
A time and space optimal stable population protocol solving exact majority

David Doty

University of California, Davis
doty@ucdavis.edu

Mahsa Eftekhari

University of California, Davis
mhseftekhari@ucdavis.edu

Leszek Gąsieniec

University of Liverpool
l.a.gasieniec@liverpool.ac.uk

Eric Severson

University of California, Davis
eseverson@ucdavis.edu

Przemysław Uznański

University of Wrocław
puznanski@cs.uni.wroc.pl

Grzegorz Stachowiak

University of Wrocław
puznanski@cs.uni.wroc.pl

Abstract—We study population protocols, a model of
distributed computing appropriate for modeling well-
mixed chemical reaction networks and other physical
systems where agents exchange information in pairwise
interactions, but have no control over their schedule of
interaction partners. The majority problem is that of
determining in an initial population of n agents, each with
one of two opinions A or B, whether there are more A,
more B, or a tie. A stable protocol solves this problem
with probability 1 by eventually entering a configuration
in which all agents agree on a correct consensus decision of
A, B, or T, from which the consensus cannot change. We
describe a protocol solving this problem using O(log n)
states (log log n + O(1) bits of memory) and optimal
expected time O(log n). The number of states O(log n)
is known to be optimal for polylogarithmic time stable
protocols that are “output dominant” and “monotone” [1].
These are two natural constraints satisfied by our protocol,
making it simultaneously time- and state-optimal for
that class. We introduce a key technique called a “fixed
resolution clock” to achieve partial synchronization.

Our protocol is nonuniform: the transition function has
the value �log n� encoded in it. We show that the protocol
can be modified to be uniform, while increasing the state
complexity to Θ(log n log log n).

Keywords-majority; population protocols; stable;

I. INTRODUCTION

Population protocols [2] are asynchronous, complete

networks that consist of computational entities called

agents with no control over the schedule of interactions

with other agents. In a population of n agents, repeat-

edly a random pair of agents is chosen to interact, each

observing the state of the other agent before updating its

own state. They are an appropriate model for electronic

computing scenarios such as sensor networks and for

“fast-mixing” physical systems such as animal popula-

tions [3], gene regulatory networks [4], and chemical

reactions [5], the latter increasingly regarded as an

implementable “programming language” for molecular

engineering, due to recent experimental breakthroughs

in DNA nanotechnology [6,7].
Time complexity in a population protocol is defined

by parallel time: the total number of interactions divided

by the population size n, henceforth called simply

time. This captures the natural timescale in which each

individual agent experiences expected O(1) interactions
per unit time. All problems solvable with zero er-

ror probability by a constant-state population protocol

are solvable in O(n) time [8, 9]. The benchmark for

“efficient” computation is thus sublinear time, ideally

polylog(n), with Ω(log n) time a lower bound on most

nontrivial computation, since a simple coupon collector

argument shows that is the time required for each agent

to have at least one interaction.
As a simple example of time complexity, suppose

we want to design a protocol to decide whether at

least one x exists in an initial population of x’s and

q’s. The single transition x, q → x, x indicates that if

agents in states x and q interact, the q agent changes

state to x. If x outputs “yes” and q outputs “no”,

this takes expected time O(log n) to reach a consensus

of all x’s (i.e., O(n log n) total interactions, including

null interactions between two x’s or between two q’s).
However, the transitions x, x → y, y; y, x → y, y;
y, q → y, y, where x, q output “no” and y outputs

“yes”, which computes whether at least two x’s exist, is

exponentially slower: expected time O(n). The worst-

case input is exactly 2 x’s and n−2 q’s, where the first

interaction between the x’s takes expected
(
n
2

)
= Θ(n2)

interactions, i.e., Θ(n) time.
To have probability 0 of error, a protocol must even-

tually stabilize: reach a configuration where all agents

agree on the correct output, which is stable, meaning

no subsequently reachable configuration can change the

output.1 The original model [2] assumed states and

1Technically this connection between probability 1 correctness and
reachability requires the number of producible states for any fixed
population size n to be finite, which is the case for our protocol.

1044

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00104

20
21

 IE
EE

 6
2n

d
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

01
04

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

Table I: Summary of results on the stable exact majority

problem in population protocols, including this paper

[∗]. Gray regions are provably impossible: o(log log n)
state, o(n) time unconditionally [11], o(log n) state,

O(n1−ε) time for monotone, output-dominant proto-

cols [1], and o(log n) time unconditionally.

Time

O(1)

O(logn)

O(log3/2 n)

O(log5/3 n)

O(log2 n)

Ω(n)

StatesO
(1)

O
(log

n)

O
(log 2

n)

O
(log 3

n)

O
(n ε

)

Ω
(n)

[2,8,29,30]

[11][20]

[22]

[21]

[1,14] [18]

[14] [31,32][∗]

transitions are constant with respect to n. However,

for important problems such as leader election [10],

majority computation [11], and computation of other

functions and predicates [12], no constant-state protocol

can stabilize in sublinear time with probability 1.2 This

has motivated the study of population protocols whose

number of states is allowed to grow with n, and as a

result they can solve such problems in polylogarithmic

time [1,11,14–28].

A. The majority problem in population protocols

Angluin, Aspnes, and Eisenstat [33] showed a pro-

tocol they called approximate majority, which means

that starting from an initial population of n agents with

opinions A or B, if |A − B| = ω(
√
n log n) (i.e., the

gap between the initial majority and minority counts is

greater than roughly
√
n), then with high probability the

algorithm stabilizes to all agents adopting the majority

opinion in O(log n) time. A tighter analysis by Condon,

Hajiaghayi, Kirkpatrick, and Maňuch [34] reduced the

required gap to Ω(
√
n log n).

Mertzios, Nikoletseas, Raptopoulos, and

Spirakis [30], and independently Draief and

Vojnović [29], showed a 4-state protocol that solves

2These problems have O(1) state, sublinear time converging pro-
tocols [13]. A protocol converges when it reaches the correct output
without subsequently changing it—though it may remain changeable
for some time after converging—whereas it stabilizes when the output
becomes unchangeable. See [10,14] for a discussion of the distinction
between stabilization and convergence. In this paper we consider only
stabilization time.

exact majority problem, i.e., it identifies the majority

correctly, no matter how small the initial gap.3 We

henceforth refer to this simply as the majority problem.

The protocol of [29, 30] is also stable in the sense

that it has probability 1 of getting the correct answer.

However, this protocol takes Ω(n) time in the worst

case: when the gap is O(1). Known work on the stable

majority problem is summarized in Table I. Gąsieniec,

Hamilton, Martin, Spirakis, and Stachowiak [36]

investigated Ω(n) time protocols for majority and the

more general “plurality consensus” problem. Blondin,

Esparza, Jaax, and Kučera [37] show a similar stable

(also Ω(n) time) majority protocol that also reports if

there is a tie.

Alistarh, Gelashvili, and Vojnović [18] showed the

first stable majority protocol with worst-case polyloga-

rithmic expected time, requiring Ω(n) states. A series of

positive results reduced the state and time complexity

for stable majority protocols [1, 11, 14, 20–22, 31, 32].

Ben-Nun, Kopelowitz, Kraus, and Porat showed the

current fastest stable sublinear-state protocol [22] using

O(log3/2 n) time and O(log n) states. The current state-

of-the-art protocols use alternating phases of cancelling
(two biased agents with opposite opinions both become

unbiased, preserving the difference between the major-

ity and minority counts) and splitting (a.k.a. doubling):
a biased agent converts an unbiased agent to its opinion;

if all biased agents that didn’t cancel can successfully

split in that phase, then the count difference doubles.

The goal is to increase the count difference until it is n;
i.e., all agents have the majority opinion. See [15,38] for

relevant surveys. Our protocol uses the same framework

of cancelling and splitting for O(log n) phases, but uses
constant time per phase. This requires a novel phase

clock construction, and handling new types of errors

introduced by the clock’s faster pace.

Some non-stable protocols solve exact majority with

high probability but have a positive probability of in-

correctness. Berenbrink, Elsässer, Friedetzky, Kaaser,

Kling, and Radzik [14] showed a protocol that with

initial gap α uses O(s + log logn) states and WHP

converges in O(log n logs(
n
α)) time.4 With α = 1 and

s = O(1), the protocol uses O(log log n) states and con-

verges in O(log2 n) time. Kosowski and Uznański [13]

showed a protocol using O(1) states and converging in

O(polylog(n)) time with high probability.

3The 4-state protocol doesn’t identify ties, (gap = 0), but this can
be handled with 2 more states; see Stable-Backup in [35].

4This protocol is SIMPLEMAJORITY in [14], which they then build
on to achieve multiple stable protocols. The stable protocols require
either Ω(n) stabilization time or Ω(logn) states to achieve sublinear
stabilization time.

1045

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

On the negative side, Alistarh, Aspnes, and

Gelashvili [1] showed that any stable majority protocol

taking (roughly) less than linear time requires Ω(log n)
states if it also satisfies two conditions (satisfied by

all known stable majority protocols, including ours):

monotonicity and output dominance. These concepts

are discussed in Section V. In particular, the Ω(log n)
state bound of [1] applies only to stable (probability

1) protocols; the high probability protocol of [14], for

example, uses O(log log n) states and O(log2 n) time.

B. Our contribution

We show a stable population protocol solving the

exact majority problem in optimal O(log n) time (in ex-

pectation and with high probability) that uses O(log n)
states. Our protocol is both monotone and output dom-

inant (see Section V or [1] for discussion of these

definitions), so by the Ω(logn) state lower bound of [1],

our protocol is both time and space optimal for the class

of monotone, output-dominant stable protocols.

A high-level overview of the algorithm is given

in Sections III-A and III-B, with a full formal descrip-

tion given in [35]. Like most known majority protocols

using more than constant space (the only exceptions

being in [14]), our protocol is nonuniform: agents have

an estimate of the value �log n� embedded in the

transition function and state space. Section IV describes

how to modify our main protocol to make it uniform, re-

taining the O(log n) time bound, but increasing the state

complexity to O(log n log logn) in expectation and with

high probability. That section discusses challenges in

creating a uniform O(log n) state protocol.

II. PRELIMINARIES

We write log n to denote log2 n, and lnn to denote

the natural logarithm. We write x ∼ y to denote that

x and y are asymptotically equivalent (implicitly in the

population size n), meaning lim
n→∞

x(n)
y(n) = 1.

A. Population protocols

A population protocol is a pair P = (Λ, δ), where Λ
is a finite set of states, and δ : Λ × Λ → Λ × Λ is the

transition function.5 In this paper we deal with nonuni-
form protocols in which a different Λ and δ are allowed

for different population sizes n (one for each possible

value of �log n�), but we abuse terminology and refer

5To understand the full generality of our main protocol, we include
randomized transitions in our model. However, there is only one
type of randomized transition in the protocol (the “drip reactions”
of Phase 3 described in Section III-B), parameterized by probability
p, and in fact we prove the protocol works even when these transitions
are deterministic, i.e., when p = 1.

to the whole family as a single protocol. In all cases (as

with similar nonuniform protocols), the nonuniformity

is used to embed the value �log n� into each agent;

the transitions are otherwise “uniformly specified”. See

Section IV for more discussion of uniform protocols.

A configuration c of a population protocol is a

multiset over Λ of size n, giving the states of the n
agents in the population. For a state s ∈ Λ, we write

c(s) to denote the count of agents in state s. A transition
(a.k.a., reaction) is a 4-tuple α = (r1, r2, p1, p2), written

α : r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2). If

an agent in state r1 interacts with an agent in state r2,
then they change states to p1 and p2. For every pair

of states r1, r2 without an explicitly listed transition

r1, r2 → p1, p2, there is an implicit null transition

r1, r2 → r1, r2 in which the agents interact but do

not change state. For our main protocol, we specify

transitions formally with pseudocode that indicate how

agents alter each independent field in their state. We say

a configuration d is reachable from a configuration c if

applying 0 or more transitions to c results in d.

B. Stable majority computation

There are many modes of computation considered

in population protocols: computing integer-valued func-

tions [9, 12, 39] where the number of agents in a

particular state is the output, Boolean-valued predi-

cates [8,40] where each agent outputs a Boolean value

as a function of its state and the goal is for all agents

eventually to have the correct output, problems such as

leader election [10, 11, 19, 25–28], and generalizations

of predicate computation, where each agent individually

outputs a value from a larger range, such as reporting

the population size [16,23,24]. Majority computation is

Boolean-valued if computing the predicate “A ≥ B?”,

where A and B represent the initial counts of two

opinions A and B. We define the slightly generalized

problem that requires recognizing when there is a tie,

so the range of outputs is {A,B,T}.
Formally, if the set of states is Λ, the protocol defines

a disjoint partition of Λ = ΛA ∪ ΛB ∪ ΛT. For u ∈
{A,B,T}, if a ∈ Λu for all a ∈ c, we define output
φ(c) = u (i.e., all agents in c agree on the output u).
Otherwise φ(c) is undefined (i.e., agents disagree on the

output). We say o is stable if φ(o) is defined and, for

all o2 such that o⇒ o2, φ(o) = φ(o2), i.e., the output

cannot change.

The protocol identifies two special input states
A,B ∈ Λ. A valid initial configuration i satisfies a ∈
{A,B} for all a ∈ i. We say the majority opinion of i is
M(i) = A if i(A) > i(B), M(i) = B if i(A) < i(B),
and M(i) = T if i(A) = i(B). The protocol stably

1046

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

computes majority if, for any valid initial configuration

i, for all c such that i⇒ c, there is a stable o such that

c⇒ o and φ(o) = M(i). Let Oi = {o : φ(o) = M(i)}
be the set of all correct, stable configurations. In other

words, for any reachable configuration, it is possible

to reach a correct, stable configuration, or equivalently

reach a strongly connected component in Oi.

C. Time complexity

In any configuration the next interaction is chosen

by selecting a pair of agents uniformly at random

and applying an applicable transition, with appropriate

probabilities for any randomized transitions. Thus the

sequence of transitions and configurations they reach

are random variables. To measure time we count the

total number of interactions (including null transitions

such as a, b→ a, b in which the agents interact but do

not change state), and divide by the number of agents n.
In the population protocols literature, this is often called

“parallel time”: n interactions among a population of n
agents equals one unit of time.

If the protocol stably computes majority, then for any

valid initial configuration i, the probability of reaching

a stable, correct configuration, P[i ⇒ Oi] = 1. 6 We

define the stabilization time S to be the random variable

giving the time to reach a configuration o ∈ Oi.

When discussing random events in a protocol of

population size n, we say event E happens with high
probability if P[¬E] = O(n−c), where c is a con-

stant that depends on our choice of parameters in the

protocol, where c can be made arbitrarily large by

changing the parameters. In other words, the probability

of failure can be made an arbitrarily small polynomial.

For concreteness, we will write a particular polynomial

probability such as O(n−2), but in each case we could

tune some parameter (say, increasing the time complex-

ity by a constant factor) to increase the polynomial’s

exponent. We say event E happens with very high
probability if P[¬E] = O(n−ω(1)), i.e., if its probability
of failure is smaller than any polynomial probability.

III. NONUNIFORM MAJORITY ALGORITHM

DESCRIPTION

The following is the main theorem of this paper.

Theorem III.1. There is a nonuniform population pro-
tocol Nonuniform-Majority, using O(log n) states, that
stably computes majority in O(log n) stabilization time,
both in expectation and with high probability.

6Since population protocols have a finite reachable configuration
space, this is equivalent to the stable computation definition that for
all c reachable from i, there is a o′ ∈ Oi reachable from c.

A. High-level overview of algorithm

In this overview we use “pseudo-transitions” such as

A,B → O,O to describe agents updating a portion of

their states, while ignoring other parts of the state space.

Each agent initially has a bias: +1 for opinion A
and −1 for opinion B, so the population-wide sum

g =
∑

v v.bias gives the initial gap between opin-

ions. The majority problem is equivalent to determining

sign(g). Transitions redistribute biases among agents

but, to ensure correctness, maintain the population-

wide g as an invariant. Biases change through cancel
reactions + 1

2i ,− 1
2i → 0, 0 and split reactions ± 1

2i , 0→± 1
2i+1 ,± 1

2i+1 , down to a minimum ± 1
2L

. The constant

L = �log2(n)� ensures Θ(log n) possible states. The

gap is defined to be
∑

v sign(v.bias), the difference in

counts between majority and minority biases. Note the

gap should grow over time to spread the correct majority

opinion to the whole population, while the invariant g
should ensure correctness of the final opinion.

The cancel and split reactions average the bias value

between both agents, but only when the average is

also a power of 2, or 0. If we had averaging reac-

tions between all pairs of biases (also allowing, e.g.,
1
2 ,

1
4 → 3

8 ,
3
8), then all biases would converge to g

n ,

but this would use too many states.7 With our limited

set {0,± 1
2 ,± 1

4 , . . . ,± 1
2L
} of possible biases, allowing

all cancel and split reactions simultaneously does not

work. Most biases appear simultaneously across the

population, reducing the count of each bias, which

slows the rate of cancel reactions. Then the count of

unbiased 0 agents is reduced, which slows the rate

of split reactions, see Fig. 1a. Also, there is a non-

negligible probability for the initial minority opinion to

reach a much greater count, if those agents happen to

do more split reactions, see Fig. 1b. Thus using only the

count of positive versus negative biases will not work

to solve majority even with high probability.

To solve this problem, we partially synchronize the

unbiased agents with a field hour, adding log n states

00, 01, 02, . . . , 0L. The new split reactions

± 1

2i
, 0h → ± 1

2i+1
,± 1

2i+1
if h > i

will wait until hour ≥ h before doing splits down

to bias = ± 1
2h

. We could use existing phase clocks

to perfectly synchronize hour, by making each hour

use Θ(log n) time, enough time for all opinionated

agents to split. Then WHP all agents would be in states

{0h,+ 1
2h
,− 1

2h
} by the end of hour h, see Fig. 1c. The

7This was effectively the approach used for majority in [18,32], for
an O(n) state, O(logn) time protocol.

1047

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

invariant g =
∑

v v.bias implies that all minority opin-

ions would be eliminated by hour �log2 1
g � ≤ L. This

would give an O(log n)-state, O(log2 n)-time majority

algorithm, essentially equivalent to [1,14].

The main idea of our algorithm is to use these

rules with a faster clock using only O(1) time per

hour. The hour field of unbiased agents is synchro-

nized to a separate subpopulation of clock agents, who

use a field minute, with k consecutive minutes per

hour. Minutes advance by drip reactions Ci, Ci →
Ci, Ci+1, and catch up by epidemic reactions Ci, Cj →
Cmax(i,j), Cmax(i,j). See Fig. 2 for an illustration of the

clock minute and hour dynamics.

Since O(1) time per hour is not sufficient to bring

all agents up to the current hour before advancing to

the next, we now have only a large constant fraction

of agents, rather than all agents, synchronized in the

current hour. Still, we prove this looser synchronization

keeps the values of hour and bias relatively concen-

trated, so by the end of this phase, we reach a configura-

tion as shown in Fig. 1d. Most agents have the majority

opinion (WLOG positive), with three consecutive biases

+ 1
2l
,+ 1

2l+1 ,+
1

2l+2 .

Detecting ties.: This algorithm gives an elegant

way to detect a tie with high probability. In this case,

g = 0, and with high probability, all agents will

finish the phase with bias ∈ {
0,± 1

2L

}
. Checking this

condition stably detects a tie (i.e., with probability 1, if

this condition is true, then there is a tie), because for

any nonzero value of g, there must be some agent with

|bias| > 1
2L

.

Cleanup Phases.: We must next eliminate all

minority opinions, while still relying on the invariant

g =
∑

v v.bias to ensure correctness. Note that is it

possible with low probability to have a greater count

of minority opinions (with smaller values of bias), so

only relying on counts of positive and negative biases

would give possibilities of error.

We first remove any minority agents with large bias,

by using an additional subpopulation of Reserve agents

that enable additional split reactions for large values of

|bias| > 1
2l
. Then after cancel reactions with the bulk

of majority agents, the only minority agents left must

have |bias| < 1
2l+2 .

To then remove minority agents with small bias, we

allow agents with larger bias to “consume” agents with

smaller bias, such as an interaction between agents + 1
4

and − 1
256 . Here the positive agent can be thought to

hold the entire bias + 1
4 − 1

256 = + 63
256 , but since this

value is not in the allowable states, it can only store

that its bias is in the range + 1
8 ≤ bias ≤ +1

4 . Without

(a) Cancel/split reactions with no synchronization. All states
become present, many in about equal counts. Rate of cancel
reactions and fraction of 0 agents are Θ(1

logn
).

(b) Later snapshot of the simulation in Fig. 1a. The initial
minority B now has a much larger count, because those agents
happened to undergo more split reactions.

(c) Cancel/split reactions, fully synchronized into O(log n)
time hours, at the beginning of hour 16. All minority are
eliminated by hour log n in O(log2 n) time.

(d) Main phase of our protocol, split reactions partially synchro-
nized using the clock in Fig. 2, at the end of this O(log n) time
phase. Most agents are left with bias ∈ {

+ 1
218

,+ 1
219

,+ 1
220

}
.

Later phases eliminate the remaining minority agents.

Figure 1: Cancel / split reactions with no synchro-

nization (1a,1b), perfect synchronization (1c), and par-

tial synchronization (1d) via the fixed-resolution phase

clock of our main protocol. Plots generated from [41].

1048

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Clock rules of our protocol, showing a trav-

elling wave distribution over minutes, on a larger pop-

ulation of size n = 1017 to emphasize the distribution.

The distribution’s back tail decays exponentially, and its

front tail decays doubly exponentially. A large constant

fraction of agents are in the same two consecutive

hour’s (here 7 and 8). Plot generated from [41].

knowing its exact bias, this agent cannot participate in

future averaging interactions. However, with high prob-

ability there are sufficient majority agents to eliminate

all remaining minority via these consumption reactions.
A final phase checks for the presence of both positive

and negative bias, and if one has been completely

eliminated, it stabilizes to the correct output. In the case

where both are present, this is a detectable error, where

we can move to a slow, correct backup that uses the

original inputs. Due to the low probability of this case,

it contributes negligibly to the total expected time.

B. Intuitive description of each phase

Our full protocol is broken up into 11 consecutive

phases. We describe each phase intuitively. Full pseu-

docode is given in [35]. Note that some further separa-

tion of phases was done to create more straightforward

proofs of correctness, so simplicity of the proofs was op-

timized over simplicity of the full protocol pseudocode.

It is likely possible to have simpler logic that still solves

majority via the same strategy.

Phase 0: “Population splitting” [38] divides agents into

roles used in subsequent phases: Main,Reserve,Clock.
In timed phases (those not marked as Untimed or Fixed-
resolution clock, including the current phase), Clock
agents count from Θ(log n) to 0 to cause the switch

to the next phase after Θ(log n) time.

“Standard” population splitting uses reactions such as

x, x→ r1, r2 to divide agents into two roles r1, r2. This
takes Θ(n) time to converge, which can be decreased

to Θ(log n) time via r1, x→ r1, r2 and r2, x→ r2, r1,
while maintaining that #r1 and #r2 are both n/2 ±√
n WHP. However, since all agents initially have an

opinion, but Clock and Reserve agents do not hold an

opinion, agents that adopt role Clock or Reserve must

first pass off their opinion to a Main agent.

From each interacting pair of unassigned agents, one

will take the Main role and hold the opinions of both

agents, interpreting A as +1 and B as −1. This Main
agent will then be allowed to take at most one other

opinion (in an additional reaction that enables rapid

convergence of the population splitting), and holding

3 opinions can end up with a bias in the range

{−3,−2,−1, 0,+1,+2,+3}.
Phase 1: Agents do “integer averaging” [25] of bi-

ases in the set {−3, . . . ,+3} via reactions i, j →

 i+j

2 �, � i+j
2 �. Although taking Θ(n) time to converge

in some cases, this process is known [42] to result in

three consecutive values in O(log n) time. If those three

values are detected to be {−1, 0,+1} in the next phase,

the algorithm continues.

Phase 2: (Untimed) Agents propagate the set of opin-

ions (signs of biases) remaining after Phase 1 to detect if

only one opinion remains. If so, we have converged on

a majority consensus, and the algorithm halts here. At

this point, this is essentially the exact majority protocol

of [30], which takes O(log n) time with an initial gap

Ω(n), but longer for sublinear gaps (e.g., Ω(n) time

for a gap of 1). Thus, if agents proceed beyond this

phase (i.e., if both opinions A and B remain at this

point), we will use later that the gap was smaller than

0.025 · #Main. With low probability both opinions

remain but some agent has |bias| > 1, in which case

we proceed directly to a slow stable backup protocol in

Phase 10.

Phase 3: (Fixed-resolution clock) The key goal at this

phase is to use cancel and split reactions to aver-

age the bias across the population to give almost

all agents the majority opinion. Biased agents hold

a field exponent ∈ {−L, . . . ,−1, 0}, describing the

magnitude |bias| = 2exponent, a quantity we call the

agent’s mass. Cancel reactions eliminate opposite biases

+ 1
2i ,− 1

2i → 0, 0 with the same exponent; cancel reac-

tions strictly reduce total mass. Split reactions ± 1
2i , 0→± 1

2i+1 ,± 1
2i+1 give half of the bias to an unbiased agent,

decrementing the exponent; split reactions preserve the

total mass. The unbiased O agents, with role = Main,
opinion = bias = 0, act as the fuel for split reactions.

We want to obtain tighter synchronization in the ex-

ponents than Fig. 1a, approximating the ideal syn-

chronized behavior of the O(log2 n) time algorithm of

Fig. 1c while using only O(log n) time. To achieve this,

the Clock agents run a “fixed resolution” clock that

keeps them roughly synchronized (though not perfectly;

see Fig. 2) as they count their “minutes” from 0 up

1049

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

to L′ = kL, using O(1) time per minute. This is

done via “drip” reactions Ci, Ci → Ci, Ci+1 (when

minute i gets sufficiently populated, pairs of Ci agents

meet with sufficient likelihood to increment the minute)

and Cj , Ci → Cj , Cj for i < j (new higher minute

propagates by epidemic).8 If randomized transitions are

allowed, by lowering the probability p of the drip

reaction, the clock rate can be slowed by a constant

factor (see Fig. 3). Although we prove a few lemmas

about this generalized clock, and some of our simulation

plots use p < 1, our proofs work even for p = 1, i.e., a
deterministic transition function, although this requires

constant-factor more states (by increasing the number

of “minutes per hour”, explained next).

Now the O agents will use Θ(log n) states to store an

“hour”, coupled to the C clock agents via C�i/k�,Oj →
C�i/k�,O�i/k� if
i/k� > j, i.e., every consecutive k
Clock minutes corresponds to one Main hour, and clock

agents drag O agents up to the current hour. Our proofs

require k = 45 minutes per hour when p = 1, but

smaller values of k work in simulation. For example,

the simulation in Fig. 1d showing intended behavior of

this phase used only k = 3 minutes per hour with p = 1.
This clock synchronizes the exponents because agents

with exponent = −i can only split down to

exponent = −(i + 1) with an O agent that has

hour ≥ i + 1. This prevents the biased agents from

doing too many splits too quickly. As a result, during

hour i, most of the biased agents have |bias| = 1
2i , so

the cancel reactions + 1
2i ,− 1

2i → 0, 0 happen at a high

rate, providing many O agents as “fuel” for future split

reactions. We tune the constants of the clock to ensure

hour i lasts long enough to bring most biased agents

down to exponent = −i via split reactions and then

let a good fraction do cancel reactions.

8This clock is similar to the power-of-two-choices leaderless phase
clock of [1], where the agent with smaller (or equal) minute incre-
ments their clock (Cj , Ci → Cj , Ci+1 for i ≤ j), but increasing
the smaller minute by only 1. Similarly to our clock, the maximum
minute can increase only with both agents at the same minute. A
similar process was analyzed in [43], and in fact was shown to have
the key properties needed for our clock to work—an exponentially-
decaying back tail and a double-exponentially-decaying front tail—so
it seems likely that a power-of-two-choices clock could also work
with our protocol.

The randomized variant of our clock with drip probability p is also
similar to the “junta-driven” phase clock of [26], but with a linear
number 2pn of agents in the junta, using O(1) time per minute,
rather than the O(nε)-size junta of [26], which uses O(logn) time
per minute. There, smaller minutes are brought up by epidemic, and
only an agent in the junta seeing another agent at the same minute
will increment. The epidemic reaction is exactly the same in both
rules. The probability p of a drip reaction can be interpreted as the
probability that one of the agents is in the junta. For similar rate of
O(1) time per minute phase clock construction see also Dudek and
Kosowski work [44].

The key property at the conclusion of this phase is that

unless there is a tie, WHP most majority agents end up

in three consecutive exponents −l,−(l + 1),−(l + 2),
with a negligible mass of any other Main agent (major-

ity agents at lower/higher exponents, minority agents at

any exponent, or O agents).9 Phases 5-7 use this fact to

quickly push the rest of the population to a configuration

where all minority agents have exponents strictly below

−(l+2); Phase 8 then eliminates these minority agents

quickly.

Figure 3: The theoretical upper and lower bounds for the
time of one clock minute (from[35, Theorem 6.8]), along with
samples from simulation. For each value of n, 100 minute
times were sampled, taking t0.1i+1− t0.1i for i = 9, . . . , 18 over
10 independent trials. All our proofs assume p is constant, and
for any fixed value of p, will only hold for sufficiently large n.
The case n = 103 shows that when p = O(1/n), the bounds
no longer hold. This is to be expected because the expected
number of drips becomes too small for large deviation bounds
to still hold.

Phase 4: (Untimed) The special case of a tie is detected

by the fact that, since the total bias remains the initial

gap g, if all biased agents have minimal exponent −L,

g has magnitude less than 1:

|g| =
∣∣∣∣∣

∑

a.role=Main

a.bias

∣∣∣∣∣ ≤
∑

a.role=Main

|a.bias|

≤
∑

a.role=Main

1

2L
<

n

2�log2(n)� ≤ 1.

The initial gap g is integer valued, so |g| < 1 =⇒
g = 0. Thus this condition implies there is a tie with

probability 1; the converse that a tie forces all biased

agents to exponent −L holds with high probability.

If only exponent −L is detected, the algorithm halts

here with all agents reporting output T. Otherwise, the

algorithm proceeds to the next phase.

Phase 5, Phase 6: Using the key property of Phase 3,

these phases WHP pull all biased agents above exponent

−l down to exponent −l or below using the Reserve

9l is defined such that if all biased agents were at exponent −l, the
difference in counts between majority and minority agents would be
between 0.4 ·#Main and 0.8 ·#Main.

1050

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

R agents. The R’s activate themselves in Phase 5 by

sampling the exponent of the first biased agent they

meet. This ensures WHP that sufficiently many Reserve
agents exist with exponents −l,−(l + 1),−(l + 2)
(distributed similarly to the agents with those expo-

nents). Then in Phase 6, they act as fuel for splits,

via Ri,± 1
2j → ± 1

2j+1 ,± 1
2j+1 when |i| > |j|. The

reserve agents, unlike the O agents in Phase 3, do not

change their exponent in response to interactions with

Clock agents. Thus sufficiently many reserve agents will

remain to allow the small number of biased agents above

exponent −l to split down to exponent −l or below.

Phase 7: This phase allows more general reactions to

distribute the dyadic biases, allowing reactions between

agents up to two exponents apart, to eliminate the

opinion with smaller exponent: 1
2i ,− 1

2i+1 → 1
2i+1 , 0

and 1
2i ,− 1

2i+2 → 1
2i+1 ,

1
2i+2 (and the equivalent with

positive/negative biases swapped). Since all agents have

exponent −l or below, and many more majority agents

exist at exponents −l,−(l + 1),−(l + 2) than the total

number of minority agents anywhere, these (together

with standard cancel reactions 1
2i ,− 1

2i → 0, 0) rapidly

eliminate all minority agents at exponents −l,−(l +
1),−(l + 2), while maintaining Ω(n) majority agents

at exponents ≥ −(l + 2) and < 0.01n total minority

agents, now all at exponents ≤ −(l + 3).
Phase 8: This phase eliminates the last minority

agents, while ensuring that if any error occurred in

previous phases, some majority agents remain, to allow

detecting the error by the presence of both opinions.10

The biased agents add a Boolean field full, initially

False, and consumption reactions that allow an agent

at a larger exponent i to consume (set to mass 0 by

setting it to be O) an agent at an arbitrarily smaller

exponent j < i. Now the remaining agent represents

some non-power-of-two mass m = 2i − 2j , which it

lacks sufficient memory to track exactly. Thus setting

the flag full = True corresponds to the agent having

an uncertain mass m in the range 2i−1 ≤ m < 2i.
Because of this uncertainty, full agents are not allowed

to consume other smaller levels. However, there are

more than enough high-exponent majority agents by

this phase to consume all remaining lower exponent

minority agents.

10A naïve idea to reach a consensus at this phase is to allow cancel
reactions 1

2i
,− 1

2j
→ 0, 0 between arbitrary pairs of exponents

with opposite opinions. However, this has a positive probability of
erroneously eliminating the majority. This is because the majority,
while it necessarily has larger mass than the minority at this point,
could have smaller count. For example, we could have 16 A’s with
exponent = −2 and 32 B’s with exponent = −5, so A’s have
mass 16 · 2−2 = 4 and B’s have smaller mass 32 · 2−5 = 1, but
larger count than A.

Crucially, agents that have consumed another agent and

set full = True may themselves then be consumed

by a third agent (with full = False) at an even larger

exponent. This is needed because a minority agent at

exponent i ≤ −(l + 3) may consume a (rare) majority

agent at exponent j < i, but the minority agent itself can

be consumed by another majority agent with exponent

k > i.
Phase 9: (Untimed) This is identical to Phase 2: it

detects whether both biased opinions A and B remain.

If not (the likely case), the algorithm halts, otherwise

we proceed to the next phase.

Phase 10: (Untimed) Agents execute a simple, slow

stable majority protocol [37], similar to that of [29,30]

but also handling ties. This takes Θ(n log n) time, but

the probability that an earlier error forces us to this

phase is O(1/n2), so it contributes negligibly to the

total expected time.

IV. UNIFORM, STABLE PROTOCOLS FOR MAJORITY

USING MORE STATES

The algorithm described in Section III is nonuniform:

the set of transitions used for a population of size

n depends on the value �log n�. A uniform proto-

col [16, 23, 45] is a single set of transitions that can

be used in any population size. Since it is “uniformly

specified”, the transition function is formally defined by

a linear-space Turing machine, where the space bound

is the maximum space needed to read and write the

input and output states. The original model [2] used

O(1) states and transitions for all n and so was auto-

matically uniform, but many recent ω(1) state protocols

are nonuniform. With the exception of the uniform

variant in [14], all ω(1) state stable majority protocols

are nonuniform [1, 11, 18, 20–22]. The uniform variant

in [14] has a tradeoff parameter s that, when set to O(1)
to minimize the states, uses O(log n log log n) states and
O(log2 n) time.

In this section we show that there is a way to make

Nonuniform-Majority in Section III uniform, retaining

the O(log n) time bound, but the expected number of

states increases to Θ(log n log log n).11

A. Main idea of O(log n log log n) state uniform ma-
jority (not handling ties)

Since Nonuniform-Majority uses the hard-coded

value L = �log n�, to make the algorithm uniform, we

require a way to estimate log n and store it in a field L
(called logn below) of each agent. For correctness and

11We say “expected” because this protocol has a non-zero probabil-
ity of using an arbitrarily large number of states. The number of states
will be O(logn log logn) in expectation and with high probability.

1051

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

speed, it is only required that logn be within a constant

multiplicative factor of log n.
Gąsieniec and Stachowiak [26] show a uniform

O(log logn) state, O(log n) time protocol (both bounds

in expectation and with high probability) that computes

and stores in each agent a value � ∈ N
+ that, with

high probability, is within additive constant O(1) of

�log logn� (in particular, WHP � ≥
log logn�−3 [14,

Lemma 8]), so 2� = Θ(log n). (This is the so-called

junta election protocol used as a subroutine for a sub-

sequent leader election protocol.) Furthermore, agents

approach this estimate from below, propagating the

maximum estimate by epidemic �′, � → �, � if �′ < �.
This gives an elegant way to compose the size esti-

mation with a subsequent nonuniform protocol P that

requires the estimate: agents store their estimate logn

of log n and use it in P . Whenever an agent’s estimate

logn updates—always getting larger—it simply resets

P , i.e., sets the entire state of P to its initial state. We

can then reason as though all agents actually started

with their final convergent value of logn.12

To make our protocol uniform, but remove its correct-

ness in the case of a tie, as we explain below, all agents

conduct this size estimation, stored in the field logn,

in parallel with the majority protocol P of Section III.

Each agent resets P to its initial state whenever logn

updates. This gives the stated O(log n) time bound and

O(log n log log n) state bound. Note that in Phase 0,

agents count from counter = Θ(log n) down to 0. It

suffices to set the constant in the Θ sufficiently large that

all agents with high probability receive by epidemic the

convergent final value of logn significantly before any

agent with the same convergent estimate counts to 0.

Acknowledging that, with small probability, the esti-

mate of log n could be too low for Phase 4 to be correct,

we simply remove Phase 4 and do not attempt to detect

ties. So if we permit undefined behavior in the case

of a tie (as many existing fast majority protocols do),

then this modification of the algorithm otherwise retains

stably correct, O(log n) time behavior, while increasing

the state complexity to O(log n log log n).

B. How to stably compute ties

With low but positive probability, the estimate of

log n could be too small. For most phases of the

algorithm, this would merely amplify the probability

12One might hope for a stronger form of composition, in which the
size estimation terminates, i.e., sets an initially False Boolean flag to
True only if the size estimation has converged, in order to simply
prohibit the downstream protocol P from starting with an incorrect
estimate of logn. However, when A and B are both initially Ω(n),
this is impossible; Ω(n) agents will set the flag to True in O(1) time,
long before the size estimation converges [23, Theorem 4.1].

of error events (e.g., Phase 1 doesn’t last long enough

for agents to converge on biases {−1, 0,+1}) that later
phases are designed to handle. However, the correctness

of Phase 4 (which detects ties) requires agents to have

split through at least log n exponents in Phase 3. Since

the population-wide bias doubles each time the whole

population splits down one exponent, the only way for

the whole population to split through log n exponents

is for there to be a tie (i.e., the population-wide bias

is 0, so can double unboundedly many times). In this

one part of the algorithm, for correctness we require the

estimate to be at least log n with probability 1. (It can be

much greater than log n without affecting correctness;

an overestimate merely slows down the algorithm.)

To correct this error, we will introduce a stable

backup size estimate, to be done in Phase 4. Note

that there are only a constant number of states with

phase = 4: Clock agents do not store a counter in this

phase, and Main agents that stay in this phase must

have bias ∈ {
0,± 1

2L

}
. Thus we can use an additional

Θ(log n) states for the agents that are currently in

phase = 4 to stably estimate the population size. If

they detect that their estimate of L was too small, they

simply go to the stable backup Phase 10.

Stable computation of
log n�.: The stable com-

putation of log n has all agents start in state L0, where

the subscript represents the agent’s estimate of
log n�.
We have the following transitions: for each i ∈ N,

Li, Li → Li+1, Fi+1 and, for each 0 ≤ j < i,
Fi, Fj → Fi, Fi. Among the agents in state Li, half

make it to state Li+1, reaching a maximum of Lk at

k =
log2 n�.13 All remaining F agents receive the

maximum value k by epidemic. A very similar protocol

was analyzed in [24, Lemma 12]. A time analysis of

this protocol is in the full version of this paper [35].

C. Challenges for O(log n) state uniform algorithm

It is worth discussing some ideas for adjusting the

uniform protocol described above to attempt to reduce

its space complexity to O(log n) states. The primary

challenge is to enable the population size n to be

estimated without storing the estimate in any agent

that participates in the main algorithm (i.e., the agent

has role Main, Clock, or Reserve). If agents in the

main algorithm do not store the size, then by [23,

Theorem 4.1] they will provably go haywire initially,

13More generally, the unique stable configuration encodes the full
population size n in binary in the following distributed way: for each
position i of a 1 in the binary expansion of n, there is one agent
Li. Thus, these remaining agents lack the space to participate in
propagating the value k = �logn� by epidemic, but there are Ω(n)
followers F to complete the epidemic quickly.

1052

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

with agents in every phase, totally unsynchronized, and

require the size estimating agents to reset them after

having converged on a size estimate that is Ω(log n).
The following method would let the Size agents reset

main algorithm agents, without actually having to store

an estimate of log n in the algorithm agents, but it only

works with high probability. The size estimating agents

could start a junta-driven clock as in [26], which is reset

whenever they update their size estimate. Then, as long

as there are Ω(n) Size agents, they could for a phase

timed to last Θ(log n) time, reset the algorithm agents

by direct communication (instead of by epidemic). This

could put the algorithm agents in a quiescent state where

they do not interact with each other, but merely wait for

the Size agents to exit the resetting phase, indicating that

the algorithm agents are able to start interacting again.

Since there are Ω(n) size-estimating agents, each non-

size-estimating agent will encounter at least one of them

with high probability in O(log n) time.

The problem is that the reset signal is not guaranteed

to reach every algorithm agent. There is some small

chance that a Main agent with a bias different from its

input does not encounter a Size agent in the resetting

phase, so is never reset. The algorithm from that point

on could reach an incorrect result when the agent

interacts with properly reset agents, since the sum of

biases across the population has changed. In our algo-

rithm, by “labeling” each reset with the value logn, we

ensure that no matter what states the algorithm agents

find themselves in during the initial chaos before size

computation converges, every one of them is guaranteed

to be reset one last time with the same value of logn.

The high-probability resetting described above could

potentially work to create a high probability uniform

protocol using O(log n) time and states, though we have

not thoroughly explored the possibility.

But it seems difficult to achieve probability-1 correct-

ness using the technique of “reset the whole majority

algorithm whenever the size estimate updates,” without

multiplying the state complexity by the number of

possible values of logn. Since we did not need
log n�
exactly, but only a value that is Θ(log n), we paid

only Θ(log log n) multiplicative overhead for the size

estimate, but it’s not straightforward to see how to avoid

this using the resetting technique.

V. CONCLUSION

There are some remaining open problems concerning

the majority problem for population protocols.

Uniform O(log n)-time, O(log n)-state majority
protocol: Our main O(log n) state protocol, described

in Section III, is nonuniform: all agents have the value

�log n� encoded in their transition function. The uni-

form version of our protocol described in Section IV

uses O(log n log log n) states. It remains open to find a

uniform protocol that uses O(log n) time and states.
O(log n) time, o(log n) state non-stable protocol:

Berenbrink, Elsässer, Friedetzky, Kaaser, Kling, and

Radzik [14] showed a non-stable majority protocol (i.e.,

it has a positive probability of error) using O(log log n)
states and converging in O(log2 n) time. (See Section I

for more details.) Is there a protocol with o(log n) states
solving majority in O(log n) time?

Unconditional Ω(log n) state lower bound for sta-
ble majority protocols: The lower bound of Ω(log n)
states for (roughly) sublinear time majority protocols

shown by Alistair, Aspnes, and Gelashvili [1] ap-

plies only to stable protocols satisfying two conditions:

monotonicity and output dominance.
Recall that a uniform protocol is one where a sin-

gle set of transitions works for all population sizes;

nonuniform protocols typically violate this by having an

estimate of the population size (e.g., the integer �log n�)
embedded in the transition function. Monotonicity is a

much weaker form of uniformity satisfied by nearly all

known nonuniform protocols. While allowing different

transitions as the population size grows, monotonicity

requires that the transitions used for population size n
must also be correct for all smaller population sizes

n′ < n (i.e., an overestimate of the size cannot hurt),

and furthermore that the transitions be no slower on

populations of size n′ than on populations of size

n. Our nonuniform protocol Nonuniform-Majority is

monotone; for an explanation, see the conclusion of the

full version of this paper [35].
Output dominance references the concept of a stable

configuration c, in which all agents have a consensus

opinion that cannot change in any configuration subse-

quently reachable from c. A protocol is output dominant
if in any stable configuration c, adding more agents with

states already present in c maintains the property that

every reachable stable configuration has the same output

(though it may disrupt the stability of c itself). This

condition holds for all known stable majority protocols,

including that described in this paper: they obey the

stronger condition that adding states already present in

c does not even disrupt its stability. In such protocols,

two agents with the same opinion cannot create the

opposite opinion, so stabilization happens exactly when

all agents first converge on a consensus output. For a

more detailed explanation, see the conclusion of the full

version of this paper [35].
Monotonicity can be seen as a natural condition that

all “reasonable” non-uniform protocols must satisfy,

1053

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

but output dominance arose as an artifact that was

required for the lower bound proof strategy of [1]. It

remains open to prove an unconditional (i.e., remov-

ing the condition of output dominance) lower bound

of Ω(logn) states for any stable monotone majority

protocol taking polylogarithmic time, or to show a

stable polylogarithmic time monotone majority protocol

using o(log n) states, which necessarily violates output

dominance. If the unconditional lower bound holds, then

our protocol is simultaneously optimal for both time and

states. Otherwise, it may be possible to use o(log n)
states to stably compute majority in polylogarithmic

stabilization time with a non-output-dominant protocol.

We close with questions unrelated to majority.

Fast population protocol for parity: The majority

problem “X1 > X2?” is a special case of a threshold
predicate, which asks whether a particular weighted sum

of inputs
∑k

i=1 wiXi > c exceeds a constant c. (For

majority, w1 = 1, w2 = −1, c = 0; our protocol extends
straightforwardly to other values of wi, though not other

values of c.) The threshold predicates, together with the

mod predicates, characterize the semilinear predicates,

which are precisely the predicates stably computable

by O(1) state protocols [40] with no time constraints

(though Θ(n) time to stabilize is sufficient for all

semilinear predicates [8] and necessary for “most” [12]).

A representative mod predicate is parity: asking whether

an odd or even number of agents exist. Like majority,

parity is solvable by a simple protocol in O(n) time [2],

and it is known to require Ω(n) time for any O(1)
state protocol to stabilize [12]. Techniques from [11]

can be used to show that stabilization requires close

to linear time even allowing up to 1
2 log logn states.

An interesting open question is to consider allowing

ω(1) states in deciding parity. Can it then be decided

in polylogarithmic time?

Fast population protocols for function computa-
tion: The transition X,Q → Y, Y , starting with suf-

ficiently many excess agents in state Q, computes the

function f(x) = 2x, because if we start with x agents

in state X , in time O(log n), 2x agents adopt state

Y [39]. The similar transition X,X → Y,Q computes

f(x) =
x/2�, but using time Θ(n), as does any O(1)-
state protocol computing any linear function with a co-

efficient not in N, as well as “most” non-linear functions

such as min(x1, x2) (computable by X1, X2 → Y,Q)

and max(x1, x2) [12]. Can such functions be computed

in sublinear time by using ω(1) states?

Acknowledgments. Doty, Eftekhari, and Severson were

supported by NSF awards 1900931 and 1844976.

REFERENCES

[1] D. Alistarh, J. Aspnes, and R. Gelashvili, “Space-optimal
majority in population protocols,” in SODA 2018: Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2018, pp. 2221–2239.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and
R. Peralta, “Computation in networks of passively mo-
bile finite-state sensors,” Distributed Computing, vol. 18,
no. 4, pp. 235–253, March 2006.

[3] V. Volterra, “Variazioni e fluttuazioni del numero
d’individui in specie animali conviventi,” Memoria della
Reale Accademia Nazionale dei Lincei, vol. 2, pp. 31–
113, 1926.

[4] J. M. Bower and H. Bolouri, Computational modeling
of genetic and biochemical networks. MIT press, 2004.

[5] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck,
“Computation with finite stochastic chemical reaction
networks,” Natural Computing, vol. 7, no. 4, pp. 615–
633, 2008.

[6] Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips,
L. Cardelli, D. Soloveichik, and G. Seelig, “Pro-
grammable chemical controllers made from DNA,” Na-
ture Nanotechnology, vol. 8, no. 10, pp. 755–762, 2013.

[7] N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and
D. Soloveichik, “Enzyme-free nucleic acid dynamical
systems,” Science, vol. 358, no. 6369, p. eaal2052, 2017.

[8] D. Angluin, J. Aspnes, and D. Eisenstat, “Fast computa-
tion by population protocols with a leader,” Distributed
Computing, vol. 21, no. 3, pp. 183–199, September 2008.

[9] D. Doty and M. Hajiaghayi, “Leaderless determinis-
tic chemical reaction networks,” Natural Computing,
vol. 14, no. 2, pp. 213–223, 2015.

[10] D. Doty and D. Soloveichik, “Stable leader election in
population protocols requires linear time,” Distributed
Computing, vol. 31, no. 4, pp. 257–271, 2018.

[11] D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and
R. L. Rivest, “Time-space trade-offs in population proto-
cols,” in SODA 2017: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2017, pp. 2560–2579.

[12] A. Belleville, D. Doty, and D. Soloveichik, “Hardness of
computing and approximating predicates and functions
with leaderless population protocols,” in ICALP 2017:
44th International Colloquium on Automata, Languages,
and Programming, vol. 80, 2017, pp. 141:1–141:14.

[13] A. Kosowski and P. Uznański, “Population protocols
are fast,” CoRR, vol. abs/1802.06872, 2018. [Online].
Available: http://arxiv.org/abs/1802.06872

[14] P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser,
P. Kling, and T. Radzik, “Time-space trade-offs
in population protocols for the majority problem,”
Distributed Computing, Aug 2020. [Online]. Available:
http://dx.doi.org/10.1007/s00446-020-00385-0

[15] R. Elsässer and T. Radzik, “Recent results in population
protocols for exact majority and leader election,” Bulletin
of EATCS, vol. 3, no. 126, 2018.

[16] D. Doty, M. Eftekhari, O. Michail, P. G. Spirakis, and
M. Theofilatos, “Brief announcement: Exact size count-
ing in uniform population protocols in nearly logarithmic
time,” in DISC 2018: 32nd International Symposium on
Distributed Computing, 2018.

1054

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

[17] J. Burman, H.-L. Chen, H.-P. Chen, D. Doty, T. Nowak,
E. Severson, and C. Xu, “Time-optimal self-stabilizing
leader election in population protocols,” in PODC 2021:
Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, 2021.

[18] D. Alistarh, R. Gelashvili, and M. Vojnović, “Fast and
exact majority in population protocols,” in PODC 2015:
Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing. ACM, 2015, pp. 47–56.

[19] P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach,
“Simple and Efficient Leader Election,” in 1st Sympo-
sium on Simplicity in Algorithms (SOSA 2018), vol. 61,
2018, pp. 9:1–9:11.

[20] A. Bilke, C. Cooper, R. Elsässer, and T. Radzik, “Brief
announcement: Population protocols for leader election
and exact majority with O(log2 n) states and O(log2 n)
convergence time,” in PODC 2017: Proceedings of the
ACM Symposium on Principles of Distributed Comput-
ing. ACM, 2017, pp. 451–453.

[21] P. Berenbrink, R. Elsässer, T. Friedetzky, D. Kaaser,
P. Kling, and T. Radzik, “A population protocol for
exact majority with O(log5/3 n) stabilization time and
Θ(log n) states,” in DISC 2018: Proceedings of the
32nd International Symposium on Distributed Comput-
ing, vol. 10, 2018, pp. 1––18.

[22] S. Ben-Nun, T. Kopelowitz, M. Kraus, and E. Porat,
“An O(log3/2 n) parallel time population protocol for
majority with O(log n) states,” in PODC 2020: Proceed-
ings of the 39th Symposium on Principles of Distributed
Computing, 2020, pp. 191–199.

[23] D. Doty and M. Eftekhari, “Efficient size estimation and
impossibility of termination in uniform dense population
protocols,” in PODC 2019: Proceedings of the 2019
ACM Symposium on Principles of Distributed Comput-
ing, 2019, pp. 34–42.

[24] P. Berenbrink, D. Kaaser, and T. Radzik, “On counting
the population size,” in PODC 2019: Proceedings of
the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, p. 43–52.

[25] D. Alistarh and R. Gelashvili, “Polylogarithmic-time
leader election in population protocols,” in 42nd In-
ternational Colloquium on Automata, Languages, and
Programming, vol. 9135, 2015, pp. 479 – 491.

[26] L. Ga̧sieniec and G. Stachowiak, “Fast space optimal
leader election in population protocols,” in SODA 2018:
ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2018, pp. 2653–2667.

[27] L. Ga̧sieniec, G. Stachowiak, and P. Uznański, “Almost
logarithmic-time space optimal leader election in popula-
tion protocols,” in 31st ACM Symposium on Parallelism
in Algorithms and Architectures, 2019, pp. 93–102.

[28] P. Berenbrink, G. Giakkoupis, and P. Kling, “Optimal
time and space leader election in population protocols,”
in STOC 2020: Proceedings of the 52nd ACM SIGACT
Symposium on Theory of Computing, 2020, p. 119–129.

[29] M. Draief and M. Vojnović, “Convergence speed of
binary interval consensus,” SIAM Journal on control and
Optimization, vol. 50, no. 3, pp. 1087–1109, 2012.

[30] G. B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos,
and P. G. Spirakis, “Determining majority in networks
with local interactions and very small local memory,” in

International Colloquium on Automata, Languages, and
Programming. Springer, 2014, pp. 871–882.

[31] Y. Mocquard, E. Anceaume, J. Aspnes, Y. Busnel, and
B. Sericola, “Counting with population protocols,” in
14th IEEE International Symposium on Network Com-
puting and Applications, 2015, pp. 35–42.

[32] Y. Mocquard, E. Anceaume, and B. Sericola, “Optimal
proportion computation with population protocols,” in
2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), 2016, pp. 216–223.

[33] D. Angluin, J. Aspnes, and D. Eisenstat, “A simple pop-
ulation protocol for fast robust approximate majority,”
Distributed Computing, vol. 21, no. 2, pp. 87–102, 2008.

[34] A. Condon, M. Hajiaghayi, D. Kirkpatrick, and
J. Maňuch, “Approximate majority analyses using tri-
molecular chemical reaction networks,” Natural Com-
puting, vol. 19, no. 1, pp. 249–270, 2020.

[35] D. Doty, M. Eftekhari, L. Ga̧sieniec, E. Severson,
G. Stachowiak, and P. Uznański, “A time and
space optimal stable population protocol solving exact
majority,” arXiv, Tech. Rep. 2106.10201, 2021. [Online].
Available: https://arxiv.org/abs/2106.10201

[36] L. Ga̧sieniec, D. Hamilton, R. Martin, P. G. Spirakis,
and G. Stachowiak, “Deterministic population protocols
for exact majority and plurality,” in 20th International
Conference on Principles of Distributed Systems, 2016.

[37] M. Blondin, J. Esparza, S. Jaax, and A. Kučera, “Black
ninjas in the dark: Formal analysis of population pro-
tocols,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS
’18, 2018, p. 1–10.

[38] D. Alistarh and R. Gelashvili, “Recent algorithmic ad-
vances in population protocols,” ACM SIGACT News,
vol. 49, no. 3, pp. 63–73, 2018.

[39] H.-L. Chen, D. Doty, and D. Soloveichik, “Deterministic
function computation with chemical reaction networks,”
Natural Computing, vol. 13, no. 4, pp. 517–534, 2013.

[40] D. Angluin, J. Aspnes, and D. Eisenstat, “Stably com-
putable predicates are semilinear,” in PODC 2006: 25th
annual ACM Symposium on Principles of Distributed
Computing, 2006, pp. 292–299.

[41] https://github.com/UC-Davis-molecular-computing/
ppsim/blob/main/examples/majority.ipynb.

[42] Y. Mocquard, B. Sericola, F. Robin, and E. Anceaume,
“Stochastic analysis of average based distributed algo-
rithms,” 2020.

[43] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking,
“Balanced allocations: The heavily loaded case,” SIAM
Journal on Computing, vol. 35, no. 6, pp. 1350–1385,
2006.

[44] B. Dudek and A. Kosowski, “Universal protocols for
information dissemination using emergent signals,” in
STOC 2018: Proceedings of the 50th ACM SIGACT
Symposium on Theory of Computing, 2018, pp. 87–99.

[45] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlo-
giannis, and P. G. Spirakis, “Passively mobile communi-
cating machines that use restricted space,” Theoretical
Computer Science, vol. 412, no. 46, pp. 6469–6483,
October 2011.

1055

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 05,2022 at 11:26:38 UTC from IEEE Xplore. Restrictions apply.

