2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/F0CS52979.2021.00104

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

A time and space optimal stable population protocol solving exact majority

David Doty Mahsa Eftekhari Leszek Gasieniec
University of California, Davis University of California, Davis University of Liverpool
doty@ucdavis.edu mhseftekhari@ucdavis.edu La.gasieniec @liverpool.ac.uk

Eric Severson
University of California, Davis
eseverson@ucdavis.edu

Abstract—We study population protocols, a model of
distributed computing appropriate for modeling well-
mixed chemical reaction networks and other physical
systems where agents exchange information in pairwise
interactions, but have no control over their schedule of
interaction partners. The majority problem is that of
determining in an initial population of »n agents, each with
one of two opinions A or B, whether there are more A,
more B, or a tie. A stable protocol solves this problem
with probability 1 by eventually entering a configuration
in which all agents agree on a correct consensus decision of
A, B, or T, from which the consensus cannot change. We
describe a protocol solving this problem using O(logn)
states (loglogn + O(1) bits of memory) and optimal
expected time O(logn). The number of states O(logn)
is known to be optimal for polylogarithmic time stable
protocols that are “output dominant” and “monotone” [1].
These are two natural constraints satisfied by our protocol,
making it simultaneously time- and state-optimal for
that class. We introduce a key technique called a “fixed
resolution clock” to achieve partial synchronization.

Our protocol is nonuniform: the transition function has
the value [log n] encoded in it. We show that the protocol
can be modified to be uniform, while increasing the state
complexity to ©(lognloglogn).

Keywords-majority; population protocols; stable;

I. INTRODUCTION

Population protocols [2] are asynchronous, complete
networks that consist of computational entities called
agents with no control over the schedule of interactions
with other agents. In a population of n agents, repeat-
edly a random pair of agents is chosen to interact, each
observing the state of the other agent before updating its
own state. They are an appropriate model for electronic
computing scenarios such as sensor networks and for
“fast-mixing” physical systems such as animal popula-
tions [3], gene regulatory networks [4], and chemical
reactions [5], the latter increasingly regarded as an
implementable “programming language” for molecular
engineering, due to recent experimental breakthroughs

Przemystaw Uznanski
University of Wroctaw
puznanski@cs.uni.wroc.pl

Grzegorz Stachowiak
University of Wroctaw
puznanski@cs.uni.wroc.pl

in DNA nanotechnology [6,7].

Time complexity in a population protocol is defined
by parallel time: the total number of interactions divided
by the population size n, henceforth called simply
time. This captures the natural timescale in which each
individual agent experiences expected O(1) interactions
per unit time. All problems solvable with zero er-
ror probability by a constant-state population protocol
are solvable in O(n) time [8,9]. The benchmark for
“efficient” computation is thus sublinear time, ideally
polylog(n), with Q(logn) time a lower bound on most
nontrivial computation, since a simple coupon collector
argument shows that is the time required for each agent
to have at least one interaction.

As a simple example of time complexity, suppose
we want to design a protocol to decide whether at
least one x exists in an initial population of z’s and
q’s. The single transition x,q — x,x indicates that if
agents in states x and ¢ interact, the ¢ agent changes
state to x. If = outputs “yes” and ¢ outputs “no”,
this takes expected time O(logn) to reach a consensus
of all z’s (i.e., O(nlogn) total interactions, including
null interactions between two x’s or between two ¢’s).
However, the transitions =,z — v,y; Y, — Y,Y;
Y,q — vy,y, where z,q output “no” and y outputs
“yes”, which computes whether at least two z’s exist, is
exponentially slower: expected time O(n). The worst-
case input is exactly 2 ’s and n — 2 ¢’s, where the first
interaction between the z’s takes expected () = O(n?)
interactions, i.e., ©(n) time.

To have probability O of error, a protocol must even-
tually stabilize: reach a configuration where all agents
agree on the correct output, which is stable, meaning
no subsequently reachable configuration can change the
output.! The original model [2] assumed states and

Technically this connection between probability 1 correctness and
reachability requires the number of producible states for any fixed
population size n to be finite, which is the case for our protocol.

2575-8454/21/$31.00 ©2021 IEEE 1044
DOI 10.1109/FOCS52979.2021.00104

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

Table I: Summary of results on the stable exact majority
problem in population protocols, including this paper
[+]. Gray regions are provably impossible: o(loglogn)
state, o(n) time unconditionally [11], o(logn) state,
O(n'~¢) time for monotone, output-dominant proto-
cols [1], and o(logn) time unconditionally.

Time
2,8,29,30]
Q(n) ‘
1,14 20 11 18
O(log? n) £] £] £] ‘]
21
O(log®/3 n) ‘]
22]
O(log®/? n) £
14 31,32
O(logn) ‘*] ‘] ‘]
o)
States
o OOo O(/O O//O O(o ates
% o Bo e, T2,
E 2 2

transitions are constant with respect to n. However,
for important problems such as leader election [10],
majority computation [11], and computation of other
functions and predicates [12], no constant-state protocol
can stabilize in sublinear time with probability 1.” This
has motivated the study of population protocols whose
number of states is allowed to grow with n, and as a
result they can solve such problems in polylogarithmic
time [1,11,14-28].

A. The majority problem in population protocols

Angluin, Aspnes, and Eisenstat [33] showed a pro-
tocol they called approximate majority, which means
that starting from an initial population of n agents with
opinions A or B, if |A — B| = w(y/nlogn) (i.e., the
gap between the initial majority and minority counts is
greater than roughly 1/n), then with high probability the
algorithm stabilizes to all agents adopting the majority
opinion in O(logn) time. A tighter analysis by Condon,
Hajiaghayi, Kirkpatrick, and Maiuch [34] reduced the
required gap to Q(y/nlogn).

Mertzios, Nikoletseas, Raptopoulos, and
Spirakis [30], and independently Draief and
Vojnovié¢ [29], showed a 4-state protocol that solves

These problems have O(1) state, sublinear time converging pro-
tocols [13]. A protocol converges when it reaches the correct output
without subsequently changing it—though it may remain changeable
for some time after converging—whereas it stabilizes when the output
becomes unchangeable. See [10,14] for a discussion of the distinction
between stabilization and convergence. In this paper we consider only
stabilization time.

1045

exact majority problem, i.e., it identifies the majority
correctly, no matter how small the initial gap.® We
henceforth refer to this simply as the majority problem.
The protocol of [29, 30] is also stable in the sense
that it has probability 1 of getting the correct answer.
However, this protocol takes €2(n) time in the worst
case: when the gap is O(1). Known work on the stable
majority problem is summarized in Table 1. Gasieniec,
Hamilton, Martin, Spirakis, and Stachowiak [36]
investigated 2(n) time protocols for majority and the
more general “plurality consensus” problem. Blondin,
Esparza, Jaax, and Kucera [37] show a similar stable
(also Q(n) time) majority protocol that also reports if
there is a tie.

Alistarh, Gelashvili, and Vojnovi¢ [18] showed the
first stable majority protocol with worst-case polyloga-
rithmic expected time, requiring 2(n) states. A series of
positive results reduced the state and time complexity
for stable majority protocols [1, 11, 14,20-22, 31, 32].
Ben-Nun, Kopelowitz, Kraus, and Porat showed the
current fastest stable sublinear-state protocol [22] using
O(log®? n) time and O(log n) states. The current state-
of-the-art protocols use alternating phases of cancelling
(two biased agents with opposite opinions both become
unbiased, preserving the difference between the major-
ity and minority counts) and splitting (a.k.a. doubling):
a biased agent converts an unbiased agent to its opinion;
if all biased agents that didn’t cancel can successfully
split in that phase, then the count difference doubles.
The goal is to increase the count difference until it is n;
i.e., all agents have the majority opinion. See [15,38] for
relevant surveys. Our protocol uses the same framework
of cancelling and splitting for O(logn) phases, but uses
constant time per phase. This requires a novel phase
clock construction, and handling new types of errors
introduced by the clock’s faster pace.

Some non-stable protocols solve exact majority with
high probability but have a positive probability of in-
correctness. Berenbrink, Elsisser, Friedetzky, Kaaser,
Kling, and Radzik [14] showed a protocol that with
initial gap « uses O(s + loglogn) states and WHP
converges in O(lognlog,(2)) time." With a = 1 and
s = O(1), the protocol uses O(log log n) states and con-
verges in O(log? n) time. Kosowski and Uznariski [13]
showed a protocol using O(1) states and converging in
O(polylog(n)) time with high probability.

3The 4-state protocol doesn’t identify ties, (zap = 0), but this can
be handled with 2 more states; see Stable-Backup in [35].

4This protocol is SIMPLEMAJTORITY in [14], which they then build
on to achieve multiple stable protocols. The stable protocols require
either Q2(n) stabilization time or 2(log n) states to achieve sublinear
stabilization time.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

On the negative side, Alistarh, Aspnes, and
Gelashvili [1] showed that any stable majority protocol
taking (roughly) less than linear time requires 2(log n)
states if it also satisfies two conditions (satisfied by
all known stable majority protocols, including ours):
monotonicity and output dominance. These concepts
are discussed in Section V. In particular, the Q(logn)
state bound of [1] applies only to stable (probability
1) protocols; the high probability protocol of [14], for
example, uses O(loglogn) states and O(log® n) time.

B. Our contribution

We show a stable population protocol solving the
exact majority problem in optimal O(logn) time (in ex-
pectation and with high probability) that uses O(logn)
states. Our protocol is both monotone and output dom-
inant (see Section V or [1] for discussion of these
definitions), so by the Q(logn) state lower bound of [1],
our protocol is both time and space optimal for the class
of monotone, output-dominant stable protocols.

A high-level overview of the algorithm is given
in Sections III-A and III-B, with a full formal descrip-
tion given in [35]. Like most known majority protocols
using more than constant space (the only exceptions
being in [14]), our protocol is nonuniform: agents have
an estimate of the value [logn| embedded in the
transition function and state space. Section IV describes
how to modify our main protocol to make it uniform, re-
taining the O(log n) time bound, but increasing the state
complexity to O(log n loglog n) in expectation and with
high probability. That section discusses challenges in
creating a uniform O(logn) state protocol.

II. PRELIMINARIES

We write logn to denote log, n, and Inn to denote
the natural logarithm. We write x ~ y to denote that
z and y are asymptotically equivalent (implicitly in the

population size n), meaning nhjgo) = 1

A. Population protocols

A population protocol is a pair P = (A, d), where A
is a finite set of states, and § : A x A — A x A is the
transition function.’ In this paper we deal with nonuni-
form protocols in which a different A and § are allowed
for different population sizes n (one for each possible
value of [logn]), but we abuse terminology and refer

3To understand the full generality of our main protocol, we include
randomized transitions in our model. However, there is only one
type of randomized transition in the protocol (the “drip reactions”
of Phase 3 described in Section III-B), parameterized by probability
p, and in fact we prove the protocol works even when these transitions
are deterministic, i.e., when p = 1.

1046

to the whole family as a single protocol. In all cases (as
with similar nonuniform protocols), the nonuniformity
is used to embed the value [logn]| into each agent;
the transitions are otherwise “uniformly specified”. See
Section IV for more discussion of uniform protocols.
A configuration c¢ of a population protocol is a
multiset over A of size n, giving the states of the n
agents in the population. For a state s € A, we write
c(s) to denote the count of agents in state s. A transition
(a.k.a., reaction) is a 4-tuple o = (r1, 79, p1, p2), written
a : 11,79 = p1,pe, such that 6(ry,r2) = (p1,p2). If
an agent in state r; interacts with an agent in state 7o,
then they change states to p; and po. For every pair
of states 71,72 without an explicitly listed transition
r1,72 — pi1,p2, there is an implicit null transition
ri,ro — 71,79 in which the agents interact but do
not change state. For our main protocol, we specify
transitions formally with pseudocode that indicate how
agents alter each independent field in their state. We say
a configuration d is reachable from a configuration c if
applying 0 or more transitions to c results in d.

B. Stable majority computation

There are many modes of computation considered
in population protocols: computing integer-valued func-
tions [9, 12, 39] where the number of agents in a
particular state is the output, Boolean-valued predi-
cates [8,40] where each agent outputs a Boolean value
as a function of its state and the goal is for all agents
eventually to have the correct output, problems such as
leader election [10, 11, 19,25-28], and generalizations
of predicate computation, where each agent individually
outputs a value from a larger range, such as reporting
the population size [16,23,24]. Majority computation is
Boolean-valued if computing the predicate “A > B?”,
where A and B represent the initial counts of two
opinions A and B. We define the slightly generalized
problem that requires recognizing when there is a tie,
so the range of outputs is {A, B, T}.

Formally, if the set of states is A, the protocol defines
a disjoint partition of A = Ap U Ag U At. For u €
{A,B, T}, if a € A, for all a € ¢, we define output
¢(c) = u (i.e., all agents in ¢ agree on the output u).
Otherwise ¢(c) is undefined (i.e., agents disagree on the
output). We say o is stable if ¢(0) is defined and, for
all oy such that 0 = 03, ¢(0) = ¢(02), i.e., the output
cannot change.

The protocol identifies two special input states
A, B € A. A valid initial configuration i satisfies a €
{A, B} for all a € i. We say the majority opinion of i is
M) = Aifi(A) > i(B), M(i) = B if i(4) < i(B),
and M (i) = T if i(A) = i(B). The protocol stably

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

computes majority if, for any valid initial configuration
i, for all ¢ such that i = c, there is a stable o such that
c = oand ¢(0) = M(i). Let O; = {0 : ¢(0) = M(i)}
be the set of all correct, stable configurations. In other
words, for any reachable configuration, it is possible
to reach a correct, stable configuration, or equivalently
reach a strongly connected component in O;.

C. Time complexity

In any configuration the next interaction is chosen
by selecting a pair of agents uniformly at random
and applying an applicable transition, with appropriate
probabilities for any randomized transitions. Thus the
sequence of transitions and configurations they reach
are random variables. To measure time we count the
total number of interactions (including null transitions
such as a,b — a,b in which the agents interact but do
not change state), and divide by the number of agents n.
In the population protocols literature, this is often called
“parallel time”: n interactions among a population of n
agents equals one unit of time.

If the protocol stably computes majority, then for any
valid initial configuration i, the probability of reaching
a stable, correct configuration, P[i = O;] = 1. ©® We
define the stabilization time S to be the random variable
giving the time to reach a configuration o € O;.

When discussing random events in a protocol of
population size n, we say event E happens with high
probability if P[-FE] O(n~¢), where ¢ is a con-
stant that depends on our choice of parameters in the
protocol, where ¢ can be made arbitrarily large by
changing the parameters. In other words, the probability
of failure can be made an arbitrarily small polynomial.
For concreteness, we will write a particular polynomial
probability such as O(n~2), but in each case we could
tune some parameter (say, increasing the time complex-
ity by a constant factor) to increase the polynomial’s
exponent. We say event E happens with very high
probability if P[-E] = O(n=*(M), i.e., if its probability
of failure is smaller than any polynomial probability.

III. NONUNIFORM MAJORITY ALGORITHM
DESCRIPTION

The following is the main theorem of this paper.

Theorem IIlI.1. There is a nonuniform population pro-
tocol Nonuniform-Majority, using O(logn) states, that
stably computes majority in O(logn) stabilization time,
both in expectation and with high probability.

6Since population protocols have a finite reachable configuration

space, this is equivalent to the stable computation definition that for
all ¢ reachable from i, there is a o’ € Oj reachable from c.

1047

A. High-level overview of algorithm

In this overview we use “pseudo-transitions” such as
A, B — O, O to describe agents updating a portion of
their states, while ignoring other parts of the state space.

Each agent initially has a bias: +1 for opinion A
and —1 for opinion B, so the population-wide sum
g = > ,v.bias gives the initial gap between opin-
ions. The majority problem is equivalent to determining
sign(g). Transitions redistribute biases among agents
but, to ensure correctness, maintain the population-
wide ¢ as an invariant. Biases change through cancel
reactions —l—%, —% — 0, 0 and split reactions :I:%, 0—
:l:#, + 57+, down to a minimum +57. The constant
L = [logy(n)] ensures ©(logn) possible states. The
gap is defined to be) | sign(v.bias), the difference in
counts between majority and minority biases. Note the
gap should grow over time to spread the correct majority
opinion to the whole population, while the invariant g
should ensure correctness of the final opinion.

The cancel and split reactions average the bias value
between both agents, but only when the average is
also a power of 2, or 0. If we had averaging reac-
tions between all pairs of biases (also allowing, e.g.,
%,% — %, %), then all biases would converge to %,
but this would use too many states.” With our limited
set {0, +3,+£1,..., jzz%} of possible biases, allowing
all cancel and split reactions simultaneously does not
work. Most biases appear simultaneously across the
population, reducing the count of each bias, which
slows the rate of cancel reactions. Then the count of
unbiased 0 agents is reduced, which slows the rate
of split reactions, see Fig. la. Also, there is a non-
negligible probability for the initial minority opinion to
reach a much greater count, if those agents happen to
do more split reactions, see Fig. 1b. Thus using only the
count of positive versus negative biases will not work
to solve majority even with high probability.

To solve this problem, we partially synchronize the
unbiased agents with a field hour, adding logn states

09,01,02,...,0z. The new split reactions
1 1 " .
i?,Oh — iﬁ, F 1 h > 1

will wait until hour > h before doing splits down
to bias = i%. We could use existing phase clocks
to perfectly synchronize hour, by making each hour
use O(logn) time, enough time for all opinionated
agents to split. Then WHP all agents would be in states

{04, +2ih, —2%} by the end of hour h, see Fig. 1c. The

"This was effectively the approach used for majority in [18,32], for
an O(n) state, O(logn) time protocol.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

invariant g =) wv.bias implies that all minority opin-
ions would be eliminated by hour [log, %1 < L. This
would give an O(logn)-state, O(log® n)-time majority
algorithm, essentially equivalent to [1,14].

The main idea of our algorithm is to use these
rules with a faster clock using only O(1) time per
hour. The hour field of unbiased agents is synchro-
nized to a separate subpopulation of clock agents, who
use a field minute, with k consecutive minutes per
hour. Minutes advance by drip reactions C;,C; —
C;,Ci41, and catch up by epidemic reactions C;,C; —
Chax(i,j)s Cmax(i,j)- See Fig. 2 for an illustration of the
clock minute and hour dynamics.

Since O(1) time per hour is not sufficient to bring
all agents up to the current hour before advancing to
the next, we now have only a large constant fraction
of agents, rather than all agents, synchronized in the
current hour. Still, we prove this looser synchronization
keeps the values of hour and bias relatively concen-
trated, so by the end of this phase, we reach a configura-
tion as shown in Fig. 1d. Most agents have the majority
opinion (WLOG positive), with three consecutive biases
+2r, + 5T, + 58

Detecting ties.: This algorithm gives an elegant
way to detect a tie with high probability. In this case,
g = 0, and with high probability, all agents will
finish the phase with bias € {0, :I:QLL} Checking this
condition stably detects a tie (i.e., with probability 1, if
this condition is true, then there is a tie), because for
any nonzero value of g, there must be some agent with
lbias| > .

Cleanup Phases.: We must next eliminate all
minority opinions, while still relying on the invariant
g = Y ,v.bias to ensure correctness. Note that is it
possible with low probability to have a greater count
of minority opinions (with smaller values of bias), so
only relying on counts of positive and negative biases
would give possibilities of error.

We first remove any minority agents with large bias,
by using an additional subpopulation of Reserve agents
that enable additional split reactions for large values of
|bias| > o;. Then after cancel reactions with the bulk
of majority agents, the only minority agents left must
have [bias| < z%.

To then remove minority agents with small bias, we
allow agents with larger bias to “consume” agents with
smaller bias, such as an interaction between agents +}1

and —55-. Here the positive agent can be thought to
hold the entire bias +%L — ﬁ = —I—%, but since this

value is not in the allowable states, it can only store
that its bias is in the range —I—% < bias < +}I. Without

Unsynchronized cancel / split reactions after time 21.1 (1.02 In n)

sign(bias)
I O (opinion=T)
I +1 (opinion=A)
I -1 (opinion=B)

T 0 -1-2-3-4-5-6 -7 -8 -9-10-11-12-13-14-15-16-17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29
log, |bias]|
(a) Cancel/split reactions with no synchronization. All states
become present, many in about equal counts. Rate of cancel

reactions and fraction of O agents are @(10;).

Unsynchronized cancel / split reactions after time 340.1 (16.41 In n)

sign(bias)
B 0 (opinion=T)

&
S 106 B +1 (opinion=A)
Il 10° mmm -1 (opinion=B)
£

-E' 10°

3

O 10?

o

T 0 -1-2-3-4-5-6 -7 -8-9-10-11-12-13-14-15-16-17 -18-19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29
log; |bias|

(b) Later snapshot of the simulation in Fig. la. The initial
minority B now has a much larger count, because those agents

happened to undergo more split reactions.

o Fully synchronized cancel / split reactions after time 1242.0 (59.93In n)
108 sign(bias)
O (opinion=T)
mm +1 (opinion=A)
m -1 (opinion=B)

Count (n=10°)

b

o2

0 -1-2-3-4-5-6 -7 -8 -9-10-11-12-13-14-15-16-17-18-19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29
log; |bias|

(c) Cancel/split reactions, fully synchronized into O(logn)
time hours, at the beginning of hour 16. All minority are
eliminated by hour logn in O(log? n) time.

Partially synchronized cancel / split reactions after time 212.0 (10.23 In n)

o 10° sign(bias)

+ 1071 mHmm 0 (opinion=T)
I 10°1 mE +1 (opinion=A)
-1 (opinion=B)

+ 0 -1-2-3-4-5-6 -7 -8-9-10-11-12-13-14-15-16-17 -18-19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29
log; |bias|

(d) Main phase of our protocol, split reactions partially synchro-
nized using the clock in Fig. 2, at the end of this O(log n) time
phase. Most agents are left with bias € {+2—11—g, +211'g, +2~}6 }
Later phases eliminate the remaining minority agents.

Figure 1: Cancel / split reactions with no synchro-
nization (la,1b), perfect synchronization (Ic), and par-
tial synchronization (1d) via the fixed-resolution phase
clock of our main protocol. Plots generated from [41].

1048

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

Clock distribution after time 30.0 (0.77 In n), p=1.0

=
<]
c

© NV A WN

Figure 2: Clock rules of our protocol, showing a trav-
elling wave distribution over minutes, on a larger pop-
ulation of size n = 10'7 to emphasize the distribution.
The distribution’s back tail decays exponentially, and its
front tail decays doubly exponentially. A large constant
fraction of agents are in the same two consecutive
hour’s (here 7 and 8). Plot generated from [41].

knowing its exact bias, this agent cannot participate in
future averaging interactions. However, with high prob-
ability there are sufficient majority agents to eliminate
all remaining minority via these consumption reactions.

A final phase checks for the presence of both positive
and negative bias, and if one has been completely
eliminated, it stabilizes to the correct output. In the case
where both are present, this is a detectable error, where
we can move to a slow, correct backup that uses the
original inputs. Due to the low probability of this case,
it contributes negligibly to the total expected time.

B. Intuitive description of each phase

Our full protocol is broken up into 11 consecutive
phases. We describe each phase intuitively. Full pseu-
docode is given in [35]. Note that some further separa-
tion of phases was done to create more straightforward
proofs of correctness, so simplicity of the proofs was op-
timized over simplicity of the full protocol pseudocode.
It is likely possible to have simpler logic that still solves
majority via the same strategy.

Phase 0: “Population splitting” [38] divides agents into
roles used in subsequent phases: Main, Reserve, Clock.
In timed phases (those not marked as Untimed or Fixed-
resolution clock, including the current phase), Clock
agents count from ©(logn) to 0 to cause the switch
to the next phase after ©(logn) time.

“Standard” population splitting uses reactions such as
x,x — r1, 1o to divide agents into two roles r1, r5. This
takes ©(n) time to converge, which can be decreased
to O(logn) time via r1,x — r1,79 and ro, x — ro, 71,
while maintaining that #r; and #ro are both n/2 +
\/n WHP. However, since all agents initially have an
opinion, but Clock and Reserve agents do not hold an

1049

opinion, agents that adopt role Clock or Reserve must
first pass off their opinion to a Main agent.

From each interacting pair of unassigned agents, one
will take the Main role and hold the opinions of both
agents, interpreting A as +1 and B as —1. This Main
agent will then be allowed to take at most one other
opinion (in an additional reaction that enables rapid
convergence of the population splitting), and holding
3 opinions can end up with a bias in the range
{-3,-2,-1,0,+1,+2,+3}.

Phase 1: Agents do “integer averaging” [25] of bi-
ases in the set {—3,...,+3} via reactions i,j —
L%J, [%} Although taking ©(n) time to converge
in some cases, this process is known [42] to result in
three consecutive values in O(logn) time. If those three
values are detected to be {—1,0,+1} in the next phase,
the algorithm continues.

Phase 2: (Untimed) Agents propagate the set of opin-
ions (signs of biases) remaining after Phase 1 to detect if
only one opinion remains. If so, we have converged on
a majority consensus, and the algorithm halts here. At
this point, this is essentially the exact majority protocol
of [30], which takes O(logn) time with an initial gap
Q(n), but longer for sublinear gaps (e.g., Q(n) time
for a gap of 1). Thus, if agents proceed beyond this
phase (i.e., if both opinions A and B remain at this
point), we will use later that the gap was smaller than
0.025 - #Main. With low probability both opinions
remain but some agent has |bias| > 1, in which case
we proceed directly to a slow stable backup protocol in
Phase 10.

Phase 3: (Fixed-resolution clock) The key goal at this
phase is to use cancel and split reactions to aver-
age the bias across the population to give almost
all agents the majority opinion. Biased agents hold
a field exponent € {—L,...,—1,0}, describing the
magnitude |bias| = 2°*Poe™* 3 quantity we call the
agent’s mass. Cancel reactions eliminate opposite biases
—}—%, —% — 0, 0 with the same exponent; cancel reac-
tions strictly reduce total mass. Split reactions :I:%, 0—
:i:ﬁ, :l:ﬁ give half of the bias to an unbiased agent,
decrementing the exponent; split reactions preserve the
total mass. The unbiased O agents, with role = Main,
opinion = bias = 0, act as the fuel for split reactions.
We want to obtain tighter synchronization in the ex-
ponents than Fig. la, approximating the ideal syn-
chronized behavior of the O(log® n) time algorithm of
Fig. 1c while using only O(logn) time. To achieve this,
the Clock agents run a “fixed resolution” clock that
keeps them roughly synchronized (though not perfectly;
see Fig. 2) as they count their “minutes” from 0 up

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

to L' = kL, using O(1) time per minute. This is
done via “drip” reactions C;,C; — C;,C;11 (when
minute ¢ gets sufficiently populated, pairs of C; agents
meet with sufficient likelihood to increment the minute)
and C;,C; — C},C; for i < j (new higher minute
propagates by epidemic).® If randomized transitions are
allowed, by lowering the probability p of the drip
reaction, the clock rate can be slowed by a constant
factor (see Fig. 3). Although we prove a few lemmas
about this generalized clock, and some of our simulation
plots use p < 1, our proofs work even for p =1, i.e., a
deterministic transition function, although this requires
constant-factor more states (by increasing the number
of “minutes per hour”, explained next).

Now the O agents will use O(logn) states to store an
“hour”, coupled to the C' clock agents via C|; /x|, O; —
Clisk), Olisk) if |i/k] > j, ie., every consecutive k
Clock minutes corresponds to one Main hour, and clock
agents drag O agents up to the current hour. Our proofs
require k¥ = 45 minutes per hour when p = 1, but
smaller values of k work in simulation. For example,
the simulation in Fig. 1d showing intended behavior of
this phase used only £ = 3 minutes per hour with p = 1.
This clock synchronizes the exponents because agents
with exponent = —% can only split down to
exponent = —(i + 1) with an O agent that has
hour > 7 + 1. This prevents the biased agents from
doing too many splits too quickly. As a result, during
hour ¢, most of the biased agents have |bias| = %, o)
the cancel reactions —i—%, —% — 0,0 happen at a high
rate, providing many O agents as “fuel” for future split
reactions. We tune the constants of the clock to ensure
hour ¢ lasts long enough to bring most biased agents
down to exponent = —¢ via split reactions and then
let a good fraction do cancel reactions.

8This clock is similar to the power-of-two-choices leaderless phase
clock of [1], where the agent with smaller (or equal) minute incre-
ments their clock (C;,C; — Cj,C;11 for i < j), but increasing
the smaller minute by only 1. Similarly to our clock, the maximum
minute can increase only with both agents at the same minute. A
similar process was analyzed in [43], and in fact was shown to have
the key properties needed for our clock to work—an exponentially-
decaying back tail and a double-exponentially-decaying front tail—so
it seems likely that a power-of-two-choices clock could also work
with our protocol.

The randomized variant of our clock with drip probability p is also
similar to the “junta-driven” phase clock of [26], but with a linear
number 2pn of agents in the junta, using O(1) time per minute,
rather than the O(n®)-size junta of [26], which uses O(logn) time
per minute. There, smaller minutes are brought up by epidemic, and
only an agent in the junta seeing another agent at the same minute
will increment. The epidemic reaction is exactly the same in both
rules. The probability p of a drip reaction can be interpreted as the
probability that one of the agents is in the junta. For similar rate of
O(1) time per minute phase clock construction see also Dudek and
Kosowski work [44].

The key property at the conclusion of this phase is that
unless there is a tie, WHP most majority agents end up
in three consecutive exponents —I, —(l + 1), —(I + 2),
with a negligible mass of any other Main agent (major-
ity agents at lower/higher exponents, minority agents at
any exponent, or O agents).” Phases 5-7 use this fact to
quickly push the rest of the population to a configuration
where all minority agents have exponents strictly below
—(I+2); Phase 8 then eliminates these minority agents
quickly.

Clock running time as a function of drip probability p

—— Theoretical upper bound

Theoretical lower bound
—— simulation, n = 10°3
—— simulation, n = 106
—— Simulation, n = 10~9

Time per minute
o kN oW s o oo o~

o

Figure 3: The theoretical upper and lower bounds for the
time of one clock minute (from[35, Theorem 6.8]), along with
samples from simulation. For each value of n, 100 minute
times were sampled, taking t?jrll —t9 fori=09,...,18 over
10 independent trials. All our proofs assume p is constant, and
for any fixed value of p, will only hold for sufficiently large n.
The case n = 10 shows that when p = O(1/n), the bounds
no longer hold. This is to be expected because the expected
number of drips becomes too small for large deviation bounds
to still hold.

Phase 4: (Untimed) The special case of a tie is detected
by the fact that, since the total bias remains the initial
gap g, if all biased agents have minimal exponent —L,
g has magnitude less than 1:

gl=] > abias|< >

a.role=Main a.role=Main

1 n
< — —_ <
— Z oL < 2]'10g2(n)] — L.

a.role=Main

|a.bias|

The initial gap ¢ is integer valued, so |g| < 1 =
g = 0. Thus this condition implies there is a tie with
probability 1; the converse that a tie forces all biased
agents to exponent —I holds with high probability.
If only exponent —L is detected, the algorithm halts
here with all agents reporting output T. Otherwise, the
algorithm proceeds to the next phase.

Phase 5, Phase 6: Using the key property of Phase 3,
these phases WHP pull all biased agents above exponent
—I[down to exponent —! or below using the Reserve

91 is defined such that if all biased agents were at exponent —I, the
difference in counts between majority and minority agents would be
between 0.4 - #Main and 0.8 - #Main.

1050

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

R agents. The R’s activate themselves in Phase 5 by
sampling the exponent of the first biased agent they
meet. This ensures WHP that sufficiently many Reserve
agents exist with exponents —I,—(I + 1),—(l + 2)
(distributed similarly to the agents with those expo-
nents). Then in Phase 6, they act as fuel for splits,
via R;, 55 — +5t,£54 when [i| > |j|. The
reserve agents, unlike the O agents in Phase 3, do not
change their exponent in response to interactions with
Clock agents. Thus sufficiently many reserve agents will
remain to allow the small number of biased agents above
exponent —/ to split down to exponent —[or below.
Phase 7: This phase allows more general reactions to
distribute the dyadic biases, allowing reactions between
agents up to two exponents apart, to eliminate the
opinion with smaller exponent: %,—# — 21.%,0
and %, 2% — 2%, QL% (and the equivalent with
positive/negative biases swapped). Since all agents have
exponent —! or below, and many more majority agents
exist at exponents —I, —(! + 1), —({ + 2) than the total
number of minority agents anywhere, these (together
with standard cancel reactions %, —% — 0,0) rapidly
eliminate all minority agents at exponents —I, —(I +
1), —(I + 2), while maintaining 2(n) majority agents
at exponents > —(I + 2) and < 0.01n total minority
agents, now all at exponents < —(I + 3).

Phase 8: This phase eliminates the last minority
agents, while ensuring that if any error occurred in
previous phases, some majority agents remain, to allow
detecting the error by the presence of both opinions.'”
The biased agents add a Boolean field full, initially
False, and consumption reactions that allow an agent
at a larger exponent ¢ to consume (set to mass 0 by
setting it to be () an agent at an arbitrarily smaller
exponent j < i. Now the remaining agent represents
some non-power-of-two mass m = 2¢ — 27, which it
lacks sufficient memory to track exactly. Thus setting
the flag full = True corresponds to the agent having
an uncertain mass m in the range 271 < m < 2.
Because of this uncertainty, full agents are not allowed
to consume other smaller levels. However, there are
more than enough high-exponent majority agents by
this phase to consume all remaining lower exponent
minority agents.

10A naive idea to reach a consensus at this phase is to allow cancel
reactions -7, 2% — 0,0 between arbitrary pairs of exponents
with opposite opinions. However, this has a positive probability of
erroneously eliminating the majority. This is because the majority,
while it necessarily has larger mass than the minority at this point,
could have smaller count. For example, we could have 16 A’s with
exponent = —2 and 32 B’s with exponent = —5, so A’s have
mass 16 - 272 = 4 and B’s have smaller mass 32 - 2~5 = 1, but
larger count than A.

1051

Crucially, agents that have consumed another agent and
set full = True may themselves then be consumed
by a third agent (with full = False) at an even larger
exponent. This is needed because a minority agent at
exponent ¢ < —(Il 4+ 3) may consume a (rare) majority
agent at exponent j < ¢, but the minority agent itself can
be consumed by another majority agent with exponent
k > .

Phase 9: (Untimed) This is identical to Phase 2: it
detects whether both biased opinions A and B remain.
If not (the likely case), the algorithm halts, otherwise
we proceed to the next phase.

Phase 10: (Untimed) Agents execute a simple, slow
stable majority protocol [37], similar to that of [29,30]
but also handling ties. This takes ©(nlogn) time, but
the probability that an earlier error forces us to this
phase is O(1/n?), so it contributes negligibly to the
total expected time.

IV. UNIFORM, STABLE PROTOCOLS FOR MAJORITY
USING MORE STATES

The algorithm described in Section III is nonuniform:
the set of transitions used for a population of size
n depends on the value [logn]. A uniform proto-
col [16,23,45] is a single set of transitions that can
be used in any population size. Since it is “uniformly
specified”, the transition function is formally defined by
a linear-space Turing machine, where the space bound
is the maximum space needed to read and write the
input and output states. The original model [2] used
O(1) states and transitions for all n and so was auto-
matically uniform, but many recent w(1) state protocols
are nonuniform. With the exception of the uniform
variant in [14], all w(1) state stable majority protocols
are nonuniform [1, 11, 18,20-22]. The uniform variant
in [14] has a tradeoff parameter s that, when set to O(1)
to minimize the states, uses O(log n loglog n) states and
O(log® n) time.

In this section we show that there is a way to make
Nonuniform-Majority in Section III uniform, retaining
the O(logn) time bound, but the expected number of
states increases to ©(logn loglogn).!!

A. Main idea of O(lognloglogn) state uniform ma-
jority (not handling ties)

Since Nonuniform-Majority uses the hard-coded
value L = [logn], to make the algorithm uniform, we
require a way to estimate logn and store it in a field L
(called logn below) of each agent. For correctness and

1We say “expected” because this protocol has a non-zero probabil-
ity of using an arbitrarily large number of states. The number of states
will be O(lognloglogn) in expectation and with high probability.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

speed, it is only required that 1ogn be within a constant
multiplicative factor of log n.

Gasieniec and Stachowiak [26] show a uniform
O(loglogn) state, O(log n) time protocol (both bounds
in expectation and with high probability) that computes
and stores in each agent a value ¢ € N7 that, with
high probability, is within additive constant O(1) of
[loglogn] (in particular, WHP ¢ > |loglogn]| — 3 [14,
Lemma 8]), so 2 = ©(logn). (This is the so-called
junta election protocol used as a subroutine for a sub-
sequent leader election protocol.) Furthermore, agents
approach this estimate from below, propagating the
maximum estimate by epidemic ¢/, ¢ — £,£ if ¢/ < /.
This gives an elegant way to compose the size esti-
mation with a subsequent nonuniform protocol P that
requires the estimate: agents store their estimate logn
of logn and use it in P. Whenever an agent’s estimate
logn updates—always getting larger—it simply resets
P, i.e., sets the entire state of P to its initial state. We
can then reason as though all agents actually started
with their final convergent value of logn.'?

To make our protocol uniform, but remove its correct-
ness in the case of a tie, as we explain below, all agents
conduct this size estimation, stored in the field logn,
in parallel with the majority protocol P of Section III.
Each agent resets P to its initial state whenever logn
updates. This gives the stated O(logn) time bound and
O(lognloglogn) state bound. Note that in Phase 0,
agents count from counter = ©(logn) down to 0. It
suffices to set the constant in the © sufficiently large that
all agents with high probability receive by epidemic the
convergent final value of logn significantly before any
agent with the same convergent estimate counts to 0.

Acknowledging that, with small probability, the esti-
mate of logn could be too low for Phase 4 to be correct,
we simply remove Phase 4 and do not attempt to detect
ties. So if we permit undefined behavior in the case
of a tie (as many existing fast majority protocols do),
then this modification of the algorithm otherwise retains
stably correct, O(logn) time behavior, while increasing
the state complexity to O(lognloglogn).

B. How to stably compute ties

With low but positive probability, the estimate of
logn could be too small. For most phases of the
algorithm, this would merely amplify the probability

120ne might hope for a stronger form of composition, in which the
size estimation ferminates, i.e., sets an initially False Boolean flag to
True only if the size estimation has converged, in order to simply
prohibit the downstream protocol P from starting with an incorrect
estimate of log n. However, when A and B are both initially Q(n),
this is impossible; Q(n) agents will set the flag to True in O(1) time,
long before the size estimation converges [23, Theorem 4.1].

1052

of error events (e.g., Phase 1 doesn’t last long enough
for agents to converge on biases {—1,0,+1}) that later
phases are designed to handle. However, the correctness
of Phase 4 (which detects ties) requires agents to have
split through at least logn exponents in Phase 3. Since
the population-wide bias doubles each time the whole
population splits down one exponent, the only way for
the whole population to split through logn exponents
is for there to be a tie (i.e., the population-wide bias
is 0, so can double unboundedly many times). In this
one part of the algorithm, for correctness we require the
estimate to be at least log n with probability 1. (It can be
much greater than logn without affecting correctness;
an overestimate merely slows down the algorithm.)

To correct this error, we will introduce a stable
backup size estimate, to be done in Phase 4. Note
that there are only a constant number of states with
phase = 4: Clock agents do not store a counter in this
phase, and Main agents that stay in this phase must
have bias € {0, :I:Q%} Thus we can use an additional
O(logn) states for the agents that are currently in
phase 4 to stably estimate the population size. If
they detect that their estimate of L was too small, they
simply go to the stable backup Phase 10.

Stable computation of |logn].: The stable com-
putation of log n has all agents start in state Lg, where
the subscript represents the agent’s estimate of |logn].
We have the following transitions: for each ¢ € N,
L;,L; — L;t1,F;41 and, for each 0 < 5 < 4,
F;, F; — F;, F;. Among the agents in state L;, half
make it to state L;;1, reaching a maximum of Lj at
k = |logyn).”* All remaining F agents receive the
maximum value k by epidemic. A very similar protocol
was analyzed in [24, Lemma 12]. A time analysis of
this protocol is in the full version of this paper [35].

C. Challenges for O(logn) state uniform algorithm

It is worth discussing some ideas for adjusting the
uniform protocol described above to attempt to reduce
its space complexity to O(logn) states. The primary
challenge is to enable the population size n to be
estimated without storing the estimate in any agent
that participates in the main algorithm (i.e., the agent
has role Main, Clock, or Reserve). If agents in the
main algorithm do not store the size, then by [23,
Theorem 4.1] they will provably go haywire initially,

3More generally, the unique stable configuration encodes the full
population size n in binary in the following distributed way: for each
position ¢ of a 1 in the binary expansion of n, there is one agent
L;. Thus, these remaining agents lack the space to participate in
propagating the value k = |logn| by epidemic, but there are Q2(n)
followers F' to complete the epidemic quickly.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

with agents in every phase, totally unsynchronized, and
require the size estimating agents to reset them after
having converged on a size estimate that is Q(logn).

The following method would let the Size agents reset
main algorithm agents, without actually having to store
an estimate of log n in the algorithm agents, but it only
works with high probability. The size estimating agents
could start a junta-driven clock as in [26], which is reset
whenever they update their size estimate. Then, as long
as there are €2(n) Size agents, they could for a phase
timed to last ©(logn) time, reset the algorithm agents
by direct communication (instead of by epidemic). This
could put the algorithm agents in a quiescent state where
they do not interact with each other, but merely wait for
the Size agents to exit the resetting phase, indicating that
the algorithm agents are able to start interacting again.
Since there are §2(n) size-estimating agents, each non-
size-estimating agent will encounter at least one of them
with high probability in O(logn) time.

The problem is that the reset signal is not guaranteed
to reach every algorithm agent. There is some small
chance that a Main agent with a bias different from its
input does not encounter a Size agent in the resetting
phase, so is never reset. The algorithm from that point
on could reach an incorrect result when the agent
interacts with properly reset agents, since the sum of
biases across the population has changed. In our algo-
rithm, by “labeling” each reset with the value logn, we
ensure that no matter what states the algorithm agents
find themselves in during the initial chaos before size
computation converges, every one of them is guaranteed
to be reset one last time with the same value of logn.
The high-probability resetting described above could
potentially work to create a high probability uniform
protocol using O(logn) time and states, though we have
not thoroughly explored the possibility.

But it seems difficult to achieve probability-1 correct-
ness using the technique of “reset the whole majority
algorithm whenever the size estimate updates,” without
multiplying the state complexity by the number of
possible values of logn. Since we did not need |logn |
exactly, but only a value that is ©(logn), we paid
only ©(loglogn) multiplicative overhead for the size
estimate, but it’s not straightforward to see how to avoid
this using the resetting technique.

V. CONCLUSION

There are some remaining open problems concerning
the majority problem for population protocols.
Uniform O(logn)-time, O(logn)-state majority
protocol: Our main O(logn) state protocol, described
in Section III, is nonuniform: all agents have the value

1053

[logn] encoded in their transition function. The uni-
form version of our protocol described in Section IV
uses O(log nloglogn) states. It remains open to find a
uniform protocol that uses O(logn) time and states.

O(logn) time, o(logn) state non-stable protocol:
Berenbrink, Elsésser, Friedetzky, Kaaser, Kling, and
Radzik [14] showed a non-stable majority protocol (i.e.,
it has a positive probability of error) using O(loglogn)
states and converging in O(log2 n) time. (See Section I
for more details.) Is there a protocol with o(log n) states
solving majority in O(logn) time?

Unconditional Q(logn) state lower bound for sta-
ble majority protocols: The lower bound of Q(logn)
states for (roughly) sublinear time majority protocols
shown by Alistair, Aspnes, and Gelashvili [1] ap-
plies only to stable protocols satisfying two conditions:
monotonicity and output dominance.

Recall that a uniform protocol is one where a sin-
gle set of transitions works for all population sizes;
nonuniform protocols typically violate this by having an
estimate of the population size (e.g., the integer [logn|)
embedded in the transition function. Monotonicity is a
much weaker form of uniformity satisfied by nearly all
known nonuniform protocols. While allowing different
transitions as the population size grows, monotonicity
requires that the transitions used for population size n
must also be correct for all smaller population sizes
n’ < n (i.e., an overestimate of the size cannot hurt),
and furthermore that the transitions be no slower on
populations of size m’ than on populations of size
n. Our nonuniform protocol Nonuniform-Majority is
monotone; for an explanation, see the conclusion of the
full version of this paper [35].

Output dominance references the concept of a stable
configuration c, in which all agents have a consensus
opinion that cannot change in any configuration subse-
quently reachable from c. A protocol is output dominant
if in any stable configuration c, adding more agents with
states already present in ¢ maintains the property that
every reachable stable configuration has the same output
(though it may disrupt the stability of c itself). This
condition holds for all known stable majority protocols,
including that described in this paper: they obey the
stronger condition that adding states already present in
c does not even disrupt its stability. In such protocols,
two agents with the same opinion cannot create the
opposite opinion, so stabilization happens exactly when
all agents first converge on a consensus output. For a
more detailed explanation, see the conclusion of the full
version of this paper [35].

Monotonicity can be seen as a natural condition that
all “reasonable” non-uniform protocols must satisfy,

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

but output dominance arose as an artifact that was
required for the lower bound proof strategy of [1]. It
remains open to prove an unconditional (i.e., remov-
ing the condition of output dominance) lower bound
of Q(logn) states for any stable monotone majority
protocol taking polylogarithmic time, or to show a
stable polylogarithmic time monotone majority protocol
using o(logn) states, which necessarily violates output
dominance. If the unconditional lower bound holds, then
our protocol is simultaneously optimal for both time and
states. Otherwise, it may be possible to use o(logn)
states to stably compute majority in polylogarithmic
stabilization time with a non-output-dominant protocol.

We close with questions unrelated to majority.

Fast population protocol for parity: The majority
problem “X; > X»?” is a special case of a threshold
predicate, which asks whether a particular weighted sum
of inputs Zle w; X; > ¢ exceeds a constant c. (For
majority, w; = 1, ws = —1, ¢ = 0; our protocol extends
straightforwardly to other values of w;, though not other
values of c.) The threshold predicates, together with the
mod predicates, characterize the semilinear predicates,
which are precisely the predicates stably computable
by O(1) state protocols [40] with no time constraints
(though ©(n) time to stabilize is sufficient for all
semilinear predicates [8] and necessary for “most” [12]).
A representative mod predicate is parity: asking whether
an odd or even number of agents exist. Like majority,
parity is solvable by a simple protocol in O(n) time [2],
and it is known to require Q(n) time for any O(1)
state protocol to stabilize [12]. Techniques from [11]
can be used to show that stabilization requires close
to linear time even allowing up to %log logn states.
An interesting open question is to consider allowing
w(1) states in deciding parity. Can it then be decided
in polylogarithmic time?

Fast population protocols for function computa-
tion: The transition X, — Y,Y, starting with suf-
ficiently many excess agents in state (), computes the
function f(z) = 2x, because if we start with x agents
in state X, in time O(logn), 2z agents adopt state
Y [39]. The similar transition X, X — Y,) computes
f(z) = |x/2], but using time O(n), as does any O(1)-
state protocol computing any linear function with a co-
efficient not in N, as well as “most” non-linear functions
such as min(zy,z2) (computable by X1, Xs — Y, Q)
and max(x1,z2) [12]. Can such functions be computed
in sublinear time by using w(1) states?

Acknowledgments. Doty, Eftekhari, and Severson were
supported by NSF awards 1900931 and 1844976.

1054

(1]

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

D. Alistarh, J. Aspnes, and R. Gelashvili, “Space-optimal
majority in population protocols,” in SODA 2018: Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2018, pp. 2221-2239.
D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta, “Computation in networks of passively mo-
bile finite-state sensors,” Distributed Computing, vol. 18,
no. 4, pp. 235-253, March 2006.

V. Volterra, “Variazioni e fluttuazioni del numero
d’individui in specie animali conviventi,” Memoria della
Reale Accademia Nazionale dei Lincei, vol. 2, pp. 31—
113, 1926.

J. M. Bower and H. Bolouri, Computational modeling
of genetic and biochemical networks. MIT press, 2004.
D. Soloveichik, M. Cook, E. Winfree, and J. Bruck,
“Computation with finite stochastic chemical reaction
networks,” Natural Computing, vol. 7, no. 4, pp. 615-
633, 2008.

Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips,
L. Cardelli, D. Soloveichik, and G. Seelig, ‘“Pro-
grammable chemical controllers made from DNA,” Na-
ture Nanotechnology, vol. 8, no. 10, pp. 755-762, 2013.
N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and
D. Soloveichik, “Enzyme-free nucleic acid dynamical
systems,” Science, vol. 358, no. 6369, p. eaal2052, 2017.
D. Angluin, J. Aspnes, and D. Eisenstat, “Fast computa-
tion by population protocols with a leader,” Distributed
Computing, vol. 21, no. 3, pp. 183-199, September 2008.
D. Doty and M. Hajiaghayi, “Leaderless determinis-
tic chemical reaction networks,” Natural Computing,
vol. 14, no. 2, pp. 213-223, 2015.

D. Doty and D. Soloveichik, “Stable leader election in
population protocols requires linear time,” Distributed
Computing, vol. 31, no. 4, pp. 257-271, 2018.

D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and
R. L. Rivest, “Time-space trade-offs in population proto-
cols,” in SODA 2017: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2017, pp. 2560-2579.

A. Belleville, D. Doty, and D. Soloveichik, “Hardness of
computing and approximating predicates and functions
with leaderless population protocols,” in ICALP 2017:
44th International Colloquium on Automata, Languages,
and Programming, vol. 80, 2017, pp. 141:1-141:14.

A. Kosowski and P. Uznanski, ‘“Population protocols
are fast,” CoRR, vol. abs/1802.06872, 2018. [Online].
Available: http://arxiv.org/abs/1802.06872

P. Berenbrink, R. Elsisser, T. Friedetzky, D. Kaaser,
P. Kling, and T. Radzik, “Time-space trade-offs
in population protocols for the majority problem,”
Distributed Computing, Aug 2020. [Online]. Available:
http://dx.doi.org/10.1007/s00446-020-00385-0

R. Elsdsser and T. Radzik, “Recent results in population
protocols for exact majority and leader election,” Bulletin
of EATCS, vol. 3, no. 126, 2018.

D. Doty, M. Eftekhari, O. Michail, P. G. Spirakis, and
M. Theofilatos, “Brief announcement: Exact size count-
ing in uniform population protocols in nearly logarithmic
time,” in DISC 2018: 32nd International Symposium on
Distributed Computing, 2018.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

J. Burman, H.-L. Chen, H.-P. Chen, D. Doty, T. Nowak,
E. Severson, and C. Xu, “Time-optimal self-stabilizing
leader election in population protocols,” in PODC 2021:
Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, 2021.

D. Alistarh, R. Gelashvili, and M. Vojnovi¢, “Fast and
exact majority in population protocols,” in PODC 2015:
Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. ACM, 2015, pp. 47-56.

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach,
“Simple and Efficient Leader Election,” in Ist Sympo-
sium on Simplicity in Algorithms (SOSA 2018), vol. 61,
2018, pp. 9:1-9:11.

A. Bilke, C. Cooper, R. Elsisser, and T. Radzik, “Brief
announcement: Population protocols for leader election
and exact majority with O(log? n) states and O(log? n)
convergence time,” in PODC 2017: Proceedings of the
ACM Symposium on Principles of Distributed Comput-
ing. ACM, 2017, pp. 451-453.

P. Berenbrink, R. Elsdsser, T. Friedetzky, D. Kaaser,
P. Kling, and T. Radzik, “A population protocol for
exact majority with O(log®/® n) stabilization time and
O(logn) states,” in DISC 2018: Proceedings of the
32nd International Symposium on Distributed Comput-
ing, vol. 10, 2018, pp. 1—18.

S. Ben-Nun, T. Kopelowitz, M. Kraus, and E. Porat,
“An O(log®?n) parallel time population protocol for
majority with O(log n) states,” in PODC 2020: Proceed-
ings of the 39th Symposium on Principles of Distributed
Computing, 2020, pp. 191-199.

D. Doty and M. Eftekhari, “Efficient size estimation and
impossibility of termination in uniform dense population
protocols,” in PODC 2019: Proceedings of the 2019
ACM Symposium on Principles of Distributed Comput-
ing, 2019, pp. 34-42.

P. Berenbrink, D. Kaaser, and T. Radzik, “On counting
the population size,” in PODC 2019: Proceedings of
the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, p. 43-52.

D. Alistarh and R. Gelashvili, “Polylogarithmic-time
leader election in population protocols,” in 42nd In-
ternational Colloquium on Automata, Languages, and
Programming, vol. 9135, 2015, pp. 479 — 491.

L. Ggsieniec and G. Stachowiak, “Fast space optimal
leader election in population protocols,” in SODA 2018:
ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2018, pp. 2653-2667.

L. Gasieniec, G. Stachowiak, and P. Uznanski, “Almost
logarithmic-time space optimal leader election in popula-
tion protocols,” in 31st ACM Symposium on Parallelism
in Algorithms and Architectures, 2019, pp. 93—102.

P. Berenbrink, G. Giakkoupis, and P. Kling, “Optimal
time and space leader election in population protocols,”
in STOC 2020: Proceedings of the 52nd ACM SIGACT
Symposium on Theory of Computing, 2020, p. 119-129.
M. Draief and M. Vojnovi¢, “Convergence speed of
binary interval consensus,” SIAM Journal on control and
Optimization, vol. 50, no. 3, pp. 1087-1109, 2012.

G. B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos,
and P. G. Spirakis, “Determining majority in networks
with local interactions and very small local memory,” in

1055

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

[45]

International Colloquium on Automata, Languages, and
Programming. Springer, 2014, pp. 871-882.

Y. Mocquard, E. Anceaume, J. Aspnes, Y. Busnel, and
B. Sericola, “Counting with population protocols,” in
14th IEEE International Symposium on Network Com-
puting and Applications, 2015, pp. 35-42.

Y. Mocquard, E. Anceaume, and B. Sericola, “Optimal
proportion computation with population protocols,” in
2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), 2016, pp. 216-223.
D. Angluin, J. Aspnes, and D. Eisenstat, “A simple pop-
ulation protocol for fast robust approximate majority,”
Distributed Computing, vol. 21, no. 2, pp. 87-102, 2008.
A. Condon, M. Hajiaghayi, D. Kirkpatrick, and
J. Matiuch, “Approximate majority analyses using tri-
molecular chemical reaction networks,” Natural Com-
puting, vol. 19, no. 1, pp. 249-270, 2020.

D. Doty, M. Eftekhari, L. Gasieniec, E. Severson,
G. Stachowiak, and P. Uznaniski, “A time and
space optimal stable population protocol solving exact
majority,” arXiv, Tech. Rep. 2106.10201, 2021. [Online].
Available: https://arxiv.org/abs/2106.10201

L. Gasieniec, D. Hamilton, R. Martin, P. G. Spirakis,
and G. Stachowiak, “Deterministic population protocols
for exact majority and plurality,” in 20th International
Conference on Principles of Distributed Systems, 2016.
M. Blondin, J. Esparza, S. Jaax, and A. Kucera, “Black
ninjas in the dark: Formal analysis of population pro-
tocols,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS
’18, 2018, p. 1-10.

D. Alistarh and R. Gelashvili, “Recent algorithmic ad-
vances in population protocols,” ACM SIGACT News,
vol. 49, no. 3, pp. 63-73, 2018.

H.-L. Chen, D. Doty, and D. Soloveichik, “Deterministic
function computation with chemical reaction networks,”
Natural Computing, vol. 13, no. 4, pp. 517-534, 2013.
D. Angluin, J. Aspnes, and D. Eisenstat, “Stably com-
putable predicates are semilinear,” in PODC 2006: 25th
annual ACM Symposium on Principles of Distributed
Computing, 2006, pp. 292-299.
https://github.com/UC-Davis-molecular-computing/
ppsim/blob/main/examples/majority.ipynb.

Y. Mocquard, B. Sericola, F. Robin, and E. Anceaume,
“Stochastic analysis of average based distributed algo-
rithms,” 2020.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking,
“Balanced allocations: The heavily loaded case,” SIAM
Journal on Computing, vol. 35, no. 6, pp. 1350-1385,
2006.

B. Dudek and A. Kosowski, “Universal protocols for
information dissemination using emergent signals,” in
STOC 2018: Proceedings of the 50th ACM SIGACT
Symposium on Theory of Computing, 2018, pp. 87-99.
I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlo-
giannis, and P. G. Spirakis, “Passively mobile communi-
cating machines that use restricted space,” Theoretical
Computer Science, vol. 412, no. 46, pp. 6469-6483,
October 2011.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

