient intelligent replacement policies for
dram caches. In 2019 IEEE 37th International Conference on Computer
Design (ICCD), pages 119–128. IEEE, 2019.

[39] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas. Banshee: Bandwidth-efficient dram
caching via software/hardware cooperation. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 1–14. ACM, 2017.

Payman Behnam received his B.S. and the first
M.S. degrees with distinction in computer en-
gineering from Shiraz University, Iran and the
University of Tehran, Iran. He received his sec-
ond master degree from the School of Com-
puting at the University of Utah, UT, USA. His
research centers on high-performance/energy-
efficient designs at the intersection of machine
learning and hardware systems.

Mahdi Nazm Bojnordi received the Ph.D.
degree from the University of Rochester,
Rochester, NY, USA, in 2016 in electrical and
computer engineering. He is currently an As-
sistant Professor of School of Computing with
the University of Utah, Salt Lake City, UT, USA,
where he leads the Energy-Efficient Computer
Architecture Laboratory (ECAL). His current re-
search interests include energy-efficient archi-
tectures, low-power memory systems, and the
application of emerging memory technologies to

computer systems. Professor Bojnordi’s research has been recognized
by two IEEE Micro Top Picks Awards, an HPCA 2016 Distinguished
Paper Award, and a Samsung Best Paper Award.

