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Abstract. We introduce ppsim [28], a software package for efficiently
simulating population protocols, a widely-studied subclass of chemical
reaction networks (CRNs) in which all reactions have two reactants and
two products. Each step in the dynamics involves picking a uniform ran-
dom pair from a population of n molecules to collide and have a (poten-
tially null) reaction. In a recent breakthrough, Berenbrink, Hammer,
Kaaser, Meyer, Penschuck, and Tran [6] discovered a population proto-
col simulation algorithm quadratically faster than the näıve algorithm,
simulating Θ(

√
n) reactions in constant time (independently of n, though

the time scales with the number of species), while preserving the exact
stochastic dynamics.

ppsim implements this algorithm, with a tightly optimized Cython
implementation that can exactly simulate hundreds of billions of reac-
tions in seconds. It dynamically switches to the CRN Gillespie algorithm
for efficiency gains when the number of applicable reactions in a config-
uration becomes small. As a Python library, ppsim also includes many
useful tools for data visualization in Jupyter notebooks, allowing robust
visualization of time dynamics such as histogram plots at time snapshots
and averaging repeated trials.

Finally, we give a framework that takes any CRN with only bimolecu-
lar (2 reactant, 2 product) or unimolecular (1 reactant, 1 product) reac-
tions, with arbitrary rate constants, and compiles it into a continuous-
time population protocol. This lets ppsim exactly sample from the chem-
ical master equation (unlike approximate heuristics such as τ -leaping
or LNA), while achieving asymptotic gains in running time. In linked
Jupyter notebooks, we demonstrate the efficacy of the tool on some pro-
tocols of interest in molecular programming, including the approximate
majority CRN and CRN models of DNA strand displacement reactions.
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1 Introduction

A foundational model of chemistry used in natural sciences is that of chemical
reaction networks (CRNs) [22]: finite sets of reactions such as A + B → C + D,
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representing that molecules A and B, upon colliding, can change into C and
D. This gives a continuous time, discrete state, Markov process [22] modelling
discrete counts1 of molecules.

Population protocols [3], a well-studied model of distributed computing with
limited agents, are a restricted subset of CRNs (with two reactants and two
products in each reaction, and unit rate constants) that nevertheless capture
many of the interesting features of CRNs. Different terminology is used: in reac-
tion A + B → C + D, two agents (molecules), whose states (species types) are
A,B, have an interaction (reaction), changing their states respectively to C,D.
Gillespie kinetics for CRNs. The standard Gillespie algorithm [22] simulates the
Markov process mentioned above. Given a fixed volume v ∈ R

+, the propensity
of a unimolecular reaction r : X

k→ . . . is ρ(r) = k ·#X, where #X is the count of
X. The propensity of a bimolecular reaction r : X +Y

k→ . . . is ρ(r) = k · #X·#Y
v

if X �= Y and k · #X·(#X−1)
2v otherwise. The Gillespie algorithm calculates the

sum of the propensities of all reactions: ρ =
∑

r ρ(r). The time until the next
reaction is sampled as an exponential random variable T with rate ρ, and a
reaction rnext is chosen with probability ρ(rnext)/ρ to be applied.

Population Protocols. The population protocols model comes with simpler
dynamics. At each step, a scheduler chooses a random pair of agents (molecules)
to interact in a (potentially null) reaction. The discrete time model counts each
interaction as 1

n units of time, where n is the population size. A continuous time
variant [18] gives each agent a rate-1 Poisson clock, upon which it interacts with
a randomly chosen other agent. The expected time until the next interaction is
1
n , so up to a re-scaling of time, which by straightforward Chernoff bounds is
negligible, these two models are equivalent. ppsim can use either time model.

There is an important efficiency difference between the algorithms: the Gille-
spie algorithm automatically skips null reactions. For example, a reaction such
as L + L→ L + F , when #L = 2 and #F = n − 2, is much more efficient in the
Gillespie algorithm, which simply increments the time until the L + L → L + F
reaction by an exponential random variable in one step. A näıve population pro-
tocol simulation iterates through Θ(n) expected null interactions (L+F → L+F
and F + F → F + F ) until the two L’s react. To better handle cases like
this, ppsim dynamically switches to the Gillespie algorithm when the number of
null interactions is sufficiently large; see documentation [28] for implementation
details.

Other Simulation Algorithms. Variants of the Gillespie algorithm reduce the time
to apply a single reaction from O(|R|) to O(log |R|) [21] or O(1) [31], where |R|
is the number of types of reactions. However, the time to apply n reactions still
scales with n. A common speedup heuristic for simulating ω(1) reactions in O(1)
time is τ -leaping [10,23,24,29,32], which “leaps” ahead by time τ , by assuming
reaction propensities will not change and updating counts in a single batch step
1 Another modelling choice are ODEs that describe real-valued concentrations, the

“mean-field” approximation to the discrete behavior in the large scale limit [26].
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by sampling according these propensities. Such methods necessarily approximate
the kinetics inexactly, though it is possible in some cases to prove bounds on
the approximation accuracy [32]. Linear noise approximation (LNA) [11] can
be used to approximate the discrete kinetics, by adding stochastic noise to an
ODE approximation. A speedup heuristic for population protocol simulation
is to sample the number of each interaction that would result from a random
matching of size m, and update species counts in a single step. This, too, is an
inexact approximation: unlike the true process, it prevents any molecule from
participating in more than one of the next m interactions.

The algorithm implemented by ppsim, due to Berenbrink, Hammer, Kaaser,
Meyer, Penschuck, and Tran [6], builds on this last heuristic. Conditioned on
the event that no molecule is picked twice during the next m interactions, these
interacting pairs are a random disjoint matching of the molecules. Define the
random variable C as the number of interactions until the same molecule is
picked twice. Their basic algorithm samples this collision length C according
to its exact distribution, then updates counts in batch assuming all pairs of
interacting molecules are disjoint until this collision, and finally simulates the
interaction involving the collision. By the Birthday Paradox, E[C] ≈ √

n in a
population of n molecules, giving a quadratic factor speedup over the näıve
algorithm. The time to update a batch scales quadratically with q, the total
number of states. The “multibatch” variant, used by ppsim, samples multiple

successive collisions to process an even larger batch, and uses O

(

q
√

logn
n

)

time

per simulated interaction.
See [6] for details. An advantage of such a fast simulator, specifically for

population protocols implementing algorithms, is that the very large population
sizes it can handle (over 1012) allow one to tell the difference (on a log-scale plot
of convergence time) between a protocol converging in time O(log n) versus, say,
O(log2 n).

2 Usage of the Ppsim Tool

We direct the reader to [28] for detailed installation, usage instructions, and
examples. Here we highlight basic usage examples for specifying protocols.

There are three ways one can specify a population protocol, each best suited
for different contexts. The most direct specification of a protocol directly encodes
the mapping of input state pairs to output state pairs using a Python dict

(the following is the well-studied approximate majority protocol, which has been
studied theoretically [4,13] and implemented experimentally with DNA [12]):
1 a,b,u = 'A','B','U'
2 approx_majority = {(a,b):(u,u), (a,u):(a,a), (b,u):(b,b)}

More complex protocols with many possible species are often specified in
pseudocode instead of listing all possible reactions. ppsim supports this by allow-
ing the transition function mapping input states to output states to be computed
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by a Python function. The following allows species to be integers and computes
an integer average of the two reactants:
1 def discrete_averaging(s: int , r: int):
2 return math.floor((s+r)/2), math.ceil((s+r)/2)

States and transition rules are converted to integer arrays for internal Cython
methods, so there is no efficiency loss for the ease of representing protocol rules,
since a Python function defining the transition function is not called during the
simulation: producible states are enumerated before starting the simulation.

For complicated protocols, an advantage of ppsim over standard CRN simu-
lators is the ability to represent species/states as Python objects with different
fields (as they are often represented in pseudocode), and to plot counts of agents
based on their field values.2

Finally, protocols can be specified using CRN-like notation for CRNs with
reactions that are bimolecular (2-input, 2-output) or unimolecular (1-input, 1-
output), with arbitrary rate constants. For instance, this code specifies the CRN

A + B
0.5�
4

2C, C
5→ D

1 a,b,c,d = species('A B C D')
2 crn = [(a+b | 2*c).k(0.5).r(4), (c >> d).k(5)]

This will then get compiled into a continuous time population protocol that
samples the same distribution as Gillespie. See full paper [14] for details.

Any of the three specifications (dict, Python function, or list of CRN reac-
tions) can be passed to the Simulation constructor. The Simulation can be run
to generate a history of sampled configurations.
1 init_config = {a: 51, b: 49}
2 sim = Simulation(init_config , approx_majority)
3 sim.run(16, 0.1) # 160 samples up to time 16
4 sim.history.plot() # Pandas dataframe with counts

This would produce the plot shown in Fig. 1a. When the input is a CRN,
ppsim defaults to continuous time and produces the exact same distributions as
the Gillespie algorithm. Figure 1b shows a test against the package GillesPy2 [25]
to confirm they sample the same distribution.

3 Speed Comparison with Other CRN Simulators

We ran speed comparisons of ppsim against both GillesPy2 [25] and StochKit2
[30], the latter being the fastest option we found for Gillespie simulation. Figure 2
shows that ppsim is able to reach significantly larger population sizes. Other tests
shown in an example notebook3 show how each package scales with the number
of species and reactions.
2 Download and run https://github.com/UC-Davis-molecular-computing/ppsim/

blob/main/examples/majority.ipynb to visualize such large state protocols.
3 https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/

crn.ipynb shows further plots and explanations.

https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb
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(a) Plot of sim.history. (b) Comparison with Gillespie algorithm.

Fig. 1. Time 5 (dotted line in Fig. 1a) was sampled 106 times with ppsim and GillesPy2
to verify they both sample the same chemical master equation distribution (Fig. 1b).

Fig. 2. Comparing runtime with population size n shows O(n) scaling for Gillespie
(slope 1 on log-log plot) versus O(

√
n) scaling for ppsim (slope 1/2).

4 Issues with Other Speedup Methods

It is reasonable to conjecture that exact stochastic simulation of large-count
systems is unnecessary, since Gillespie is fast enough on small-count systems,
and faster ODE approximation is “reasonably accurate” for large-count sys-
tems. However, there are example large count systems with stochastic effects not
observed in ODE simulation, and where τ -leaping introduces systematic inaccu-
racies that disrupt the fundamental qualitative behavior of the system, demon-
strating the need for exact stochastic simulation. A simple such example is the
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Fig. 3. The rock-paper-scissors oscillator has qualitative dynamics missed by both ODE
simulation (never goes extinct) and τ -leaping (too quickly goes extinct).

3-state rock-paper-scissors oscillator: B + A → 2B, C + B → 2C, A + C → 2A.
Fig. 3 compares exact simulation of this CRN to τ -leaping and ODEs.

The population protocol literature furnishes more examples, with problems
such as leader election [2,5,7–9,15,17,19,20,34,35] and single-molecule detec-
tion [1,16],4 that crucially use small counts in a very large population, a regime
not modelled correctly by ODEs. See also [27] for examples of CRNs with

4 Download and run https://github.com/UC-Davis-molecular-computing/ppsim/
blob/main/examples/rps oscillator.ipynb to see visualizations of the generalized 7-
state rps oscillator used for single-molecule detection in [16].

https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_oscillator.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_oscillator.ipynb
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qualitative stochastic behavior not captured by ODEs, yet that behavior appears
only in population sizes too large to simulate with Gillespie.

5 Conclusion

Unfortunately, the algorithm of Berenbrink et al. [6] implemented by ppsim
seems inherently suited to population protocols, not more general CRNs. For
instance, reversible dimerization reactions A+B � C (used, for example, in [33]
to model toehold occlusion reactions in DNA systems) seem beyond the reach of
the batching technique of [6]. Although such reactions can be approximated by
A + B � C + F for some anonymous “fuel” species F , the count of F influences
the rate of the reverse reaction F + C → A + B, with a different rate than
C → A + B.

Another area for improvement is the handling of null reactions. There could
be a way to more deeply intertwine the logic of the Gillespie and batching algo-
rithms, to gain the simultaneous benefits of each, skipping the null reactions
while simulating many non-null reactions in batch.
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