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ABSTRACT

We consider the standard population protocol model, where (a

priori) indistinguishable and anonymous agents interact in pairs

according to uniformly random scheduling. The self-stabilizing

leader election problem requires the protocol to converge on a single

leader agent from any possible initial configuration. We initiate

the study of time complexity of population protocols solving this

problem in its original setting: with probability 1, in a complete

communication graph. The only previously known protocol by Cai,

Izumi, andWada [Theor. Comput. Syst. 50] runs in expected parallel

time Θ(𝑛2) and has the optimal number of 𝑛 states in a population

of 𝑛 agents. The existing protocol has the additional property that

it becomes silent, i.e., the agents’ states eventually stop changing.

Observing that any silent protocol solving self-stabilizing leader

election requires Ω(𝑛) expected parallel time, we introduce a silent

protocol that uses optimal 𝑂 (𝑛) parallel time and states. With-

out any silence constraints, we show that it is possible to solve

self-stabilizing leader election in asymptotically optimal expected

parallel time of 𝑂 (log𝑛), but using at least exponential states (a

quasipolynomial number of bits). All of our protocols (and also that

of Cai et al.) work by solving the more difficult ranking problem:

assigning agents the ranks 1, . . . , 𝑛.
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1 INTRODUCTION

Population protocols [8] are a popular and well established model

of distributed computing, originally motivated by passively mobile

sensor networks. However, it also models population dynamics

from various areas such as trust and rumor propagation in social

networks [28], game theory dynamics [16], chemical reactions [38,

53], and gene regulatory networks [18]. Population protocols are a

special-case variant of Petri nets and vector addition systems [34].

This model considers computational agentswith no ability to con-

trol their schedule of communication. They are a priori anonymous,

indistinguishable, and mobile: interacting in pairs asynchronously

and unpredictably. At each step a pair of agents to interact is chosen

uniformly at random. Each agent observes the other’s state, updat-

ing its own according to the transition function. A configuration

describes the global system state: the state of each of the 𝑛 agents.

The sequence of visited configurations describes a particular execu-

tion of the protocol. The goal of the protocol is to reach a desired

set of configurations with probability 1.

It is common in population protocols to measure space/memory

complexity by counting the potential number of states each agent

can have.
1
The model originally used constant-state protocols, i.e.,

the state set is independent of the population size 𝑛 [8]. Recent

studies relax this assumption and allow the number of states to

depend on 𝑛, adding computational power to the model [17, 39, 45],

improving time complexity [2, 37, 51], or tolerating faults [22, 39,

44]. In the current work, for tolerating any number of transient

1
The base-2 logarithm of this quantity is the standard space complexity: the number

of bits required to represent each state (e.g., polynomial states = logarithmic space).
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faults (in the framework of self-stabilization), such relaxation is

necessary [22, 57] (see details below and Theorem 2.1).

Leader election. In the leader election problem, the protocol should

reach a configuration 𝐶 with only one agent marked as a “leader”,

where all configurations reachable from 𝐶 also have a single leader.

When this happens, the protocol’s execution is said to have stabi-

lized.
2
The time complexity of a protocol is measured by parallel

time, the number of interactions until stabilization, divided by the

number of agents 𝑛.3

Leader election is an important paradigm in the design of dis-

tributed algorithms useful to achieve a well coordinated and ef-

ficient behavior in the network. For example, in the context of

population protocols, given a leader, protocols can become expo-

nentially faster [9, 13] or compact (using less memory states) [15].

Moreover, some problems, like fault-tolerant counting, naming and

bipartition become feasible, assuming a leader [12, 20, 59].

Leader election protocols have been extensively studied in the

original setting where all agents start in the same pre-determined

state (a non-self-stabilizing case, and in complete interaction graphs,

i.e. where any pair of agents can interact). For example, it was shown

that the problem cannot be solved in 𝑜 (𝑛) (parallel) time if agents

have only 𝑂 (1) states [32], an upper bound later improved to ≤
1

2
log log𝑛 states [1]. To circumvent this impossibility result, subse-

quent studies assume a non-constant state space, though relatively

small (e.g., 𝑂 (log𝑛) or 𝑂 (log log𝑛)). Leader election has recently

been shown to be solvable with optimal 𝑂 (log𝑛) parallel time

and 𝑂 (log log𝑛) states [14], improving on recent work meeting

this space bound in time 𝑂 (log2 𝑛) [36] and 𝑂 (log𝑛 log log𝑛) [37].
Another work presents a simpler𝑂 (log𝑛)-time,𝑂 (log𝑛)-state pro-
tocol [55]. It may appear obvious that any leader election protocol

requires Ω(log𝑛) time, but this requires a nontrivial proof [54].

There is also an 𝑂 (1)-space and expected 𝑂 (log2 𝑛)-time protocol,

but with a positive error probability; and a slower 𝑜 (𝑛)-time (e.g.,√
𝑛) protocol correct with probability 1 [43]. Recent surveys [6, 33]

explain the relevant techniques.

Reliable leader election. The current paper studies leader election

in the context of reliability. What if agents are prone to memory or

communication errors? What if errors cannot be directly detected,

so agents cannot be re-initialized in response? One can imagine

mobile sensor networks for mission critical and safety relevant

applications where rapid recovery from faults takes precedence

over memory requirements. Imagine applications operating on

relatively small sized networks, so that the sensors’ memory storage

dependent on 𝑛 is not necessarily an issue. Additionally, 𝑛 states

are provably required to solve our problem [22] (see Theorem 2.1).

We adopt the approach of self-stabilization [10, 29]. A proto-

col is called self-stabilizing if it stabilizes with probability 1 from

an arbitrary configuration
4
(resulting from any number of tran-

sient faults). Non-self-stabilizing (a.k.a., initialized) leader election

is easily solvable using only one bit of memory per agent by the

2
Some protocols [36, 43] stabilize with probability 1, but converge (elect a unique

leader) long before stabilizing (become unable to change the number of leaders). In

our protocols these two events typically coincide.

3
This captures the intuition that interactions happen in parallel, defining the time

scale so that each agent participates in𝑂 (1) interactions per time unit on average.

4
For a self-stabilizing protocol, it is equivalent to consider probability 1 and fixed

probability 𝑝 > 0 of correctness; See Section 2.

single transition (ℓ, ℓ) → (ℓ, 𝑓 ) from an initial configuration of all

ℓ’s: when two candidate leaders meet, one becomes a follower 𝑓 .

However, this protocol fails (as do nearly all other published leader

election protocols) in the self-stabilizing setting from an all-𝑓 con-

figuration. Thus, any self-stabilizing leader election (SSLE) protocol

must be able not only to reduce multiple potential leaders to one,

but also to create new leaders. A challenge is a careful verification

of leader absence, to avoid creating excess leaders forever.

Because of this challenge, in any SSLE protocol, agents must

know the exact population size 𝑛, and the number of states must be

at least 𝑛 [22] (Theorem 2.1 in the preliminaries section). Despite

the original assumption of constant space, population protocols

with linear space (merely𝑂 (log𝑛) bits of memory) may be useful in

practice, similarly to distributed algorithms in other models (mes-

sage passing, radio networks, etc.). One may now imagine such

memory-equipped devices communicating in a way as agents do in

population protocols [42, 50]. Think of a group of mobile devices

(like sensors, drones or smart phones) operating in different types of

rescue, military or other monitoring operations (of traffic, pollution,

agriculture, wild-life, etc.). Such networks may be expected to oper-

ate in harsh inaccessible environments, while being highly reliable

and efficient. This requires an efficient “strong” fault-tolerance for

automatic recovery provided by self-stabilization. Moreover, even

if one considers only protocols with polylog(𝑛) states interesting, it
remains an interesting fact that such protocols cannot solve SSLE.

Finally, self-stabilizing algorithms are easier to compose [30, 31].

Composition is in general difficult for population protocols [24,

52], since they lack a mechanism to detect when one computation

has finished before beginning another. However, a self-stabilizing

protocol 𝑆 can be composed with a prior computation 𝑃 , which may

have set the states of 𝑆 in some unknown way before 𝑃 stabilized,

c.f. [10, Section 4], [7, Theorem 3.5].

Problem variants. To circumvent the necessary dependence on

population size 𝑛, previous work has considered relaxations of the

original problem. One approach, which requires agents only to

know an upper bound on 𝑛, is to relax the requirement of self-

stabilization: loose-stabilization requires only that a unique leader

persists for a long time after a stabilization, but not forever [56].

Other papers study leader election in more general and powerful

models than population protocols, which allow extra computational

ability not subject to the limitations of the standard model. One

such model assumes an external entity, called an oracle, giving clues

to agents about the existence of leaders [11, 35]. Other generalized

models include mediated population protocols [47], allowing addi-

tional shared memory for every pair of agents, and the 𝑘-interaction

model [58], where agents interact in groups of size 2 to 𝑘 .

While this paper considers only the complete graph (the most

difficult case), other work considers protocols that assume a par-

ticular non-complete graph topology. In rings and regular graphs

with constant degree, SSLE is feasible even with only a constant

state space [10, 25, 26, 60]. In another recent related work [57],

the authors study the feasibility requirements of SSLE in arbitrary

graphs, as well as the problem of ranking that we also study (see

below). They show how to adapt protocols in [11, 22] into protocols

for an arbitrary (and unknown) connected graph topology (without

any oracles, but knowing 𝑛).
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1.1 Contribution

We initiate the study of the limits of time efficiency or the time/space

trade-offs for SSLE in the standard population protocol model, in the

complete interaction graph. Themost related protocol, of Cai, Izumi,

andWada [22] (Silent-n-state-SSR, Protocol 1), given for complete

graphs, uses exactly 𝑛 states and Θ(𝑛2) expected parallel time ,

exponentially slower than the polylog(𝑛)-time non-self-stabilizing

existing solutions [14, 36, 37, 43, 55]. Our main results are two faster

protocols, each making a different time/space tradeoff.

Our protocols, along with that of [22], are summarized in Table 1.

These main results are later proven as Theorem 4.1 and Theorem 5.1.

Both expected time and high-probability time are analyzed. Any

silent protocol (one guaranteed to reach a configuration where no

agent subsequently changes states) must use Ω(𝑛) parallel time in

expectation (Observation 2.2). This lower bound has helped to guide

our search for sublinear-time protocols, since it rules out ideas that,

if they worked, would be silent. Thus Optimal-Silent-SSR is time-

and space-optimal for the class of silent protocols.

Sublinear-Time-SSR is actually a family of sublinear time proto-

cols that, depending on a parameter 𝐻 that can be set to an integer

between 1 and Θ(log𝑛), causes the algorithm’s running time to

lie somewhere in 𝑂 (
√
𝑛) and 𝑂 (log𝑛), while using more states the

larger 𝐻 is; setting 𝐻 = Θ(log𝑛) gives the time-optimal 𝑂 (log𝑛)
time protocol. However, even with 𝐻 = 1, it requires exponential

states. It remains open to find a sublinear-time SSLE protocol that

uses sub-exponential states. We note that any protocol solving SSLE

requires Ω(log𝑛) time: from any configuration where all 𝑛 agents

are leaders, by a coupon collector argument, it takes Ω(log𝑛) time

for 𝑛 − 1 of them to interact and become followers. (This argument

uses the self-stabilizing assumption that “all-leaders” is a valid

initial configuration; otherwise, for initialized leader election, it

requires considerably more care to prove an Ω(log𝑛) time lower

bound [55].)

For some intuition behind the parameterized running times for

Sublinear-Time-SSR, the protocol works by detecting “name colli-

sions” between agents, communicated via paths of length𝐻 + 1. For
example, 𝐻 = 0 corresponds to the simple linear-time algorithm

that relies on two agents 𝑠, 𝑎 with the same name directly interact-

ing, i.e., the path 𝑠 → 𝑎. 𝐻 = 1 means that 𝑠 first interacts with a

third agent 𝑏, who then interacts with 𝑎, i.e., the path 𝑠 → 𝑏 → 𝑎.

To analyze the time for this process to detect a name collision,

consider the following “bounded epidemic” protocol. The “source”

agent 𝑠 that starts the epidemic is in state 0, and all others are in

state ∞, and they interact by 𝑖, 𝑗 → 𝑖, 𝑖 + 1 whenever 𝑖 < 𝑗 . The

time 𝜏𝑘 is the first time some target agent 𝑎 has state ≤ 𝑘 . In other

words, this agent has heard the epidemic via a path from the source

of length at most 𝑘 . We have E[𝜏1] = 𝑂 (𝑛), since 𝑎 must meet 𝑠

directly. An iterative process can then show E[𝜏2] = 𝑂 (
√
𝑛), and

more generally E[𝜏𝑘 ] = 𝑂 (𝑘𝑛1/𝑘 ). 𝜏𝑛 is the hitting time for the stan-

dard epidemic process, since the path from any agent to the source

can be at most 𝑛. However, with high probability, the epidemic

process will reach each agent via a path of length 𝑂 (log𝑛), so it

follows that 𝜏𝑘 = 𝑂 (log𝑛) if 𝑘 = Ω(log𝑛), so setting 𝐻 = Θ(log𝑛)
will detect this name collisions in 𝑂 (log𝑛) time.

All protocols in the table solve a more difficult problem than

leader election: ranking the agents by assigning them the IDs

1, . . . , 𝑛. Ranking is helpful for SSLE because it gives a deterministic

way to detect the absence of a state (such as the leader state). If any

rank is absent, the pigeonhole principle ensures multiple agents

have the same rank, reducing the task of absence detection to that

of collision detection.

Collision detection is accomplished easily in 𝑂 (𝑛) time by wait-

ing for the colliding agents to meet, which is done by Optimal-

Silent-SSR. Achieving stable collision detection in optimal𝑂 (log𝑛)
time is key to our fast protocol Sublinear-Time-SSR. This collision

detection problem is interesting in its own right, see Conclusion.

Ranking is similar to the naming problem of assigning each agent

a unique “name” (ID) [20, 46], but is strictly stronger since each

agent furthermore knows the order of its name relative to those

of other agents. Naming is related to leader election: if each agent

can determine whether its name is “smallest” in the population,

then the unique agent with the smallest name becomes the leader.

However, it may not be straightforward to determine whether some

agent exists with a smaller name; much of the logic in the faster

ranking algorithm Sublinear-Time-SSR is devoted to propagating

the set of names of other agents while determining whether the

adversary has planted “ghost” names in this set that do not actually

belong to any agent. On the other hand, any ranking algorithm

automatically solves both the naming and leader election problems:

ranks are unique names, and the agent with rank 1 can be assigned

as the leader. (The converse does not hold [21].)

The full version of this paper [21] contains proofs of all results.

2 PRELIMINARIES

We write N = {1, 2, . . .} and N0 = N ∪ {0}. The term ln𝑘 de-

notes the natural logarithm of 𝑘 . 𝐻𝑘 =
∑𝑘
𝑖=1

1

𝑖 denotes the 𝑘th

harmonic number, with 𝐻𝑘 ∼ ln𝑘 , where 𝑓 (𝑘) ∼ 𝑔(𝑘) denotes that
lim

𝑘→∞
𝑓 (𝑘)
𝑔 (𝑘) = 1. We omit floors or ceilings (which are asymptotically

negligible) when writing ln𝑛 to describe a quantity that should be

integer-valued. Throughout this paper, by convention 𝑛 denotes the

population size 𝑛, the number of agents. We say an event 𝐸 happens

with high probability (WHP) if P[¬𝐸] = 𝑂 (1/𝑛).
If a self-stabilizing protocol stabilizes with high probability, then

we can make this high probability bound 1 −𝑂 (1/𝑛𝑐 ) for any con-

stant 𝑐 . This is because in the low probability of an error, we can

repeat the argument, using the current configuration as the ini-

tial configuration. Each of these potential repetitions gives a new

“epoch”, where the Markovian property of the model ensures the

events of stabilizing in each epoch are independent. Thus the pro-

tocol will stabilize after at most 𝑐 of these “epochs” with probability

1 −𝑂 (1/𝑛𝑐 ). By the same argument, if a self-stabilizing protocol

can stabilize with any positive probability 𝑝 > 0, it will eventually

stabilize with probability 1.

Model. We consider population protocols [8] defined on a collec-

tion A of 𝑛 indistinguishable agents, also called a population. We

assume a complete communication graph over A, meaning that

every pair of agents can interact. Each agent has a set S of local

states. At each discrete step of a protocol, a probabilistic scheduler

picks randomly an ordered pair of agents from A to interact. Dur-

ing an interaction, the two agents mutually observe their states
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Table 1: Overview of time and space (number of states) complexities of self-stabilizing leader election protocols (which all also

solve ranking). For the silent protocols, the silence time also obeys the stated upper bound. Times are measured as parallel

time until stabilization both in expectation and with high probability (WHP is defined as probability 1 −𝑂 (1/𝑛), but implies

a guarantee for any 1 − 𝑂 (1/𝑛𝑐 ), see Section 2). Entries marked with * are asymptotically optimal in their class (silent/non-

silent); see Observation 2.2. The final two rows really describe the same protocol Sublinear-Time-SSR; it is parameterized by

the positive integer 𝐻 ; setting 𝐻 = Θ(log𝑛) gives the time-optimal 𝑂 (log𝑛) time protocol.

protocol expected time WHP time states silent

Silent-n-state-SSR [22] Θ(𝑛2) Θ(𝑛2) * 𝑛 yes

Optimal-Silent-SSR (Sec. 4) * Θ(𝑛) * Θ(𝑛 log𝑛) * 𝑂 (𝑛) yes

Sublinear-Time-SSR (Sec. 5) * Θ(log𝑛) * Θ(log𝑛) exp

(
𝑂 (𝑛log𝑛 · log𝑛)

)
no

Sublinear-Time-SSR (Sec. 5) Θ(𝐻 · 𝑛
1

𝐻+1 ) Θ(log𝑛 · 𝑛
1

𝐻+1 ) Θ(𝑛Θ(𝑛𝐻 ) log𝑛) no

and update them according to a probabilistic
5
transition function

T : S×S→ Dist(S×S) where Dist(𝑋 ) denotes the set of probability
distributions on 𝑋 .

Given a finite population A and state set S, we define a configu-

ration 𝐶 as a mapping 𝐶 : A → S. Given a starting configuration

𝐶0, we define the corresponding execution as a sequence (𝐶𝑡 )𝑡 ≥0
of random configurations where each 𝐶𝑡+1 is obtained from 𝐶𝑡 by

applying T on the states of a uniform random ordered pair of agents

(𝑎, 𝑏), i.e.,𝐶𝑡+1 (𝑎),𝐶𝑡+1 (𝑏) = T(𝐶𝑡 (𝑎),𝐶𝑡 (𝑏)) and𝐶𝑡+1 (𝑥) = 𝐶𝑡 (𝑥)
for all 𝑥 ∈ A \ {𝑎, 𝑏}. We use the word time to mean the number

of interactions divided by 𝑛 (the number of agents), a.k.a. parallel

time.

Pseudocode conventions. We describe states of agents by sev-

eral fields, using fixed-width font to refer to a field such as field.
As a convention, we denote by 𝑎.field(𝑡), when used outside of

pseudocode, the value of field in agent 𝑎 at the end of the 𝑡 th

interaction, omitting “𝑎.” and/or “(𝑡)” when the agent and/or in-

teraction is clear from context. Constant values are displayed in a

sans serif front such as Yes/No. When two agents 𝑎 and 𝑏 interact,

we describe the update of each of them using pseudocode, where

we refer to field of agent 𝑖 ∈ {𝑎, 𝑏} as 𝑖 .field.
In each interaction, one agent is randomly chosen by the sched-

uler to be the “initiator” and the other the “responder”. Most inter-

actions are symmetric, so we do not explicitly label the initiator

and responder unless an asymmetric interaction is required.
6

A special type of field is called a role, used in some of our proto-

cols to optimize space usage and limit the types of states accessible

to an adversarial initial condition. If an agent has several fields each

from a certain set, then that agent’s potential set of states is the

cross product of all the sets for each field, i.e., adding a field from

a set of size 𝑘 multiplies the number of states by 𝑘 . A role is used

to partition the state space: different roles correspond to different

sets of fields, so switching roles amounts to deleting the fields from

the previous role. Thus the total number of states is obtained by

adding the number of states in each role.

5
Note that we allow randomness in the transitions for ease of presentation. All our

protocols can be made deterministic by standard synthetic coin techniques without

changing time or space bounds.

6
It is also possible to make all transitions symmetric using standard “synthetic coin”

techniques.

Convergence and stabilization. Population protocols have some

problem-dependent notion of “correct” configurations. (For exam-

ple, a configuration with a single leader is “correct” for leader elec-

tion.) A configuration 𝐶 is stably correct if every configuration

reachable from𝐶 is correct. An execution E = (𝐶0,𝐶1, . . .) is picked
at random according to the scheduler explained above. We say E
converges (respectively, stabilizes) at interaction 𝑖 ∈ N if 𝐶𝑖−1 is not
correct (resp., stably correct) and for all 𝑗 ≥ 𝑖 , 𝐶 𝑗 is correct (resp.,

stably correct). The (parallel) convergence/stabilization time of a

protocol is defined as the number of iterations to converge/stabilize,

divided by 𝑛. Convergence can happen strictly before stabilization,

although a protocol with a bounded number of states converges

from a configuration 𝐶 with probability 𝑝 ∈ [0, 1] if and only if

it stabilizes from 𝐶 with probability 𝑝 . For a computational task

𝑇 equipped with some definition of “correct”, we say that a pro-

tocol stably computes 𝑇 with probability 𝑝 if, with probability 𝑝 , it

stabilizes (equivalently, converges).

Leader election and ranking. The two tasks we study in this paper

are self-stabilizing leader election (SSLE) and ranking (SSR). For both,

the self-stabilizing requirement states that from any configuration, a

stably correct configuration must be reached with probability 1. For

leader election, each agent has a field leader with potential values

{Yes,No}, and a correct configuration is defined where exactly one

agent 𝑎 has 𝑎.leader = Yes.7 For ranking, each agent has a field

rank with potential values {1, . . . , 𝑛}, and a correct configuration

is defined as one where, for each 𝑟 ∈ {1, . . . , 𝑛}, exactly one agent

𝑎 has 𝑎.rank = 𝑟 . As noted in Sec. 1, any protocol solving SSR also

solves SSLE by assigning leader to Yes if and only if rank = 1; for

brevity we omit the leader bit from our protocols and focus solely

on the ranking problem.

SSLE Protocol from [22]. Protocol 1 shows the original SSLE pro-

tocol from [22]. We display it here to introduce our pseudocode

style and make it clear that this protocol is also solving ranking.
8

The convergence proofs in [22] did not consider our definition

of parallel time via the uniform random scheduler. Thus we also

include proofs that Silent-n-state-SSR stabilizes in Θ(𝑛2) time, in

7
We do not stipulate the stricter requirement that one agent stays the leader, rather

than letting the leader = Yes bit swap among agents, but we claim these problems

are equivalent due to the complete communication graph. A protocol solving SSLE can

also “immobilize” the unique leader = Yes bit by replacing any transition (𝑥, 𝑦) →
(𝑤,𝑧) , where 𝑥.leader = 𝑧.leader = Yes and 𝑦.leader = 𝑤.leader = No, with
(𝑥, 𝑦) → (𝑧, 𝑤) .
8
Their state set {0, . . . , 𝑛 − 1} from [22] is clearly equivalent to our formal definition

of a rank ∈ {1, . . . , 𝑛}, but simplifies the modular arithmetic.
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expectation andWHP [21] . It is straightforward to argue an Ω(𝑛2)
time lower bound from a configuration with 2 agents at rank = 0,

0 agents at rank = 𝑛 − 1, and 1 agent at every other rank. This
requires 𝑛 − 1 consecutive “bottleneck” transitions, each moving

an agent up by one rank starting at 0. Each takes expected time

Θ(𝑛) since two specific agents (the two with the same rank) must

interact directly. Our arguments for a𝑂 (𝑛2) time upper bound give

a separate proof of correctness from that in [22], reasoning about a

barrier rank that is never crossed.

Protocol 1 Silent-n-state-SSR, for initiator 𝑎 interacting with

responder 𝑏

Fields: rank ∈ {0, . . . , 𝑛 − 1}
1: if 𝑎.rank = 𝑏.rank then

2: 𝑏.rank← (𝑏.rank + 1) mod 𝑛

Cai, Izumi, and Wada [22] show that the state complexity of this

protocol is optimal. A protocol is strongly nonuniform if, for any

𝑛1 < 𝑛2, a different set of transitions is used for populations of size

𝑛1 and those of size 𝑛2 (intuitively, the agents hardcode the exact

value 𝑛).

Theorem 2.1 ([22]). Any population protocol solving SSLE has

≥ 𝑛 states and is strongly nonuniform.

It is worth seeing why any SSLE protocol must be strongly

nonuniform. Suppose the same transitions are used in population

sizes 𝑛1 < 𝑛2. By identifying in a single-leader population of size

𝑛2 any subpopulation of size 𝑛1 that does not contain the leader,

sufficiently many interactions strictly within the subpopulation

must eventually produce a second leader. Thus the full population

cannot be stable. These conflicting requirements to both produce a

new leader from a leaderless configuration, but also make sure the

single-leader configuration is stable, is the key new challenge of

leader election in the self-stabilizing setting. Protocols solving SSLE

circumvent this error by using knowledge of the exact population

size 𝑛.

Silent protocols. A configuration 𝐶 is silent if no transition is

applicable to it (put another way, every pair of states present in 𝐶

has only a null transition that does not alter the configuration). A

self-stabilizing protocol is silent if, with probability 1, it reaches a

silent configuration from every configuration. Since convergence

time ≤ stabilization time ≤ silence time, the following bound applies

to all three.

Observation 2.2. Any silent SSLE protocol has Ω(𝑛) expected
convergence time and for any 𝛼 > 0, probability ≥ 1

2
𝑛−3𝛼 to require

≥ 𝛼𝑛 ln𝑛 convergence time.

For example, letting 𝛼 = 1/3, with probability ≥ 1

2𝑛 the protocol

requires ≥ 1

3
𝑛 ln𝑛 time.

Proof. Let 𝐶 be a silent configuration with a single agent in a

leader state ℓ . Let 𝐶 ′ be the configuration obtained by picking an

arbitrary non-leader agent in 𝐶 and setting its state also to ℓ . Since

𝐶 is silent and the states in𝐶 ′ are a subset of those in𝐶 , no state in
𝐶 ′ other than ℓ can interact nontrivially with ℓ . So the two ℓ ’s in𝐶 ′

must interact to reduce the count of ℓ . The number of interactions

for this to happen is geometric with P[success] = 1/
(𝑛
2

)
= 2

𝑛 (𝑛−1) <

3/𝑛2, so expected time ≥ 𝑛/3 and for any 𝛼 > 0, at least 𝛼𝑛2 ln𝑛

interactions (𝛼𝑛 ln𝑛 time) are required with probability at least(
1 − 3/𝑛2

)𝛼𝑛2
ln𝑛
≥ 1

2

𝑒−3𝛼 ln𝑛 =
1

2

𝑛−3𝛼 . □

Probabilistic tools. An important foundational process is the two-

way epidemic process for efficiently propagating a piece of informa-

tion from a single agent to the whole population.

We also consider a generalization, the roll call process, where ev-

ery agent simultaneously propagates a unique piece of information

(its name). We build upon bounds from [48] to show this process

is also efficient (only 1.5 times slower than the original epidemic

process). This process appears in two of our protocols, but also

gives upper bounds on the time needed for any parallel information

propagation, since after the roll call process completes, every agent

has had a chance to “hear from” every other agent. The analysis of

these two processes gives tight large deviation bounds with specific

constants. While getting these precise constants was more than

what is strictly necessary for the proofs in this work, the analysis

of these processes may be of independent interest. This roll call

process has been independently analyzed in [19, 23, 40, 49].

3 RESETTING SUBPROTOCOL

Propagate-Reset (Protocol 2) is used as a subroutine in both of our

protocols Optimal-Silent-SSR (Sec. 4) and Sublinear-Time-SSR

(Sec. 5). Intuitively, it provides a way for agents (upon detecting an

error that indicates the starting configuration was “illegal” in some

way) to “reset” quickly, after which they may be analyzed as though

they began from the reset state. For that, the protocol Reset has

to be defined for use by Propagate-Reset. We assume that Reset

changes the role variable to something different from Resetting.
Crucially, after the reset, agents have no information about whether

a reset has happened and do not attempt any synchronization to

ensure they only reset once, lest the adversary simply sets every

agent to believe it has already reset, preventing the necessary reset

from ever occurring.
9

Wenowdefine some terms used in the analysis of Propagate-Reset,

and their intuition:

If 𝑎.role ≠ Resetting, then we say 𝑎 is computing (it is execut-

ing the outside protocol). Otherwise, for 𝑎.role = Resetting, we
use three terms. If 𝑎.resetcount = 𝑅max, we say 𝑎 is triggered

(it has just detected an error and initiated this global reset). If

𝑎.resetcount > 0 we say 𝑎 is propagating (intuitively this prop-

erty of positivity spreads by epidemic to restart the whole pop-

ulation; we also consider triggered agents to be propagating). If

𝑎.resetcount = 0, we say 𝑎 is dormant (it is waiting for a delay to

allow the entire population to become dormant before they start

waking up, this prevents an agent from waking up multiple times

during one reset).

Likewise, we will refer to a configuration as fully / partially

propagating (resp. dormant, computing, triggered) if all / some

agents are propagating (resp. dormant, computing, triggered).

9
This is unlike in standard population protocol techniques inwhich “phase information”

is carried in agents indicating whether they are encountering an agent “before” or

“after” a new phase starts.
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A configuration 𝐶 is awakening if it is the first partially com-

puting configuration reachable from a fully dormant configuration.

Protocols that use Propagate-Reset will start their analysis by

reasoning about an awakening configuration, which formalizes

the idea of having gone through a “clean reset”. In an awakening

configuration, all agents are dormant except one agent who has just

executed Reset. Computing agents will awaken dormant agents

by epidemic, so within 𝑂 (log𝑛) time, all agents will have executed

Reset once and then be back to executing the main algorithm.

Protocol 2 Propagate-Reset(𝑎,𝑏), for Resetting agent 𝑎 interact-

ing with agent 𝑏.

Fields: If role = Resetting, resetcount ∈ {0, 1, . . . , 𝑅max}
and when resetcount = 0 an additional field delaytimer ∈
{0, 1, . . . , 𝐷max}.
1: if 𝑎.resetcount > 0 and 𝑏.role ≠ Resetting then

// bring 𝑏 into Resetting role
2: 𝑏 ← Resetting, 𝑏.resetcount← 0

3: 𝑏.delaytimer← 𝐷max

4: if 𝑏.role = Resetting then // change resetcount
5: 𝑎.resetcount, 𝑏.resetcount ← max(𝑎.resetcount −

1, 𝑏.resetcount − 1, 0)
6: for 𝑖 ∈ {𝑎, 𝑏} with 𝑖 .role = Resetting and 𝑖 .resetcount = 0

do // dormant agents

7: if 𝑖 .resetcount just became 0 then

// initialize delaytimer
8: 𝑖 .delaytimer← 𝐷max

9: else

10: 𝑖 .delaytimer← 𝑖 .delaytimer − 1
11: if 𝑖 .delaytimer = 0 or 𝑏.role ≠ Resetting then

// awaken by epidemic

12: execute Reset(𝑖)

// Reset subroutine provided by main protocol

We require 𝑅max = Ω(log𝑛), and for our protocol will choose the
concrete value 𝑅max = 60 ln𝑛. We also require 𝐷max = Ω(𝑅max).
For our 𝑂 (log𝑛) time protocol Sublinear-Time-SSR, we have

𝐷max = Θ(log𝑛). In Optimal-Silent-SSR, we set 𝐷max = Θ(𝑛),
to give enough time for the dormant agents to do a slow leader

election so they finish reset with a unique leader.

Propagate-Reset begins by some agent becoming triggered

(resetcount = 𝑅max). Although introduced for a different purpose,

Propagate-Reset is essentially equivalent to a subprotocol used

in [5], so we adopt their time analysis to prove it completes in

𝑂 (log𝑛) time. Briefly, from a partially triggered configuration, the

propagating condition (resetcount > 0) spreads by epidemic (in

𝑂 (log𝑛) time) . Once the configuration is fully propagating, it be-

comes fully dormant in𝑂 (log𝑛) time . From the fully dormant con-

figuration, we reach an awakening configuration within 𝑂 (log𝑛)
time when the first agent executes Reset . Then the instruction to

execute Reset spreads by epidemic (in 𝑂 (log𝑛) time).

4 LINEAR-TIME, LINEAR-STATE, SILENT

PROTOCOL

In this section, we present a silent self-stabilizing ranking protocol,

Optimal-Silent-SSR, which achieves asymptotically optimal𝑂 (𝑛)

time and state complexity. Like Silent-n-state-SSR, there will be

a unique stable and silent configuration where every agent has a

unique rank, but now a rank collision will trigger our Propagate-

Reset, causing the entire population to reset. The key idea behind

Optimal-Silent-SSR is to add a large delay 𝐷max = Θ(𝑛) in the

Propagate-Reset, which will ensure that the entire population is

dormant for long enough to do a simple slow leader election via

𝐿, 𝐿 → 𝐿, 𝐹 , where all agents set themselves to 𝐿 upon entering the

Resetting role. Thus after the population has undergone a reset, we

have a unique leader with high probability. After this reset, we do

a linear-time leader-driven ranking, where the ranks correspond to

nodes in a full binary tree rooted at the leader. In this ranking algo-

rithm, each agent that has been assigned a rank (starting with the

leader) assigns ranks directly to 0, 1, or 2 other agents (depending

on its number of children in the tree).

In more detail, each agent can be classified into three roles:

Settled,Unsettled, andResetting. A Settled agent has the field rank ∈
{1, 2, ..., 𝑛}. Each individual role will use 𝑂 (𝑛) states, and the total

state set is the disjoint sum of these roles, for a total of 𝑂 (𝑛) states.
On the other hand, an Unsettled agent has no rank, and it waits for

the assignment of a rank from Settled agents.

We use the subprotocol Propagate-Reset described in Section 3

to reset each agent when detecting errors. For Optimal-Silent-SSR,

the resetting process is triggered under two different situations. 1)

Two Settled agents have an identical rank. The rank conflict can be

detected when the two agents interact. 2) An Unsettled agent does

not get its rank after Θ(𝑛) interactions.
During the dormant phase of Propagate-Reset, lasting forΘ(𝑛)

time in this protocol, we do slow leader election via 𝐿, 𝐿 → 𝐿, 𝐹 .

Upon awakening (calling Reset), the (likely unique) leader 𝐿 is

Settled with rank = 1 and followers 𝐹 are Unsettled. Thus, after
resetting, with high probability there will be exactly one Settled
agent with rank = 1, and all the other agents are Unsettled. The
Settled agent will act as a leader to assign ranks to all Unsettled
agents in the following way. At this point the protocol executes

an initialized ranking algorithm, similar to others in the renaming

literature [3, 4]. Intuitively, a full binary tree forms within the pop-

ulation. Each Settled agent recruits at most two Unsettled agents,

assigning them ranks based on its own to guarantee uniqueness.

The children of rank 𝑖 are 2𝑖 and 2𝑖 + 1; in other words if an agent’s

rank has binary expansion 𝑠 , its childrens’ ranks have binary ex-

pansions 𝑠0 and 𝑠1. Since each agent knows the exact population

size, each knows whether its rank corresponds to a node with 0,

1, or 2 children in the full binary tree with 𝑛 nodes. See Figure 1

for an example. This process clearly terminates when all agents are

recruited and become settled into different ranks.

Optimal-Silent-SSR takes linear time by the following high-

level argument: If there is a rank collision, this is detected in 𝑂 (𝑛)
time. If any agent remainsUnsettledwithout a rank, this is detected
via counting up to errorcount in𝑂 (𝑛) time. Either of these triggers

a call to Propagate-Reset.

This reset finishes and reaches a fully computing configuration in

𝑂 (𝑛) time . There is a constant probability the slow leader election

fails (i.e., we end up with multiple leaders), but the expected number

of times we must repeat this process before getting a unique leader

is constant. The 𝑂 (𝑛) time of this ranking protocol follows by

analyzing each level of the binary tree created across the population:
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8 9 10 11 12

Settled Agents:

Unsettled Agents:

Figure 1: Example of rank assignment in Optimal-Silent-

SSR with 𝑛 = 12 agents. There are 8 settled agents on the

left (blue circles), with ranks shown. There are 4 ranks in

the binary tree left to be filled by the unsettled agents, when

they interactwith the settled agentswith ranks 3,4 or 5. This

process completes in expected Θ(𝑛) time.

each level takes time proportional to the number of nodes in the

level, whence the time is proportional to the size of the tree, i.e.,

𝑂 (𝑛).

Protocol 3 Optimal-Silent-SSR, for initiator 𝑎 interacting with

responder 𝑏

Fields: role ∈ {Settled,Unsettled,Resetting}
If role = Settled, rank ∈ {1, ..., 𝑛}, children ∈ {0, 1, 2}
If role = Unsettled, errorcount ∈ {0, 1, ..., 𝐸max = Θ(𝑛)}
If role = Resetting, leader ∈ {𝐿, 𝐹 }, resetcount ∈ {1, . . . , 𝑅max},
delaytimer ∈ {0, 1, . . . , 𝐷max = Θ(𝑛)}
1: if 𝑎.role = Resetting or 𝑏.role = Resetting then
2: execute Propagate-Reset(a,b)

3: if 𝑎.leader = 𝐿 and 𝑏.leader = 𝐿 then

4: 𝑏.leader← 𝐹

5: if 𝑎.role = 𝑏.role = Settled and 𝑎.rank = 𝑏.rank then

6: 𝑎.role, 𝑏.role← Resetting
7: 𝑎.resetcount, 𝑏.resetcount← 𝑅max

8: 𝑎.leader, 𝑏.leader← 𝐿

9: for (𝑖, 𝑗) ∈ {(𝑎, 𝑏), (𝑏, 𝑎)} do
10: if 𝑖 .role = Settled, 𝑗 .role = Unsettled, 𝑖 .children < 2,

and 2 · 𝑖 .rank + 𝑖 .children < 𝑛 then

11: 𝑗 .role← Settled, 𝑗 .children← 0

// 𝑗 becomes a child node of 𝑖

12: 𝑗 .rank← 2 · 𝑖 .rank + 𝑖 .children
13: 𝑖 .children← 𝑖 .children + 1
14: for 𝑖 ∈ {𝑎, 𝑏} do
15: if 𝑖 .role = Unsettled then

16: 𝑖 .errorcount← max(𝑖 .errorcount − 1, 0)
17: if 𝑖 .errorcount = 0 then

18: 𝑎.role, 𝑏.role← Resetting,
19: 𝑎.resetcount, 𝑏.resetcount← 𝑅max

20: 𝑎.leader, 𝑏.leader← 𝐿

The required proofs for Optimal-Silent-SSR are given in [21]

and yield the following main results:

Protocol 4 Reset(a) for Optimal-Silent-SSR, for agent 𝑎.

(Called in line 12 of Propagate-Reset.)

1: if 𝑎.leader = 𝐿 then

2: 𝑎.role← Settled, 𝑎.rank← 1, 𝑎.children← 0

3: if 𝑎.leader = 𝐹 then

4: 𝑎.role← Unsettled, 𝑎.errorcount← 𝐸max = Θ(𝑛)

Theorem 4.1. Optimal-Silent-SSR is a silent protocol solving

self-stabilizing ranking with 𝑂 (𝑛) states and 𝑂 (𝑛) expected time.

Corollary 4.2. Optimal-Silent-SSR takes 𝑂 (𝑛 log𝑛) time with

high probability.

5 LOGARITHMIC-TIME PROTOCOL

In this section, we show a protocol solving SSR, and thus SSLE, in

optimal 𝑂 (log𝑛) expected time, using a “quasi-exponential” num-

ber of states: exp

(
𝑂 (𝑛log𝑛 · log𝑛)

)
. Observation 2.2 shows that to

achieve sublinear time, the protocol necessarily must be non-silent:

agents change states forever.

5.1 Overview

Intuitively, Sublinear-Time-SSR works as follows. Each agent has

a field name, a bitstring of length 3 log
2
𝑛. The 𝑛3 possible values

ensure that if all agents pick a name randomly, with high probability,

there are no collisions. The set of all name values in the population

is propagated by epidemic in 𝑂 (log𝑛) time in a field called roster
(which has an exponential number of possible values). Agents up-

date their rank (a write-only output field) only when their roster
field has size 𝑛; in this case the agent’s rank is its name’s lexico-
graphical order in the set roster.

One source of error is that we can start in a configuration with

a “ghost name”: a name that is in the roster set of some agent, but

that is not the name of any agent. If there are no collisions among

actual name’s, this error is easy to handle: eventually we will have

|roster| > 𝑛, indicating that there is a ghost name, triggering

Propagate-Reset.
10

The main challenge is then to detect name collisions. Sublinear-

Time-SSR calls a subroutine Detect-Name-Collision that detects

whether two agents have the same name. If so, we call the same

subroutine Propagate-Reset used in Optimal-Silent-SSR, now

with 𝐷max = Θ(log𝑛) rather than Θ(𝑛) as in Optimal-Silent-SSR.

Upon awakening from Propagate-Reset, agents pick a new name

randomly. They use their dormant time, while still in role Resetting,
but with resetcount = 0 while counting delaytimer down to 0,

to generate random bits to pick a new random name.

The bulk of the analysis is in devising an 𝑂 (log𝑛) time protocol

implementing Detect-Name-Collision. The rest of the protocol

outside of Detect-Name-Collision is silent: once the protocol

stabilizes, no name or rank field changes. Indeed, we can imple-

ment a silent protocol on top of this scheme if we are content with

Θ(𝑛) time: Detect-Name-Collision can be implemented with the

10
We will introduce a tree data structure that also has all the names. However, it is

necessary to keep a separate set roster of names for the following reason. The set

roster is propagated in time𝑂 (log𝑛) , whereas in slower variants of our algorithm,

the tree takes too long to collect the names. For example, in the𝑂 (
√
𝑛) time (and uses

less memory) variant, the tree takes time Ω (𝑛) to populate with all names.
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simple rule that checks whether the name fields of the two interact-

ing agents are equal, i.e., direct collision detection. The challenge,

therefore, is in implementing Detect-Name-Collision in sublin-

ear time by indirectly detecting collisions, without requiring agents

with the same name to meet directly. Any method of doing this will

necessarily be non-silent.

The protocol Detect-Name-Collision is parameterized to give a

tradeoff between stabilizing time and state complexity. For instance,

there is a 𝑂 (
√
𝑛) time protocol that uses a data structure with 𝑘𝑛

bits for a parameter 𝑘 , i.e., 2𝑘𝑛 possible values. Of course, all of the

schemes use at least exponential states, since the field roster has

≈ 𝑛3𝑛 possible values. However, the faster schemes will use even

more states than this, and their analysis is more complex. This is

discussed in more detail in Section 5.2.

Protocol 5 Sublinear-Time-SSR, for agent 𝑎 interacting with 𝑏.

Fields: role ∈ {Collecting,Resetting}, name ∈ {0, 1}≤3 log2 𝑛
If role = Collecting, rank ∈ {1, . . . , 𝑛}, roster ⊆
{0, 1}≤3 log2 𝑛, |roster| ≤ 𝑛, other fields from Detect-Name-

Collision

If role = Resetting, resetcount ∈ {1, . . . , 𝑅max}, delaytimer ∈
{0, 1, . . . , 𝐷max = Θ(log𝑛)}
1: if 𝑎.role = 𝑏.role = Collecting then
2: if Detect-Name-Collision(𝑎,𝑏) or |𝑎.roster ∪
𝑏.roster| > 𝑛 then

3: 𝑎.role, 𝑏.role← Resetting
4: 𝑎.resetcount, 𝑏.resetcount← 𝑅max

5: else

6: 𝑎.roster, 𝑏.roster← 𝑎.roster ∪ 𝑏.roster
7: if |𝑎.roster ∪ 𝑏.roster| = 𝑛 then

// do not set rank until all names collected

8: for 𝑖 ∈ {𝑎, 𝑏} do
9: 𝑖 .rank← order of 𝑖 .name in roster
10: else // some agent is Resetting
11: execute Propagate-Reset(𝑎,𝑏)

12: for 𝑖 ∈ {𝑎, 𝑏} such that |𝑖 .resetcount| > 0 do

// clear names while propagating the reset signal

13: 𝑖 .name← 𝜀

14: for 𝑖 ∈ {𝑎, 𝑏} such that 𝑖 .resetcount = 0 and |𝑖 .name| <
3 log

2
𝑛 do

15: append a random bit to 𝑖 .name // can be derandomized

Protocol 6 Reset(a) for Sublinear-Time-SSR, for agent 𝑎.

(Called in line 12 of Propagate-Reset.)

1: role← Collecting
2: roster← {name}

5.2 Fast Collision Detection

In Sublinear-Time-SSR, both Propagate-Reset and filling all

agents’ roster take𝑂 (log𝑛) time, so the time bottleneck is waiting

to detect a name collision. If we simply wait for two agents with

the same name to meet to detect a collision, this will take Θ(𝑛) time

in the worst case, which would give a Θ(𝑛) time silent algorithm.

The goal of Detect-Name-Collision is to detect these names

collisions in sublinear time. Because of the lower bound of Observa-

tion 2.2, this protocol must not be silent. Detect-Name-Collision

will have to satisfy two conditions. In order to allow 𝑂 (log𝑛)
time convergence, from any configuration with a name collision,

some agent must detect this collision in 𝑂 (log𝑛) time to initiate

Propagate-Reset. Second, to ensure the eventual ranked config-

uration is stable, it must satisfy a safety condition where from a

configuration with unique names, no agent will ever think there is

a name collision.
11

As a warm-up to the full 𝑂 (log𝑛)-time protocol of Detect-

Name-Collision, consider the following simpler 𝑂 (
√
𝑛)-time pro-

tocol. Each agent keeps a dictionary keyed by names of other agents

they have encountered in the population. Whenever agents 𝑎 and

𝑏 meet, they generate a random shared value sync ∈ {1, . . . , 𝑘},
which 𝑎 stores in its dictionary keyed by the name of 𝑏, and 𝑏 stores

in its dictionary keyed by the name of 𝑎. If the two agents disagree

on this sync value at the beginning of an interaction, they declare

a name collision.

From a configuration with two agents 𝑎 and 𝑎′ sharing the same

name, within 𝑂 (
√
𝑛) time, some agent 𝑏 will interact with both 𝑎

and 𝑎′ (assume 𝑏 first interacts with 𝑎, then 𝑎′). With probability

1 − 1

𝑘
, the sync value that 𝑏 generates with 𝑎 will disagree with the

sync value that 𝑎′ has with 𝑏. So when 𝑏 then meets 𝑎′, it is able to
detect a name collision. From a configuration with unique names,

an invariant is maintained that all pairs of agents agree on their

corresponding sync values, giving the required safety property.

The actual protocol Detect-Name-Collision is a generalization

of this idea. The agents now store amore complicated data structure:

a tree whose nodes are labelled by names. See Figure 2 for an

example. The root is labelled by the agent’s own name, and every

root-to-leaf path is simply labelled, meaning that each node on the

path contains unique names (it is permitted for the same name to

appear on multiple nodes in the tree, but neither of these nodes can

be an ancestor of the other). Each edge is labelled by a sync value.

The intuition is that these paths correspond to histories: chains of

interactions between agents, where the sync values on the edges

were generated by the interaction between that pair of agents. For

instance, if 𝑎 has a path 𝑎
3−→ 𝑏

5−→ 𝑐
7−→ 𝑑 , the interpretation is

that when 𝑎 last met 𝑏, 𝑎 and 𝑏 generated sync value 3, and in that

interaction, 𝑏 told 𝑎 that when 𝑏 last met 𝑐 , 𝑏 and 𝑐 generated sync

value 5, and in that interaction, 𝑐 told 𝑏 that when 𝑐 last met 𝑑 , 𝑐

and 𝑑 generated sync value 7. In particular, it could be that 𝑐 and

𝑑 have interacted again, generating a different sync value than 7,

before 𝑎 and 𝑏 interact, but 𝑏 has not heard about that interaction.

See Fig. 2 for an example showing how this information is built up.

The 𝑂 (
√
𝑛) time algorithm above can be thought of as a tree of

depth 1, where each agent stores only the names and sync values
of the agents it has directly interacted with. The general algorithm

has a tree of depth 𝐻 , which allows agents to hear about other

agents’ sync values through longer chains of interactions. In line 3

of Detect-Name-Collision, each agent checks any paths ending

at the name of the other agent (the additional fields edge.timer

11
The initial configuration could have unique names, but with auxiliary data adversari-

ally planted to mislead agents into believing there is a name collision, triggering a reset.

So the actual safety condition is more subtle and involves unique-name configurations

reachable only after a reset.
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Protocol 7 Detect-Name-Collision(a,b) for Sublinear-Time-

SSR, for agent 𝑎, 𝑏.

Fields: tree: depth H, root labelled name, other nodes have

node.name ∈ roster. Edges have edge.sync ∈ {1, . . . , 𝑆max =

Θ(𝑛2)} and edge.timer ∈ {0, . . . ,𝑇𝐻 }. The parameter 𝑇𝐻 = Θ(𝐻 ·
𝑛1/(𝐻+1) ) for 𝐻 = 𝑂 (1) and 𝑇𝐻 = Θ(log𝑛) for 𝐻 = Θ(log𝑛) (we
need 𝑇𝐻 = Θ(𝜏𝐻+1)).
1: for (𝑖, 𝑗) ∈ {(𝑎, 𝑏), (𝑏, 𝑎)} do
2: for every path (𝑖 .𝑒1, . . . , 𝑖 .𝑒𝑝 ) in 𝑖 .tree with

𝑖 .𝑒1 .timer, . . . , 𝑖 .𝑒𝑝 .timer > 0 and last node 𝑣 with

𝑣 .name = 𝑗 .name do

// All of 𝑖’s histories about 𝑗 that aren’t outdated

3: if Check-Path-Consistency( 𝑗, (𝑖 .𝑒1, . . . , 𝑖 .𝑒𝑝 )) =

Inconsistent then
4: Return True // collision detected

5: 𝑥 ← chosen uniformly at random from {1, . . . , 𝑆max}
// Choose new sync value

6: for (𝑖, 𝑗) ∈ {(𝑎, 𝑏), (𝑏, 𝑎)} do
// Update trees to share new information

7: if 𝑖 .tree has node 𝑣 at depth 1 with 𝑣 .name = 𝑗 .name then
8: Remove the subtree rooted at 𝑣 from 𝑖 .tree
9: Add 𝑗 .tree (to depth 𝐻 − 1) as a subtree of 𝑖 .tree via new

edge 𝑒 from the root

10: 𝑒.sync← 𝑥 , 𝑒.timer← 𝑇𝐻

11: for 𝑖 ∈ {𝑎, 𝑏} do // Keep the trees simply labelled

12: remove from 𝑖 .tree all subtrees with root labelled with

𝑖 .name
13: for each edge 𝑒 in 𝑎.tree and 𝑏.tree do

14: 𝑒.timer← max(𝑒.timer − 1,0)
15: Return False // no collision detected

are a technicality to handle certain adversarial initial conditions).

Intuitively, they require the other agent to show information that

is logically consistent with this path, formalized in the conditions

of Check-Path-Consistency. To detect a name collision between

agents 𝑎 and 𝑎′, it will now suffice for some agent 𝑏 to have heard

about agent 𝑎 before meeting 𝑎′. With constant probability, the

duplicate agent 𝑎′ will not have any sync values that are logically

consistent with this path, and 𝑏 will declare a collision. Allowing

longer paths decreases the time it takes for this information to

travel between 𝑎 and 𝑎′. Because the paths that spread information

in the epidemic process have length at most 𝑂 (log𝑛) with high

probability [21], once we take 𝐻 = 𝑂 (log𝑛), in the 𝑂 (log𝑛) time

it would take for an epidemic starting at 𝑎 to reach 𝑎′, some agent

will detect a collision in this way.

Protocol 8 Check-Path-Consistency(j,P) for Detect-Name-

Collision, for agent 𝑗 verifying path 𝑃 = (𝑖 .𝑒1, . . . , 𝑖 .𝑒𝑝 )
1: 𝑞 ← min{𝑞′ | ∃( 𝑗 .𝑒𝑝 , . . . , 𝑗 .𝑒𝑞′) in 𝑗 .tree}

// ( 𝑗 .𝑒𝑝 , . . . , 𝑗 .𝑒𝑞) is a root-to-leaf path
2: for edge 𝑗 .𝑒 ∈ ( 𝑗 .𝑒𝑝 , . . . , 𝑗 .𝑒𝑞) do
3: if 𝑗 .𝑒 .sync = 𝑖 .𝑒 .sync then

4: Return True
5: Return Inconsistent

Detect-Name-Collision works in 𝑂 (𝑇𝐻 ) time, and also sat-

isfies required safety conditions that ensure there are no “false

positives” where collisions are detected from configurations with

unique names. These results will let us prove the main theorem

about the behavior of Sublinear-Time-SSR:

Theorem 5.1. Sublinear-Time-SSR uses exp

(
𝑂 (𝑛𝐻 ) log𝑛

)
states.

When 𝐻 = 𝑂 (1), Sublinear-Time-SSR solves self-stabilizing rank-

ing in expected𝑂 (𝐻 ·𝑛1/(𝐻+1) ) time, and𝑂 (𝐻 · log𝑛 ·𝑛1/(𝐻+1) ) time

with high probability 1 −𝑂 (1/𝑛). When 𝐻 = Θ(log𝑛), Sublinear-
Time-SSR solves self-stabilizing ranking in time 𝑂 (log𝑛), in expecta-

tion and with high probability 1 −𝑂 (1/𝑛).

6 CONCLUSION AND PERSPECTIVES

For the first time, we addressed time-space trade-offs of self-stabilizing

leader election and ranking in population protocols over complete

graphs. We emphasize that solving these problems, while ensuring

such a strong form of fault-tolerance, necessitates linear states and

strong nonuniformity (Theorem 2.1). Other forms of “strong” fault-

tolerance, such as Byzantine-tolerance [39] or loosely-stabilizing

leader electionwith exponential holding time (a period of timewhere

a unique leader persists after stabilization) [41, 56], similarly neces-

sitate Ω(𝑛) states. By contrast, a sublinear number of states suffices

for many non-fault-tolerant protocols (cf. [6]) and weaker forms of

tolerance, such as loosely-stabilizing leader election with polyno-

mial holding time [56] or tolerance to a constant number of crashes

and transient faults [27].

To conclude, we propose several perspectives.

Time/space tradeoffs. It is open to find a subexponential-state

sublinear-time self-stabilizing ranking protocol. Observation 2.2

states that any sublinear time SSR protocol is not silent. Sublinear-

Time-SSR is non-silent because it perpetually passes around in-

formation about agents’ recent interactions with each other, as a

way to detect name collisions without requiring the agents with

equal names to meet directly. Even when limiting the tree of inter-

actions to depth 1, this results in an exponential number of states,

since each agent must maintain a value to associate to every other

agent in the population. Thus, a subexponential-state protocol (if

based upon fast collision detection) would somehow need to embed

enough information in each agent to enable fast collision detection,

while somehow allowing the agent to forget “most” of the informa-

tion about its interactions. Furthermore, our strategy of using the

set roster of all names to go from unique names to unique ranks

fundamentally requires exponential states.

Ranking vs. leader election. Ranking implies leader election (“au-

tomatically”), but the converse does not hold. In the initialized case

where we can specify an initial state for each agent, it is possible to

elect a leader without ranking, using the single transition ℓ, ℓ → ℓ, 𝑓

(using too few states for the ranking problem even to be definable).

Though any self-stabilizing protocol for leader election must use

at least 𝑛 states [22] (Theorem 2.1 here), it is not the case that any

SSLE protocol implicitly solves the ranking problem. It would be

interesting to discover an SSLE algorithm that is more efficient than

our examples because it does not also solve ranking.

Initialized ranking. Consider the ranking problem in a non-self-

stabilizing setting. Without the constraint of self-stabilization, there

is no longer the issue of ghost names. Compared to self-stabilization,
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Figure 2: Example executions building up trees in agents, starting from a “clean” configuration with singleton trees. Red sync

values are newly generated or communicated in the preceding interaction. As an example of how agents check for consistency,

when 𝑎 and 𝑑 interact, before updating their trees, 𝑑 checks any paths 𝑝 that end with 𝑎 (here there’s just one, 𝑑
3−→ 𝑐

2−→ 𝑏
1−→ 𝑎)

against 𝑎’s corresponding path, which is 𝑎’s longest reversed suffix of 𝑝. Left: 𝑎’s reverse suffix is 𝑎
1−→ 𝑏, with just a single edge

that matches the final sync value in this path 𝑝, so Check-Path-Consistency will return True after checking the first edge.

Right: 𝑎’s reverse suffix is 𝑎
7−→ 𝑏

2−→ 𝑐. The first edge 𝑎
7−→ 𝑏 does not match 𝑑’s tree, because agents 𝑎 and 𝑏 generated the new

sync value 7 in a later interaction. However, in that interaction, 𝑎 added the edge 𝑏
2−→ 𝑐, hearing about the 𝑏-𝑐 interaction with

sync value 2 that matches the path in 𝑑’s tree. NowCheck-Path-Consistencywill return True after checking the second edge.

it may be easier to find an initialized ranking protocol that still uses

polylogarithmic time, but only polynomial states.

Initialized collision detection. The core difficulty of Sublinear-

Time-SSR is collision detection. It would be interesting to study this

problem in the (non-self-stabilizing) setting where an adversary

assigns read-only names to each agent, but the read/write memory

can be initialized to the same state for each agent. Can a name

collision be detected in sublinear time and sub-exponential states?
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