Session 1: Robots, Dynamics, and Population Protocols

PODC 21, July 26-30, 2021, Virtual Event, Italy

Time-Optimal Self-Stabilizing Leader Election in Population
Protocols

Janna Burman
janna.burman@lri.fr
Université Paris-Saclay, CNRS

David Doty
doty@ucdavis.edu
University of California, Davis

Ho-Lin Chen
holinchen@ntu.edu.tw
National Taiwan University

Thomas Nowak
thomas.nowak@lri.fr
Université Paris-Saclay, CNRS

Hsueh-Ping Chen
r07921034@ntu.edu.tw
National Taiwan University

Eric Severson
eseverson@ucdavis.edu
University of California, Davis

Chuan Xu
chuan.xu@inria.fr
Inria Sophia-Antipolis

ABSTRACT

We consider the standard population protocol model, where (a
priori) indistinguishable and anonymous agents interact in pairs
according to uniformly random scheduling. The self-stabilizing
leader election problem requires the protocol to converge on a single
leader agent from any possible initial configuration. We initiate
the study of time complexity of population protocols solving this
problem in its original setting: with probability 1, in a complete
communication graph. The only previously known protocol by Cai,
Izumi, and Wada [Theor. Comput. Syst. 50] runs in expected parallel
time ©(n?) and has the optimal number of n states in a population
of n agents. The existing protocol has the additional property that
it becomes silent, i.e., the agents’ states eventually stop changing.

Observing that any silent protocol solving self-stabilizing leader
election requires Q(n) expected parallel time, we introduce a silent
protocol that uses optimal O(n) parallel time and states. With-
out any silence constraints, we show that it is possible to solve
self-stabilizing leader election in asymptotically optimal expected
parallel time of O(log n), but using at least exponential states (a
quasipolynomial number of bits). All of our protocols (and also that
of Cai et al.) work by solving the more difficult ranking problem:
assigning agents the ranks 1,...,n.

CCS CONCEPTS

« Theory of computation — Distributed algorithms.

KEYWORDS
leader election; self-stabilization; population protocols

ACM Reference Format:

Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak,
Eric Severson, and Chuan Xu. 2021. Time-Optimal Self-Stabilizing Leader
Election in Population Protocols. In Proceedings of the 2021 ACM Symposium

This work is licensed under a Creative Commons Attribution International 4.0 License.

PODC 21, July 26-30, 2021, Virtual Event, Italy.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8548-0/21/07.
https://doi.org/10.1145/3465084.3467898

33

on Principles of Distributed Computing (PODC ’21), July 26-30, 2021, Virtual
Event, Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3465084.3467898

ACKNOWLEDGMENTS

We warmly thank anonymous reviewers for their detailed com-
ments. Doty and Severson were supported by NSF award 1900931
and CAREER award 1844976. Ho-Lin and Hsueh-Ping were sup-
ported by MOST (Taiwan) grant number 107-2221-E-002-031-MY3.
Nowak was supported by the CNRS project ABIDE.

1 INTRODUCTION

Population protocols [8] are a popular and well established model
of distributed computing, originally motivated by passively mobile
sensor networks. However, it also models population dynamics
from various areas such as trust and rumor propagation in social
networks [28], game theory dynamics [16], chemical reactions [38,
53], and gene regulatory networks [18]. Population protocols are a
special-case variant of Petri nets and vector addition systems [34].

This model considers computational agents with no ability to con-
trol their schedule of communication. They are a priori anonymous,
indistinguishable, and mobile: interacting in pairs asynchronously
and unpredictably. At each step a pair of agents to interact is chosen
uniformly at random. Each agent observes the other’s state, updat-
ing its own according to the transition function. A configuration
describes the global system state: the state of each of the n agents.
The sequence of visited configurations describes a particular execu-
tion of the protocol. The goal of the protocol is to reach a desired
set of configurations with probability 1.

It is common in population protocols to measure space/memory
complexity by counting the potential number of states each agent
can have.! The model originally used constant-state protocols, i.e.,
the state set is independent of the population size n [8]. Recent
studies relax this assumption and allow the number of states to
depend on n, adding computational power to the model [17, 39, 45],
improving time complexity [2, 37, 51], or tolerating faults [22, 39,
44]. In the current work, for tolerating any number of transient

!The base-2 logarithm of this quantity is the standard space complexity: the number
of bits required to represent each state (e.g., polynomial states = logarithmic space).

https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1145/3465084.3467898
https://creativecommons.org/licenses/by/4.0/

Session 1: Robots, Dynamics, and Population Protocols

faults (in the framework of self-stabilization), such relaxation is
necessary [22, 57] (see details below and Theorem 2.1).

Leader election. In the leader election problem, the protocol should
reach a configuration C with only one agent marked as a “leader”,
where all configurations reachable from C also have a single leader.
When this happens, the protocol’s execution is said to have stabi-
lized> The time complexity of a protocol is measured by parallel
time, the number of interactions until stabilization, divided by the
number of agents n.3

Leader election is an important paradigm in the design of dis-
tributed algorithms useful to achieve a well coordinated and ef-
ficient behavior in the network. For example, in the context of
population protocols, given a leader, protocols can become expo-
nentially faster [9, 13] or compact (using less memory states) [15].
Moreover, some problems, like fault-tolerant counting, naming and
bipartition become feasible, assuming a leader [12, 20, 59].

Leader election protocols have been extensively studied in the
original setting where all agents start in the same pre-determined
state (a non-self-stabilizing case, and in complete interaction graphs,
i.e. where any pair of agents can interact). For example, it was shown
that the problem cannot be solved in o(n) (parallel) time if agents
have only O(1) states [32], an upper bound later improved to <
% loglog n states [1]. To circumvent this impossibility result, subse-
quent studies assume a non-constant state space, though relatively
small (e.g., O(log n) or O(loglogn)). Leader election has recently
been shown to be solvable with optimal O(logn) parallel time
and O(loglogn) states [14], improving on recent work meeting
this space bound in time O(log? n) [36] and O(log nloglog n) [37].
Another work presents a simpler O(log n)-time, O(log n)-state pro-
tocol [55]. It may appear obvious that any leader election protocol
requires Q(logn) time, but this requires a nontrivial proof [54].
There is also an O(1)-space and expected O(log? n)-time protocol,
but with a positive error probability; and a slower o(n)-time (e.g.,
/n) protocol correct with probability 1 [43]. Recent surveys [6, 33]
explain the relevant techniques.

Reliable leader election. The current paper studies leader election
in the context of reliability. What if agents are prone to memory or
communication errors? What if errors cannot be directly detected,
so agents cannot be re-initialized in response? One can imagine
mobile sensor networks for mission critical and safety relevant
applications where rapid recovery from faults takes precedence
over memory requirements. Imagine applications operating on
relatively small sized networks, so that the sensors’ memory storage
dependent on n is not necessarily an issue. Additionally, n states
are provably required to solve our problem [22] (see Theorem 2.1).

We adopt the approach of self-stabilization [10, 29]. A proto-
col is called self-stabilizing if it stabilizes with probability 1 from
an arbitrary configuration* (resulting from any number of tran-
sient faults). Non-self-stabilizing (a.k.a., initialized) leader election
is easily solvable using only one bit of memory per agent by the

2Some protocols [36, 43] stabilize with probability 1, but converge (elect a unique
leader) long before stabilizing (become unable to change the number of leaders). In
our protocols these two events typically coincide.

3This captures the intuition that interactions happen in parallel, defining the time
scale so that each agent participates in O(1) interactions per time unit on average.
4For a self-stabilizing protocol, it is equivalent to consider probability 1 and fixed
probability p > 0 of correctness; See Section 2.

34

PODC 21, July 26-30, 2021, Virtual Event, Italy

single transition (¢,¢) — (¢, f) from an initial configuration of all
¢’s: when two candidate leaders meet, one becomes a follower f.
However, this protocol fails (as do nearly all other published leader
election protocols) in the self-stabilizing setting from an all-f con-
figuration. Thus, any self-stabilizing leader election (SSLE) protocol
must be able not only to reduce multiple potential leaders to one,
but also to create new leaders. A challenge is a careful verification
of leader absence, to avoid creating excess leaders forever.

Because of this challenge, in any SSLE protocol, agents must
know the exact population size n, and the number of states must be
at least n [22] (Theorem 2.1 in the preliminaries section). Despite
the original assumption of constant space, population protocols
with linear space (merely O(log n) bits of memory) may be useful in
practice, similarly to distributed algorithms in other models (mes-
sage passing, radio networks, etc.). One may now imagine such
memory-equipped devices communicating in a way as agents do in
population protocols [42, 50]. Think of a group of mobile devices
(like sensors, drones or smart phones) operating in different types of
rescue, military or other monitoring operations (of traffic, pollution,
agriculture, wild-life, etc.). Such networks may be expected to oper-
ate in harsh inaccessible environments, while being highly reliable
and efficient. This requires an efficient “strong” fault-tolerance for
automatic recovery provided by self-stabilization. Moreover, even
if one considers only protocols with polylog(n) states interesting, it
remains an interesting fact that such protocols cannot solve SSLE.

Finally, self-stabilizing algorithms are easier to compose [30, 31].
Composition is in general difficult for population protocols [24,
52], since they lack a mechanism to detect when one computation
has finished before beginning another. However, a self-stabilizing
protocol S can be composed with a prior computation P, which may
have set the states of S in some unknown way before P stabilized,
c.f. [10, Section 4], [7, Theorem 3.5].

Problem variants. To circumvent the necessary dependence on
population size n, previous work has considered relaxations of the
original problem. One approach, which requires agents only to
know an upper bound on n, is to relax the requirement of self-
stabilization: loose-stabilization requires only that a unique leader
persists for a long time after a stabilization, but not forever [56].
Other papers study leader election in more general and powerful
models than population protocols, which allow extra computational
ability not subject to the limitations of the standard model. One
such model assumes an external entity, called an oracle, giving clues
to agents about the existence of leaders [11, 35]. Other generalized
models include mediated population protocols [47], allowing addi-
tional shared memory for every pair of agents, and the k-interaction
model [58], where agents interact in groups of size 2 to k.

While this paper considers only the complete graph (the most
difficult case), other work considers protocols that assume a par-
ticular non-complete graph topology. In rings and regular graphs
with constant degree, SSLE is feasible even with only a constant
state space [10, 25, 26, 60]. In another recent related work [57],
the authors study the feasibility requirements of SSLE in arbitrary
graphs, as well as the problem of ranking that we also study (see
below). They show how to adapt protocols in [11, 22] into protocols
for an arbitrary (and unknown) connected graph topology (without
any oracles, but knowing n).

Session 1: Robots, Dynamics, and Population Protocols

1.1 Contribution

We initiate the study of the limits of time efficiency or the time/space
trade-offs for SSLE in the standard population protocol model, in the
complete interaction graph. The most related protocol, of Cai, Izumi,
and Wada [22] (SILENT-N-STATE-SSR, Protocol 1), given for complete
graphs, uses exactly n states and ©(n?) expected parallel time ,
exponentially slower than the polylog(n)-time non-self-stabilizing
existing solutions [14, 36, 37, 43, 55]. Our main results are two faster
protocols, each making a different time/space tradeoft.

Our protocols, along with that of [22], are summarized in Table 1.
These main results are later proven as Theorem 4.1 and Theorem 5.1.
Both expected time and high-probability time are analyzed. Any
silent protocol (one guaranteed to reach a configuration where no
agent subsequently changes states) must use Q(n) parallel time in
expectation (Observation 2.2). This lower bound has helped to guide
our search for sublinear-time protocols, since it rules out ideas that,
if they worked, would be silent. Thus OPTIMAL-SILENT-SSR is time-
and space-optimal for the class of silent protocols.

SUBLINEAR-TIME-SSR is actually a family of sublinear time proto-
cols that, depending on a parameter H that can be set to an integer
between 1 and ©(logn), causes the algorithm’s running time to
lie somewhere in O(+/n) and O(log n), while using more states the
larger H is; setting H = O(log n) gives the time-optimal O(log n)
time protocol. However, even with H = 1, it requires exponential
states. It remains open to find a sublinear-time SSLE protocol that
uses sub-exponential states. We note that any protocol solving SSLE
requires Q(logn) time: from any configuration where all n agents
are leaders, by a coupon collector argument, it takes Q(log n) time
for n — 1 of them to interact and become followers. (This argument
uses the self-stabilizing assumption that “all-leaders” is a valid
initial configuration; otherwise, for initialized leader election, it
requires considerably more care to prove an Q(logn) time lower
bound [55].)

For some intuition behind the parameterized running times for
SUBLINEAR-TIME-SSR, the protocol works by detecting “name colli-
sions” between agents, communicated via paths of length H + 1. For
example, H = 0 corresponds to the simple linear-time algorithm
that relies on two agents s, a with the same name directly interact-
ing, i.e., the path s — a. H = 1 means that s first interacts with a
third agent b, who then interacts with a, i.e., the paths — b — a.
To analyze the time for this process to detect a name collision,
consider the following “bounded epidemic” protocol. The “source”
agent s that starts the epidemic is in state 0, and all others are in
state co, and they interact by i, j — i,i + 1 whenever i < j. The
time 7y is the first time some target agent a has state < k. In other
words, this agent has heard the epidemic via a path from the source
of length at most k. We have E[r1] = O(n), since a must meet s
directly. An iterative process can then show E[r;] = O(+/n), and
more generally E[7;] = O(kn'/%). 7, is the hitting time for the stan-
dard epidemic process, since the path from any agent to the source
can be at most n. However, with high probability, the epidemic
process will reach each agent via a path of length O(logn), so it
follows that 7. = O(logn) if k = Q(log n), so setting H = O(log n)
will detect this name collisions in O(log n) time.

All protocols in the table solve a more difficult problem than
leader election: ranking the agents by assigning them the IDs

35

PODC 21, July 26-30, 2021, Virtual Event, Italy

1,...,n. Ranking is helpful for SSLE because it gives a deterministic
way to detect the absence of a state (such as the leader state). If any
rank is absent, the pigeonhole principle ensures multiple agents
have the same rank, reducing the task of absence detection to that
of collision detection.

Collision detection is accomplished easily in O(n) time by wait-
ing for the colliding agents to meet, which is done by OpTIMAL-
SILENT-SSR. Achieving stable collision detection in optimal O(log n)
time is key to our fast protocol SUBLINEAR-TIME-SSR. This collision
detection problem is interesting in its own right, see Conclusion.

Ranking is similar to the naming problem of assigning each agent
a unique “name” (ID) [20, 46], but is strictly stronger since each
agent furthermore knows the order of its name relative to those
of other agents. Naming is related to leader election: if each agent
can determine whether its name is “smallest” in the population,
then the unique agent with the smallest name becomes the leader.
However, it may not be straightforward to determine whether some
agent exists with a smaller name; much of the logic in the faster
ranking algorithm SUBLINEAR-TIME-SSR is devoted to propagating
the set of names of other agents while determining whether the
adversary has planted “ghost” names in this set that do not actually
belong to any agent. On the other hand, any ranking algorithm
automatically solves both the naming and leader election problems:
ranks are unique names, and the agent with rank 1 can be assigned
as the leader. (The converse does not hold [21].)

The full version of this paper [21] contains proofs of all results.

2 PRELIMINARIES

We write N = {1,2,...} and Ny = N U {0}. The term Ink de-
notes the natural logarithm of k. Hy = Z{.Czl % denotes the kth

harmonic number, with Hy ~ Ink, where f(k) ~ g(k) denotes that
fo _

kli_r)réo g = 1. We omit floors or ceilings (which are asymptotically
negligible) when writing In n to describe a quantity that should be
integer-valued. Throughout this paper, by convention n denotes the
population size n, the number of agents. We say an event E happens
with high probability (WHP) if P[-E] = O(1/n).

If a self-stabilizing protocol stabilizes with high probability, then
we can make this high probability bound 1 — O(1/n€) for any con-
stant c. This is because in the low probability of an error, we can
repeat the argument, using the current configuration as the ini-
tial configuration. Each of these potential repetitions gives a new
“epoch”, where the Markovian property of the model ensures the
events of stabilizing in each epoch are independent. Thus the pro-
tocol will stabilize after at most ¢ of these “epochs” with probability
1 —0(1/n°). By the same argument, if a self-stabilizing protocol
can stabilize with any positive probability p > 0, it will eventually
stabilize with probability 1.

Model. We consider population protocols [8] defined on a collec-
tion A of n indistinguishable agents, also called a population. We
assume a complete communication graph over A, meaning that
every pair of agents can interact. Each agent has a set S of local
states. At each discrete step of a protocol, a probabilistic scheduler
picks randomly an ordered pair of agents from A to interact. Dur-
ing an interaction, the two agents mutually observe their states

Session 1: Robots, Dynamics, and Population Protocols

PODC 21, July 26-30, 2021, Virtual Event, Italy

Table 1: Overview of time and space (number of states) complexities of self-stabilizing leader election protocols (which all also
solve ranking). For the silent protocols, the silence time also obeys the stated upper bound. Times are measured as parallel
time until stabilization both in expectation and with high probability (WHP is defined as probability 1 — O(1/n), but implies
a guarantee for any 1 — O(1/n¢), see Section 2). Entries marked with * are asymptotically optimal in their class (silent/non-
silent); see Observation 2.2. The final two rows really describe the same protocol SUBLINEAR-TIME-SSR; it is parameterized by
the positive integer H; setting H = O(log n) gives the time-optimal O(logn) time protocol.

protocol expected time | WHP time states silent
SILENT-N-STATE-SSR [22] 0(n?) 0(n?) *n yes
OrTIMAL-SILENT-SSR (Sec. 4) | * ©(n) *O(nlogn) *0(n) yes
SUBLINEAR-TIME-SSR (Sec. 5) | * ©(logn) * O(logn) exp (O(nl"g” -log n)) no
SUBLINEAR-TIME-SSR (Sec.5) | ©(H - nﬁ) O(logn - nﬁ) @(n@("H) logn) no

and update them according to a probabilistic® transition function
T : SXS — Dist(SxS) where Dist(X) denotes the set of probability
distributions on X.

Given a finite population (A and state set S, we define a configu-
ration C as a mapping C : A — S. Given a starting configuration
Co, we define the corresponding execution as a sequence (Ct)¢>0
of random configurations where each Cy41 is obtained from C; by
applying T on the states of a uniform random ordered pair of agents
(a,b),ie., Cri1(a), Crs1(b) = T(C(a), Ct (b)) and Cre1(x) = Ct (x)
for all x € A \ {a, b}. We use the word time to mean the number
of interactions divided by n (the number of agents), a.k.a. parallel
time.

Pseudocode conventions. We describe states of agents by sev-
eral fields, using fixed-width font to refer to a field such as field.
As a convention, we denote by a.field(t), when used outside of
pseudocode, the value of field in agent a at the end of the tth
interaction, omitting “a.” and/or “(¢)” when the agent and/or in-
teraction is clear from context. Constant values are displayed in a
sans serif front such as Yes/No. When two agents a and b interact,
we describe the update of each of them using pseudocode, where
we refer to field of agent i € {a, b} asi.field.

In each interaction, one agent is randomly chosen by the sched-
uler to be the “initiator” and the other the “responder”. Most inter-
actions are symmetric, so we do not explicitly label the initiator
and responder unless an asymmetric interaction is required.®

A special type of field is called a role, used in some of our proto-
cols to optimize space usage and limit the types of states accessible
to an adversarial initial condition. If an agent has several fields each
from a certain set, then that agent’s potential set of states is the
cross product of all the sets for each field, i.e., adding a field from
a set of size k multiplies the number of states by k. A role is used
to partition the state space: different roles correspond to different
sets of fields, so switching roles amounts to deleting the fields from
the previous role. Thus the total number of states is obtained by
adding the number of states in each role.

SNote that we allow randomness in the transitions for ease of presentation. All our
protocols can be made deterministic by standard synthetic coin techniques without
changing time or space bounds.

®Tt is also possible to make all transitions symmetric using standard “synthetic coin”
techniques.

36

Convergence and stabilization. Population protocols have some
problem-dependent notion of “correct” configurations. (For exam-
ple, a configuration with a single leader is “correct” for leader elec-
tion.) A configuration C is stably correct if every configuration
reachable from C is correct. An execution & = (Cy, Cy, . . .) is picked
at random according to the scheduler explained above. We say &
converges (respectively, stabilizes) at interaction i € N if C;_1 is not
correct (resp., stably correct) and for all j > i, Cj is correct (resp.,
stably correct). The (parallel) convergence/stabilization time of a
protocol is defined as the number of iterations to converge/stabilize,
divided by n. Convergence can happen strictly before stabilization,
although a protocol with a bounded number of states converges
from a configuration C with probability p € [0, 1] if and only if
it stabilizes from C with probability p. For a computational task
T equipped with some definition of “correct”, we say that a pro-
tocol stably computes T with probability p if, with probability p, it
stabilizes (equivalently, converges).

Leader election and ranking. The two tasks we study in this paper
are self-stabilizing leader election (SSLE) and ranking (SSR). For both,
the self-stabilizing requirement states that from any configuration, a
stably correct configuration must be reached with probability 1. For
leader election, each agent has a field 1eader with potential values
{Yes, No}, and a correct configuration is defined where exactly one
agent a has a.leader = Yes.” For ranking, each agent has a field
rank with potential values {1,...,n}, and a correct configuration
is defined as one where, for each r € {1, ..., n}, exactly one agent
a has a.rank = r. As noted in Sec. 1, any protocol solving SSR also
solves SSLE by assigning leader to Yes if and only if rank = 1; for
brevity we omit the leader bit from our protocols and focus solely
on the ranking problem.

SSLE Protocol from [22]. Protocol 1 shows the original SSLE pro-
tocol from [22]. We display it here to introduce our pseudocode
style and make it clear that this protocol is also solving ranking.?

The convergence proofs in [22] did not consider our definition
of parallel time via the uniform random scheduler. Thus we also
include proofs that SILENT-N-STATE-SSR stabilizes in ©(n?) time, in

"We do not stipulate the stricter requirement that one agent stays the leader, rather
than letting the leader = Yes bit swap among agents, but we claim these problems
are equivalent due to the complete communication graph. A protocol solving SSLE can
also “immobilize” the unique leader = Yes bit by replacing any transition (x, y) —
(w, z), where x.leader = z.leader = Yes and y.leader = w.leader = No, with
(x.9) = (2. W).

8Their state set {0,...,n — 1} from [22] is clearly equivalent to our formal definition
ofarank € {1,...,n}, but simplifies the modular arithmetic.

Session 1: Robots, Dynamics, and Population Protocols

expectation and WHP [21] . It is straightforward to argue an Q(n?)
time lower bound from a configuration with 2 agents at rank = 0,
0 agents at rank = n — 1, and 1 agent at every other rank. This
requires n — 1 consecutive “bottleneck” transitions, each moving
an agent up by one rank starting at 0. Each takes expected time
©(n) since two specific agents (the two with the same rank) must
interact directly. Our arguments for a O(n?) time upper bound give
a separate proof of correctness from that in [22], reasoning about a
barrier rank that is never crossed.

Protocol 1 SILENT-N-STATE-SSR, for initiator a interacting with
responder b
Fields: rank € {0,...,n— 1}

1: if a.rank = b.rank then
2 b.rank « (b.rank + 1) mod n

Cai, Izumi, and Wada [22] show that the state complexity of this
protocol is optimal. A protocol is strongly nonuniform if, for any
ni < ny, a different set of transitions is used for populations of size
n1 and those of size ny (intuitively, the agents hardcode the exact
value n).

THEOREM 2.1 ([22]). Any population protocol solving SSLE has
> n states and is strongly nonuniform.

It is worth seeing why any SSLE protocol must be strongly
nonuniform. Suppose the same transitions are used in population
sizes n; < ny. By identifying in a single-leader population of size
ny any subpopulation of size n; that does not contain the leader,
sufficiently many interactions strictly within the subpopulation
must eventually produce a second leader. Thus the full population
cannot be stable. These conflicting requirements to both produce a
new leader from a leaderless configuration, but also make sure the
single-leader configuration is stable, is the key new challenge of
leader election in the self-stabilizing setting. Protocols solving SSLE
circumvent this error by using knowledge of the exact population
size n.

Silent protocols. A configuration C is silent if no transition is
applicable to it (put another way, every pair of states present in C
has only a null transition that does not alter the configuration). A
self-stabilizing protocol is silent if, with probability 1, it reaches a
silent configuration from every configuration. Since convergence
time < stabilization time < silence time, the following bound applies
to all three.

OBSERVATION 2.2. Any silent SSLE protocol has Q(n) expected
convergence time and for any a > 0, probability > %n_m to require
> anlnn convergence time.

For example, letting a = 1/3, with probability > % the protocol
requires > %n In n time.

Proor. Let C be a silent configuration with a single agent in a
leader state £. Let C’ be the configuration obtained by picking an
arbitrary non-leader agent in C and setting its state also to ¢. Since
C is silent and the states in C” are a subset of those in C, no state in
C’ other than ¢ can interact nontrivially with £. So the two £’s in C’
must interact to reduce the count of £. The number of interactions

37

PODC 21, July 26-30, 2021, Virtual Event, Italy

2
n(n-1) <

3/n2, so expected time > n/3 and for any a > 0, at least an’Inn
interactions (anIn n time) are required with probability at least

for this to happen is geometric with P[success] = 1/(}) =

2
)an Inn > %e—3alnn — ln—3a4 o

(l—S‘/n2 5

Probabilistic tools. An important foundational process is the two-
way epidemic process for efficiently propagating a piece of informa-
tion from a single agent to the whole population.

We also consider a generalization, the roll call process, where ev-
ery agent simultaneously propagates a unique piece of information
(its name). We build upon bounds from [48] to show this process
is also efficient (only 1.5 times slower than the original epidemic
process). This process appears in two of our protocols, but also
gives upper bounds on the time needed for any parallel information
propagation, since after the roll call process completes, every agent
has had a chance to “hear from” every other agent. The analysis of
these two processes gives tight large deviation bounds with specific
constants. While getting these precise constants was more than
what is strictly necessary for the proofs in this work, the analysis
of these processes may be of independent interest. This roll call
process has been independently analyzed in [19, 23, 40, 49].

3 RESETTING SUBPROTOCOL

PROPAGATE-RESET (Protocol 2) is used as a subroutine in both of our
protocols OPTIMAL-SILENT-SSR (Sec. 4) and SUBLINEAR-TIME-SSR
(Sec. 5). Intuitively, it provides a way for agents (upon detecting an
error that indicates the starting configuration was “illegal” in some
way) to “reset” quickly, after which they may be analyzed as though
they began from the reset state. For that, the protocol RESET has
to be defined for use by PROPAGATE-RESET. We assume that RESET
changes the role variable to something different from Resetting.
Crucially, after the reset, agents have no information about whether
a reset has happened and do not attempt any synchronization to
ensure they only reset once, lest the adversary simply sets every
agent to believe it has already reset, preventing the necessary reset
from ever occurring.’

We now define some terms used in the analysis of PROPAGATE-RESET,

and their intuition:

If a.role # Resetting, then we say a is computing (it is execut-
ing the outside protocol). Otherwise, for a.role = Resetting, we
use three terms. If a.resetcount = Rpax, We say a is triggered
(it has just detected an error and initiated this global reset). If
a.resetcount > 0 we say a is propagating (intuitively this prop-
erty of positivity spreads by epidemic to restart the whole pop-
ulation; we also consider triggered agents to be propagating). If
a.resetcount = 0, we say a is dormant (it is waiting for a delay to
allow the entire population to become dormant before they start
waking up, this prevents an agent from waking up multiple times
during one reset).

Likewise, we will refer to a configuration as fully / partially
propagating (resp. dormant, computing, triggered) if all / some
agents are propagating (resp. dormant, computing, triggered).

9This is unlike in standard population protocol techniques in which “phase information”
is carried in agents indicating whether they are encountering an agent “before” or
“after” a new phase starts.

Session 1: Robots, Dynamics, and Population Protocols

A configuration C is awakening if it is the first partially com-
puting configuration reachable from a fully dormant configuration.
Protocols that use PROPAGATE-RESET will start their analysis by
reasoning about an awakening configuration, which formalizes
the idea of having gone through a “clean reset”. In an awakening
configuration, all agents are dormant except one agent who has just
executed REseT. Computing agents will awaken dormant agents
by epidemic, so within O(log n) time, all agents will have executed
RESET once and then be back to executing the main algorithm.

Protocol 2 PROPAGATE-RESET(a,b), for Resetting agent a interact-
ing with agent b.
Fields: If role = Resetting, resetcount € {0,1,...,Rmax}
and when resetcount = 0 an additional field delaytimer €
{0,1,..., Dmax}-
1: if a.resetcount > 0 and b.role # Resetting then

/1 bring b into Resetting role
b « Resetting, b.resetcount « 0
b.delaytimer < Dpax

if b.role = Resetting then /] change resetcount
a.resetcount, b.resetcount <« max(a.resetcount —
1,b.resetcount — 1,0)

6: for i € {a,b} with i.role = Resetting and i.resetcount = 0

do /] dormant agents
7: if i.resetcount just became 0 then
// initialize delaytimer
8: i.delaytimer «— Dpax
9: else
10: i.delaytimer « i.delaytimer —1

1 if i.delaytimer = 0 or b.role # Resetting then
/] awaken by epidemic
12: execute RESET(i)
/! RESET subroutine provided by main protocol

We require Rax = Q(log n), and for our protocol will choose the
concrete value Rpax = 601nn. We also require Dmax = Q(Rmax)-
For our O(logn) time protocol SUBLINEAR-TIME-SSR, we have
Dmax = ©(logn). In OPTIMAL-SILENT-SSR, we set Dpax = O(n),
to give enough time for the dormant agents to do a slow leader
election so they finish reset with a unique leader.

PROPAGATE-RESET begins by some agent becoming triggered
(resetcount = Rpax). Although introduced for a different purpose,
PROPAGATE-RESET is essentially equivalent to a subprotocol used
in [5], so we adopt their time analysis to prove it completes in
O(log n) time. Briefly, from a partially triggered configuration, the
propagating condition (resetcount > 0) spreads by epidemic (in
O(log n) time) . Once the configuration is fully propagating, it be-
comes fully dormant in O(log n) time . From the fully dormant con-
figuration, we reach an awakening configuration within O(log n)
time when the first agent executes RESET . Then the instruction to
execute RESET spreads by epidemic (in O(log n) time).

4 LINEAR-TIME, LINEAR-STATE, SILENT
PROTOCOL

In this section, we present a silent self-stabilizing ranking protocol,
OPTIMAL-SILENT-SSR, which achieves asymptotically optimal O(n)

38

PODC 21, July 26-30, 2021, Virtual Event, Italy

time and state complexity. Like SILENT-N-STATE-SSR, there will be
a unique stable and silent configuration where every agent has a
unique rank, but now a rank collision will trigger our PROPAGATE-
RESET, causing the entire population to reset. The key idea behind
OPTIMAL-SILENT-SSR is to add a large delay Dmax = ©(n) in the
PROPAGATE-RESET, which will ensure that the entire population is
dormant for long enough to do a simple slow leader election via
L,L — L, F, where all agents set themselves to L upon entering the
Resetting role. Thus after the population has undergone a reset, we
have a unique leader with high probability. After this reset, we do
a linear-time leader-driven ranking, where the ranks correspond to
nodes in a full binary tree rooted at the leader. In this ranking algo-
rithm, each agent that has been assigned a rank (starting with the
leader) assigns ranks directly to 0, 1, or 2 other agents (depending
on its number of children in the tree).

In more detail, each agent can be classified into three roles:
Settled, Unsettled, and Resetting. A Settled agent has the field rank €
{1,2, ...,n}. Each individual role will use O(n) states, and the total
state set is the disjoint sum of these roles, for a total of O(n) states.
On the other hand, an Unsettled agent has no rank, and it waits for
the assignment of a rank from Settled agents.

We use the subprotocol PROPAGATE-RESET described in Section 3
to reset each agent when detecting errors. For OPTIMAL-SILENT-SSR,
the resetting process is triggered under two different situations. 1)
Two Settled agents have an identical rank. The rank conflict can be
detected when the two agents interact. 2) An Unsettled agent does
not get its rank after ©(n) interactions.

During the dormant phase of PROPAGATE-RESET, lasting for ©(n)
time in this protocol, we do slow leader election via L,L — L, F.
Upon awakening (calling ReseT), the (likely unique) leader L is
Settled with rank = 1 and followers F are Unsettled. Thus, after
resetting, with high probability there will be exactly one Settled
agent with rank = 1, and all the other agents are Unsettled. The
Settled agent will act as a leader to assign ranks to all Unsettled
agents in the following way. At this point the protocol executes
an initialized ranking algorithm, similar to others in the renaming
literature [3, 4]. Intuitively, a full binary tree forms within the pop-
ulation. Each Settled agent recruits at most two Unsettled agents,
assigning them ranks based on its own to guarantee uniqueness.
The children of rank i are 2i and 2i + 1; in other words if an agent’s
rank has binary expansion s, its childrens’ ranks have binary ex-
pansions s0 and s1. Since each agent knows the exact population
size, each knows whether its rank corresponds to a node with 0,
1, or 2 children in the full binary tree with n nodes. See Figure 1
for an example. This process clearly terminates when all agents are
recruited and become settled into different ranks.

OPTIMAL-SILENT-SSR takes linear time by the following high-
level argument: If there is a rank collision, this is detected in O(n)
time. If any agent remains Unsettled without a rank, this is detected
via counting up to errorcount in O(n) time. Either of these triggers
a call to PROPAGATE-RESET.

This reset finishes and reaches a fully computing configuration in
O(n) time . There is a constant probability the slow leader election
fails (i.e., we end up with multiple leaders), but the expected number
of times we must repeat this process before getting a unique leader
is constant. The O(n) time of this ranking protocol follows by
analyzing each level of the binary tree created across the population:

Session 1: Robots, Dynamics, and Population Protocols

Settled Agents:

() (3
@ Q©® @
OOWLE@

Figure 1: Example of rank assignment in OPTIMAL-SILENT-
SSR with n = 12 agents. There are 8 settled agents on the
left (blue circles), with ranks shown. There are 4 ranks in
the binary tree left to be filled by the unsettled agents, when
they interact with the settled agents with ranks 3,4 or 5. This
process completes in expected ©(n) time.

Unsettled Agents:

each level takes time proportional to the number of nodes in the
level, whence the time is proportional to the size of the tree, i.e.,
O(n).

Protocol 3 OpPTIMAL-SILENT-SSR, for initiator a interacting with
responder b

Fields: role € {Settled, Unsettled, Resetting}

If role = Settled, rank € {1, ...,n}, children € {0, 1, 2}

If role = Unsettled, errorcount € {0, 1, ..., Emax = ©(n)}

If role = Resetting, leader € {L, F}, resetcount € {1,..., Rmax},
delaytimer € {0,1,..., Dpax = ©(n)}

1: if a.role = Resetting or b.role = Resetting then

2 execute PROPAGATE-RESET(a,b)

3 if a.leader = L and b.1eader = L then

4 b.leader « F

5. if a.role = b.role = Settled and a.rank = b.rank then

6 a.role,b.role < Resetting

7 a.resetcount, b.resetcount « Ryax

8 a.leader,b.leader « L

9: for (i, j) € {(a,b), (b,a)} do

10: if i.role = Settled, j.role = Unsettled, i.children < 2,
and 2 - i.rank + i.children < n then

11 j.role « Settled, j.children « 0

/] j becomes a child node of i
12: j.rank < 2 -i.rank +i.children
13: i.children « i.children+1

—_

4 forie {a,b} do
15: if i.role = Unsettled then

16: i.errorcount « max(i.errorcount —1,0)
17: if i.errorcount = 0 then

18: a.role,b.role « Resetting,

19: a.resetcount, b.resetcount < Rpyax
20: a.leader,b.leader « L

The required proofs for OPTIMAL-SILENT-SSR are given in [21]
and yield the following main results:

39

PODC 21, July 26-30, 2021, Virtual Event, Italy

Protocol 4 ReseT(a) for OPTIMAL-SILENT-SSR, for agent a.
(Called in line 12 of PROPAGATE-RESET.)

1: if a.leader = L then

2: a.role « Settled, a.rank < 1, a.children < 0
3: if a.leader = F then
4: a.role « Unsettled, a.errorcount « Ep,x = ©(n)

THEOREM 4.1. OPTIMAL-SILENT-SSR is a silent protocol solving
self-stabilizing ranking with O(n) states and O(n) expected time.

COROLLARY 4.2. OPTIMAL-SILENT-SSR takes O(nlogn) time with
high probability.

5 LOGARITHMIC-TIME PROTOCOL

In this section, we show a protocol solving SSR, and thus SSLE, in
optimal O(log n) expected time, using a “quasi-exponential” num-
ber of states: exp(O(nIOg” -log n)) Observation 2.2 shows that to

achieve sublinear time, the protocol necessarily must be non-silent:
agents change states forever.

5.1 Overview

Intuitively, SUBLINEAR-TIME-SSR works as follows. Each agent has
a field name, a bitstring of length 3 log, n. The n3 possible values
ensure that if all agents pick a name randomly, with high probability,
there are no collisions. The set of all name values in the population
is propagated by epidemic in O(log n) time in a field called roster
(which has an exponential number of possible values). Agents up-
date their rank (a write-only output field) only when their roster
field has size n; in this case the agent’s rank is its name’s lexico-
graphical order in the set roster.

One source of error is that we can start in a configuration with
a “ghost name”: a name that is in the roster set of some agent, but
that is not the name of any agent. If there are no collisions among
actual name’s, this error is easy to handle: eventually we will have
|[roster| > n, indicating that there is a ghost name, triggering
PROPAGATE-RESET.!?

The main challenge is then to detect name collisions. SUBLINEAR-
TiME-SSR calls a subroutine DETECT-NAME-COLLISION that detects
whether two agents have the same name. If so, we call the same
subroutine PROPAGATE-RESET used in OPTIMAL-SILENT-SSR, now
with Dmax = ©(log n) rather than ©(n) as in OPTIMAL-SILENT-SSR.
Upon awakening from PROPAGATE-RESET, agents pick a new name
randomly. They use their dormant time, while still in role Resetting,
but with resetcount = 0 while counting delaytimer down to 0,
to generate random bits to pick a new random name.

The bulk of the analysis is in devising an O(log n) time protocol
implementing DETECT-NAME-CoLLISION. The rest of the protocol
outside of DETECT-NAME-COLLISION is silent: once the protocol
stabilizes, no name or rank field changes. Indeed, we can imple-
ment a silent protocol on top of this scheme if we are content with
©(n) time: DETECT-NAME-COLLISION can be implemented with the

10We will introduce a tree data structure that also has all the names. However, it is
necessary to keep a separate set roster of names for the following reason. The set
roster is propagated in time O (log n), whereas in slower variants of our algorithm,
the tree takes too long to collect the names. For example, in the O (/1) time (and uses
less memory) variant, the tree takes time Q(n) to populate with all names.

Session 1: Robots, Dynamics, and Population Protocols

simple rule that checks whether the name fields of the two interact-
ing agents are equal, i.e., direct collision detection. The challenge,
therefore, is in implementing DETECT-NAME-COLLISION in sublin-
ear time by indirectly detecting collisions, without requiring agents
with the same name to meet directly. Any method of doing this will
necessarily be non-silent.

The protocol DETECT-NAME-COLLISION is parameterized to give a
tradeoff between stabilizing time and state complexity. For instance,
there is a O(+/n) time protocol that uses a data structure with kn
bits for a parameter k, i.e., okn possible values. Of course, all of the
schemes use at least exponential states, since the field roster has
~ n3n possible values. However, the faster schemes will use even
more states than this, and their analysis is more complex. This is
discussed in more detail in Section 5.2.

Protocol 5 SUBLINEAR-TIME-SSR, for agent a interacting with b.
Fields: role € {Collecting, Resetting}, name € {0, 1} <3log. 7

If role = Collecting, rank € {1,...,n}, roster ¢C
{0,1}=3108: 7 |roster| < n, other fields from DETECT-NAME-
CoOLLISION

If role = Resetting, resetcount € {1,..., Rmax}, delaytimer €
{0,1,...,Dmax = O(logn)}

1: if a.role = b.role = Collecting then
2 if DETECT-NAME-CoLLISION(a,b)
b.roster| > n then

or |a.roster U

3 a.role,b.role < Resetting
4: a.resetcount, b.resetcount « Ryax
5: else
6: a.roster,b.roster < a.roster U b.roster
7: if |a.roster U b.roster| = n then
// do not set rank until all names collected
8: fori e {a,b} do
9: i.rank « order of i.name in roster
10: else // some agent is Resetting
11: execute PROPAGATE-RESET(a,b)
12: for i € {a, b} such that |i.resetcount| > 0 do

/1 clear names while propagating the reset signal
13: i.name « ¢

14: for i € {a,b} such that i.resetcount = 0 and |i.name| <
3log, n do
15: append a random bit to i.name // can be derandomized

Protocol 6 ResET(a) for SUBLINEAR-TIME-SSR, for agent a.
(Called in line 12 of PROPAGATE-RESET.)

1: role « Collecting
2: roster « {name}

5.2 Fast Collision Detection

In SUBLINEAR-TIME-SSR, both PROPAGATE-RESET and filling all
agents’ roster take O(log n) time, so the time bottleneck is waiting
to detect a name collision. If we simply wait for two agents with
the same name to meet to detect a collision, this will take ©(n) time
in the worst case, which would give a ©(n) time silent algorithm.

40

PODC 21, July 26-30, 2021, Virtual Event, Italy

The goal of DETECT-NAME-COLLISION is to detect these names
collisions in sublinear time. Because of the lower bound of Observa-
tion 2.2, this protocol must not be silent. DETECT-NAME-COLLISION
will have to satisfy two conditions. In order to allow O(logn)
time convergence, from any configuration with a name collision,
some agent must detect this collision in O(log n) time to initiate
PROPAGATE-RESET. Second, to ensure the eventual ranked config-
uration is stable, it must satisfy a safety condition where from a
configuration with unique names, no agent will ever think there is
a name collision.!!

As a warm-up to the full O(logn)-time protocol of DETECT-
NaMEe-COLLISION, consider the following simpler O(+/n)-time pro-
tocol. Each agent keeps a dictionary keyed by names of other agents
they have encountered in the population. Whenever agents a and
b meet, they generate a random shared value sync € {1,...,k},
which a stores in its dictionary keyed by the name of b, and b stores
in its dictionary keyed by the name of a. If the two agents disagree
on this sync value at the beginning of an interaction, they declare
a name collision.

From a configuration with two agents a and a’ sharing the same
name, within O(y/n) time, some agent b will interact with both a
and a’ (assume b first interacts with a, then a’). With probability
1- % the sync value that b generates with a will disagree with the
sync value that a” has with b. So when b then meets a@’, it is able to
detect a name collision. From a configuration with unique names,
an invariant is maintained that all pairs of agents agree on their
corresponding sync values, giving the required safety property.

The actual protocol DETECT-NAME-COLLISION is a generalization
of this idea. The agents now store a more complicated data structure:
a tree whose nodes are labelled by names. See Figure 2 for an
example. The root is labelled by the agent’s own name, and every
root-to-leaf path is simply labelled, meaning that each node on the
path contains unique names (it is permitted for the same name to
appear on multiple nodes in the tree, but neither of these nodes can
be an ancestor of the other). Each edge is labelled by a sync value.
The intuition is that these paths correspond to histories: chains of
interactions between agents, where the sync values on the edges
were generated by the interaction between that pair of agents. For

instance, if a has a path a i b i c l> d, the interpretation is
that when a last met b, a and b generated sync value 3, and in that
interaction, b told a that when b last met c, b and ¢ generated sync
value 5, and in that interaction, c told b that when ¢ last met d, ¢
and d generated sync value 7. In particular, it could be that ¢ and
d have interacted again, generating a different sync value than 7,
before a and b interact, but b has not heard about that interaction.
See Fig. 2 for an example showing how this information is built up.

The O(+/n) time algorithm above can be thought of as a tree of
depth 1, where each agent stores only the names and sync values
of the agents it has directly interacted with. The general algorithm
has a tree of depth H, which allows agents to hear about other
agents’ sync values through longer chains of interactions. In line 3
of DETECT-NAME-COLLISION, each agent checks any paths ending
at the name of the other agent (the additional fields edge.timer

The initial configuration could have unique names, but with auxiliary data adversari-
ally planted to mislead agents into believing there is a name collision, triggering a reset.
So the actual safety condition is more subtle and involves unique-name configurations
reachable only after a reset.

Session 1: Robots, Dynamics, and Population Protocols

Protocol 7 DETECT-NAME-COLLISION(a,b) for SUBLINEAR-TIME-
SSR, for agent a, b.
Fields: tree: depth H, root labelled name, other nodes have
node.name € roster. Edges have edge.sync € {1,...,Smax =
O(n?)} and edge.timer € {0,..., Ty }. The parameter Ty = O(H -
nl/(H+)) for H = O(1) and Ty = O(logn) for H = ©(logn) (we
need Ty = O(tH41)).
1: for (i, j) € {(a,b), (b,a)} do
2: for every path (i.eg,..
i.ep.timer,...,i.ep.timer >
v.name = j.name do
/] All of i’s histories about j that aren’t outdated

.,i.ep) in itree with
0 and last node o with

3 if CHECK-PATH-CONSISTENCY(j, (i.e1,...,i.ep)) =
Inconsistent then
4: Return True // collision detected

5: x < chosen uniformly at random from {1, ..., Smax}
/] Choose new sync value
6: for (i, j) € {(a,b), (b,a)} do
/! Update trees to share new information
7: if i.tree has node v at depth 1 with v.name = j.name then
8: Remove the subtree rooted at v from i.tree
9 Add j.tree (to depth H — 1) as a subtree of i.tree via new
edge e from the root
10: e.sync < x, e.timer « Ty
11: fori € {a,b} do /] Keep the trees simply labelled
12: remove from i.tree all subtrees with root labelled with
i.name
13: for each edge e in a.tree and b.tree do
14: e.timer « max(e.timer — 1,0)

15: Return False // no collision detected

are a technicality to handle certain adversarial initial conditions).
Intuitively, they require the other agent to show information that
is logically consistent with this path, formalized in the conditions
of CHECK-PATH-CONSISTENCY. To detect a name collision between
agents a and d’, it will now suffice for some agent b to have heard
about agent a before meeting a’. With constant probability, the
duplicate agent a’ will not have any sync values that are logically
consistent with this path, and b will declare a collision. Allowing
longer paths decreases the time it takes for this information to
travel between a and a’. Because the paths that spread information
in the epidemic process have length at most O(log n) with high
probability [21], once we take H = O(log n), in the O(log n) time
it would take for an epidemic starting at a to reach a’, some agent
will detect a collision in this way.

Protocol 8 CHECK-PATH-CONSISTENCY(j,P) for DETECT-NAME-
Coruision, for agent j verifying path P = (i.eq, ..., i.ep)

1 ¢ « min{q’ | 3(j.ep,...,j.eq) in j.tree}

/I (j.eps...,j.eq) is a root-to-leaf path
2: for edge j.e € (j.ep,...,j.eq) do
3: if j.e.sync = i.e.sync then

4: Return True
5. Return Inconsistent

41

PODC 21, July 26-30, 2021, Virtual Event, Italy

DETECT-NAME-CoLLisioN works in O(Ty) time, and also sat-
isfies required safety conditions that ensure there are no “false
positives” where collisions are detected from configurations with
unique names. These results will let us prove the main theorem
about the behavior of SUBLINEAR-TIME-SSR:

THEOREM 5.1. SUBLINEAR-TIME-SSR uses exp (O(nH) log n) states.

When H = O(1), SUBLINEAR-TIME-SSR solves self-stabilizing rank-
ing in expected O(H -n* F+V) time, and O(H -log n-n*/ (H*V) time
with high probability 1 — O(1/n). When H = ©(log n), SUBLINEAR-
TIME-SSR solves self-stabilizing ranking in time O(log n), in expecta-
tion and with high probability 1 — O(1/n).

6 CONCLUSION AND PERSPECTIVES

For the first time, we addressed time-space trade-offs of self-stabilizing
leader election and ranking in population protocols over complete
graphs. We emphasize that solving these problems, while ensuring
such a strong form of fault-tolerance, necessitates linear states and
strong nonuniformity (Theorem 2.1). Other forms of “strong” fault-
tolerance, such as Byzantine-tolerance [39] or loosely-stabilizing
leader election with exponential holding time (a period of time where
a unique leader persists after stabilization) [41, 56], similarly neces-
sitate Q(n) states. By contrast, a sublinear number of states suffices
for many non-fault-tolerant protocols (cf. [6]) and weaker forms of
tolerance, such as loosely-stabilizing leader election with polyno-
mial holding time [56] or tolerance to a constant number of crashes
and transient faults [27].

To conclude, we propose several perspectives.
Time/space tradeoffs. It is open to find a subexponential-state
sublinear-time self-stabilizing ranking protocol. Observation 2.2
states that any sublinear time SSR protocol is not silent. SUBLINEAR-
TiME-SSR is non-silent because it perpetually passes around in-
formation about agents’ recent interactions with each other, as a
way to detect name collisions without requiring the agents with
equal names to meet directly. Even when limiting the tree of inter-
actions to depth 1, this results in an exponential number of states,
since each agent must maintain a value to associate to every other
agent in the population. Thus, a subexponential-state protocol (if
based upon fast collision detection) would somehow need to embed
enough information in each agent to enable fast collision detection,
while somehow allowing the agent to forget “most” of the informa-
tion about its interactions. Furthermore, our strategy of using the
set roster of all names to go from unique names to unique ranks
fundamentally requires exponential states.
Ranking vs. leader election. Ranking implies leader election (“au-
tomatically”), but the converse does not hold. In the initialized case
where we can specify an initial state for each agent, it is possible to
elect a leader without ranking, using the single transition ¢, £ — ¢, f
(using too few states for the ranking problem even to be definable).
Though any self-stabilizing protocol for leader election must use
at least n states [22] (Theorem 2.1 here), it is not the case that any
SSLE protocol implicitly solves the ranking problem. It would be
interesting to discover an SSLE algorithm that is more efficient than
our examples because it does not also solve ranking.
Initialized ranking. Consider the ranking problem in a non-self-
stabilizing setting. Without the constraint of self-stabilization, there
is no longer the issue of ghost names. Compared to self-stabilization,

Session 1: Robots, Dynamics, and Population Protocols PODC 21, July 26-30, 2021, Virtual Event, Italy

a’stree | b’stree C’s tree d’s tree

® © @

a-b interact; generate sync value 1:

1

b-c interact; generate sync value 2:

eract; generate sync value 7:

c-d interact; generate sync value 3:

Figure 2: Example executions building up trees in agents, starting from a “clean” configuration with singleton trees. Red sync
values are newly generated or communicated in the preceding interaction. As an example of how agents check for consistency,

3 2 1
when a and d interact, before updating their trees, d checks any paths p that end with a (here there’s just one,d —» ¢ — b — a)

a’stree | Db’stree c’s tree d’s tree

® © 1@

a-b interact; generate sync value 1:

1

®) © @

b-c interact; generate sync value 2:

eHe

@

©

&)

(3]
QHQ

=

O ® | ®

| 1/ \2 | 1
O CICINO

c-d interact; generate sync value 3:

==
=)

Oan©,
()
(=

=0=E |©®

®
®
o
®
®

(=)~

1
against a’s corresponding path, which is a’s longest reversed suffix of p. Left: a’s reverse suffix is a — b, with just a single edge
that matches the final sync value in this path p, so CHECK-PATH-CONSISTENCY will return True after checking the first edge.

72 7
Right: a’s reverse suffix is a — b — c. The first edge a — b does not match d’s tree, because agents a and b generated the new

2
sync value 7 in a later interaction. However, in that interaction, a added the edge b — ¢, hearing about the b-c interaction with
sync value 2 that matches the path in d’s tree. Now CHECK-PATH-CONSISTENCY will return True after checking the second edge.

it may be easier to find an initialized ranking protocol that still uses assigns read-only names to each agent, but the read/write memory
polylogarithmic time, but only polynomial states. can be initialized to the same state for each agent. Can a name
Initialized collision detection. The core difficulty of SUBLINEAR- collision be detected in sublinear time and sub-exponential states?

TiME-SSR is collision detection. It would be interesting to study this
problem in the (non-self-stabilizing) setting where an adversary

42

Session 1: Robots, Dynamics, and Population Protocols

REFERENCES

(1]

[2

—

(3]

[7

[

8

=

[10]

[11]
[12]

[13

[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest. 2017. Time-
Space Trade-offs in Population Protocols. In SODA. 2560-2579.

D. Alistarh, J. Aspnes, and R. Gelashvili. 2018. Space-Optimal Majority in Popu-
lation Protocols. In SODA. 2221-2239.

Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui.
2010. Fast randomized test-and-set and renaming. In DISC 2010: International
Symposium on Distributed Computing. Springer, 94-108.

Dan Alistarh, Oksana Denysyuk, Luis Rodrigues, and Nir Shavit. 2014. Balls-into-
leaves: Sub-logarithmic renaming in synchronous message-passing systems. In
PODC 2014: Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing. 232-241.

D. Alistarh, B. Dudek, A. Kosowski, D. Soloveichik, and P. Uznanski. 2017. Robust
Detection in Leak-Prone Population Protocols. In DNA. 155-171. https://doi.org/
10.1007/978-3-319-66799-7_11

D. Alistarh and R. Gelashvili. 2018. Recent Algorithmic Advances in Population
Protocols. SIGACT News 49, 3 (2018), 63-73. https://doi.org/10.1145/3289137.
3289150

Talley Amir, James Aspnes, David Doty, Mahsa Eftekhari, and Eric Severson. 2020.
Message complexity of population protocols. In DISC 2020: 34th International Sym-
posium on Distributed Computing (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, Dagstuhl, Germany, 6:1-6:18. https://doi.org/10.4230/LIPIcs.DISC.2020.6
D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. 2006. Computation
in networks of passively mobile finite-state sensors. Distributed Computing 18, 4
(2006), 235-253.

D. Angluin, J. Aspnes, and D. Eisenstat. 2008. Fast computation by population
protocols with a leader. Distributed Computing 21, 3 (2008), 183-199.

D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. 2005. Self-stabilizing Population
Protocols. In OPODIS, Vol. 3974. Springer, 103-117. https://doi.org/10.1007/
11795490_10

J. Beauquier, P. Blanchard, and J. Burman. 2013. Self-stabilizing Leader Election in
Population Protocols over Arbitrary Communication Graphs. In OPODIS. 38-52.
J. Beauquier, J. Clement, S. Messika, L. Rosaz, and B. Rozoy. 2007. Self-Stabilizing
Counting in Mobile Sensor Networks with a base station. In DISC. 63-76.

A. Belleville, D. Doty, and D. Soloveichik. 2017. Hardness of Computing and
Approximating Predicates and Functions with Leaderless Population Protocols.
In ICALP. 141:1-141:14. https://doi.org/10.4230/LIPIcs.ICALP.2017.141

P. Berenbrink, G. Giakkoupis, and P. Kling. 2020. Optimal time and space leader
election in population protocols. In STOC. ACM, 119-129. https://doi.org/10.
1145/3357713.3384312

M. Blondin, J. Esparza, and S. Jaax. 2018. Large Flocks of Small Birds: on the
Minimal Size of Population Protocols. In STACS. 16:1-16:14. https://doi.org/10.
4230/LIPIcs.STACS.2018.16

O. Bournez, J. Chalopin, J. Cohen, and X. Koegler. 2008. Playing With Population
Protocols. In CSP 2008. 3-15.

O.Bournez, J. Cohen, and M. Rabie. 2018. Homonym Population Protocols. Theory
of Computing Systems 62, 5 (2018), 1318-1346.

J. M. Bower and H. Bolouri. 2004. Computational modeling of genetic and bio-
chemical networks. MIT press.

D. W. Boyd and J. M. Steele. 1979. Random Exchanges of Information. Journal of
Applied Probability 16, 3 (1979), 657-661. http://www.jstor.org/stable/3213094
J. Burman, J. Beauquier, and D. Sohier. 2019. Space-Optimal Naming in Population
Protocols. In DISC’19, J. Suomela (Ed.), Vol. 146. 9:1-9:16. https://doi.org/10.4230/
LIPIcs.DISC.2019.9

Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak,
Eric Severson, and Chuan Xu. 2021. Time-optimal self-stabilizing leader election
in population protocols (full version of this paper). Technical Report 1907.06068.
arXiv. http://arxiv.org/abs/1907.06068

S. Cai, T. Izumi, and K. Wada. 2012. How to prove impossibility under global
fairness: On space complexity of self-stabilizing leader election on a population
protocol model. Theory of Computing Systems 50, 3 (2012), 433-445.

A. Casteigts, M. Raskin, M. Renken, and V. Zamaraev. 2020. Sharp Thresholds in
Random Simple Temporal Graphs. arXiv:2011.03738 [cs.DM]

Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. 2021.
Composable rate-independent computation in continuous chemical reaction
networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics
18,1 (2021), 250-260. https://doi.org/10.1109/TCBB.2019.2952836 special issue
of invited papers from CMSB 2018.

H.-P. Chen and H.-L. Chen. 2019. Self-Stabilizing Leader Election. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing (Toronto ON,
Canada) (PODC ’19). Association for Computing Machinery, New York, NY, USA,
53-59. https://doi.org/10.1145/3293611.3331616

H.-P. Chen and H.-L. Chen. 2020. Self-Stabilizing Leader Election in Regular
Graphs. In Proceedings of the 39th Symposium on Principles of Distributed Com-
puting (Virtual Event, Italy) (PODC °20). Association for Computing Machinery,
New York, NY, USA, 210-217. https://doi.org/10.1145/3382734.3405733

43

[38

(39]

[40

[41

[46

[47

[49]

[50

[51

[52

[53

(54]

[55

PODC 21, July 26-30, 2021, Virtual Event, Italy

C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. 2006. When
Birds Die: Making Population Protocols Fault-Tolerant. In DCOSS. 51-66.

Z. Diamadi and M. J. Fischer. 2001. A simple game for the study of trust in
distributed systems. Wuhan University Journal of Natural Sciences 6, 1 (01 Mar
2001), 72-82. https://doi.org/10.1007/BF03160228

E. W. Dijkstra. 1974. Self-stabilizing Systems in Spite of Distributed Control.
Commun. of the ACM 17, 11 (Nov. 1974), 643-644.

Shlomi Dolev. 2000. Self-stabilization. MIT press.

Shlomi Dolev, Amos Israeli, and Shlomo Moran. 1993. Self-Stabilization of Dy-
namic Systems Assuming Only Read/Write Atomicity. Distributed Comput. 7, 1
(1993), 3-16. https://doi.org/10.1007/BF02278851

D. Doty and D. Soloveichik. 2015. Stable Leader Election in Population Protocols
Requires Linear Time. In DISC. 602-616.

R. Elsisser and T. Radzik. 2018. Recent Results in Population Protocols for
Exact Majority and Leader Election. Bulletin of the EATCS 126 (2018). http:
//bulletin.eatcs.org/index.php/beatcs/article/view/549/546

J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. 2017. Verification of population
protocols. Acta Informatica 54, 2 (2017), 191-215. https://doi.org/10.1007/s00236-
016-0272-3

M. J. Fischer and H. Jiang. 2006. Self-stabilizing Leader Election in Networks of
Finite-State Anonymous Agents. In OPODIS. 395-409.

L. Gasieniec and G. Stachowiak. 2018. Fast Space Optimal Leader Election in Pop-
ulation Protocols. In SODA. 2653-2667. https://doi.org/10.1137/1.9781611975031.
169

L. Gasieniec, G. Stachowiak, and P. Uznanski. 2019. Almost Logarithmic-Time
Space Optimal Leader Election in Population Protocols. In SPAA. 93-102. https:
//doi.org/10.1145/3323165.3323178

D. T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry 81 (25) (1977), 2340 — 2361.

R. Guerraoui and E. Ruppert. 2009. Names Trump Malice: Tiny Mobile Agents
Can Tolerate Byzantine Failures. In ICALP (2). 484-495.

J. Haigh. 1981. Random Exchanges of Information. Journal of Applied Probability
18, 3 (1981), 743-746. http://www.jstor.org/stable/3213330

T. Izumi. 2015. On Space and Time Complexity of Loosely-Stabilizing Leader
Election. In SIROCCO (Lecture Notes in Computer Science, Vol. 9439). Springer,
299-312. https://doi.org/10.1007/978-3-319-25258-2_21

D. Johnson, T. Stack, R. Fish, D. Montrallo Flickinger, L. Stoller, R. Ricci, and J.
Lepreau. 2006. Mobile Emulab: A Robotic Wireless and Sensor Network Testbed.
In INFOCOM. IEEE. https://doi.org/10.1109/INFOCOM.2006.182

A. Kosowski and P. Uznanski. 2018. Brief Announcement: Population Protocols
Are Fast. In PODC. 475-477. https://dl.acm.org/citation.cfm?id=3212788

G. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. Santoro, and G. Viglietta. 2019.
Population protocols with faulty interactions: The impact of a leader. Theoretical
Computer Science 754 (2019), 35-49. https://doi.org/10.1016/j.tcs.2018.09.005

O. Michail, I. Chatzigiannakis, and P. G. Spirakis. 2011. New Models for
Population Protocols. Synthesis Lectures on Distributed Computing Theory
2, 1 (2011), 1-156. https://doi.org/10.2200/S00328ED1V01Y201101DCT006
arXiv:https://doi.org/10.2200/S00328ED1V01Y201101DCT006

O. Michail, I. Chatzigiannakis, and P. G. Spirakis. 2013. Naming and Counting in
Anonymous Unknown Dynamic Networks. In SSS. 281-295. https://doi.org/10.
1007/978-3-319-03089-0_20

R. Mizoguchi, H. Ono, S. Kijima, and M. Yamashita. 2012. On space complexity
of self-stabilizing leader election in mediated population protocol. Distributed
Computing 25, 6 (2012), 451-460. https://doi.org/10.1007/s00446-012-0173-9

Y. Mocquard, B. Sericola, S. Robert, and E. Anceaume. 2016. Analysis of the
propagation time of a rumour in large-scale distributed systems. In 2016 IEEE
15th International Symposium on Network Computing and Applications (NCA).
IEEE, 264-271.

J. W. Moon. 1972. Random exchanges of information. Nieuw Archief voor
Wiskunde 20 (1972), 246—-249.

J. Polastre, J. L. Hill, and D. E. Culler. 2004. Versatile low power media access
for wireless sensor networks. In SenSys. ACM, 95-107. https://doi.org/10.1145/
1031495.1031508

M. Rabie. 2017. Global Versus Local Computations: Fast Computing with Identi-
fiers. In SIROCCO. 90-105. https://doi.org/10.1007/978-3-319-72050-0_6

Eric Severson, David Haley, and David Doty. 2020. Composable computation in
discrete chemical reaction networks. Distributed Computing (2020). to appear.
Special issue of invited papers from PODC 2019.

D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. 2008. Computation with finite
stochastic chemical reaction networks. Natural Computing 7, 4 (2008), 615-633.
https://doi.org/10.1007/s11047-008-9067-y

Y. Sudo and T. Masuzawa. 2020. Leader election requires logarithmic time in
population protocols. Parallel Processing Letters 30, 01 (2020), 2050005.

Y. Sudo, F. Ooshita, T. Izumi, H. Kakugawa, and T. Masuzawa. 2020. Time-
Optimal Leader Election in Population Protocols. IEEE Transactions on Parallel
and Distributed Systems 31, 11 (2020), 2620-2632. https://doi.org/10.1109/TPDS.
2020.2991771

https://doi.org/10.1007/978-3-319-66799-7_11
https://doi.org/10.1007/978-3-319-66799-7_11
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.4230/LIPIcs.DISC.2020.6
https://doi.org/10.1007/11795490_10
https://doi.org/10.1007/11795490_10
https://doi.org/10.4230/LIPIcs.ICALP.2017.141
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.4230/LIPIcs.STACS.2018.16
https://doi.org/10.4230/LIPIcs.STACS.2018.16
http://www.jstor.org/stable/3213094
https://doi.org/10.4230/LIPIcs.DISC.2019.9
https://doi.org/10.4230/LIPIcs.DISC.2019.9
http://arxiv.org/abs/1907.06068
https://arxiv.org/abs/2011.03738
https://doi.org/10.1109/TCBB.2019.2952836
https://doi.org/10.1145/3293611.3331616
https://doi.org/10.1145/3382734.3405733
https://doi.org/10.1007/BF03160228
https://doi.org/10.1007/BF02278851
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1137/1.9781611975031.169
https://doi.org/10.1137/1.9781611975031.169
https://doi.org/10.1145/3323165.3323178
https://doi.org/10.1145/3323165.3323178
http://www.jstor.org/stable/3213330
https://doi.org/10.1007/978-3-319-25258-2_21
https://doi.org/10.1109/INFOCOM.2006.182
https://dl.acm.org/citation.cfm?id=3212788
https://doi.org/10.1016/j.tcs.2018.09.005
https://doi.org/10.2200/S00328ED1V01Y201101DCT006
https://arxiv.org/abs/https://doi.org/10.2200/S00328ED1V01Y201101DCT006
https://doi.org/10.1007/978-3-319-03089-0_20
https://doi.org/10.1007/978-3-319-03089-0_20
https://doi.org/10.1007/s00446-012-0173-9
https://doi.org/10.1145/1031495.1031508
https://doi.org/10.1145/1031495.1031508
https://doi.org/10.1007/978-3-319-72050-0_6
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1109/TPDS.2020.2991771
https://doi.org/10.1109/TPDS.2020.2991771

Session 1: Robots, Dynamics, and Population Protocols PODC 21, July 26-30, 2021, Virtual Event, Italy

[56] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, A. K. Datta, and L. L. Larmore. In SSS. 86-97. https://doi.org/10.1007/978-3-319-03089-0_7
2020. Loosely-stabilizing leader election with polylogarithmic convergence time. [59] H. Yasumi, F. Ooshita, K. Yamaguchi, and M. Inoue. 2017. Constant-Space Popu-
Theor. Comput. Sci. 806 (2020), 617-631. https://doi.org/10.1016/j.tcs.2019.09.034 lation Protocols for Uniform Bipartition. In OPODIS 2017. 19:1-19:17.

[57] Y. Sudo, M. Shibata, J. Nakamura, Y. Kim, and T. Masuzawa. 2020. The Power [60] D. Yokota, Y. Sudo, and T. Masuzawa. 2020. Time-Optimal Self-stabilizing Leader
of Global Knowledge on Self-stabilizing Population Protocols. In SIROCCO, Election on Rings in Population Protocols. In SSS, Vol. 12514. Springer, 301-316.
Vol. 12156. Springer, 237-254. https://doi.org/10.1007/978-3-030-54921-3_14 hitps://doi.org/10.1007/978-3-030-64348-5_24

[58] X.Xu, Y. Yamauchi, S. Kijima, and M. Yamashita. 2013. Space Complexity of
Self-Stabilizing Leader Election in Population Protocol Based on k-Interaction.

44

https://doi.org/10.1016/j.tcs.2019.09.034
https://doi.org/10.1007/978-3-030-54921-3_14
https://doi.org/10.1007/978-3-319-03089-0_7
https://doi.org/10.1007/978-3-030-64348-5_24

Preflight Results

Document Information Preflight Information

Title: Time-Optimal Self-Stabilizing Leader Election in PopRtafiten Proto€alsvert to PDF/A-1b
Author: Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, DaveéBioty;, Thof@asdddwBlkHtaiGieve?8@1 RiBChuan Xu

Creator: LaTeX with acmart 2020/04/30 v1.71 Typesetting arti¢dde:for the AgsdmiRP férdEBpARIhg Machinery and hyperref 2
Producer: pdfTeX-1.40.21

Legend: (X) - Can NOT be fixed by PDF/A-1b conversion.
(!X) - Could be fixed by PDF/A-1b conversion. User chose to be warned in PDF/A settings.

Page 1 Results

(X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.

(
(
(
(
(
(
(
(

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	3 Resetting subprotocol
	4 Linear-time, linear-state, silent protocol
	5 Logarithmic-time protocol
	5.1 Overview
	5.2 Fast Collision Detection

	6 Conclusion and Perspectives
	References

